
Package ‘manynet’
June 23, 2025

Title Many Ways to Make, Modify, Map, Mark, and Measure Myriad
Networks

Version 1.5.1

Date 2025-06-23

Description Many tools for making, modifying, mapping, marking, measuring,
and motifs and memberships of many different types of networks.
All functions operate with matrices, edge lists, and 'igraph', 'network', and 'tidygraph' objects,
and on one-mode, two-mode (bipartite), and sometimes three-mode networks.
The package includes functions for importing and exporting, creating and generating networks,
modifying networks and node and tie attributes,
and describing and visualizing networks with sensible defaults.

URL https://stocnet.github.io/manynet/

BugReports https://github.com/stocnet/manynet/issues

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.6.0)

Imports cli, dplyr (>= 1.1.0), ggplot2, ggraph, igraph (>= 2.1.0),
network, pillar, tidygraph

Suggests BiocManager, concaveman, gganimate, ggdendro, ggforce,
gifski, graphlayouts, knitr, learnr, methods, netdiffuseR,
patchwork, readxl, rmarkdown, RSiena, sna, testthat (>= 3.0.0),
tibble, tidyr, xml2

Enhances Rgraphviz

Config/Needs/build roxygen2, devtools

Config/Needs/check covr, lintr, spelling

Config/Needs/website pkgdown

Config/testthat/parallel true

1

https://stocnet.github.io/manynet/
https://github.com/stocnet/manynet/issues

2 Contents

Config/testthat/edition 3

Config/testthat/start-first mark_is

NeedsCompilation no

Author James Hollway [cre, aut, ctb] (IHEID, ORCID:
<https://orcid.org/0000-0002-8361-9647>),

Henrique Sposito [ctb] (ORCID: <https://orcid.org/0000-0003-3420-6085>),
Christian Steglich [ctb]

Maintainer James Hollway <james.hollway@graduateinstitute.ch>

Repository CRAN

Date/Publication 2025-06-23 08:30:02 UTC

Contents
data_overview . 4
fict_friends . 5
fict_greys . 6
fict_lotr . 7
fict_potter . 8
fict_starwars . 10
fict_thrones . 11
glossary . 12
interface . 13
irps_911 . 14
irps_blogs . 15
irps_books . 16
irps_revere . 17
irps_usgeo . 18
irps_wwi . 19
ison_adolescents . 20
ison_algebra . 22
ison_brandes . 23
ison_dolphins . 24
ison_hightech . 25
ison_karateka . 26
ison_koenigsberg . 27
ison_laterals . 28
ison_lawfirm . 31
ison_marvel . 32
ison_monks . 34
ison_networkers . 36
ison_physicians . 37
ison_southern_women . 41
make_cran . 42
make_create . 43
make_ego . 45
make_explicit . 46

https://orcid.org/0000-0002-8361-9647
https://orcid.org/0000-0003-3420-6085

Contents 3

make_learning . 47
make_mnet . 49
make_motifs . 50
make_play . 51
make_random . 54
make_read . 56
make_stochastic . 58
make_write . 60
manip_as . 61
manip_changes . 64
manip_correlation . 66
manip_deformat . 67
manip_from . 68
manip_info . 70
manip_levels . 71
manip_miss . 72
manip_nodes . 73
manip_paths . 75
manip_permutation . 78
manip_preformat . 79
manip_project . 80
manip_reformat . 82
manip_scope . 83
manip_split . 85
manip_ties . 87
map_graphr . 89
map_graphs . 91
map_grapht . 92
map_layout_configuration . 94
map_layout_partition . 95
map_palettes . 97
map_scales . 98
map_themes . 100
mark_core . 100
mark_diff . 102
mark_features . 103
mark_format . 105
mark_is . 106
mark_nodes . 108
mark_select . 110
mark_ties . 111
mark_tie_select . 112
mark_triangles . 113
measure_attributes . 114
measure_central_between . 115
measure_central_close . 118
measure_central_degree . 122
measure_central_eigen . 126

4 data_overview

measure_closure . 129
measure_cohesion . 131
measure_diffusion_infection . 133
measure_diffusion_net . 134
measure_diffusion_node . 136
measure_features . 138
measure_heterogeneity . 142
measure_hierarchy . 145
measure_holes . 146
measure_periods . 148
measure_properties . 149
member_brokerage . 150
member_cliques . 151
member_community_hier . 152
member_community_non . 154
member_components . 158
member_diffusion . 159
member_equivalence . 160
model_cluster . 162
model_kselect . 164
motif_brokerage . 165
motif_diffusion . 166
motif_net . 168
motif_node . 170
tutorials . 172

Index 173

data_overview Obtain overview of available network data

Description

This function makes it easy to get an overview of available data:

• table_data() returns a tibble with details of the network datasets included in the packages.

Usage

table_data(..., pkg = c("manynet", "migraph"))

Arguments

... Network marks, e.g. directed, twomode, or signed, that are used to filter the
results.

pkg String, name of the package.

fict_friends 5

Examples

table_data()
to obtain list of all e.g. directed networks:
table_data(pkg = "manynet", directed)
to obtain overview of unique datasets:
table_data() %>%

dplyr::distinct(directed, weighted, twomode, signed,
.keep_all = TRUE)

fict_friends One-mode undirected Friends character scene co-appearances (Mc-
Nulty, 2020)

Description

One-mode network collected by McNulty (2020) on the connections between the Friends TV series
characters from Seasons 1 to 10. The fict_friends is an undirected network containing connec-
tions between characters organised by season number, which is reflected in the tie attribute ’wave’.
The network contains 650 nodes Each tie represents the connection between a character pair (appear
in the same scene), and the ’weight’ of the tie is the number of scenes the character pair appears in
together. For all networks, characters are named (eg. Phoebe, Ross, Rachel).

Usage

data(fict_friends)

Format

#> -- # Friends network ---
#> # A labelled, weighted, undirected network of 650 characters and 2976 scene
#> co-appearance ties
#>
#> -- Nodes
#> # A tibble: 650 x 1
#> name
#> <chr>
#> 1 Actor
#> 2 Alan
#> 3 Andrea
#> 4 Angela
#> 5 Aunt Iris
#> 6 Aunt Lillian
#> # i 644 more rows
#>
#> -- Ties
#> # A tibble: 2,976 x 3
#> from to weight

https://github.com/keithmcnulty/friends_analysis/

6 fict_greys

#> <int> <int> <dbl>
#> 1 8 9 3
#> 2 4 10 1
#> 3 8 12 1
#> 4 9 12 1
#> 5 2 14 1
#> 6 3 14 1
#> # i 2,970 more rows
#>

References

McNulty, K. (2020). Network analysis of Friends scripts..

fict_greys One-mode undirected network of characters hook-ups on Grey’s
Anatomy TV show

Description

Grey’s Anatomy is an American medical drama television series running on ABC since 2005. It
focuses on the personal and professional lives of surgical interns, residents, and attendings at Seattle
Grace Hospital, later renamed as the Grey Sloan Memorial Hospital. Gary Weissman collected data
on the sexual contacts between characters on the television show through observation of the story
lines in the episodes and fan pages, and this data was extended by Benjamin Lind including nodal
attributes:

• ’name’: first and, where available, surname

• ’sex’: F for female and M for male

• ’race’: White, Black, or Other

• ’birthyear’: year born (some missing data)

• ’position’: "Chief", "Attending", "Resident", "Intern", "Nurse", "Non-Staff", "Other"

• ’season’: season that the character joined the show

• ’sign’: character’s astrological starsign, if known

The data is current up to (I think?) season 10?

Usage

data(fict_greys)

https://gweissman.github.io/post/grey-s-anatomy-network-of-sexual-relations/
http://badhessian.org/2012/09/lessons-on-exponential-random-graph-modeling-from-greys-anatomy-hook-ups/

fict_lotr 7

Format

#> -- # Grey's Anatomy --
#> # A labelled, undirected network of 53 characters and 56 hook-up ties
#>
#> -- Nodes
#> # A tibble: 53 x 7
#> name sex race birthyear position season sign
#> <chr> <chr> <chr> <dbl> <chr> <dbl> <chr>
#> 1 Addison Montgomery F White 1967 Attending 1 Libra
#> 2 Adele Webber F Black 1949 Non-Staff 2 Leo
#> 3 Teddy Altman F White 1969 Attending 6 Pisces
#> 4 Amelia Shepherd F White 1981 Attending 7 Libra
#> 5 Arizona Robbins F White 1976 Attending 5 Leo
#> 6 Rebecca Pope F White 1975 Non-Staff 3 Gemini
#> # i 47 more rows
#>
#> -- Ties
#> # A tibble: 56 x 2
#> from to
#> <int> <int>
#> 1 5 47
#> 2 21 47
#> 3 5 46
#> 4 5 41
#> 5 18 41
#> 6 21 41
#> # i 50 more rows
#>

Author(s)

Gary Weissman and Benjamin Lind

fict_lotr One-mode network of Lord of the Rings character interactions

Description

The Lord of the Rings is a beloved, epic high fantasy novel written by J.R.R. Tolkien. This is a
network of 36 Lord of the Rings book characters and 66 interactional relationships.

The ties are unweighted and concern only interaction. Interaction can be cooperative or conflictual.

In addition, the race of these characters has been coded, though not without debate. The most
contentious is the coding of Tom Bombadil and Goldberry as Maiar, presumably coded as such to
avoid having categories of one.

8 fict_potter

Usage

data(fict_lotr)

Format

#> -- # Lord of the Rings ---
#> # A labelled, complex, undirected network of 36 characters and 66 interaction
#> ties
#>
#> -- Nodes
#> # A tibble: 36 x 2
#> name Race
#> <chr> <chr>
#> 1 Aragorn Human
#> 2 Beregond Human
#> 3 Bilbo Hobbit
#> 4 Celeborn Elf
#> 5 Denethor Human
#> 6 Elladan Elf
#> # i 30 more rows
#>
#> -- Ties
#> # A tibble: 66 x 2
#> from to
#> <int> <int>
#> 1 1 7
#> 2 1 8
#> 3 5 9
#> 4 1 10
#> 5 3 10
#> 6 9 10
#> # i 60 more rows
#>

fict_potter Six complex one-mode support data in Harry Potter books (Bossaert
and Meidert 2013)

Description

Goele Bossaert and Nadine Meidert coded peer support ties among 64 characters in the Harry
Potter books. Each author coded four of seven books using NVivo, with the seventh book coded
by both and serving to assess inter-rater reliability. The first six books concentrated on adolescent
interactions, were studied in their paper, and are made available here. The peer support ties mean
voluntary emotional, instrumental, or informational support, or praise from one living, adolescent
character to another within the book’s pages. In addition, nodal attributes name, schoolyear (which
doubles as their age), gender, and their house assigned by the sorting hat are included.

fict_potter 9

Usage

data(fict_potter)

Format

#> -- # Harry Potter support network --
#> # A longitudinal, labelled, complex, directed network of 64 students and 544
#> support arcs over 6 waves
#>
#> -- Nodes
#> # A tibble: 64 x 5
#> name schoolyear gender house active
#> <chr> <int> <chr> <chr> <logi>
#> 1 Adrian Pucey 1989 male Slytherin TRUE
#> 2 Alicia Spinnet 1989 female Gryffindor TRUE
#> 3 Angelina Johnson 1989 female Gryffindor TRUE
#> 4 Anthony Goldstein 1991 male Ravenclaw TRUE
#> # i 60 more rows
#>
#> -- Changes
#> # A tibble: 81 x 4
#> time node var value
#> <int> <int> <chr> <lgl>
#> 1 2 9 active TRUE
#> 2 2 21 active TRUE
#> 3 2 35 active TRUE
#> 4 2 39 active FALSE
#> # i 77 more rows
#>
#> -- Ties
#> # A tibble: 544 x 3
#> from to wave
#> <int> <int> <dbl>
#> 1 11 11 1
#> 2 11 25 1
#> 3 11 26 1
#> 4 11 44 1
#> # i 540 more rows
#>

References

Bossaert, Goele and Nadine Meidert (2013). "’We are only as strong as we are united, as weak as
we are divided’. A dynamic analysis of the peer support networks in the Harry Potter books." Open
Journal of Applied Sciences, 3(2): 174-185. doi:10.4236/ojapps.2013.32024

https://doi.org/10.4236/ojapps.2013.32024

10 fict_starwars

fict_starwars Seven one-mode Star Wars character interactions (Gabasova 2016)

Description

One-mode network dataset collected by Gabasova (2016) on the interactions between Star Wars
characters in each movie from Episode 1 ("The Phantom Menace") to Episode 7 ("The Force Awak-
ens").

Characters are named (eg. R2-D2, Anakin, Chewbacca) and the following node attributes are pro-
vided where available: height, mass, hair color, skin color, eye color, birth year, sex, homeworld,
and species. The node attribute ’faction’ has also been added, denoting the faction (eg. Jedi, Rebel
Alliance, etc) that Star Wars characters belong to in each episode (coding completed by Yichen
Shen, Tiphaine Aeby, and James Hollway).

Weighted ties represent the number of times characters speak within the same scene of each film,
indicated by the wave (1-7).

Change in the composition of the network is tracked by the variable ’active’, though several other
variables also change (mostly as Anakin becomes spoiler alert).

Usage

data(fict_starwars)

Format

#> -- # Star Wars network data --
#> # A longitudinal, labelled, complex, weighted, directed network of 110
#> characters and 563 interaction arcs over 7 waves
#>
#> -- Nodes
#> # A tibble: 110 x 12
#> name species homeworld sex height hair_color eye_color skin_color
#> <chr> <chr> <chr> <chr> <int> <chr> <chr> <chr>
#> 1 Admiral Ackbar Mon Ca~ Mon Cala male 180 none orange brown mot~
#> 2 Admiral Statura Human Garel male 172 black brown light
#> 3 Anakin Human Tatooine male 188 blond blue fair
#> 4 Bail Organa Human Alderaan male 191 black brown tan
#> # i 106 more rows
#> # i 4 more variables: birth_year <dbl>, mass <dbl>, faction <chr>, active <lgl>
#>
#> -- Changes
#> # A tibble: 184 x 4
#> time node var value
#> <int> <int> <chr> <chr>
#> 1 2 7 active TRUE
#> 2 2 10 active TRUE
#> 3 2 11 active FALSE

fict_thrones 11

#> 4 2 13 active FALSE
#> # i 180 more rows
#>
#> -- Ties
#> # A tibble: 563 x 4
#> from to weight wave
#> <int> <int> <int> <int>
#> 1 80 73 11 1
#> 2 80 79 14 1
#> 3 80 3 16 1
#> 4 80 106 3 1
#> # i 559 more rows
#>

Details

The network for each episode may be extracted and used separately, eg. to_time(fict_starwars,
1) for Episode 1.

References

Gabasova, E. (2016). Star Wars social network.. doi:10.5281/zenodo.1411479

fict_thrones One-mode Game of Thrones kinship (Glander 2017)

Description

The original dataset was put together by Erin Pierce and Ben Kahle for an assignment for a course
on Bayesian statistics. The data included information on when characters died in the Song of
Ice and Fire books, and some predictive factors such as whether they were nobles, married, etc.
Shirin Glander extended this data set on character deaths in the TV series Game of Thrones with
the kinship relationships between the characters, by scraping "A Wiki of Ice and Fire" and adding
missing information by hand. There is certainly more that can be done here.

Usage

data(fict_thrones)

Format

#> -- # Game of Thrones Kinship ---
#> # A labelled, multiplex, directed network of 208 characters and 404 kinship
#> arcs
#>
#> -- Nodes
#> # A tibble: 208 x 10
#> name culture house popularity Gender title birth death noble married

https://doi.org/10.5281/zenodo.1411479

12 glossary

#> <chr> <fct> <chr> <dbl> <chr> <chr> <int> <int> <lgl> <lgl>
#> 1 Alys Arryn <NA> House~ 0.0803 female "" NA NA FALSE TRUE
#> 2 Elys Waynwood <NA> House~ 0.0702 female "Ser" NA NA TRUE TRUE
#> 3 Jasper Arryn <NA> House~ 0.0435 male "Eyr~ NA NA TRUE FALSE
#> 4 Jeyne Royce <NA> House~ 0 female <NA> NA NA NA NA
#> 5 Jon Arryn Valemen House~ 0.836 male "Eyr~ 217 298 TRUE TRUE
#> 6 Lysa Arryn <NA> House~ 0 female "Lad~ 266 300 TRUE TRUE
#> # i 202 more rows
#>
#> -- Ties
#> # A tibble: 404 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 2 spouse
#> 2 2 1 spouse
#> 3 3 1 parent
#> 4 3 5 parent
#> 5 4 5 spouse
#> 6 5 4 spouse
#> # i 398 more rows
#>

References

Pierce, Erin, and Ben Kahle. 2015. "Bayesian Survival Analysis in A Song of Ice and Fire".

Glander, Shirin. 2017. "Network analysis of Game of Thrones".

glossary Adding network glossary items

Description

This function adds a glossary item, useful in tutorials.

Usage

gloss(text, ref = NULL)

print_glossary()

clear_glossary()

Arguments

text The text to appear.
ref The name of the glossary item to index. If NULL, then the function will search

the glossary for ’text’ instead.

http://allendowney.blogspot.com/2015/03/bayesian-survival-analysis-for-game-of.html
https://datascienceplus.com/network-analysis-of-game-of-thrones/

interface 13

interface Console command line interface

Description

These functions wrap {cli} functions and elements to build an attractive command line interface
(CLI).

If you wish to receive fewer messages in the console, run options(snet_verbosity = 'quiet').

Usage

snet_info(..., .envir = parent.frame())

snet_minor_info(..., .envir = parent.frame())

snet_warn(..., .envir = parent.frame())

snet_abort(..., .envir = parent.frame())

snet_success(..., .envir = parent.frame())

snet_prompt(..., .envir = parent.frame())

snet_unavailable(..., .envir = parent.frame())

snet_progress_step(..., .envir = parent.frame())

snet_progress_along(..., .envir = parent.frame())

snet_progress_seq(..., .envir = parent.frame())

snet_progress_nodes(..., .envir = parent.frame())

Arguments

... One or more character strings. For most of these functions, if multiple strings
are passed these will be pasted together.

.envir This argument is just to inherit the parent frame in the (likely) event that the
function is used within another function.

14 irps_911

irps_911 One-mode multiplex network of relationships between 9/11 hijackers
(Krebs 2002)

Description

This network records two different types of relationships between and surrounding the hijackers
of four planes in the United States on September 11, 2001, culminating in those planes crashing
into four locations: New York’s World Trade Center (North and South buildings), as well as the
Pentagon and a location in Somerset County, Pennsylvania.

The hijackers were members of al-Qaeda. Valdis Krebs collected further information from newspa-
pers on the broader network of associates of these hijackers, reflecting on the challenges of collect-
ing this information even after the fact.

The data includes two types of ties: "trust"ed prior contacts among the hijackers, and "association"
ties among the hijackers but also their broader associates. All associates are named, along with a
logical vector about whether they were a hijacker or not, and if so which their (eventual) target was.

Usage

data(irps_911)

Format

#> -- # 911 Terrorist network ---
#> # A labelled, complex, multiplex, undirected network of 60 terrorists and 153
#> association ties and 153 trust ties
#>
#> -- Nodes
#> # A tibble: 60 x 3
#> name hijacker target
#> <chr> <lgl> <chr>
#> 1 Majed Moqed TRUE Pentagon
#> 2 Khalid Al Mihdhar TRUE Pentagon
#> 3 Hani Hanjour TRUE Pentagon
#> 4 Nawaf Alhazmi TRUE Pentagon
#> 5 Salem Alhazmi TRUE Pentagon
#> 6 Ahmed Alnami TRUE Pennsylvania
#> # i 54 more rows
#>
#> -- Ties
#> # A tibble: 153 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 3 association
#> 2 1 3 trust
#> 3 2 3 association

irps_blogs 15

#> 4 2 3 trust
#> 5 2 4 association
#> 6 2 4 trust
#> # i 147 more rows
#>

References

Krebs, Valdis. 2002. "Mapping networks of terrorist cells". Connections 24(3): 43-52.

irps_blogs One-mode directed network of links between US political blogs
(Adamic and Glance 2005)

Description

This network consists of the blogosphere around the time of the 2004 US presidential election until
February 2005. The 2004 election was the first in which blogging played a significant role. Ties
were constructed from a crawl of the front page of each blog.

Political leaning is indicated as "Liberal" (or left leaning) or "Conservative" (or right leaning),
sourced from blog directories. Some blogs were labelled manually, based on incoming and outgoing
links and posts.

Usage

data(irps_blogs)

Format

#> -- # US political blogosphere circa 2004 ---------------------------------------
#> # A labelled, complex, directed network of 1490 blogs and 19090 link arcs
#>
#> -- Nodes
#> # A tibble: 1,490 x 3
#> name Leaning Source
#> <chr> <chr> <chr>
#> 1 100monkeystyping.com Liberal Blogarama
#> 2 12thharmonic.com/wordpress Liberal BlogCatalog
#> 3 40ozblog.blogspot.com Liberal Blogarama,BlogCatalog
#> 4 4lina.tblog.com Liberal Blogarama
#> 5 750volts.blogspot.com Liberal Blogarama
#> 6 95theses.blogspot.com Liberal Blogarama
#> # i 1,484 more rows
#>
#> -- Ties
#> # A tibble: 19,090 x 2
#> from to

16 irps_books

#> <int> <int>
#> 1 267 1394
#> 2 267 483
#> 3 267 1051
#> 4 904 1479
#> 5 904 919
#> 6 904 1045
#> # i 19,084 more rows
#>

References

Adamic, Lada, and Natalie Glance. 2005. "The political blogosphere and the 2004 US Election: Di-
vided they blog". LinkKDD ’05: Proceedings of the 3rd international workshop on Link discovery,
36-43. doi:10.1145/1134271.1134277

irps_books One-mode undirected network of co-purchased books about US poli-
tics on Amazon

Description

This network consists of books about US politics sold by Amazon.com. Ties represent books that
are often purchased together, as revealed by Amazon’s ’customers who bought this book also bought
these other books’ section on those books’ pages on the website.

Information about the book’s leaning "Liberal", "Neutral", or "Conservative" were added separately
by Mark Newman based on the abstracts, descriptions, and reviews posted on Amazon.

These data should be cited as V. Krebs, unpublished, http://www.orgnet.com/.

Usage

data(irps_books)

Format

#> -- # Co-purchased US political books ---
#> # A labelled, undirected network of 105 books and 441 co-purchasing ties
#>
#> -- Nodes
#> # A tibble: 105 x 2
#> name Leaning
#> <chr> <chr>
#> 1 1000 Years for Revenge Neutral
#> 2 Bush vs. the Beltway Conservative
#> 3 Charlie Wilson's War Conservative
#> 4 Losing Bin Laden Conservative
#> 5 Sleeping With the Devil Neutral

https://doi.org/10.1145/1134271.1134277

irps_revere 17

#> 6 The Man Who Warned America Conservative
#> # i 99 more rows
#>
#> -- Ties
#> # A tibble: 441 x 2
#> from to
#> <int> <int>
#> 1 1 2
#> 2 1 3
#> 3 1 4
#> 4 2 4
#> 5 1 5
#> 6 3 5
#> # i 435 more rows
#>

Author(s)

Valdis Krebs, Mark Newman

irps_revere Two-mode network of Paul Revere’s (Fischer 1995)

Description

This network is of Paul Revere and 253 of his contemporary’s overlapping memberships in seven
colonial organisations. The data has been collected by Kieran Healy from the appendix to David
Hackett Fischer’s "Paul Revere’s Ride". It highlights Paul Revere’s centrality in this network, and
thus his ability to mobilise the towns he rode through on horseback north from Boston on the
night of April 18, 1775. This is in contrast to William Dawes, who set out the same night, but
south. Despite both men coming from similar class and backgrounds, and riding through towns
with similar demography and political leanings, only Paul Revere was able to mobilise those he
encountered, and his social network was thought key to this.

Usage

data(irps_revere)

Format

#> # A labelled, two-mode network of 261 nodes and 319 ties
#>
#> -- Nodes
#> # A tibble: 261 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Adams.John

18 irps_usgeo

#> 2 FALSE Adams.Samuel
#> 3 FALSE Allen.Dr
#> 4 FALSE Appleton.Nathaniel
#> 5 FALSE Ash.Gilbert
#> 6 FALSE Austin.Benjamin
#> # i 255 more rows
#>
#> -- Ties
#> # A tibble: 319 x 2
#> from to
#> <int> <int>
#> 1 1 257
#> 2 1 258
#> 3 2 257
#> 4 2 258
#> 5 2 260
#> 6 2 261
#> # i 313 more rows
#>

References

Fischer, David Hackett. 1995. "Paul Revere’s Ride". Oxford: Oxford University Press.

Han, Shin-Kap. 2009. "The Other Ride of Paul Revere: The Brokerage Role in the Making of the
American Revolution". Mobilization: An International Quarterly, 14(2): 143-162. doi:10.17813/
maiq.14.2.g360870167085210

Healy, Kieran. 2013. "Using Metadata to find Paul Revere".

irps_usgeo One-mode undirected network of US state contiguity (Meghanathan
2017)

Description

This network is of contiguity between US states. States that share a border are connected by a tie
in the network. The data is a network of 107 ties among 50 US states (nodes). States are named by
their two-letter ISO-3166 code. This data includes also the names of the capitol cities of each state,
which are listed in the node attribute ’capitol’.

Usage

data(irps_usgeo)

https://doi.org/10.17813/maiq.14.2.g360870167085210
https://doi.org/10.17813/maiq.14.2.g360870167085210

irps_wwi 19

Format

#> -- # US State Contiguity ---
#> # A labelled, undirected network of 50 states and 107 contiguity ties
#>
#> -- Nodes
#> # A tibble: 50 x 3
#> name capitol population
#> <chr> <chr> <int>
#> 1 AK Juneau NA
#> 2 AL Montgomery 4780127
#> 3 AR Little Rock 2915958
#> 4 AZ Phoenix 6392307
#> 5 CA Sacramento 37252895
#> 6 CO Denver 5029324
#> # i 44 more rows
#>
#> -- Ties
#> # A tibble: 107 x 2
#> from to
#> <int> <int>
#> 1 2 9
#> 2 2 10
#> 3 2 25
#> 4 2 42
#> 5 3 18
#> 6 3 24
#> # i 101 more rows
#>

References

Meghanathan, Natarajan. 2017. "Complex network analysis of the contiguous United States graph."
Computer and Information Science, 10(1): 54-76. doi:10.5539/cis.v10n1p54

irps_wwi One-mode signed network of relationships between European major
powers (Antal et al. 2006)

Description

This network records the evolution of the major relationship changes between the protagonists of
World War I (WWI) from 1872 to 1907. It is incomplete both in terms of (eventual) parties to the
war as well as some other relations, but gives a good overview of the main alliances and enmities.

The data series begins with the Three Emperors’ League (1872, revived in 1881) between Germany,
Austria-Hungary, and Russia. The Triple Alliance in 1882 joined Germany, Austria-Hungary, and
Italy into a bloc that lasted until WWI. A bilateral alliance between Germany and Russia lapsed in

https://doi.org/10.5539/cis.v10n1p54

20 ison_adolescents

1890, and a French-Russian alliance developed between 1891-1894. The Entente Cordiale thawed
and then fostered relations between Great Britain and France in 1904, and a British-Russian agree-
ment in 1907 bound Great Britain, France, and Russia into the Triple Entente.

Usage

data(irps_wwi)

Format

#> -- # World War I Protagonists --
#> # A dynamic, labelled, signed, undirected network of 6 European major powers
#> and 20 relationship ties from 1872 to 1918
#>
#> -- Nodes
#> # A tibble: 6 x 1
#> name
#> <chr>
#> 1 GBR
#> 2 FRA
#> 3 RUS
#> 4 AUH
#> 5 DEU
#> 6 ITA
#>
#> -- Ties
#> # A tibble: 20 x 5
#> from to sign begin end
#> <int> <int> <dbl> <dbl> <dbl>
#> 1 1 2 -1 1872 1904
#> 2 1 3 -1 1872 1907
#> 3 1 4 -1 1872 1918
#> 4 2 3 -1 1872 1890
#> 5 2 4 -1 1872 1918
#> 6 2 5 -1 1872 1918
#> # i 14 more rows
#>

References

Antal, Tibor, Pavel Krapivsky, and Sidney Redner. 2006. "Social balance on networks: The dynam-
ics of friendship and enmity". Physica D 224: 130-136. doi:10.1016/j.physd.2006.09.028

ison_adolescents One-mode subset of the adolescent society network (Coleman 1961)

https://doi.org/10.1016/j.physd.2006.09.028

ison_adolescents 21

Description

One-mode subset of Coleman’s adolescent society network (Coleman 1961), as used in Feld’s
(1991) "Why your friends have more friends than you do". Coleman collected data on friend-
ships among students in 12 U.S. high schools. Feld explored a subset of 8 girls from one of these
schools, "Marketville", and gave them fictitious names, which are retained here.

Usage

data(ison_adolescents)

Format

#>
#> -- # The Adolescent Society --
#> # A labelled, undirected network of 8 adolescents and 10 friendships ties
#>
#> -- Nodes
#> # A tibble: 8 x 1
#> name
#> <chr>
#> 1 Betty
#> 2 Sue
#> 3 Alice
#> 4 Jane
#> 5 Dale
#> 6 Pam
#> # i 2 more rows
#>
#> -- Ties
#> # A tibble: 10 x 2
#> from to
#> <int> <int>
#> 1 1 2
#> 2 2 3
#> 3 3 4
#> 4 2 5
#> 5 3 5
#> 6 4 5
#> # i 4 more rows
#>

References

Coleman, James S. 1961. The Adolescent Society. New York: Free Press.

Feld, Scott. 1991. “Why your friends have more friends than you do” American Journal of Sociol-
ogy 96(6): 1464-1477. doi:10.1086/229693.

https://doi.org/10.1086/229693

22 ison_algebra

ison_algebra Multiplex graph object of friends, social, and task ties (McFarland
2001)

Description

Multiplex graph object of friends, social, and task ties between 16 anonymous students in an honors
algebra class (M182). Each type of tie is weighted: the friends ties are weighted 2 = best friends,
1 = friend, and 0 is not a friend; social consists of social interactions per hour; and tasks consists
of task interactions per hour.

Usage

data(ison_algebra)

Format

#> -- # M182 Algebra Class --
#> # A multiplex, weighted, directed network of 16 nodes and 279 social, tasks,
#> and friends arcs
#>
#> -- Ties
#> # A tibble: 279 x 4
#> from to type weight
#> <int> <int> <chr> <dbl>
#> 1 1 5 social 1.2
#> 2 1 5 tasks 0.3
#> 3 1 8 social 0.15
#> 4 1 9 social 2.85
#> 5 1 9 tasks 0.3
#> 6 1 10 social 6.45
#> # i 273 more rows
#>

Source

See also data(studentnets.M182, package = "NetData")

Larger comprehensive data set publicly available, contact Daniel A. McFarland for details.

References

McFarland, Daniel A. (2001) “Student Resistance.” American Journal of Sociology 107(3): 612-78.
doi:10.1086/338779.

https://doi.org/10.1086/338779

ison_brandes 23

ison_brandes One-mode and two-mode centrality demonstration networks

Description

This network should solely be used for demonstration purposes as it does not describe a real net-
work. To convert into the two-mode version, assign ison_brandes %>% rename(type = twomode_type).

Usage

data(ison_brandes)

Format

#> # A undirected network of 11 nodes and 12 ties
#>
#> -- Nodes
#> # A tibble: 11 x 1
#> twomode_type
#> <lgl>
#> 1 FALSE
#> 2 FALSE
#> 3 TRUE
#> 4 FALSE
#> 5 TRUE
#> 6 TRUE
#> # i 5 more rows
#>
#> -- Ties
#> # A tibble: 12 x 2
#> from to
#> <int> <int>
#> 1 1 3
#> 2 2 3
#> 3 3 4
#> 4 4 5
#> 5 4 6
#> 6 5 7
#> # i 6 more rows
#>

24 ison_dolphins

ison_dolphins One-mode, undirected network of frequent associations in a dolphin
pod (Lusseau et al. 2003)

Description

These data contain the frequent associations between the 62 dolphins of a pod of dolphins living off
Doubtful Sound, New Zealand. Additional information can be found in the literature cited below.

Usage

data(ison_dolphins)

Format

#> -- # Doubtful Sound dolphins ---
#> # A labelled, undirected network of 62 dolphins and 159 frequent association
#> ties
#>
#> -- Nodes
#> # A tibble: 62 x 1
#> name
#> <chr>
#> 1 Beak
#> 2 Beescratch
#> 3 Bumper
#> 4 CCL
#> 5 Cross
#> 6 DN16
#> # i 56 more rows
#>
#> -- Ties
#> # A tibble: 159 x 2
#> from to
#> <int> <int>
#> 1 4 9
#> 2 6 10
#> 3 7 10
#> 4 1 11
#> 5 3 11
#> 6 6 14
#> # i 153 more rows
#>

References

Lusseau, David, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson. 2003.
"The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting

ison_hightech 25

associations", Behavioral Ecology and Sociobiology 54, 396-405.

Lusseau, David. 2003. "The emergent properties of a dolphin social network", Proc. R. Soc.
London B 270(S): S186-S188. doi:10.1098/rsbl.2003.0057

Lusseau, David. 2007. "Evidence for social role in a dolphin social network". Evolutionary Ecology
21: 357–366. doi:10.1007/s1068200691050

ison_hightech One-mode multiplex, directed network of managers of a high-tech
company (Krackhardt 1987)

Description

21 managers of a company of just over 100 employees manufactured high-tech equipment on the
west coast of the United States. Three types of ties were collected:

• friends: managers’ answers to the question "Who is your friend?"

• advice: managers’ answers to the question "To whom do you go to for advice?"

• reports: "To whom do you report?" based on company reports

The data is anonymised, but four nodal attributes are included:

• age: the manager’s age in years

• tenure: the manager’s length of service

• level: the manager’s level in the corporate hierarchy, where 3 = CEO, 2 = Vice President, and
1 = manager

• dept: one of four departments, B, C, D, E, with the CEO alone in A

Usage

data(ison_hightech)

Format

#> -- # High-tech company managers --
#> # A multiplex, directed network of 21 managers and 312 friends, advice, and
#> reports arcs
#>
#> -- Nodes
#> # A tibble: 21 x 4
#> age tenure level dept
#> <dbl> <dbl> <dbl> <chr>
#> 1 33 9 1 E
#> 2 42 20 2 E
#> 3 40 13 1 C
#> 4 33 8 1 E
#> 5 32 3 1 C

https://doi.org/10.1098/rsbl.2003.0057
https://doi.org/10.1007/s10682-006-9105-0

26 ison_karateka

#> 6 59 28 1 B
#> # i 15 more rows
#>
#> -- Ties
#> # A tibble: 312 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 2 friends
#> 2 1 2 advice
#> 3 1 2 reports
#> 4 1 4 friends
#> 5 1 4 advice
#> 6 1 8 friends
#> # i 306 more rows
#>

References

Krackhardt, David. 1987. "Cognitive social structures". Social Networks 9: 104-134.

ison_karateka One-mode karateka network (Zachary 1977)

Description

The network was observed in a university Karate club in 1977. The network describes association
patterns among 34 members and maps out allegiance patterns between members and either Mr. Hi,
the instructor, or the John A. the club president after an argument about hiking the price for lessons.
The allegiance of each node is listed in the obc argument which takes the value 1 if the individual
sided with Mr. Hi after the fight and 2 if the individual sided with John A.

Usage

data(ison_karateka)

Format

#> -- # Zachary's karate club network ---
#> # A labelled, weighted, undirected network of 34 club members and 78
#> association ties
#>
#> -- Nodes
#> # A tibble: 34 x 2
#> name allegiance
#> <chr> <dbl>
#> 1 Mr Hi 1
#> 2 2 1

ison_koenigsberg 27

#> 3 3 1
#> 4 4 1
#> 5 5 1
#> 6 6 1
#> # i 28 more rows
#>
#> -- Ties
#> # A tibble: 78 x 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 2 4
#> 2 1 3 5
#> 3 2 3 6
#> 4 1 4 3
#> 5 2 4 3
#> 6 3 4 3
#> # i 72 more rows
#>

References

Zachary, Wayne W. 1977. “An Information Flow Model for Conflict and Fission in Small Groups.”
Journal of Anthropological Research 33(4):452–73. doi:10.1086/jar.33.4.3629752.

ison_koenigsberg One-mode Seven Bridges of Koenigsberg network (Euler 1741)

Description

The Seven Bridges of Koenigsberg is a notable historical problem in mathematics and laid the
foundations of graph theory. The city of Koenigsberg in Prussia (now Kaliningrad, Russia) was
set on both sides of the Pregel River, and included two large islands which were connected to each
other and the mainland by seven bridges. A weekend diversion for inhabitants was to find a walk
through the city that would cross each bridge once and only once. The islands could not be reached
by any route other than the bridges, and every bridge must have been crossed completely every time
(one could not walk half way onto the bridge and then turn around and later cross the other half
from the other side). In 1735, Leonard Euler proved that the problem has no solution.

Usage

data(ison_koenigsberg)

Format

#> -- # Seven Bridges of Koenigsberg network --------------------------------------
#> # A labelled, undirected network of 4 landmasses and 7 bridge ties
#>

https://doi.org/10.1086/jar.33.4.3629752

28 ison_laterals

#> -- Nodes
#> # A tibble: 4 x 3
#> name lat lon
#> <chr> <dbl> <dbl>
#> 1 Altstadt 54.7 20.5
#> 2 Kneiphof 54.7 20.5
#> 3 Lomse 54.7 20.5
#> 4 Vorstadt 54.7 20.5
#>
#> -- Ties
#> # A tibble: 7 x 3
#> from to name
#> <int> <int> <chr>
#> 1 1 2 Kraemer Bruecke
#> 2 1 2 Schmiedebruecke
#> 3 1 3 Holzbruecke
#> 4 2 3 Honigbruecke
#> 5 2 4 Gruene Bruecke
#> 6 2 4 Koettelbruecke
#> # i 1 more row
#>

Source

{igraphdata}

References

Euler, Leonard. 1741. “Solutio problematis ad geometriam situs pertinentis.” Commentarii academiae
scientiarum Petropolitanae.

ison_laterals Two-mode projection examples (Hollway 2021)

Description

These networks are for demonstration purposes and do not describe any real world network. All
examples contain named nodes. The networks are gathered together as a list and can be retrieved
simply by plucking the desired network.

Usage

data(ison_laterals)

ison_laterals 29

Format

#> $ison_bb
#> # A labelled, two-mode network of 10 nodes and 12 ties
#>
#> -- Nodes
#> # A tibble: 10 x 2
#> name type
#> <chr> <lgl>
#> 1 A FALSE
#> 2 B FALSE
#> 3 C FALSE
#> 4 D FALSE
#> 5 U TRUE
#> 6 V TRUE
#> # i 4 more rows
#>
#> -- Ties
#> # A tibble: 12 x 2
#> from to
#> <int> <int>
#> 1 1 5
#> 2 1 6
#> 3 2 5
#> 4 2 7
#> 5 2 8
#> 6 2 9
#> # i 6 more rows
#>
#>
#> $ison_bm
#> # A labelled, two-mode network of 8 nodes and 9 ties
#>
#> -- Nodes
#> # A tibble: 8 x 2
#> name type
#> <chr> <lgl>
#> 1 A FALSE
#> 2 B FALSE
#> 3 C FALSE
#> 4 D FALSE
#> 5 U TRUE
#> 6 V TRUE
#> # i 2 more rows
#>
#> -- Ties
#> # A tibble: 9 x 2
#> from to
#> <int> <int>

30 ison_laterals

#> 1 1 5
#> 2 1 6
#> 3 2 5
#> 4 2 7
#> 5 2 8
#> 6 3 6
#> # i 3 more rows
#>
#>
#> $ison_mb
#> # A labelled, two-mode network of 8 nodes and 9 ties
#>
#> -- Nodes
#> # A tibble: 8 x 2
#> name type
#> <chr> <lgl>
#> 1 A FALSE
#> 2 B FALSE
#> 3 C FALSE
#> 4 D FALSE
#> 5 M TRUE
#> 6 X TRUE
#> # i 2 more rows
#>
#> -- Ties
#> # A tibble: 9 x 2
#> from to
#> <int> <int>
#> 1 1 5
#> 2 2 5
#> 3 2 6
#> 4 2 7
#> 5 3 5
#> 6 3 6
#> # i 3 more rows
#>
#>
#> $ison_mm
#> # A labelled, two-mode network of 6 nodes and 6 ties
#>
#> -- Nodes
#> # A tibble: 6 x 2
#> name type
#> <chr> <lgl>
#> 1 A FALSE
#> 2 B FALSE
#> 3 C FALSE
#> 4 D FALSE

ison_lawfirm 31

#> 5 M TRUE
#> 6 N TRUE
#>
#> -- Ties
#> # A tibble: 6 x 2
#> from to
#> <int> <int>
#> 1 1 5
#> 2 2 5
#> 3 2 6
#> 4 3 5
#> 5 3 6
#> 6 4 6
#>

ison_lawfirm One-mode lawfirm (Lazega 2001)

Description

One-mode network dataset collected by Lazega (2001) on the relations between partners in a cor-
porate law firm called SG&R in New England 1988-1991. This particular subset includes the 36
partners among the 71 attorneys of this firm. Nodal attributes include seniority, formal status, office
in which they work, gender, lawschool they attended, their age, and how many years they had been
at the firm.

Usage

data(ison_lawfirm)

Format

#> -- # Lazega's Lawyers --
#> # A multiplex, directed network of 71 attorneys and 2571 friends, advice, and
#> cowork arcs
#>
#> -- Nodes
#> # A tibble: 71 x 7
#> status gender office seniority age practice school
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 partner man Boston 31 64 litigation Harvard/Yale
#> 2 partner man Boston 32 62 corporate Harvard/Yale
#> 3 partner man Hartford 13 67 litigation Harvard/Yale
#> 4 partner man Boston 31 59 corporate Other
#> 5 partner man Hartford 31 59 litigation UConn
#> 6 partner man Hartford 29 55 litigation Harvard/Yale
#> # i 65 more rows

32 ison_marvel

#>
#> -- Ties
#> # A tibble: 2,571 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 2 friends
#> 2 1 2 advice
#> 3 1 4 friends
#> 4 1 8 friends
#> 5 1 17 friends
#> 6 1 17 advice
#> # i 2,565 more rows
#>

Details

The larger data from which this subset comes includes also individual performance measurements
(hours worked, fees brought in) and attitudes concerning various management policy options (see
also {sand}), their strong-coworker network, advice network, friendship network, and indirect con-
trol network.

Source

{networkdata}

References

Lazega, Emmanuel. 2001. The Collegial Phenomenon: The Social Mechanisms of Cooperation
Among Peers in a Corporate Law Partnership. Oxford: Oxford University Press.

ison_marvel Multilevel two-mode affiliation, signed one-mode networks of Marvel
comic book characters (Yuksel 2017)

Description

This package includes two datasets related to the Marvel comic book universe. The first, ison_marvel_teams,
is a two-mode affiliation network of 53 Marvel comic book characters and their affiliations to 141
different teams. This network includes only information about nodes’ names and nodeset, but addi-
tional nodal data can be taken from the other Marvel dataset here.

The second network, ison_marvel_relationships, is a one-mode signed network of friendships
and enmities between the 53 Marvel comic book characters. Friendships are indicated by a positive
sign in the tie sign attribute, whereas enmities are indicated by a negative sign in this edge attribute.

Usage

data(ison_marvel_teams)

data(ison_marvel_relationships)

ison_marvel 33

Format

#> # A labelled, two-mode network of 194 nodes and 683 ties
#>
#> -- Nodes
#> # A tibble: 194 x 2
#> type name
#> <lgl> <chr>
#> 1 FALSE Abomination
#> 2 FALSE Ant-Man
#> 3 FALSE Apocalypse
#> 4 FALSE Beast
#> 5 FALSE Black Panther
#> 6 FALSE Black Widow
#> # i 188 more rows
#>
#> -- Ties
#> # A tibble: 683 x 2
#> from to
#> <int> <int>
#> 1 1 120
#> 2 1 152
#> 3 1 160
#> 4 1 162
#> 5 1 179
#> 6 2 56
#> # i 677 more rows
#>

#> # A labelled, complex, signed, undirected network of 53 nodes and 558 ties
#>
#> -- Nodes
#> # A tibble: 53 x 10
#> name Gender Appearances Attractive Rich Intellect Omnilingual PowerOrigin
#> <chr> <chr> <int> <int> <int> <int> <int> <chr>
#> 1 Abomina~ Male 427 0 0 1 1 Radiation
#> 2 Ant-Man Male 589 1 0 1 0 Human
#> 3 Apocaly~ Male 1207 0 0 1 1 Mutant
#> 4 Beast Male 7609 1 0 1 0 Mutant
#> 5 Black P~ Male 2189 1 1 1 0 Human
#> 6 Black W~ Female 2907 1 0 1 0 Human
#> # i 47 more rows
#> # i 2 more variables: UnarmedCombat <int>, ArmedCombat <int>
#>
#> -- Ties
#> # A tibble: 558 x 3
#> from to sign
#> <int> <int> <dbl>
#> 1 1 4 -1

34 ison_monks

#> 2 1 11 -1
#> 3 1 12 -1
#> 4 1 23 -1
#> 5 1 24 -1
#> 6 1 25 -1
#> # i 552 more rows
#>

Details

Additional nodal variables have been coded and included by Dr Umut Yuksel:

• Gender: binary character, 43 "Male" and 10 "Female"

• PowerOrigin: binary character, 2 "Alien", 1 "Cyborg", 5 "God/Eternal", 22 "Human", 1
"Infection", 16 "Mutant", 5 "Radiation", 1 "Robot"

• Appearances: integer, in how many comic book issues they appeared in

• Attractive: binary integer, 41 1 (yes) and 12 0 (no)

• Rich: binary integer, 11 1 (yes) and 42 0 (no)

• Intellect: binary integer, 39 1 (yes) and 14 0 (no)

• Omnilingual: binary integer, 8 1 (yes) and 45 0 (no)

• UnarmedCombat: binary integer, 51 1 (yes) and 2 0 (no)

• ArmedCombat: binary integer, 25 1 (yes) and 28 0 (no)

Source

Umut Yuksel, 31 March 2017

ison_monks Multiplex network of three one-mode signed, weighted networks and a
three-wave longitudinal network of monks (Sampson 1969)

Description

The data were collected for an ethnographic study of community structure in a New England
monastery. Various sociometric data was collected of the novices attending the minor seminary
of ’Cloisterville’ preparing to join the monastic order.

• type = "like" records whom novices said they liked most at three time points/waves

• type = "esteem" records whom novices said they held in esteem (sign > 0) and disesteem
(sign < 0)

• type = "praise" records whom novices said they praised (sign > 0) and blamed (sign < 0)

• type = "influence" records whom novices said were a positive influence (sign > 0) and
negative influence (sign < 0)

ison_monks 35

All networks are weighted. Novices’ first choices are weighted 3, the second 2, and third choices 1.
Some subjects offered tied ranks for their top four choices.

In addition to node names, a ’groups’ variable records the four groups that Sampson observed during
his time there:

• The Loyal Opposition consists of novices who entered the monastery first and defended exist-
ing practices

• The Young Turks arrived later during a period of change and questioned practices in the
monastery

• The Interstitial did not take sides in the debate

• The Outcasts were novices that were not accepted in the group

Information about senior monks was not included. While type = "like" is observed over three
waves, the rest of the data was recorded retrospectively from the end of the study, after the network
fragmented. The waves in which the novitiates were expelled (1), voluntarily departed (2 and 3), or
remained (4) are given in the nodal attribute "left".

Usage

data(ison_monks)

Format

#> -- # Sampson's Monks ---
#> # A longitudinal, labelled, multiplex, signed, weighted, directed network of 18
#> nodes and 463 like, esteem, influence, and praise arcs over 3 waves
#>
#> -- Nodes
#> # A tibble: 18 x 3
#> name groups left
#> <chr> <chr> <dbl>
#> 1 Romuald Interstitial 3
#> 2 Bonaventure Loyal 4
#> 3 Ambrose Loyal 4
#> 4 Berthold Loyal 4
#> 5 Peter Loyal 3
#> 6 Louis Loyal 4
#> # i 12 more rows
#>
#> -- Ties
#> # A tibble: 463 x 6
#> from to sign type weight wave
#> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 1 2 1 like 1 2
#> 2 1 2 1 like 1 3
#> 3 1 3 1 like 1 3
#> 4 1 5 1 like 3 1
#> 5 1 5 1 like 3 2

36 ison_networkers

#> 6 1 5 1 like 3 3
#> # i 457 more rows
#>

References

Sampson, Samuel F. 1969. Crisis in a cloister. Unpublished doctoral dissertation, Cornell Univer-
sity.

Breiger R., Boorman S. and Arabie P. 1975. "An algorithm for clustering relational data with
applications to social network analysis and comparison with multidimensional scaling". Journal of
Mathematical Psychology, 12: 328-383.

ison_networkers One-mode EIES dataset (Freeman and Freeman 1979)

Description

A directed, simple, named, weighted graph with 32 nodes and 440 edges. Nodes are academics
and edges illustrate the communication patterns on an Electronic Information Exchange System
among them. Node attributes include the number of citations (Citations) and the discipline of the
researchers (Discipline). Edge weights illustrate the number of emails sent from one academic to
another over the studied time period.

Usage

data(ison_networkers)

Format

#> -- # EIES Networkers ---
#> # A labelled, weighted, directed network of 32 nodes and 440 arcs
#>
#> -- Nodes
#> # A tibble: 32 x 3
#> name Discipline Citations
#> <chr> <chr> <dbl>
#> 1 Lin Freeman Sociology 19
#> 2 Doug White Anthropology 3
#> 3 Ev Rogers Other 170
#> 4 Richard Alba Sociology 23
#> 5 Phipps Arabie Other 16
#> 6 Carol Barner-Barry Other 6
#> # i 26 more rows
#>
#> -- Ties
#> # A tibble: 440 x 3
#> from to weight

ison_physicians 37

#> <int> <int> <dbl>
#> 1 1 2 488
#> 2 1 3 28
#> 3 1 4 65
#> 4 1 5 20
#> 5 1 6 65
#> 6 1 7 45
#> # i 434 more rows
#>

Source

networkdata package

References

Freeman, Sue C. and Linton C. Freeman. 1979. The networkers network: A study of the impact of
a new communications medium on sociometric structure. Social Science Research Reports No 46.
Irvine CA, University of California.

Wasserman Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, Cambridge.

ison_physicians Four multiplex one-mode physician diffusion data (Coleman, Katz,
and Menzel, 1966)

Description

Ron Burt prepared this data from Coleman, Katz and Menzel’s 1966 study on medical innovation.
They had collected data from physicians in four towns in Illinois: Peoria, Bloomington, Quincy and
Galesburg. These four networks are held as separate networks in a list.

Coleman, Katz and Menzel were concerned with the impact of network ties on the physicians’
adoption of a new drug, tetracycline. Data on three types of ties were collected in response to three
questions:

• advice: "When you need information or advice about questions of therapy where do you
usually turn?"

• discussion: "And who are the three or four physicians with whom you most often find yourself
discussing cases or therapy in the course of an ordinary week – last week for instance?"

• friendship: "Would you tell me the first names of your three friends whom you see most often
socially?"

Additional questions and records of prescriptions provided additional information:

• recorded date of tetracycline adoption date

• years in practice (note that these are {messydates}-compatible dates)

38 ison_physicians

• conferences attended (those that attended "Specialty" conferences presumably also attended
"General" conferences)

• regular subscriptions to medical journals

• free_time spent associating with doctors

• discussions on medical matters when with other doctors sociallyy

• memberships in clubs with other doctores

• number of top 3 friends that are doctors

• time practicing in current community

• patients load (ordinal)

• physical proximity to other physicians (in building/sharing office)

• medical specialty (GP/Internist/Pediatrician/Other)

Usage

data(ison_physicians)

Format

#> $Peoria
#> # A multiplex, directed network of 117 nodes and 543 friendship, advice, and
#> discussion arcs
#>
#> -- Nodes
#> # A tibble: 117 x 12
#> adoption specialty conferences journals practice community patients
#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 1 Pediatrician Specialty 9 1920..1929 20+yrs 101-150
#> 2 12 GP None 5 1945.. -1yr 76-100
#> 3 8 Internist General 7 1935..1939 10-20yrs 76-100
#> 4 9 GP General 6 1940..1944 5-10yrs 51-75
#> 5 9 GP General 4 1935..1939 10-20yrs 51-75
#> 6 10 Internist None 7 1930..1934 10-20yrs 101-150
#> # i 111 more rows
#> # i 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#>
#> -- Ties
#> # A tibble: 543 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 8 friendship
#> 2 1 58 friendship
#> 3 1 87 advice
#> 4 1 90 advice
#> 5 1 110 advice
#> 6 1 112 friendship

ison_physicians 39

#> # i 537 more rows
#>
#>
#> $Bloomington
#> # A multiplex, directed network of 50 nodes and 211 friendship, discussion, and
#> advice arcs
#>
#> -- Nodes
#> # A tibble: 50 x 12
#> adoption specialty conferences journals practice community patients
#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 98 Internist Specialty 8 1930..1934 10-20yrs 101-150
#> 2 1 GP General 3 1945.. 5-10yrs 76-100
#> 3 98 GP Specialty 4 1930..1934 10-20yrs 101-150
#> 4 7 Internist None 3 1945.. -1yr 26-50
#> 5 6 Internist General 9 1935..1939 5-10yrs 76-100
#> 6 1 GP Specialty 5 1935..1939 10-20yrs 101-150
#> # i 44 more rows
#> # i 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#>
#> -- Ties
#> # A tibble: 211 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 3 friendship
#> 2 1 10 discussion
#> 3 1 24 advice
#> 4 1 44 advice
#> 5 2 4 advice
#> 6 2 6 advice
#> # i 205 more rows
#>
#>
#> $Quincy
#> # A multiplex, directed network of 44 nodes and 174 advice, discussion, and
#> friendship arcs
#>
#> -- Nodes
#> # A tibble: 44 x 12
#> adoption specialty conferences journals practice community patients
#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 2 Internist None 6 1935..1939 10-20yrs 151+
#> 2 18 GP General 3 1920..1929 20+yrs 151+
#> 3 18 Internist None 5 1945.. -1yr -25
#> 4 4 GP General 3 1930..1934 20+yrs 151+
#> 5 18 GP Specialty 4 1935..1939 10-20yrs 151+
#> 6 5 Internist General 5 ..1919 20+yrs 51-75

40 ison_physicians

#> # i 38 more rows
#> # i 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#>
#> -- Ties
#> # A tibble: 174 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 8 advice
#> 2 1 9 advice
#> 3 1 10 discussion
#> 4 1 13 friendship
#> 5 1 15 advice
#> 6 1 22 discussion
#> # i 168 more rows
#>
#>
#> $Galesburg
#> # A multiplex, directed network of 35 nodes and 171 advice, discussion, and
#> friendship arcs
#>
#> -- Nodes
#> # A tibble: 35 x 12
#> adoption specialty conferences journals practice community patients
#> <dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 18 GP General 4 1935..1939 5-10yrs 101-150
#> 2 18 GP None 4 1935..1939 -1yr 151+
#> 3 4 GP General 6 1945.. 2-5yrs 51-75
#> 4 5 GP None 4 1935..1939 10-20yrs 101-150
#> 5 8 Internist General 6 1935..1939 5-10yrs 151+
#> 6 4 Internist Specialty 8 ..1919 20+yrs 76-100
#> # i 29 more rows
#> # i 5 more variables: doc_freetime <dbl>, doc_discuss <dbl>, doc_friends <dbl>,
#> # doc_club <dbl>, doc_proximity <chr>
#>
#> -- Ties
#> # A tibble: 171 x 3
#> from to type
#> <int> <int> <chr>
#> 1 1 5 advice
#> 2 1 6 advice
#> 3 1 20 discussion
#> 4 1 23 discussion
#> 5 1 30 friendship
#> 6 1 31 friendship
#> # i 165 more rows
#>

ison_southern_women 41

Source

{networkdata}

References

Coleman, James, Elihu Katz, and Herbert Menzel. 1966. Medical innovation: A diffusion study.
Indianapolis: The Bobbs-Merrill Company.

ison_southern_women Two-mode southern women (Davis, Gardner and Gardner 1941)

Description

Two-mode network dataset collected by Davis, Gardner and Gardner (1941) about the pattern of a
group of women’s participation at informal social events in Old City during a 9 month period, as
reported in the Old City Herald in 1936. By convention, the nodes are named by the women’s first
names and the code numbers of the events, but the women’s surnames and titles (Miss, Mrs.) are
recorded here too. The events’ dates are recorded in place of the Surname, and these dates are also
offered as a tie attribute.

Usage

data(ison_southern_women)

Format

#> -- # Southern Women Data ---
#> # A labelled, two-mode network of 18 women and 14 social events and 89
#> participation ties
#>
#> -- Nodes
#> # A tibble: 32 x 4
#> type name Surname Title
#> <lgl> <chr> <chr> <chr>
#> 1 FALSE Evelyn Jefferson Mrs
#> 2 FALSE Laura Mandeville Miss
#> 3 FALSE Theresa Anderson Miss
#> 4 FALSE Brenda Rogers Miss
#> 5 FALSE Charlotte McDowd Miss
#> 6 FALSE Frances Anderson Miss
#> # i 26 more rows
#>
#> -- Ties
#> # A tibble: 89 x 3
#> from to date
#> <int> <int> <date>
#> 1 14 29 1936-02-23

42 make_cran

#> 2 15 29 1936-02-23
#> 3 17 29 1936-02-23
#> 4 18 29 1936-02-23
#> 5 1 23 1936-02-25
#> 6 2 23 1936-02-25
#> # i 83 more rows
#>

References

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South. Chicago: University
of Chicago Press.

make_cran Making networks of package dependencies

Description

Researchers regularly need to work with a variety of external data formats. The following functions
offer ways to import from some common external file formats into objects that {manynet} and other
graph/network packages in R can work with:

• read_matrix() imports adjacency matrices from Excel/csv files.

• read_edgelist() imports edgelists from Excel/csv files.

• read_nodelist() imports nodelists from Excel/csv files.

• read_pajek() imports Pajek (.net or .paj) files.

• read_ucinet() imports UCINET files from the header (.##h).

• read_dynetml() imports DyNetML interchange format for rich social network data.

• read_graphml() imports GraphML files.

Usage

read_cran(pkg = "all")

Arguments

pkg The name

Details

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

Source

https://www.r-bloggers.com/2016/01/r-graph-objects-igraph-vs-network/

https://github.com/stocnet/manynet/issues
https://github.com/stocnet/manynet/issues

make_create 43

See Also

as

Other makes: make_create, make_ego, make_explicit, make_learning, make_motifs, make_play,
make_random, make_read, make_stochastic, make_write

Examples

mnet <- read_cran()
mnet <- to_ego(mnet, "manynet", max_dist = 2)
graphr(mnet, layout = "hierarchy",
edge_color = "type", node_color = "Compilation")

make_create Making networks with defined structures

Description

These functions create networks with particular structural properties.

• create_empty() creates an empty network without any ties.

• create_filled() creates a filled network with every possible tie realised.

• create_ring() creates a ring or chord network where each nodes’ neighbours form a clique.

• create_star() creates a network with a maximally central node.

• create_tree() creates a network with successive branches.

• create_lattice() creates a network that forms a regular tiling.

• create_components() creates a network that clusters nodes into separate components.

• create_core() creates a network in which a certain proportion of ’core’ nodes are densely
tied to each other, and the rest peripheral, tied only to the core.

• create_degree() creates a network with a given (out/in)degree sequence, which can also be
used to create k-regular networks.

These functions can create either one-mode or two-mode networks. To create a one-mode network,
pass the main argument n a single integer, indicating the number of nodes in the network. To create
a two-mode network, pass n a vector of two integers, where the first integer indicates the number of
nodes in the first mode, and the second integer indicates the number of nodes in the second mode.
As an alternative, an existing network can be provided to n and the number of modes, nodes, and
directedness will be inferred.

44 make_create

Usage

create_empty(n, directed = FALSE)

create_filled(n, directed = FALSE)

create_ring(n, directed = FALSE, width = 1, ...)

create_star(n, directed = FALSE)

create_tree(n, directed = FALSE, width = 2)

create_lattice(n, directed = FALSE, width = 8)

create_components(n, directed = FALSE, membership = NULL)

create_degree(n, outdegree = NULL, indegree = NULL)

create_core(n, directed = FALSE, mark = NULL)

Arguments

n Given:

• A single integer, e.g. n = 10, a one-mode network will be created.
• A vector of two integers, e.g. n = c(5,10), a two-mode network will be

created.
• A manynet-compatible object, a network of the same dimensions will be

created.

directed Logical whether the graph should be directed. By default directed = FALSE. If
the opposite direction is desired, use to_redirected() on the output of these
functions.

width Integer specifying the width of the ring, breadth of the branches, or maximum
extent of the neighbourbood.

... Additional arguments passed on to igraph::make_ring().

membership A vector of partition membership as integers. If left as NULL (the default), nodes
in each mode will be assigned to two, equally sized partitions.

outdegree Numeric scalar or vector indicating the desired outdegree distribution. By de-
fault NULL and is required. If n is an existing network object and the outdegree
is not specified, then the outdegree distribution will be inferred from that of the
network. Note that a scalar (single number) will result in a k-regular graph.

indegree Numeric vector indicating the desired indegree distribution. By default NULL
but not required unless a directed network is desired. If n is an existing directed
network object and the indegree is not specified, then the indegree distribution
will be inferred from that of the network.

mark A logical vector the length of the nodes in the network. This can be created by,
among other things, any node_is_*() function.

make_ego 45

Value

By default a tbl_graph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equiv-
alent. This direction can be swapped using to_redirected(). In two-mode networks, the directed
argument is ignored.

Lattice graphs

create_lattice() creates both two-dimensional grid and triangular lattices with as even dimen-
sions as possible. When the width parameter is set to 4, nodes cannot have (in or out) degrees larger
than 4. This creates regular square grid lattices where possible. Such a network is bipartite, that is
partitionable into two types that are not adjacent to any of their own type. If the number of nodes is
a prime number, it will only return a chain (a single dimensional lattice).

A width parameter of 8 creates a network where the maximum degree of any nodes is 8. This can
create a triangular mesh lattice or a Queen’s move lattice, depending on the dimensions. A width
parameter of 12 creates a network where the maximum degree of any nodes is 12. Prime numbers
of nodes will return a chain.

See Also

as

Other makes: make_cran, make_ego, make_explicit, make_learning, make_motifs, make_play,
make_random, make_read, make_stochastic, make_write

Examples

create_empty(10)
create_filled(10)
create_ring(8, width = 2)
create_star(12)
create_tree(c(7,8))
create_lattice(12, width = 4)
create_components(10, membership = c(1,1,1,2,2,2,3,3,3,3))
create_degree(10, outdegree = rep(1:5, 2))
create_core(6)

make_ego Making ego networks through interviewing

Description

This function creates an ego network through interactive interview questions. It currently only sup-
ports a simplex, directed network of one or two modes. These directed networks can be reformatted
as undirected using to_undirected(). Multiplex networks can be collected separately and then
joined together afterwards.

46 make_explicit

The function supports the use of rosters or a maximum number of alters to collect. If a roster is
provided it will offer ego all names. The function can also prompt ego to interpret each node’s
attributes, or about how ego considers their alters to be related.

Usage

create_ego(
ego = NULL,
max_alters = Inf,
roster = NULL,
interpreter = FALSE,
interrelater = FALSE,
twomode = FALSE

)

Arguments

ego A character string. If desired, the name of ego can be declared as an argument.
Otherwise the first prompt of the function will be to enter a name for ego.

max_alters The maximum number of alters to collect. By default infinity, but many name
generators will expect a maximum of e.g. 5 alters to be named.

roster A vector of node names to offer as potential alters for ego.

interpreter Logical. If TRUE, then it will ask for which attributes to collect and give
prompts for each attribute for each node in the network. By default FALSE.

interrelater Logical. If TRUE, then it will ask for the contacts from each of the alters per-
spectives too.

twomode Logical. If TRUE, then it will assign ego to the first mode and all alters to a
second mode.

See Also

Other makes: make_cran, make_create, make_explicit, make_learning, make_motifs, make_play,
make_random, make_read, make_stochastic, make_write

make_explicit Making networks with explicit ties

Description

This function creates a network from a vector of explicitly named nodes and ties between them.
create_explicit() largely wraps igraph::graph_from_literal(), but will also accept char-
acter input and not just a formula, and will never simplify the result.

Ties are indicated by -, and directed ties (arcs) require + at either or both ends. Ties are separated
by commas, and isolates can be added as an additional, unlinked node after the comma within the
formula. Sets of nodes can be linked to other sets of nodes through use of a semi-colon. See the
example for a demonstration.

make_learning 47

Usage

create_explicit(...)

Arguments

... Arguments passed on to {igraph}.

See Also

Other makes: make_cran, make_create, make_ego, make_learning, make_motifs, make_play,
make_random, make_read, make_stochastic, make_write

Examples

create_explicit(A -+ B, B -+ C, A +-+ C, D, E:F:G-+A, E:F+-+G:H)

make_learning Making learning models on networks

Description

These functions allow learning games to be played upon networks.

• play_learning() plays a learning model upon a network.

• play_segregation() plays a Schelling segregation model upon a network.

Usage

play_learning(.data, beliefs, closeness = Inf, steps, epsilon = 5e-04)

play_segregation(
.data,
attribute,
heterophily = 0,
who_moves = c("ordered", "random", "most_dissatisfied"),
choice_function = c("satisficing", "optimising", "minimising"),
steps

)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package

48 make_learning

• tbl_graph, from the {tidygraph} package

beliefs A vector indicating the probabilities nodes put on some outcome being ’true’.

closeness A threshold at which beliefs are too different to influence each other. By default
Inf, i.e. there is no threshold.

steps The number of steps forward in learning. By default the number of nodes in the
network.

epsilon The maximum difference in beliefs accepted for convergence to a consensus.

attribute A string naming some nodal attribute in the network. Currently only tested for
binary attributes.

heterophily A score ranging between -1 and 1 as a threshold for how heterophilous nodes
will accept their neighbours to be. A single proportion means this threshold is
shared by all nodes, but it can also be a vector the same length of the nodes in
the network for issuing different thresholds to different nodes. By default this is
0, meaning nodes will be dissatisfied if more than half of their neighbours differ
on the given attribute.

who_moves One of the following options: "ordered" (the default) checks each node in turn
for whether they are dissatisfied and there is an available space that they can
move to, "random" will check a node at random, and "most_dissatisfied" will
check (one of) the most dissatisfied nodes first.

choice_function

One of the following options: "satisficing" (the default) will move the node to
any coordinates that satisfy their heterophily threshold, "optimising" will move
the node to coordinates that are most homophilous, and "minimising" distance
will move the node to the next nearest unoccupied coordinates.

Learning models

The default is a Degroot learning model, but if closeness is defined as anything less than infinity,
this becomes a Deffuant model. A Deffuant model is similar to a Degroot model, however nodes
only learn from other nodes whose beliefs are not too dissimilar from their own.

References

DeGroot, Morris H. 1974. "Reaching a consensus", Journal of the American Statistical Association,
69(345): 118–21. doi:10.1080/01621459.1974.10480137

Deffuant, Guillaume, David Neau, Frederic Amblard, and Gérard Weisbuch. 2000. "Mixing beliefs
among interacting agents", Advances in Complex Systems, 3(1): 87-98. doi:10.1142/S0219525900000078

Golub, Benjamin, and Matthew O. Jackson 2010. "Naive learning in social networks and the wis-
dom of crowds", American Economic Journal, 2(1): 112-49. doi:10.1257/mic.2.1.112

See Also

Other makes: make_cran, make_create, make_ego, make_explicit, make_motifs, make_play,
make_random, make_read, make_stochastic, make_write

Other models: make_play

https://doi.org/10.1080/01621459.1974.10480137
https://doi.org/10.1142/S0219525900000078
https://doi.org/10.1257/mic.2.1.112

make_mnet 49

Examples

play_learning(ison_networkers,
rbinom(net_nodes(ison_networkers),1,prob = 0.25))

startValues <- rbinom(100,1,prob = 0.5)
startValues[sample(seq_len(100), round(100*0.2))] <- NA
latticeEg <- create_lattice(100)
latticeEg <- add_node_attribute(latticeEg, "startValues", startValues)
latticeEg
play_segregation(latticeEg, "startValues", 0.5)
graphr(latticeEg, node_color = "startValues", node_size = 5) +
graphr(play_segregation(latticeEg, "startValues", 0.2),
node_color = "startValues", node_size = 5)

make_mnet Multilevel, multiplex, multimodal, signed, dynamic or longitudinal
changing networks

Description

The ’mnet’ class of network object is an additional class layered on top of the ’igraph’ and ’tbl_graph’
classes. Under the hood it is an ’igraph’ object, which enables all the igraph functions to operate.
It is also a ’tbl_graph’ object, which enables it to be used with {ggraph}. However, ’mnet’ objects
offer prettier printing and a consistent structure that enables more complex forms of networks to be
contained in a single object.

Usage

S3 method for class 'mnet'
print(x, ..., n = 12)

print_all(x, ...)

Arguments

x An object of class "mnet" or "tbl_graph".

... Other arguments passed to or from other methods.

n Number of observations to print across all network components, i.e. nodes,
changes, and ties. By default 12.

Nodes

Nodes are held as vertices and vertex attributes in the ’igraph’ object, but printed as a nodelist.
Here the convention is for the first column of the nodelist to be called ’name’ and records the labels
of the nodes. Additional reserved columns include ’active’ for changing networks and ’type’ for
multimodal networks.

50 make_motifs

Changes

Changes, that is a list of changes to the nodes in the network, are held internally as a graph attribute
in the ’igraph’ object, but printed as a changelist. Here the convention is for the ’wave’ or ’time’
column to appear first, followed by ’node’ indicating to which node the change applies, ’var’ for the
variable to which the change applies, and ’value’ for the new value to be applied.

Ties

Ties are held as edges and edge attributes in the ’igraph’ object, but printed as an edgelist. Here
the convention is for the first column of the edgelist to be called ’from’ and the second column
’to’, even if the network is not directed. Additional reserved columns include ’weight’ for weighted
networks, ’wave’ for longitudinal networks, ’type’ for multiplex networks, and ’sign’ for signed
networks.

Printing

When printed, ’mnet’ objects will print to the console any information stored about the network’s
name, or its types of nodes or ties. It will also describe key features of the network, such as whether
the network is multiplex, weighted, directed, etc.

It will then print tibbles for the nodes, changes, and ties in the network, as appropriate. That is, if
there is no nodal data (e.g. it is an unlabelled network without any other nodal attributes), then this
will be skipped. Similarly, if no nodal changes are logged, this information will be skipped too.

make_motifs Making motifs

Description

create_motifs() is used to create a list of networks that represent the subgraphs or motifs cor-
responding to a certain number of nodes and direction. Note that currently only n==2 to n==4 is
implemented, and the latter only for undirected networks.

Usage

create_motifs(n, directed = FALSE)

Arguments

n Given:
• A single integer, e.g. n = 10, a one-mode network will be created.
• A vector of two integers, e.g. n = c(5,10), a two-mode network will be

created.
• A manynet-compatible object, a network of the same dimensions will be

created.
directed Logical whether the graph should be directed. By default directed = FALSE. If

the opposite direction is desired, use to_redirected() on the output of these
functions.

make_play 51

See Also

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_play,
make_random, make_read, make_stochastic, make_write

make_play Making diffusion models on networks

Description

These functions simulate diffusion or compartment models upon a network.

• play_diffusion() runs a single simulation of a compartment model, allowing the results to
be visualised and examined.

These functions allow both a full range of compartment models, as well as simplex and complex
diffusion to be simulated upon a network.

Usage

play_diffusion(
.data,
seeds = 1,
contact = NULL,
prevalence = 0,
thresholds = 1,
transmissibility = 1,
latency = 0,
recovery = 0,
waning = 0,
fatality = 0,
immune = NULL,
steps,
old_version = FALSE

)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

seeds A valid mark vector the length of the number of nodes in the network.

52 make_play

contact A matrix or network that replaces ".data" with some other explicit contact net-
work, e.g. create_components(.data, membership = node_in_structural(.data)).
Can be of arbitrary complexity, but must of the same dimensions as .data.

prevalence The proportion that global prevalence contributes to diffusion. That is, if preva-
lence is 0.5, then the current number of infections is multiplied by 0.5 and added
"prevalence" is 0 by default, i.e. there is no global mechanism. Note that this is
endogenously defined and is updated at the outset of each step.

thresholds A numeric vector indicating the thresholds each node has. By default 1. A single
number means a generic threshold; for thresholds that vary among the popula-
tion please use a vector the length of the number of nodes in the network. If
1 or larger, the threshold is interpreted as a simple count of the number of con-
tacts/exposures sufficient for infection. If less than 1, the threshold is interpreted
as complex, where the threshold concerns the proportion of contacts.

transmissibility

The transmission rate probability, β. By default 1, which means any node for
which the threshold is met or exceeded will become infected. Anything lower
means a correspondingly lower probability of adoption, even when the threshold
is met or exceeded.

latency The inverse probability those who have been exposed become infectious (in-
fected), σ or κ. For example, if exposed individuals take, on average, four days
to become infectious, then σ = 0.75 (1/1-0.75 = 1/0.25 = 4). By default 0,
which means those exposed become immediately infectious (i.e. an SI model).
Anything higher results in e.g. a SEI model.

recovery The probability those who are infected recover, γ. For example, if infected
individuals take, on average, four days to recover, then γ = 0.25. By default 0,
which means there is no recovery (i.e. an SI model). Anything higher results in
an SIR model.

waning The probability those who are recovered become susceptible again, ξ. For exam-
ple, if recovered individuals take, on average, four days to lose their immunity,
then ξ = 0.25. By default 0, which means any recovered individuals retain
lifelong immunity (i.e. an SIR model). Anything higher results in e.g. a SIRS
model. ξ = 1 would mean there is no period of immunity, e.g. an SIS model.

fatality The probability those who are infected are removed from the network, α. Note
that fatality is distinct from a natural mortality rate. By default α = 0, which
means that there is no fatality. Where α > 0, the nodal attribute ’active’ will be
added if it is not already present.

immune A logical or numeric vector identifying nodes that begin the diffusion process
as already recovered. This could be interpreted as those who are vaccinated or
equivalent. Note however that a waning parameter will affect these nodes too.
By default NULL, indicating that no nodes begin immune.

steps The number of steps forward in the diffusion to play. By default the number of
nodes in the network. If steps = Inf then the diffusion process will continue
until there are no new infections or all nodes are infected.

old_version This is included to maintain backward compatibility with the old version of this
function, that would return a special object. The new version adds the diffusion
event record as changes to the original network.

make_play 53

Simple and complex diffusion

By default, the function will simulate a simple diffusion process in which some infectious disease
or idea diffuses from seeds through contacts at some constant rate (transmissibility).

These seeds can be specified by a vector index (the number of the position of each node in the
network that should serve as a seed) or as a logical vector where TRUE is interpreted as already
infected.

thresholds can be set such that adoption/infection requires more than one (the default) contact
already being infected. This parameter also accepts a vector so that thresholds can vary.

Complex diffusion is where the thresholds are defined less than one. In this case, the thresh-
olds are interpreted as proportional. That is, the threshold to adoption/infection is defined by the
proportion of the node’s contacts infected.

Nodes that cannot be infected can be indicated as immune with a logical vector or index, similar to
how seeds are identified. Note that immune nodes are interpreted internally as Recovered (R) and
are thus subject to waning (see below).

Compartment models

Compartment models are flexible models of diffusion or contagion, where nodes are compartmen-
talised into one of two or more categories.

The most basic model is the SI model. The SI model is the default in play_diffusion()/play_diffusions(),
where nodes can only move from the Susceptible (S) category to the Infected (I) category. Whether
nodes move from S to I depends on whether they are exposed to the infection, for instance through
a contact, the transmissibility of the disease, and their thresholds to the disease.

Another common model is the SIR model. Here nodes move from S to I, as above, but additionally
they can move from I to a Recovered (R) status. The probability that an infected node recovers at a
timepoint is controlled by the recovery parameter.

The next most common models are the SIS and SIRS models. Here nodes move from S to I or
additionally to R, as above, but additionally they can move from I or R back to a Susceptible (S)
state. This probability is governed by the waning parameter. Where recover > 0 and waning = 1,
the Recovery (R) state will be skipped and the node will return immediately to the Susceptible (S)
compartment.

Lastly, these functions also offer the possibility of specifying a latency period in which nodes have
been infected but are not yet infectious. Where latency > 0, an additional Exposed (E) compart-
ment is introduced that governs the probability that a node moves from this E compartment to
infectiousness (I). This can be used in in SEI, SEIS, SEIR, and SEIRS models.

See Also

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_motifs,
make_random, make_read, make_stochastic, make_write

Other models: make_learning

Other diffusion: measure_diffusion_infection, measure_diffusion_net, measure_diffusion_node,
member_diffusion

54 make_random

Examples

smeg <- generate_smallworld(15, 0.025)
plot(play_diffusion(smeg, recovery = 0.4))
#graphr(play_diffusion(ison_karateka))

make_random Making unconditional and conditional random networks

Description

These functions are similar to the create_* functions, but include some element of randomisation.
They are particularly useful for creating a distribution of networks for exploring or testing network
properties.

• generate_random() generates a random network with ties appearing at some probability.

• generate_configuration() generates a random network consistent with a given degree dis-
tribution.

• generate_man() generates a random network conditional on the dyad census of Mutual,
Asymmetric, and Null dyads, respectively.

• generate_utilities() generates a random utility matrix.

These functions can create either one-mode or two-mode networks. To create a one-mode network,
pass the main argument n a single integer, indicating the number of nodes in the network. To create
a two-mode network, pass n a vector of two integers, where the first integer indicates the number of
nodes in the first mode, and the second integer indicates the number of nodes in the second mode.
As an alternative, an existing network can be provided to n and the number of modes, nodes, and
directedness will be inferred.

Usage

generate_random(n, p = 0.5, directed = FALSE, with_attr = TRUE)

generate_configuration(.data)

generate_man(n, man = NULL)

generate_utilities(n, steps = 1, volatility = 0, threshold = 0)

generate_permutation(.data, with_attr = TRUE)

Arguments

n Given:

• A single integer, e.g. n = 10, a one-mode network will be created.
• A vector of two integers, e.g. n = c(5,10), a two-mode network will be

created.

make_random 55

• A manynet-compatible object, a network of the same dimensions will be
created.

p Proportion of possible ties in the network that are realised or, if integer greater
than 1, the number of ties in the network.

directed Whether to generate network as directed. By default FALSE.

with_attr Logical whether any attributes of the object should be retained. By default
TRUE.

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

man Vector of Mutual, Asymmetric, and Null dyads, respectively. Can be specified as
proportions, e.g. c(0.5, 0.5, 0.5), or as a count, e.g. c(10,0,20). Is inferred
from n if it is an existing network object.

steps Number of simulation steps to run. By default 1: a single, one-shot simulation.
If more than 1, further iterations will update the utilities depending on the values
of the volatility and threshold parameters.

volatility How much change there is between steps. Only if volatility is more than 1 do
further simulation steps make sense. This is passed on to stats::rnorm as the
sd or standard deviation parameter.

threshold This parameter can be used to mute or disregard stepwise changes in utility that
are minor. The default 0 will recognise all changes in utility, but raising the
threshold will mute any changes less than this threshold.

Value

By default a tbl_graph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equiv-
alent. This direction can be swapped using to_redirected(). In two-mode networks, the directed
argument is ignored.

References

On random networks:
Erdos, Paul, and Alfred Renyi. 1959. "On Random Graphs I" Publicationes Mathematicae. 6:
290–297.

On configuration models:
Bollobas, Bela. 1980. "A Probabilistic Proof of an Asymptotic Formula for the Number of
Labelled Regular Graphs". European Journal of Combinatorics 1: 311-316.

https://www.renyi.hu/~p_erdos/1959-11.pdf

56 make_read

On dyad-census conditioned networks:
Holland, Paul W., and Samuel Leinhardt. 1976. “Local Structure in Social Networks.” In D. Heise
(Ed.), Sociological Methodology, pp 1-45. San Francisco: Jossey-Bass.

See Also

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_motifs,
make_play, make_read, make_stochastic, make_write

Examples

graphr(generate_random(12, 0.4))
graphr(generate_random(c(6, 6), 0.4))

make_read Making networks from external files

Description

Researchers regularly need to work with a variety of external data formats. The following functions
offer ways to import from some common external file formats into objects that {manynet} and other
graph/network packages in R can work with:

• read_matrix() imports adjacency matrices from Excel/csv files.
• read_edgelist() imports edgelists from Excel/csv files.
• read_nodelist() imports nodelists from Excel/csv files.
• read_pajek() imports Pajek (.net or .paj) files.
• read_ucinet() imports UCINET files from the header (.##h).
• read_dynetml() imports DyNetML interchange format for rich social network data.
• read_graphml() imports GraphML files.

Usage

read_matrix(file = file.choose(), sv = c("comma", "semi-colon"), ...)

read_edgelist(file = file.choose(), sv = c("comma", "semi-colon"), ...)

read_nodelist(file = file.choose(), sv = c("comma", "semi-colon"), ...)

read_pajek(file = file.choose(), ties = NULL, ...)

read_ucinet(file = file.choose())

read_dynetml(file = file.choose())

read_graphml(file = file.choose())

read_gml(file = file.choose())

make_read 57

Arguments

file A character string with the system path to the file to import. If left unspec-
ified, an OS-specific file picker is opened to help users select it. Note that
in read_ucinet() the file path should be to the header file (.##h), if it exists
and that it is currently not possible to import multiple networks from a single
UCINET file. Please convert these one by one.

sv Allows users to specify whether their csv file is "comma" (English) or "semi-colon"
(European) separated.

... Additional parameters passed to the read/write function.

ties A character string indicating the ties/network, where the data contains several.

Details

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

There are a number of repositories for network data that hold various datasets in different formats.
See for example:

• UCINET data

• networkdata

• GML datasets

• UCIrvine Network Data Repository

• SNAP Stanford Large Network Dataset Collection

Please let us know if you identify any further repositories of social or political networks and we
would be happy to add them here.

The _ucinet functions only work with relatively recent UCINET file formats, e.g. type 6406 files.
To import earlier UCINET file types, you will need to update them first. To import multiple matrices
packed into a single UCINET file, you will need to unpack them and convert them one by one.

Value

read_edgelist() and read_nodelist() will import into edgelist (tibble) format which can then
be coerced or combined into different graph objects from there.

read_pajek() and read_ucinet() will import into a tidygraph format, since they already contain
both edge and attribute data. read_matrix() will import into tidygraph format too. Note that all
graphs can be easily coerced into other formats with {manynet}’s as_ methods.

Source

read_ucinet() kindly supplied by Christian Steglich, constructed on 18 June 2015.

https://github.com/stocnet/manynet/issues
https://github.com/stocnet/manynet/issues
https://sites.google.com/site/ucinetsoftware/datasets?authuser=0
https://schochastics.github.io/networkdata/
http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data/

58 make_stochastic

See Also

as

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_motifs,
make_play, make_random, make_stochastic, make_write

make_stochastic Making networks with a stochastic element

Description

These functions are similar to the create_* functions, but include some element of randomisation.
They are particularly useful for creating a distribution of networks for exploring or testing network
properties.

• generate_smallworld() generates a small-world structure via ring rewiring at some proba-
bility.

• generate_scalefree() generates a scale-free structure via preferential attachment at some
probability.

• generate_fire() generates a forest fire model.

• generate_islands() generates an islands model.

• generate_citations() generates a citations model.

These functions can create either one-mode or two-mode networks. To create a one-mode network,
pass the main argument n a single integer, indicating the number of nodes in the network. To create
a two-mode network, pass n a vector of two integers, where the first integer indicates the number of
nodes in the first mode, and the second integer indicates the number of nodes in the second mode.
As an alternative, an existing network can be provided to n and the number of modes, nodes, and
directedness will be inferred.

Usage

generate_smallworld(n, p = 0.05, directed = FALSE, width = 2)

generate_scalefree(n, p = 1, directed = FALSE)

generate_fire(n, contacts = 1, their_out = 0, their_in = 1, directed = FALSE)

generate_islands(n, islands = 2, p = 0.5, bridges = 1, directed = FALSE)

generate_citations(
n,
ties = sample(1:4, 1),
agebins = max(1, n/10),
directed = FALSE

)

make_stochastic 59

Arguments

n Given:

• A single integer, e.g. n = 10, a one-mode network will be created.
• A vector of two integers, e.g. n = c(5,10), a two-mode network will be

created.
• A manynet-compatible object, a network of the same dimensions will be

created.

p Power of the preferential attachment, default is 1.

directed Whether to generate network as directed. By default FALSE.

width Integer specifying the width of the ring, breadth of the branches, or maximum
extent of the neighbourbood.

contacts Number of contacts or ambassadors chosen from among existing nodes in the
network. By default 1. See igraph::sample_forestfire().

their_out Probability of tieing to a contact’s outgoing ties. By default 0.

their_in Probability of tieing to a contact’s incoming ties. By default 1.

islands Number of islands or communities to create. By default 2. See igraph::sample_islands()
for more.

bridges Number of bridges between islands/communities. By default 1.

ties Number of ties to add per new node. By default a uniform random sample from
1 to 4 new ties.

agebins Number of aging bins. By default either n
10 or 1, whichever is the larger. See

igraphr::sample_last_cit() for more.

Value

By default a tbl_graph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equiv-
alent. This direction can be swapped using to_redirected(). In two-mode networks, the directed
argument is ignored.

References

On small-world networks:
Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World’ Net-
works.” Nature 393(6684):440–42. doi:10.1038/30918.

On scale-free networks:
Barabasi, Albert-Laszlo, and Reka Albert. 1999. “Emergence of Scaling in Random Networks.”
Science 286(5439):509–12. doi:10.1126/science.286.5439.509.

On the forest-fire model:
Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. 2007. "Graph evolution: Densification
and shrinking diameters". ACM transactions on Knowledge Discovery from Data, 1(1): 2-es.

https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf

60 make_write

See Also

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_motifs,
make_play, make_random, make_read, make_write

Examples

graphr(generate_smallworld(12, 0.025))
graphr(generate_smallworld(12, 0.25))
graphr(generate_scalefree(12, 0.25))
graphr(generate_scalefree(12, 1.25))
generate_fire(10)
generate_islands(10)
generate_citations(10)

make_write Making networks to external files

Description

Researchers may want to save or work with networks outside R. The following functions offer ways
to export to some common external file formats:

• write_matrix() exports an adjacency matrix to a .csv file.

• write_edgelist() exports an edgelist to a .csv file.

• write_nodelist() exports a nodelist to a .csv file.

• write_pajek() exports Pajek .net files.

• write_ucinet() exports a pair of UCINET files in V6404 file format (.##h, .##d).

• write_graphml() exports GraphML files.

Usage

write_matrix(.data, filename, ...)

write_edgelist(.data, filename, ...)

write_nodelist(.data, filename, ...)

write_pajek(.data, filename, ...)

write_ucinet(.data, filename, name)

write_graphml(.data, filename, ...)

manip_as 61

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

filename Character string filename. If missing, the files will have the same name as the
object and be saved to the working directory. An appropriate extension will be
added if not included.

... Additional parameters passed to the write function.

name Character string to name the network internally, e.g. in UCINET. By default the
name will be the same as the object.

Details

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

Value

The write_functions export to different file formats, depending on the function.

A pair of UCINET files in V6404 file format (.##h, .##d)

Source

write_ucinet() kindly supplied by Christian Steglich, constructed on 18 June 2015.

See Also

as

Other makes: make_cran, make_create, make_ego, make_explicit, make_learning, make_motifs,
make_play, make_random, make_read, make_stochastic

manip_as Modifying network classes

https://github.com/stocnet/manynet/issues
https://github.com/stocnet/manynet/issues

62 manip_as

Description

The as_ functions in {manynet} coerce objects of any of the following common classes of social
network objects in R into the declared class:

• as_edgelist() coerces the object into an edgelist, as data frames or tibbles.

• as_matrix() coerces the object into an adjacency (one-mode/unipartite) or incidence (two-
mode/bipartite) matrix.

• as_igraph() coerces the object into an {igraph} graph object.

• as_tidygraph() coerces the object into a {tidygraph} tbl_graph object.

• as_network() coerces the object into a {network} network object.

• as_siena() coerces the (igraph/tidygraph) object into a SIENA dependent variable.

• as_graphAM() coerces the object into a graph adjacency matrix.

• as_diffusion() coerces a table of diffusion events into a diff_model object similar to the
output of play_diffusion().

• as_diffnet() coerces a diff_model object into a {netdiffuseR} diffnet object.

An effort is made for all of these coercion routines to be as lossless as possible, though some object
classes are better at retaining certain kinds of information than others. Note also that there are
some reserved column names in one or more object classes, which could otherwise lead to some
unexpected results.

Usage

as_nodelist(.data)

as_changelist(.data)

as_edgelist(.data, twomode = FALSE)

as_matrix(.data, twomode = NULL)

as_igraph(.data, twomode = FALSE)

as_tidygraph(.data, twomode = FALSE)

as_network(.data, twomode = FALSE)

as_siena(.data, twomode = FALSE)

as_graphAM(.data, twomode = NULL)

as_diffusion(.data, twomode = FALSE, events)

as_diffnet(.data, twomode = FALSE)

manip_as 63

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

twomode Logical option used to override heuristics for distinguishing incidence (two-
mode/bipartite) from adjacency (one-mode/unipartite) networks. By default FALSE.

events A table (data frame or tibble) of diffusion events with columns t indicating the
time (typically an integer) of the event, nodes indicating the number or name of
the node involved in the event, and event, which can take on the values "I" for
an infection event, "E" for an exposure event, or "R" for a recovery event.

Details

Edgelists are expected to be held in data.frame or tibble class objects. The first two columns of such
an object are expected to be the senders and receivers of a tie, respectively, and are typically named
"from" and "to" (even in the case of an undirected network). These columns can contain integers
to identify nodes or character strings/factors if the network is labelled. If the sets of senders and
receivers overlap, a one-mode network is inferred. If the sets contain no overlap, a two-mode
network is inferred. If a third, numeric column is present, a weighted network will be created.

Matrices can be either adjacency (one-mode) or incidence (two-mode) matrices. Incidence matrices
are typically inferred from unequal dimensions, but since in rare cases a matrix with equal dimen-
sions may still be an incidence matrix, an additional argument twomode can be specified to override
this heuristic.

This information is usually already embedded in {igraph}, {tidygraph}, and {network} objects.

Value

The currently implemented coercions or translations are:

data.frame diff_model diffnet igraph list matrix network network.goldfish siena tbl_graph
as_diffnet 0 1 0 0 0 0 0 0 0 0
as_diffusion 0 1 1 1 0 0 0 0 0 0
as_edgelist 1 0 0 1 0 1 1 1 1 1
as_graphAM 1 0 0 1 0 1 1 1 1 1
as_igraph 1 1 1 1 0 1 1 1 1 1
as_matrix 1 1 0 1 0 1 1 1 1 1
as_network 1 0 1 1 0 1 1 1 1 1
as_siena 0 0 0 1 0 0 0 0 0 1
as_tidygraph 1 1 1 1 1 1 1 1 1 1

as_diffusion() and play_diffusion() return a ’diff_model’ object that contains two different
tibbles (tables) – a table of diffusion events and a table of the number of nodes in each relevant

64 manip_changes

component (S, E, I, or R) – as well as a copy of the network upon which the diffusion ran. By
default, a compact version of the component table is printed (to print all the changes at each time
point, use print(..., verbose = T)). To retrieve the diffusion events table, use summary(...).

See Also

Other modifications: manip_correlation, manip_deformat, manip_from, manip_levels, manip_miss,
manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

test <- data.frame(from = c("A","B","B","C","C"), to = c("I","G","I","G","H"))
as_edgelist(test)
as_matrix(test)
as_igraph(test)
as_tidygraph(test)
as_network(test)

How to create a diff_model object from (basic) observed data
events <- data.frame(time = c(0,1,1,2,3),

node = c(1,2,3,2,4),
var = "diffusion",
value = c("I","I","I","R","I"))

add_changes(create_filled(4), events)

manip_changes Modifying changes to nodes over time

Description

These functions offer ways to modify data held about how nodes change over time. They include:

• add_changes() adds a table of changes to the nodes of a network.

• mutate_changes() can be used to update network changes.

• filter_changes() is used to subset network changes.

• collect_changes() is similar to filter_changes(), but collects the cumulative changes up
to a time point.

• apply_changes() applies the changes collected up to a time point to a network, removing the
changes.

An example of when this might be useful is to track change in the composition of a network (when
nodes are present or absent over time), though the function can flexibly accommodate changes in
other nodal attributes.

manip_changes 65

Usage

add_changes(.data, changes)

mutate_changes(.data, ...)

filter_changes(.data, ..., .by = NULL)

select_changes(.data, ..., .by = NULL)

collect_changes(.data, time)

apply_changes(.data, time)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

changes A data frame of changes. Ideally this will be in the form of "wave", "node",
"var", and "value", but there are internal routines from some otherwise common
formats. A data frame of composition change can be just two columns.

... Additional arguments.

.by An attribute name to join objects by. By default, NULL.

time A time point or wave at which to present the network.

See Also

to_time()

Examples

add_changes(ison_algebra,
data.frame(wave = 2, node = 1, var = "active", value = FALSE))

filter_changes(fict_starwars, node == "Anakin")
select_changes(fict_starwars, node)
collect_changes(fict_starwars, time = 3)
collect_changes(fict_starwars, time = 3)

66 manip_correlation

manip_correlation Node correlation

Description

This function performs a Pearson pairwise correlation on a given matrix or network data. It includes
a switch: whereas for a two-mode network it will perform a regular correlation, including all rows,
for an undirected network it will perform a correlation on a matrix with the diagonals removed,
for a reciprocated network it will include the difference between reciprocated ties, and for complex
networks it will include also the difference between the self ties in each pairwise calculation. This
function runs in O(mn2) complexity.

Usage

to_correlation(.data, method = NULL)

to_cosine(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

method One of the following: "all" includes all information, "diag" excludes the diago-
nal (self-ties), "recip" excludes the diagonal but compares pairs’ reciprocal ties,
and "complex" compares pairs’ reciprocal ties and their self ties. By default the
appropriate method is chosen based on the network format.

See Also

Other modifications: manip_as, manip_deformat, manip_from, manip_levels, manip_miss, manip_nodes,
manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat, manip_scope,
manip_split, manip_ties

manip_deformat 67

manip_deformat Modifying network formats by removing information

Description

These functions reformat manynet-consistent data.

• to_unnamed() reformats labelled network data to unlabelled network data.

• to_undirected() reformats directed network data to an undirected network, so that any pair
of nodes with at least one directed edge will be connected by an undirected edge in the new
network. This is equivalent to the "collapse" mode in {igraph}..

• to_unweighted() reformats weighted network data to unweighted network data, with all tie
weights removed.

• to_unsigned() reformats signed network data to unsigned network data keeping just the
"positive" or "negative" ties.

• to_simplex() reformats complex network data, containing loops, to simplex network data,
without any loops.

• to_uniplex() reformats multiplex network data to a single type of tie.

If the format condition is not met, for example to_undirected() is used on a network that is al-
ready undirected, the network data is returned unaltered. No warning is given so that these functions
can be used to ensure conformance.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_unnamed(.data)

to_undirected(.data)

to_unweighted(.data, threshold = 1)

to_unsigned(.data, keep = c("positive", "negative"))

to_simplex(.data)

to_uniplex(.data, tie)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

68 manip_from

• network, from the {network} package
• tbl_graph, from the {tidygraph} package

threshold For a matrix, the threshold to binarise/dichotomise at.

keep In the case of a signed network, whether to retain the "positive" or "negative"
ties.

tie Character string naming a tie attribute to retain from a graph.

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph
to_simplex 1 1 1 1 1
to_undirected 1 1 1 1 1
to_uniplex 1 1 1 1 1
to_unnamed 1 1 1 1 1
to_unsigned 1 1 1 1 1
to_unweighted 1 1 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

See Also

Other modifications: manip_as, manip_correlation, manip_from, manip_levels, manip_miss,
manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

as_tidygraph(create_filled(5)) %>%
mutate_ties(type = sample(c("friend", "enemy"), 10, replace = TRUE)) %>%
to_uniplex("friend")

manip_from Joining lists of networks, graphs, and matrices

manip_from 69

Description

These functions offer tools for joining lists of manynet-consistent objects (matrices, igraph, tidy-
graph, or network objects) into a single object.

• from_subgraphs() modifies a list of subgraphs into a single tidygraph.

• from_egos() modifies a list of ego networks into a whole tidygraph

• from_waves() modifies a list of network waves into a longitudinal tidygraph.

• from_slices() modifies a list of time slices of a network into a dynamic tidygraph.

• from_ties() modifies a list of different ties into a multiplex tidygraph

Usage

from_subgraphs(netlist)

from_egos(netlist)

from_waves(netlist)

from_slices(netlist, remove.duplicates = FALSE)

from_ties(netlist, netnames)

Arguments

netlist A list of network, igraph, tidygraph, matrix, or edgelist objects.
remove.duplicates

Should duplicates be removed? By default FALSE. If TRUE, duplicated edges
are removed.

netnames A character vector of names for the different network objects, if not already
named within the list.

Value

A tidygraph object combining the list of network data.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_levels, manip_miss,
manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

ison_adolescents %>%
mutate(unicorn = sample(c("yes", "no"), 8, replace = TRUE)) %>%
to_subgraphs(attribute = "unicorn") %>%
from_subgraphs()

ison_adolescents %>%

70 manip_info

to_egos() %>%
from_egos()

ison_adolescents %>%
mutate_ties(wave = sample(1:4, 10, replace = TRUE)) %>%
to_waves(attribute = "wave") %>%
from_waves()

ison_adolescents %>%
mutate_ties(time = 1:10, increment = 1) %>%
add_ties(c(1,2), list(time = 3, increment = -1)) %>%
to_slices(slice = c(5,7)) %>%
from_slices()

manip_info Modifying network data

Description

These functions allow users to add and edit information about the network itself. This includes the
name, year, and mode of collection of the network, as well as definitions of the nodes and ties in the
network. Where available, this information is printed for tidygraph-class objects, and can be used
for printing a grand table in the {grand} package.

Usage

add_info(.data, ...)

mutate_net(.data, ...)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

... Named attributes. The following are currently recognised: "name", "year", and
"doi" of the network, "collection" or "mode" of the network ("survey", "inter-
view","sensor","observation","archival", or "simulation"), "nodes" (a vector of
the names of the nodes) or "vertex1"/"vertex2", "ties" or "edge.pos"/"edge.neg"
for defining the ties.

Examples

add_info(ison_algebra, name = "Algebra")

manip_levels 71

manip_levels Modifying network levels

Description

These functions reformat the levels in manynet-consistent network data.

• to_onemode() reformats two-mode network data into one-mode network data by simply re-
moving the nodeset ’type’ information. Note that this is not the same as to_mode1() or
to_mode2().

• to_twomode() reformats one-mode network data into two-mode network data, using a mark
to distinguish the two sets of nodes.

• to_multilevel() reformats two-mode network data into multimodal network data, which
allows for more levels and ties within modes.

If the format condition is not met, for example to_onemode() is used on a network that is already
one-mode, the network data is returned unaltered. No warning is given so that these functions can
be used to ensure conformance.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_onemode(.data)

to_twomode(.data, mark)

to_multilevel(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark A logical vector marking two types or modes. By default "type".

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

igraph matrix network tbl_graph

72 manip_miss

to_multilevel 1 1 0 1
to_onemode 1 1 0 1
to_twomode 1 0 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_miss,
manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

manip_miss Modifying missing tie data

Description

These functions offer tools for imputing missing tie data. Currently two options are available:

• na_to_zero() replaces any missing values with zeros, which are the modal value in sparse
social networks.

• na_to_mean() replaces missing values with the average non-missing value.

Usage

na_to_zero(.data)

na_to_mean(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

Value

A data object of the same class as the function was given.

manip_nodes 73

References

On missing data:
Krause, Robert, Mark Huisman, Christian Steglich, and Tom A.B. Snijders. 2020. "Missing data
in cross-sectional networks: An extensive comparison of missing data treatment methods". Social
Networks, 62: 99-112. doi:10.1016/j.socnet.2020.02.004

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

missTest <- ison_adolescents %>%
add_tie_attribute("weight", c(1,NA,NA,1,1,1,NA,NA,1,1)) %>%
as_matrix

missTest
na_to_zero(missTest)
na_to_mean(missTest)

manip_nodes Modifying node data

Description

These functions allow users to add and delete nodes and their attributes:

• add_nodes() adds an additional number of nodes to network data.

• delete_nodes() deletes nodes from network data.

• add_node_attribute(), mutate(), or mutate_nodes() offer ways to add a vector of values
to a network as a nodal attribute.

• rename_nodes() and rename() rename nodal attributes.

• bind_node_attributes() appends all nodal attributes from one network to another, and
join_nodes() merges all nodal attributes from one network to another.

• filter_nodes() subsets nodes based on some nodal attribute-related logical statement.

Note that while add_*()/delete_*() functions operate similarly as comparable {igraph} func-
tions, mutate*(), bind*(), etc work like {tidyverse} or {dplyr}-style functions.

https://doi.org/10.1016/j.socnet.2020.02.004

74 manip_nodes

Usage

add_nodes(.data, nodes, attribute = NULL)

delete_nodes(.data, nodes)

add_node_attribute(.data, attr_name, vector)

mutate(.data, ...)

mutate_nodes(.data, ...)

select(.data, ...)

select_nodes(.data, ...)

bind_node_attributes(.data, object2)

join_nodes(
.data,
object2,
.by = NULL,
join_type = c("full", "left", "right", "inner")

)

rename_nodes(.data, ...)

rename(.data, ...)

filter_nodes(.data, ..., .by = NULL)

Arguments

.data An object of a manynet-consistent class:
• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

nodes The number of nodes to be added.
attribute A named list to be added as tie or node attributes.
attr_name Name of the new attribute in the resulting object.
vector A vector of values for the new attribute.
... Additional arguments.
object2 A second object to copy nodes or ties from.
.by An attribute name to join objects by. By default, NULL.
join_type A type of join to be used. Options are "full","left", "right", "inner".

manip_paths 75

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

igraph network tbl_graph
add_nodes 1 1 1
delete_nodes 1 1 1

Value

A data object of the same class as the function was given.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_paths, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
add_nodes(other, 4, list(name = c("Matthew", "Mark", "Luke", "Tim")))
other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
another <- create_filled(3) %>% mutate(name = c("E", "F", "G"))
join_nodes(another, other)

manip_paths Modifying networks paths

Description

These functions return tidygraphs containing only special sets of ties:

• to_matching() returns only the matching ties in some network data.

• to_mentoring() returns only ties to nodes’ closest mentors.

• to_eulerian() returns only the Eulerian path within some network data.

• to_tree() returns the spanning tree in some network data or, if the data is unconnected, a
forest of spanning trees.

• to_dominating() returns the dominating tree of the network

76 manip_paths

Usage

to_matching(.data, mark = "type", capacities = NULL)

to_mentoring(.data, elites = 0.1)

to_eulerian(.data)

to_tree(.data)

to_dominating(.data, from, direction = c("out", "in"))

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark A logical vector marking two types or modes. By default "type".

capacities An integer or vector of integers the same length as the nodes in the network
that describes the maximum possible degree the node can have in the matched
network.

elites The proportion of nodes to be selected as mentors. By default this is set at 0.1.
This means that the top 10% of nodes in terms of degree, or those equal to the
highest rank degree in the network, whichever is the higher, will be used to select
the mentors.
Note that if nodes are equidistant from two mentors, they will choose one at
random. If a node is without a path to a mentor, for example because they are
an isolate, a tie to themselves (a loop) will be created instead. Note that this is a
different default behaviour than that described in Valente and Davis (1999).

from The index or name of the node from which the path should be traced.

direction String, either "out" or "in".

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph
to_eulerian 0 1 0 0 1
to_matching 1 1 1 1 1
to_mentoring 0 1 0 0 1

manip_paths 77

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

to_matching()

This function attempts to solve the stable matching problem, also known as the stable marriage
problem, upon a given two-mode network (or other network with a binary mark).

In the basic version, to_matching() uses igraph::max_bipartite_match() to return a network
in which each node is only tied to one of its previous ties. The number of these ties left is its
cardinality, and the algorithm seeks to maximise this such that, where possible, each node will be
associated with just one node in the other mode or some other mark. The algorithm used is the
push-relabel algorithm with greedy initialization and a global relabelling after every n

2 steps, where
n is the number of nodes in the network.

In the more general version, each node may have a larger capacity, or even different capacities. Here
an implementation of the Gale-Shapley algorithm is used, in which an iterative process of proposal
and acceptance is repeated until all are matched or have exhausted their lists of preferences. This
is, however, computationally slower.

References

On matching:
Gale, David, and Lloyd Stowell Shapley. 1962. "College admissions and the stability of mar-
riage". The American Mathematical Monthly, 69(1): 9–14. doi:10.2307/2312726
Goldberg, Andrew V., and Robert E. Tarjan. 1986. "A new approach to the maximum flow
problem". Proceedings of the eighteenth annual ACM symposium on Theory of computing –
STOC ’86. 136-146. doi:10.1145/12130.12144

On mentoring:
Valente, Thomas, and Rebecca Davis. 1999. "Accelerating the Diffusion of Innovations Using
Opinion Leaders", Annals of the American Academy of Political and Social Science 566: 56-67.
doi:10.1177/000271629956600105

On Eulerian trails:
Euler, Leonard. 1736. "Solutio problematis ad geometriam situs pertinentis". Comment. Academiae
Sci. I. Petropolitanae 8: 128–140.
Hierholzer, Carl. 1873. "Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren". Mathematische Annalen, 6(1): 30–32. doi:10.1007/BF01442866

On minimum spanning trees:
Boruvka, Otakar. 1926. "O jistem problemu minimalnim". Prace Mor. Prirodoved. Spol. V Brne
III 3: 37-58.
Kruskal, Joseph B. 1956. "On the shortest spanning subtree of a graph and the travelling salesman
problem". Proceedings of the American Mathematical Society 7(1): 48-50. doi:10.1090/S0002-
9939195600786867
Prim, R.C. 1957. "Shortest connection networks and some generalizations". Bell System Techni-
cal Journal 36(6):1389-1401. doi:10.1002/j.15387305.1957.tb01515.x

https://doi.org/10.2307/2312726
https://doi.org/10.1145/12130.12144
https://doi.org/10.1177/000271629956600105
https://doi.org/10.1007/BF01442866
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

78 manip_permutation

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_permutation, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

to_matching(ison_southern_women)
#graphr(to_matching(ison_southern_women))
graphr(to_mentoring(ison_adolescents))

to_eulerian(delete_nodes(ison_koenigsberg, "Lomse"))
#graphr(to_eulerian(delete_nodes(ison_koenigsberg, "Lomse")))

manip_permutation Network permutation

Description

to_permuted() permutes the network using a Fisher-Yates shuffle on both the rows and columns
(for a one-mode network) or on each of the rows and columns (for a two-mode network).

Usage

to_permuted(.data, with_attr = TRUE)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

with_attr Logical whether any attributes of the object should be retained. By default
TRUE.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_preformat, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

Examples

graphr(ison_adolescents, node_size = 4)
graphr(to_permuted(ison_adolescents), node_size = 4)

manip_preformat 79

manip_preformat Modifying network formats

Description

These functions add some format to manynet-consistent data.

• to_directed() reformats undirected network data to a directed network.

• to_redirected() reformats the direction of directed network data, flipping any existing di-
rection.

• to_reciprocated() reformats directed network data such that every directed tie is recipro-
cated.

• to_acyclic() reformats network data to an acyclic graph.

• to_named() reformats unlabelled network data to labelled network data from a vector of
names or random baby names.

• to_signed() reformats unsigned network data to signed network data with signs from a mark
vector or at random.

If the format condition is not met, for example to_undirected() is used on a network that is al-
ready undirected, the network data is returned unaltered. No warning is given so that these functions
can be used to ensure conformance.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_named(.data, names = NULL)

to_signed(.data, mark = NULL)

to_weighted(.data, measure = NULL)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

names Character vector of the node names. NULL by default.

mark A mark (logical vector) the length of the ties in the network.

measure A numeric vector (measure) that will be added as the tie weights to the network.
If this is NULL, then the tie weights will be drawn from a Poisson distribution
with λ = 4.

80 manip_project

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph
to_acyclic 1 1 1 1 1
to_directed 1 1 1 1 1
to_named 1 1 1 1 1
to_reciprocated 1 1 1 1 1
to_redirected 1 1 1 1 1
to_simplex 0 1 1 0 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_project, manip_reformat,
manip_scope, manip_split, manip_ties

manip_project Modifying networks projection

Description

These functions offer tools for projecting manynet-consistent data:

• to_mode1() projects a two-mode network to a one-mode network of the first node set’s (e.g.
rows) joint affiliations to nodes in the second node set (columns).

• to_mode2() projects a two-mode network to a one-mode network of the second node set’s
(e.g. columns) joint affiliations to nodes in the first node set (rows).

• to_ties() projects a network to one where the ties become nodes and incident nodes become
their ties.

Usage

to_mode1(.data, similarity = c("count", "jaccard", "rand", "pearson", "yule"))

to_mode2(.data, similarity = c("count", "jaccard", "rand", "pearson", "yule"))

to_ties(.data)

manip_project 81

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

similarity Method for establishing ties, currently "count" (default), "jaccard", or "rand".

• "count" calculates the number of coinciding ties, and can be interpreted as
indicating the degree of opportunities between nodes.

• "jaccard" uses this count as the numerator in a proportion, where the de-
nominator consists of any cell where either node has a tie. It can be inter-
preted as opportunity weighted by participation.

• "rand", or the Simple Matching Coefficient, is a proportion where the nu-
merator consists of the count of cells where both nodes are present or both
are absent, over all possible cells. It can be interpreted as the (weighted)
degree of behavioral mirroring between two nodes.

• "pearson" (Pearson’s coefficient) and "yule" (Yule’s Q) produce correla-
tions for valued and binary data, respectively. Note that Yule’s Q has a
straightforward interpretation related to the odds ratio.

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph
to_mode1 1 1 1 1 1
to_mode2 1 1 1 1 1
to_ties 1 1 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_reformat,
manip_scope, manip_split, manip_ties

82 manip_reformat

Examples

to_mode1(ison_southern_women)
to_mode2(ison_southern_women)
#graphr(to_mode1(ison_southern_women))
#graphr(to_mode2(ison_southern_women))
to_ties(ison_adolescents)
#graphr(to_ties(ison_adolescents))

manip_reformat Modifying network formats

Description

These functions reformat manynet-consistent data.

• to_acyclic() reformats network data to an acyclic graph.

• to_anti() reformats network data into its complement, where only ties not present in the
original network are included in the new network.

• to_redirected() reformats the direction of directed network data, flipping any existing di-
rection.

• to_reciprocated() reformats directed network data such that every directed tie is recipro-
cated.

Unlike the as_*() group of functions, these functions always return the same class as they are
given, only transforming these objects’ properties.

Usage

to_acyclic(.data)

to_anti(.data)

to_redirected(.data)

to_reciprocated(.data)

to_directed(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

manip_scope 83

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph matrix network tbl_graph
to_acyclic 1 1 1 1 1
to_anti 1 1 1 1 1
to_reciprocated 1 1 1 1 1
to_redirected 1 1 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

Functions

• to_redirected(): Returns an object that has any edge direction transposed, or flipped, so
that senders become receivers and receivers become senders. This essentially has no effect on
undirected networks or reciprocated ties.

• to_reciprocated(): Returns an object where all ties are reciprocated.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project,
manip_scope, manip_split, manip_ties

Examples

to_anti(ison_southern_women)
#graphr(to_anti(ison_southern_women))

manip_scope Modifying networks scope

Description

These functions offer tools for transforming manynet-consistent objects (matrices, igraph, tidy-
graph, or network objects). Transforming means that the returned object may have different dimen-
sions than the original object.

• to_ego() scopes a network into the local neighbourhood of a given node.

• to_giant() scopes a network into one including only the main component and no smaller
components or isolates.

84 manip_scope

• to_no_isolates() scopes a network into one excluding all nodes without ties.

• to_no_missing() scopes a network to one retaining only complete cases, i.e. nodes with no
missing values.

• to_subgraph() scopes a network into a subgraph by filtering on some node-related logical
statement.

• to_blocks() reduces a network to ties between a given partition membership vector.

Usage

to_no_missing(.data)

to_ego(.data, node, max_dist = 1, min_dist = 0, direction = c("out", "in"))

to_time(.data, time)

to_giant(.data)

to_no_isolates(.data)

to_subgraph(.data, ...)

to_blocks(.data, membership, FUN = mean)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

node Name or index of node.

max_dist The maximum breadth of the neighbourhood. By default 1.

min_dist The minimum breadth of the neighbourhood. By default 0. Increasing this to 1
excludes the ego, and 2 excludes ego’s direct alters.

direction String, either "out" or "in".

time A time point or wave at which to present the network.

... Arguments passed on to dplyr::filter

membership A vector of partition memberships.

FUN A function for summarising block content. By default mean. Other recom-
mended options include median, sum, min or max.

manip_split 85

Details

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame igraph list matrix network tbl_graph
to_blocks 1 1 0 1 1 1
to_ego 0 1 0 0 0 1
to_giant 1 1 0 1 1 1
to_no_isolates 1 1 1 1 1 1
to_subgraph 1 1 0 1 1 1

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

to_blocks()

Reduced graphs provide summary representations of network structures by collapsing groups of
connected nodes into single nodes while preserving the topology of the original structures.

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project,
manip_reformat, manip_split, manip_ties

Examples

ison_adolescents %>%
mutate_ties(wave = sample(1995:1998, 10, replace = TRUE)) %>%
to_waves(attribute = "wave") %>%
to_no_isolates()

manip_split Splitting networks into lists

Description

These functions offer tools for splitting manynet-consistent objects (matrices, igraph, tidygraph, or
network objects) into lists of networks.

Not all functions have methods available for all object classes. Below are the currently implemented
S3 methods:

data.frame diff_model igraph matrix network tbl_graph

86 manip_split

to_components 1 0 1 1 1 1
to_egos 1 0 1 1 1 1
to_slices 0 0 1 0 0 1
to_subgraphs 0 0 1 0 1 1
to_waves 1 1 1 0 0 1

Usage

to_egos(.data, max_dist = 1, min_dist = 0, direction = c("out", "in"))

to_subgraphs(.data, attribute)

to_components(.data)

to_waves(.data, attribute = "wave", panels = NULL, cumulative = FALSE)

to_slices(.data, attribute = "time", slice = NULL)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

max_dist The maximum breadth of the neighbourhood. By default 1.

min_dist The minimum breadth of the neighbourhood. By default 0. Increasing this to 1
excludes the ego, and 2 excludes ego’s direct alters.

direction String, either "out" or "in".

attribute One or two attributes used to slice data.

panels Would you like to select certain waves? NULL by default. That is, a list of
networks for every available wave is returned. Users can also list specific waves
they want to select.

cumulative Whether to make wave ties cumulative. FALSE by default. That is, each wave
is treated isolated.

slice Character string or character list indicating the date(s) or integer(s) range used
to slice data (e.g slice = c(1:2, 3:4)).

Value

The returned object will be a list of network objects.

manip_ties 87

Functions

• to_egos(): Returns a list of ego (or focal) networks.

• to_subgraphs(): Returns a list of subgraphs on some given node attribute.

• to_components(): Returns a list of the components in a network.

• to_waves(): Returns a network with some discrete observations over time into a list of those
observations.

• to_slices(): Returns a list of a network with some continuous time variable at some time
slice(s).

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project,
manip_reformat, manip_scope, manip_ties

Examples

to_egos(ison_adolescents)
graphs(to_egos(ison_adolescents,2))

ison_adolescents %>%
mutate(unicorn = sample(c("yes", "no"), 8,

replace = TRUE)) %>%
to_subgraphs(attribute = "unicorn")
to_components(ison_marvel_relationships)

ison_adolescents %>%
mutate_ties(wave = sample(1995:1998, 10, replace = TRUE)) %>%
to_waves(attribute = "wave")

ison_adolescents %>%
mutate_ties(time = 1:10, increment = 1) %>%
add_ties(c(1,2), list(time = 3, increment = -1)) %>%
to_slices(slice = 7)

manip_ties Modifying tie data

Description

These functions allow users to add and delete ties and their attributes:

• add_ties() adds additional ties to network data

• delete_ties() deletes ties from network data

• add_tie_attribute() and mutate_ties() offer ways to add a vector of values to a network
as a tie attribute.

• rename_ties() renames tie attributes.

• bind_ties() appends the tie data from two networks and join_ties() merges ties from two
networks, adding a tie attribute identifying the newly added ties.

88 manip_ties

• filter_ties() subsets ties based on some tie attribute-related logical statement.

Note that while add_*()/delete_*() functions operate similarly as comparable {igraph} func-
tions, mutate*(), bind*(), etc work like {tidyverse} or {dplyr}-style functions.

Usage

add_ties(.data, ties, attribute = NULL)

delete_ties(.data, ties)

add_tie_attribute(.data, attr_name, vector)

mutate_ties(.data, ...)

rename_ties(.data, ...)

arrange_ties(.data, ...)

bind_ties(.data, ...)

join_ties(.data, object2, attr_name)

filter_ties(.data, ...)

select_ties(.data, ...)

summarise_ties(.data, ...)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

ties The number of ties to be added or an even list of ties.

attribute A named list to be added as tie or node attributes.

attr_name Name of the new attribute in the resulting object.

vector A vector of values for the new attribute.

... Additional arguments.

object2 A second object to copy nodes or ties from.

Value

A tidygraph (tbl_graph) data object.

map_graphr 89

See Also

Other modifications: manip_as, manip_correlation, manip_deformat, manip_from, manip_levels,
manip_miss, manip_nodes, manip_paths, manip_permutation, manip_preformat, manip_project,
manip_reformat, manip_scope, manip_split

Examples

other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
mutate_ties(other, form = 1:6) %>% filter_ties(form < 4)
add_tie_attribute(other, "weight", c(1, 2, 2, 2, 1, 2))

ison_adolescents %>% add_ties(c("Betty","Tina")) %>% graphr()
delete_ties(ison_adolescents, 3)
delete_ties(ison_adolescents, "Alice|Sue")

map_graphr Easily graph networks with sensible defaults

Description

This function provides users with an easy way to graph (m)any network data for exploration, inves-
tigation, inspiration, and communication.

It builds upon {ggplot2} and {ggraph} to offer pretty and extensible graphing solutions. However,
compared to those solutions, graphr() contains various algorithms to provide better looking graphs
by default. This means that just passing the function some network data will often be sufficient to
return a reasonable-looking graph.

The function also makes it easy to modify many of the most commonly adapted aspects of a graph,
including node and edge size, colour, and shape, as arguments rather than additional functions that
you need to remember. These can be defined outright, e.g. node_size = 8, or in reference to an
attribute of the network, e.g. node_size = "wealth".

Lastly, graphr() uses {ggplot2}-related theme information, so it is easy to make colour palette
and fonts institution-specific and consistent. See e.g. theme_iheid() for more.

To learn more about what can be done visually, try run_tute("Visualisation").

Usage

graphr(
.data,
layout,
labels = TRUE,
node_color,
node_shape,
node_size,
node_group,
edge_color,
edge_size,
snap = FALSE,

90 map_graphr

...,
node_colour,
edge_colour

)

Arguments

.data A manynet-consistent object.

layout An igraph, ggraph, or manynet layout algorithm. If not declared, defaults to
"triad" for networks with 3 nodes, "quad" for networks with 4 nodes, "stress"
for all other one mode networks, or "hierarchy" for two mode networks. For
"hierarchy" layout, one can further split graph by declaring the "center" argu-
ment as the "events", "actors", or by declaring a node name. For "concentric"
layout algorithm please declare the "membership" as an extra argument. The
"membership" argument expects either a quoted node attribute present in data
or vector with the same length as nodes to draw concentric circles. For "multi-
level" layout algorithm please declare the "level" as extra argument. The "level"
argument expects either a quoted node attribute present in data or vector with
the same length as nodes to hierarchically order categories. If "level" is missing,
function will look for ’lvl’ node attribute in data. The "lineage" layout ranks
nodes in Y axis according to values. For "lineage" layout algorithm please de-
clare the "rank" as extra argument. The "rank" argument expects either a quoted
node attribute present in data or vector with the same length as nodes.

labels Logical, whether to print node names as labels if present.
node_color, node_colour

Node variable to be used for coloring the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be colored by
declaring a color instead.

node_shape Node variable to be used for shaping the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be shaped by
declaring a shape instead.

node_size Node variable to be used for sizing the nodes. This can be any continuous vari-
able on the nodes of the network. Since this function expects this to be an
existing variable, it is recommended to calculate all node-related statistics prior
to using this function. Nodes can also be sized by declaring a numeric size or
vector instead.

node_group Node variable to be used for grouping the nodes. It is easiest if this is added as
a hull over groups before plotting. Group variables should have a minimum of 3
nodes, if less, number groups will be reduced by merging categories with lower
counts into one called "other".

edge_color, edge_colour
Tie variable to be used for coloring the nodes. It is easiest if this is added as an
edge or tie attribute to the graph before plotting. Edges can also be colored by
declaring a color instead.

edge_size Tie variable to be used for sizing the edges. This can be any continuous variable
on the nodes of the network. Since this function expects this to be an existing
variable, it is recommended to calculate all edge-related statistics prior to using

map_graphs 91

this function. Edges can also be sized by declaring a numeric size or vector
instead.

snap Logical scalar, whether the layout should be snapped to a grid.

... Extra arguments to pass on to the layout algorithm, if necessary.

Value

A ggplot2::ggplot() object. The last plot can be saved to the file system using ggplot2::ggsave().

See Also

Other mapping: map_graphs, map_grapht, map_layout_configuration, map_layout_partition

Examples

graphr(ison_adolescents)
ison_adolescents %>%

mutate(color = rep(c("introvert","extrovert"), times = 4),
size = ifelse(node_is_cutpoint(ison_adolescents), 6, 3)) %>%

mutate_ties(ecolor = rep(c("friends", "acquaintances"), times = 5)) %>%
graphr(node_color = "color", node_size = "size",

edge_size = 1.5, edge_color = "ecolor")

map_graphs Easily graph a set of networks with sensible defaults

Description

This function provides users with an easy way to graph lists of network data for comparison.

It builds upon this package’s graphr() function, and inherits all the same features and arguments.
See graphr() for more. However, it uses the {patchwork} package to plot the graphs side by side
and, if necessary, in successive rows. This is useful for lists of networks that represent, for example,
ego or component subgraphs of a network, or a list of a network’s different types of tie or across
time. By default just the first and last network will be plotted, but this can be overridden by the
"waves" parameter.

Where the graphs are of the same network (same nodes), the graphs may share a layout to facilitate
comparison. By default, successive graphs will use the layout calculated for the "first" network, but
other options include the "last" layout, or a mix, "both", of them.

Usage

graphs(netlist, waves, based_on = c("first", "last", "both"), ...)

92 map_grapht

Arguments

netlist A list of manynet-compatible networks.

waves Numeric, the number of plots to be displayed side-by-side. If missing, the num-
ber of plots will be reduced to the first and last when there are more than four
plots. This argument can also be passed a vector selecting the waves to plot.

based_on Whether the layout of the joint plots should be based on the "first" or the "last"
network, or "both".

... Additional arguments passed to graphr().

Value

Multiple ggplot2::ggplot() objects displayed side-by-side.

See Also

Other mapping: map_graphr, map_grapht, map_layout_configuration, map_layout_partition

Examples

#graphs(to_egos(ison_adolescents))
#graphs(to_egos(ison_adolescents), waves = 8)
#graphs(to_egos(ison_adolescents), waves = c(2, 4, 6))
#graphs(play_diffusion(ison_adolescents))

map_grapht Easily animate dynamic networks with sensible defaults

Description

This function provides users with an easy way to graph dynamic network data for exploration and
presentation.

It builds upon this package’s graphr() function, and inherits all the same features and arguments.
See graphr() for more. However, it uses the {gganimate} package to animate the changes between
successive iterations of a network. This is useful for networks in which the ties and/or the node or
tie attributes are changing.

A progress bar is shown if it takes some time to encoding all the .png files into a .gif.

Usage

grapht(
tlist,
keep_isolates = TRUE,
layout,
labels = TRUE,
node_color,
node_shape,

map_grapht 93

node_size,
edge_color,
edge_size,
...,
node_colour,
edge_colour

)

Arguments

tlist The same migraph-compatible network listed according to a time attribute, waves,
or slices.

keep_isolates Logical, whether to keep isolate nodes in the graph. TRUE by default. If
FALSE, removes nodes from each frame they are isolated in.

layout An igraph, ggraph, or manynet layout algorithm. If not declared, defaults to
"triad" for networks with 3 nodes, "quad" for networks with 4 nodes, "stress"
for all other one mode networks, or "hierarchy" for two mode networks. For
"hierarchy" layout, one can further split graph by declaring the "center" argu-
ment as the "events", "actors", or by declaring a node name. For "concentric"
layout algorithm please declare the "membership" as an extra argument. The
"membership" argument expects either a quoted node attribute present in data
or vector with the same length as nodes to draw concentric circles. For "multi-
level" layout algorithm please declare the "level" as extra argument. The "level"
argument expects either a quoted node attribute present in data or vector with
the same length as nodes to hierarchically order categories. If "level" is missing,
function will look for ’lvl’ node attribute in data. The "lineage" layout ranks
nodes in Y axis according to values. For "lineage" layout algorithm please de-
clare the "rank" as extra argument. The "rank" argument expects either a quoted
node attribute present in data or vector with the same length as nodes.

labels Logical, whether to print node names as labels if present.
node_color, node_colour

Node variable to be used for coloring the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be colored by
declaring a color instead.

node_shape Node variable to be used for shaping the nodes. It is easiest if this is added
as a node attribute to the graph before plotting. Nodes can also be shaped by
declaring a shape instead.

node_size Node variable to be used for sizing the nodes. This can be any continuous vari-
able on the nodes of the network. Since this function expects this to be an
existing variable, it is recommended to calculate all node-related statistics prior
to using this function. Nodes can also be sized by declaring a numeric size or
vector instead.

edge_color, edge_colour
Tie variable to be used for coloring the nodes. It is easiest if this is added as an
edge or tie attribute to the graph before plotting. Edges can also be colored by
declaring a color instead.

94 map_layout_configuration

edge_size Tie variable to be used for sizing the edges. This can be any continuous variable
on the nodes of the network. Since this function expects this to be an existing
variable, it is recommended to calculate all edge-related statistics prior to using
this function. Edges can also be sized by declaring a numeric size or vector
instead.

... Extra arguments to pass on to the layout algorithm, if necessary.

Value

Shows a .gif image. Assigning the result of the function saves the gif to a temporary folder and the
object holds the path to this file.

Source

https://blog.schochastics.net/posts/2021-09-15_animating-network-evolutions-with-gganimate/

See Also

Other mapping: map_graphr, map_graphs, map_layout_configuration, map_layout_partition

Examples

#ison_adolescents %>%
mutate_ties(year = sample(1995:1998, 10, replace = TRUE)) %>%
to_waves(attribute = "year", cumulative = TRUE) %>%
grapht()
#ison_adolescents %>%
mutate(gender = rep(c("male", "female"), times = 4),
hair = rep(c("black", "brown"), times = 4),
age = sample(11:16, 8, replace = TRUE)) %>%
mutate_ties(year = sample(1995:1998, 10, replace = TRUE),
links = sample(c("friends", "not_friends"), 10, replace = TRUE),
weekly_meetings = sample(c(3, 5, 7), 10, replace = TRUE)) %>%
to_waves(attribute = "year") %>%
grapht(layout = "concentric", membership = "gender",
node_shape = "gender", node_color = "hair",
node_size = "age", edge_color = "links",
edge_size = "weekly_meetings")
#grapht(play_diffusion(ison_adolescents, seeds = 5))

map_layout_configuration

Layout algorithms based on configurational positions

Description

Configurational layouts locate nodes at symmetric coordinates to help illustrate particular configu-
rations. Currently "triad" and "quad" layouts are available. The "configuration" layout will choose
the appropriate configurational layout automatically.

map_layout_partition 95

Usage

layout_tbl_graph_configuration(.data, circular = FALSE, times = 1000)

layout_tbl_graph_dyad(.data, circular = FALSE, times = 1000)

layout_tbl_graph_triad(.data, circular = FALSE, times = 1000)

layout_tbl_graph_tetrad(.data, circular = FALSE, times = 1000)

layout_tbl_graph_pentad(.data, circular = FALSE, times = 1000)

layout_tbl_graph_hexad(.data, circular = FALSE, times = 1000)

Arguments

.data An object of a manynet-consistent class:
• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

circular Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE.

times Maximum number of iterations, where appropriate

See Also

Other mapping: map_graphr, map_graphs, map_grapht, map_layout_partition

map_layout_partition Layout algorithms based on bi- or other partitions

Description

These algorithms layout networks based on two or more partitions, and are recommended for use
with graphr() or {ggraph}. Note that these layout algorithms use {Rgraphviz}, a package that is
only available on Bioconductor. It will first need to be downloaded using BiocManager::install("Rgraphviz").
If it has not already been installed, there is a prompt the first time these functions are used though.

The "hierarchy" layout layers the first node set along the bottom, and the second node set along the
top, sequenced and spaced as necessary to minimise edge overlap. The "alluvial" layout is similar
to "hierarchy", but places successive layers horizontally rather than vertically. The "railway" layout
is similar to "hierarchy", but nodes are aligned across the layers. The "ladder" layout is similar to
"railway", but places successive layers horizontally rather than vertically. The "concentric" layout
places a "hierarchy" layout around a circle, with successive layers appearing as concentric circles.
The "multilevel" layout places successive layers as multiple levels. The "lineage" layout ranks
nodes in Y axis according to values.

96 map_layout_partition

Usage

layout_tbl_graph_hierarchy(
.data,
center = NULL,
circular = FALSE,
times = 1000

)

layout_tbl_graph_alluvial(.data, circular = FALSE, times = 1000)

layout_tbl_graph_railway(.data, circular = FALSE, times = 1000)

layout_tbl_graph_ladder(.data, circular = FALSE, times = 1000)

layout_tbl_graph_concentric(
.data,
membership,
radius = NULL,
order.by = NULL,
circular = FALSE,
times = 1000

)

layout_tbl_graph_multilevel(.data, level, circular = FALSE)

layout_tbl_graph_lineage(.data, rank, circular = FALSE)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

center Further split "hierarchical" layouts by declaring the "center" argument as the
"events", "actors", or by declaring a node name in hierarchy layout. Defaults to
NULL.

circular Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE.

times Maximum number of iterations, where appropriate

membership A node attribute or a vector to draw concentric circles for "concentric" layout.

radius A vector of radii at which the concentric circles should be located for "concen-
tric" layout. By default this is equal placement around an empty centre, unless
one (the core) is a single node, in which case this node occupies the centre of
the graph.

map_palettes 97

order.by An attribute label indicating the (decreasing) order for the nodes around the
circles for "concentric" layout. By default ordering is given by a bipartite place-
ment that reduces the number of edge crossings.

level A node attribute or a vector to hierarchically order levels for "multilevel" layout.
rank A numerical node attribute to place nodes in Y axis according to values for

"lineage" layout.

Source

Diego Diez, Andrew P. Hutchins and Diego Miranda-Saavedra. 2014. "Systematic identification
of transcriptional regulatory modules from protein-protein interaction networks". Nucleic Acids
Research, 42 (1) e6.

See Also

Other mapping: map_graphr, map_graphs, map_grapht, map_layout_configuration

Examples

#graphr(ison_southern_women, layout = "hierarchy", center = "events",
node_color = "type", node_size = 3)
#graphr(ison_southern_women, layout = "alluvial")
#graphr(ison_southern_women, layout = "concentric", membership = "type",
node_color = "type", node_size = 3)
#graphr(ison_lotr, layout = "multilevel",
node_color = "Race", level = "Race", node_size = 3)
ison_adolescents %>%
mutate(year = rep(c(1985, 1990, 1995, 2000), times = 2),
cut = node_is_cutpoint(ison_adolescents)) %>%
graphr(layout = "lineage", rank = "year", node_color = "cut",
node_size = migraph::node_degree(ison_adolescents)*10)

map_palettes Many palettes generator

Description

Many palettes generator

Usage

many_palettes(palette, n, type = c("discrete", "continuous"))

Arguments

palette Name of desired palette. Current choices are: IHEID, Centres, SDGs, ETHZ, RUG,
and UZH.

n Number of colors desired. If omitted, uses all colours.
type Either "continuous" or "discrete". Use continuous if you want to automatically

interpolate between colours.

98 map_scales

Value

A graphic display of colours in palette.

Source

Adapted from https://github.com/karthik/wesanderson/blob/master/R/colors.R

Examples

many_palettes()
#many_palettes("IHEID")

map_scales Many scales

Description

These functions enable to add color scales to be graphs.

Usage

scale_fill_iheid(direction = 1, ...)

scale_colour_iheid(direction = 1, ...)

scale_color_iheid(direction = 1, ...)

scale_edge_colour_iheid(direction = 1, ...)

scale_edge_color_iheid(direction = 1, ...)

scale_fill_centres(direction = 1, ...)

scale_colour_centres(direction = 1, ...)

scale_color_centres(direction = 1, ...)

scale_edge_colour_centres(direction = 1, ...)

scale_edge_color_centres(direction = 1, ...)

scale_fill_sdgs(direction = 1, ...)

scale_colour_sdgs(direction = 1, ...)

scale_color_sdgs(direction = 1, ...)

https://github.com/karthik/wesanderson/blob/master/R/colors.R

map_scales 99

scale_edge_colour_sdgs(direction = 1, ...)

scale_edge_color_sdgs(direction = 1, ...)

scale_fill_ethz(direction = 1, ...)

scale_colour_ethz(direction = 1, ...)

scale_color_ethz(direction = 1, ...)

scale_edge_colour_ethz(direction = 1, ...)

scale_edge_color_ethz(direction = 1, ...)

scale_fill_uzh(direction = 1, ...)

scale_colour_uzh(direction = 1, ...)

scale_color_uzh(direction = 1, ...)

scale_edge_colour_uzh(direction = 1, ...)

scale_edge_color_uzh(direction = 1, ...)

scale_fill_rug(direction = 1, ...)

scale_colour_rug(direction = 1, ...)

scale_color_rug(direction = 1, ...)

scale_edge_colour_rug(direction = 1, ...)

scale_edge_color_rug(direction = 1, ...)

Arguments

direction Direction for using palette colors.

... Extra arguments passed to ggplot2::discrete_scale().

Examples

#ison_brandes %>%
#mutate(core = migraph::node_is_core(ison_brandes)) %>%
#graphr(node_color = "core") +
#scale_color_iheid()
#graphr(ison_physicians[[1]], edge_color = "type") +
#scale_edge_color_ethz()

100 mark_core

map_themes Many themes

Description

These functions enable graphs to be easily and quickly themed, e.g. changing the default colour of
the graph’s vertices and edges.

Usage

set_manynet_theme(theme = "default")

theme_iheid(base_size = 12, base_family = "serif")

theme_ethz(base_size = 12, base_family = "sans")

theme_uzh(base_size = 12, base_family = "sans")

theme_rug(base_size = 12, base_family = "mono")

Arguments

theme String naming a theme. By default "default".

base_size Font size, by default 12.

base_family Font family, by default "sans".

Examples

to_mentoring(ison_brandes) %>%
mutate(color = c(rep(c(1,2,3), 3), 3)) %>%
graphr(node_color = "color") +
labs(title = "Who leads and who follows?") +
scale_color_iheid() +
theme_iheid()

mark_core Core-periphery clustering algorithms

Description

These functions identify nodes belonging to (some level of) the core of a network:

• node_is_core() assigns nodes to either the core or periphery.

• node_coreness() assigns nodes to their level of k-coreness.

mark_core 101

Usage

node_is_universal(.data)

node_is_core(.data, method = c("degree", "eigenvector"))

node_coreness(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

method Which method to use to identify cores and periphery. By default this is "degree",
which relies on the heuristic that high degree nodes are more likely to be in the
core. An alternative is "eigenvector", which instead begins with high eigenvector
nodes. Other methods, such as a genetic algorithm, CONCOR, and Rombach-
Porter, can be added if there is interest.

Universal/dominating node

A universal node is adjacent to all other nodes in the network. It is also sometimes called the
dominating vertex because it represents a one-element dominating set. A network with a universal
node is called a cone, and its universal node is called the apex of the cone. A classic example of a
cone is a star graph, but friendship, wheel, and threshold graphs are also cones.

Core-periphery

This function is used to identify which nodes should belong to the core, and which to the periphery.
It seeks to minimize the following quantity:

Z(S1) =
∑

(i<j)∈S1

I{Aij=0} +
∑

(i<j)/∈S1

I{Aij=1}

where nodes {i, j, ..., n} are ordered in descending degree, A is the adjacency matrix, and the
indicator function is 1 if the predicate is true or 0 otherwise. Note that minimising this quantity
maximises density in the core block and minimises density in the periphery block; it ignores ties
between these blocks.

References

On core-periphery partitioning:
Borgatti, Stephen P., & Everett, Martin G. 1999. "Models of core /periphery structures". Social
Networks, 21, 375–395. doi:10.1016/S03788733(99)000192
Lip, Sean Z. W. 2011. “A Fast Algorithm for the Discrete Core/Periphery Bipartitioning Problem.”
doi:10.48550/arXiv.1102.5511

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.48550/arXiv.1102.5511

102 mark_diff

See Also

Other memberships: member_brokerage, member_cliques, member_community_hier, member_community_non,
member_components, member_equivalence

Examples

node_is_universal(create_star(11))
node_is_core(ison_adolescents)
#ison_adolescents %>%
mutate(corep = node_is_core()) %>%
graphr(node_color = "corep")
node_coreness(ison_adolescents)

mark_diff Marking nodes based on diffusion properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

• node_is_infected() marks nodes that are infected by a particular time point.

• node_is_exposed() marks nodes that are exposed to a given (other) mark.

• node_is_latent() marks nodes that are latent at a particular time point.

• node_is_recovered() marks nodes that are recovered at a particular time point.

Usage

node_is_latent(.data, time = 0)

node_is_infected(.data, time = 0)

node_is_recovered(.data, time = 0)

node_is_exposed(.data, mark)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

time A time step at which nodes are identified.

mark vector denoting which nodes are infected

mark_features 103

Exposed

node_is_exposed() is similar to node_exposure(), but returns a mark (TRUE/FALSE) vector
indicating which nodes are currently exposed to the diffusion content. This diffusion content can
be expressed in the ’mark’ argument. If no ’mark’ argument is provided, and ’.data’ is a diff_model
object, then the function will return nodes exposure to the seed nodes in that diffusion.

See Also

Other marks: mark_nodes, mark_select, mark_tie_select, mark_ties, mark_triangles

Examples

To mark nodes that are latent by a particular time point
node_is_latent(play_diffusion(create_tree(6), latency = 1), time = 1)
To mark nodes that are infected by a particular time point
node_is_infected(play_diffusion(create_tree(6)), time = 1)
To mark nodes that are recovered by a particular time point
node_is_recovered(play_diffusion(create_tree(6), recovery = 0.5), time = 3)
To mark which nodes are currently exposed
(expos <- node_is_exposed(manynet::create_tree(14), mark = c(1,3)))
which(expos)

mark_features Marking networks features

Description

These functions implement logical tests for various network features.

• is_connected() tests whether network is strongly connected, or weakly connected if undi-
rected.

• is_perfect_matching() tests whether there is a matching for a network that covers every
node in the network.

• is_eulerian() tests whether there is a Eulerian path for a network where that path passes
through every tie exactly once.

• is_acyclic() tests whether network is a directed acyclic graph.
• is_aperiodic() tests whether network is aperiodic.

Usage

is_connected(.data)

is_perfect_matching(.data, mark = "type")

is_eulerian(.data)

is_acyclic(.data)

is_aperiodic(.data, max_path_length = 4)

104 mark_features

Arguments

.data An object of a {manynet}-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark A logical vector marking two types or modes. By default "type".
max_path_length

Maximum path length considered. If negative, paths of all lengths are consid-
ered. By default 4, to avoid potentially very long computation times.

Value

TRUE if the condition is met, or FALSE otherwise.

is_connected

To test weak connection on a directed network, please see to_undirected().

is_perfect_matching

For two-mode or bipartite networks, to_matching() is used to identify whether a perfect matching
is possible. For one-mode networks, we use the Tutte theorem. Note that currently only subgraphs
with cutpoints removed are tested, and not all possible subgraphs. This is to avoid computationally
expensive combinatorial operations, but may come at the cost of some edge cases where a one-mode
network cannot perfectly match as suggested.

Source

https://stackoverflow.com/questions/55091438/r-igraph-find-all-cycles

References

On perfect matching:
Tutte, William T. 1950. "The factorization of locally finite graphs". Canadian Journal of Mathe-
matics. 2: 44–49. doi:10.4153/cjm19500052

On aperiodicity:
Jarvis, J.P, and D.R. Shier. 1996. "Graph-theoretic analysis of finite Markov chains", in Shier,
D.R., Wallenius, K.T. (eds) Applied Mathematical Modeling: A Multidisciplinary Approach. CRC
Press.

See Also

Other marking: mark_format, mark_is

https://doi.org/10.4153/cjm-1950-005-2

mark_format 105

Examples

is_connected(ison_southern_women)
is_perfect_matching(ison_southern_women)
is_eulerian(ison_brandes)
is_acyclic(ison_algebra)
is_aperiodic(ison_algebra)

mark_format Marking networks formats

Description

These functions implement logical tests for various network properties. All is_*() functions return
a logical scalar (TRUE or FALSE).

• is_twomode() marks networks TRUE if they contain two sets of nodes.

• is_weighted() marks networks TRUE if they contain tie weights.

• is_directed() marks networks TRUE if the ties specify which node is the sender and which
the receiver.

• is_labelled() marks networks TRUE if there is a ’names’ attribute for the nodes.

• is_attributed() marks networks TRUE if there are other nodal attributes than ’names’ or
’type’.

• is_signed() marks networks TRUE if the ties can be either positive or negative.

• is_complex() marks networks TRUE if any ties are loops, with the sender and receiver being
the same node.

• is_multiplex() marks networks TRUE if it contains multiple types of ties, such that there
can be multiple ties between the same sender and receiver.

• is_uniplex() marks networks TRUE if it is neither complex nor multiplex.

Usage

is_twomode(.data)

is_weighted(.data)

is_directed(.data)

is_labelled(.data)

is_signed(.data)

is_complex(.data)

is_multiplex(.data)

106 mark_is

is_uniplex(.data)

is_attributed(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

See Also

Other marking: mark_features, mark_is

Examples

is_twomode(create_filled(c(2,2)))
is_weighted(create_tree(3))
is_directed(create_tree(2))
is_directed(create_tree(2, directed = TRUE))
is_labelled(create_empty(3))
is_signed(create_lattice(3))
is_complex(create_lattice(4))
is_multiplex(create_filled(c(3,3)))
is_uniplex(create_star(3))
is_attributed(ison_algebra)

mark_is Marking networks classes

Description

These functions implement logical tests for networks’ classes.

• is_manynet() marks a network TRUE if it is compatible with {manynet} functions.

• is_edgelist() marks a network TRUE if it is an edgelist.

• is_graph() marks a network TRUE if it contains graph-level information.

• is_list() marks a network TRUE if it is a (non-igraph) list of networks, for example a set
of ego networks or a dynamic or longitudinal set of networks.

• is_longitudinal() marks a network TRUE if it contains longitudinal, panel data.

• is_dynamic() marks a network TRUE if it contains dynamic, time-stamped data.

• is_changing() marks a network TRUE if it contains changes to nodal attributes.

All is_*() functions return a logical scalar (TRUE or FALSE).

mark_is 107

Usage

is_manynet(.data)

is_graph(.data)

is_edgelist(.data)

is_list(.data)

is_longitudinal(.data)

is_dynamic(.data)

is_changing(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

Value

TRUE if the condition is met, or FALSE otherwise.

See Also

Other marking: mark_features, mark_format

Examples

is_manynet(create_filled(2))
is_graph(create_star(2))
is_edgelist(matrix(c(2,2), 1, 2))
is_edgelist(as_edgelist(matrix(c(2,2), 1, 2)))
is_longitudinal(create_tree(5, 3))
is_dynamic(create_tree(3))
is_changing(fict_starwars)

108 mark_nodes

mark_nodes Marking nodes based on structural properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

• node_is_isolate() marks nodes that are isolates, with neither incoming nor outgoing ties.

• node_is_independent() marks nodes that are members of the largest independent set, aka
largest internally stable set.

• node_is_cutpoint() marks nodes that cut or act as articulation points in a network, increas-
ing the number of connected components when removed.

• node_is_core() marks nodes that are members of the network’s core.

• node_is_fold() marks nodes that are in a structural fold between two or more triangles that
are only connected by that node.

• node_is_mentor() marks a proportion of high indegree nodes as ’mentors’ (see details).

Usage

node_is_isolate(.data)

node_is_pendant(.data)

node_is_independent(.data)

node_is_cutpoint(.data)

node_is_fold(.data)

node_is_mentor(.data, elites = 0.1)

node_is_neighbor(.data, node)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark_nodes 109

elites The proportion of nodes to be selected as mentors. By default this is set at 0.1.
This means that the top 10% of nodes in terms of degree, or those equal to the
highest rank degree in the network, whichever is the higher, will be used to select
the mentors.

Note that if nodes are equidistant from two mentors, they will choose one at
random. If a node is without a path to a mentor, for example because they are
an isolate, a tie to themselves (a loop) will be created instead. Note that this is a
different default behaviour than that described in Valente and Davis (1999).

node Name or index of node.

References

On independent sets:
Tsukiyama, Shuji, Mikio Ide, Hiromu Ariyoshi, and Isao Shirawaka. 1977. "A new algorithm
for generating all the maximal independent sets". SIAM Journal on Computing, 6(3):505–517.
doi:10.1137/0206036

On articulation or cut-points:
Tarjan, Robert E. and Uzi Vishkin. 1985. "An Efficient Parallel Biconnectivity Algorithm", SIAM
Journal on Computing 14(4): 862-874. doi:10.1137/0214061

On structural folds:
Vedres, Balazs, and David Stark. 2010. "Structural folds: Generative disruption in overlapping
groups", American Journal of Sociology 115(4): 1150-1190. doi:10.1086/649497

On mentoring:
Valente, Thomas, and Rebecca Davis. 1999. "Accelerating the Diffusion of Innovations Using
Opinion Leaders", Annals of the American Academy of Political and Social Science 566: 56-67.

See Also

Other marks: mark_diff, mark_select, mark_tie_select, mark_ties, mark_triangles

Examples

node_is_isolate(ison_brandes)
node_is_independent(ison_adolescents)
node_is_cutpoint(ison_brandes)
node_is_fold(create_explicit(A-B, B-C, A-C, C-D, C-E, D-E))

https://doi.org/10.1137/0206036
https://doi.org/10.1137/0214061
https://doi.org/10.1086/649497

110 mark_select

mark_select Marking nodes for selection based on measures

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties or positions in the network.

• node_is_random() marks one or more nodes at random.
• node_is_max() and node_is_min() are more generally useful for converting the results from

some node measure into a mark-class object. They can be particularly useful for highlighting
which node or nodes are key because they minimise or, more often, maximise some measure.

Usage

node_is_random(.data, size = 1)

node_is_max(node_measure, ranks = 1)

node_is_min(node_measure, ranks = 1)

node_is_mean(node_measure, ranks = 1)

Arguments

.data An object of a manynet-consistent class:
• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

size The number of nodes to select (as TRUE).
node_measure An object created by a node_ measure.
ranks The number of ranks of max or min to return. For example, ranks = 3 will return

TRUE for nodes with scores equal to any of the top (or, for node_is_min(),
bottom) three scores. By default, ranks = 1.

See Also

Other marks: mark_diff, mark_nodes, mark_tie_select, mark_ties, mark_triangles

Examples

node_is_random(ison_brandes, 2)
#node_is_max(migraph::node_degree(ison_brandes))
#node_is_min(migraph::node_degree(ison_brandes))
#node_is_mean(node_degree(ison_brandes))

mark_ties 111

mark_ties Marking ties based on structural properties

Description

These functions return logical vectors the length of the ties in a network identifying which hold
certain properties or positions in the network.

• tie_is_multiple() marks ties that are multiples.

• tie_is_loop() marks ties that are loops.

• tie_is_reciprocated() marks ties that are mutual/reciprocated.

• tie_is_feedback() marks ties that are feedback arcs causing the network to not be acyclic.

• tie_is_bridge() marks ties that cut or act as articulation points in a network.

• tie_is_path() marks ties on a path from one node to another.

They are most useful in highlighting parts of the network that are particularly well- or poorly-
connected.

Usage

tie_is_multiple(.data)

tie_is_loop(.data)

tie_is_reciprocated(.data)

tie_is_feedback(.data)

tie_is_bridge(.data)

tie_is_path(.data, from, to, all_paths = FALSE)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

from The index or name of the node from which the path should be traced.

to The index or name of the node to which the path should be traced.

all_paths Whether to return a list of paths or sample just one. By default FALSE, sampling
just a single path.

112 mark_tie_select

See Also

Other marks: mark_diff, mark_nodes, mark_select, mark_tie_select, mark_triangles

Examples

tie_is_multiple(ison_marvel_relationships)
tie_is_loop(ison_marvel_relationships)
tie_is_reciprocated(ison_algebra)
tie_is_feedback(ison_algebra)
tie_is_bridge(ison_brandes)
ison_adolescents %>%

mutate_ties(route = tie_is_path(from = "Jane", to = 7)) %>%
graphr(edge_colour = "route")

mark_tie_select Marking ties for selection based on measures

Description

These functions return logical vectors the length of the ties in a network:

• tie_is_random() marks one or more ties at random.

• tie_is_max() and tie_is_min() are more useful for converting the results from some tie
measure into a mark-class object. They can be particularly useful for highlighting which tie
or ties are key because they minimise or, more often, maximise some measure.

Usage

tie_is_random(.data, size = 1)

tie_is_max(tie_measure)

tie_is_min(tie_measure)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

size The number of nodes to select (as TRUE).

tie_measure An object created by a tie_ measure.

mark_triangles 113

See Also

Other marks: mark_diff, mark_nodes, mark_select, mark_ties, mark_triangles

Examples

tie_is_max(migraph::tie_betweenness(ison_brandes))
#tie_is_min(migraph::tie_betweenness(ison_brandes))

mark_triangles Marking ties based on structural properties

Description

These functions return logical vectors the length of the ties in a network identifying which hold
certain properties or positions in the network.

• tie_is_triangular() marks ties that are in triangles.
• tie_is_cyclical() marks ties that are in cycles.
• tie_is_transitive() marks ties that complete transitive closure.
• tie_is_triplet() marks ties that are in a transitive triplet.
• tie_is_simmelian() marks ties that are both in a triangle and fully reciprocated.

They are most useful in highlighting parts of the network that are cohesively connected.

Usage

tie_is_triangular(.data)

tie_is_transitive(.data)

tie_is_triplet(.data)

tie_is_cyclical(.data)

tie_is_simmelian(.data)

tie_is_forbidden(.data)

tie_is_imbalanced(.data)

Arguments

.data An object of a manynet-consistent class:
• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

114 measure_attributes

See Also

Other marks: mark_diff, mark_nodes, mark_select, mark_tie_select, mark_ties

Examples

ison_monks %>% to_uniplex("like") %>%
mutate_ties(tri = tie_is_triangular()) %>%
graphr(edge_color = "tri")

ison_adolescents %>% to_directed() %>%
mutate_ties(trans = tie_is_transitive()) %>%
graphr(edge_color = "trans")

ison_adolescents %>% to_directed() %>%
mutate_ties(trip = tie_is_triplet()) %>%
graphr(edge_color = "trip")

ison_adolescents %>% to_directed() %>%
mutate_ties(cyc = tie_is_cyclical()) %>%
graphr(edge_color = "cyc")

ison_monks %>% to_uniplex("like") %>%
mutate_ties(simmel = tie_is_simmelian()) %>%
graphr(edge_color = "simmel")

generate_random(8, directed = TRUE) %>%
mutate_ties(forbid = tie_is_forbidden()) %>%
graphr(edge_color = "forbid")

tie_is_imbalanced(ison_marvel_relationships)

measure_attributes Describing attributes of nodes or ties in a network

Description

These functions extract certain attributes from network data:

• node_attribute() returns an attribute’s values for the nodes in a network.

• node_names() returns the names of the nodes in a network.

• node_is_mode() returns the mode of the nodes in a network.

• tie_attribute() returns an attribute’s values for the ties in a network.

• tie_weights() returns the weights of the ties in a network.

• tie_signs() returns the signs of the ties in a network.

These functions are also often used as helpers within other functions. node_*() and tie_*()
always return vectors the same length as the number of nodes or ties in the network, respectively.

measure_central_between 115

Usage

node_attribute(.data, attribute)

node_names(.data)

node_is_mode(.data)

tie_attribute(.data, attribute)

tie_weights(.data)

tie_signs(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

attribute Character string naming an attribute in the object.

See Also

Other measures: measure_central_between, measure_central_close, measure_central_degree,
measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

node_attribute(fict_lotr, "Race")
node_names(ison_southern_women)
node_is_mode(ison_southern_women)
tie_attribute(ison_algebra, "task_tie")
tie_weights(to_mode1(ison_southern_women))
tie_signs(ison_marvel_relationships)

measure_central_between

Measures of betweenness-like centrality and centralisation

116 measure_central_between

Description

These functions calculate common betweenness-related centrality measures for one- and two-mode
networks:

• node_betweenness() measures the betweenness centralities of nodes in a network.

• node_induced() measures the induced betweenness centralities of nodes in a network.

• node_flow() measures the flow betweenness centralities of nodes in a network, which uses
an electrical current model for information spreading in contrast to the shortest paths model
used by normal betweenness centrality.

• node_stress() measures the stress centrality of nodes in a network.

• tie_betweenness() measures the number of shortest paths going through a tie.

• net_betweenness() measures the betweenness centralization for a network.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_betweenness(.data, normalized = TRUE, cutoff = NULL)

node_induced(.data, normalized = TRUE, cutoff = NULL)

node_flow(.data, normalized = TRUE)

node_stress(.data, normalized = TRUE)

tie_betweenness(.data, normalized = TRUE)

net_betweenness(.data, normalized = TRUE, direction = c("all", "out", "in"))

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

cutoff The maximum path length to consider when calculating betweenness. If nega-
tive or NULL (the default), there’s no limit to the path lengths considered.

measure_central_between 117

direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

Value

A numeric vector giving the betweenness centrality measure of each node.

Betweenness centrality

Betweenness centrality is based on the number of shortest paths between other nodes that a node
lies upon:

CB(i) =
∑

j,k:j ̸=k,j ̸=i,k ̸=i

gjik
gjk

Induced centrality

Induced centrality or vitality centrality concerns the change in total betweenness centrality between
networks with and without a given node:

CI(i) = CB(G)− CB(G i)

Flow betweenness centrality

Flow betweenness centrality concerns the total maximum flow, f , between other nodes j, k in a
network G that a given node mediates:

CF (i) =
∑

j,k:j ̸=k,j ̸=i,k ̸=i

f(j, k,G)− f(j, k,G i)

When normalized (by default) this sum of differences is divided by the sum of flows f(i, j, G).

Stress centrality

Stress centrality is the number of all shortest paths or geodesics, g, between other nodes that a given
node mediates:

CS(i) =
∑

j,k:j ̸=k,j ̸=i,k ̸=i

gjik

High stress nodes lie on a large number of shortest paths between other nodes, and thus associated
with bridging or spanning boundaries.

References

On betweenness centrality:
Freeman, Linton. 1977. "A set of measures of centrality based on betweenness". Sociometry,
40(1): 35–41. doi:10.2307/3033543

https://doi.org/10.2307/3033543

118 measure_central_close

On induced centrality:
Everett, Martin and Steve Borgatti. 2010. "Induced, endogenous and exogenous centrality" Social
Networks, 32: 339-344. doi:10.1016/j.socnet.2010.06.004

On flow centrality:
Freeman, Lin, Stephen Borgatti, and Douglas White. 1991. "Centrality in Valued Graphs: A
Measure of Betweenness Based on Network Flow". Social Networks, 13(2), 141-154.
Koschutzki, D., K.A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski.
2005. "Centrality Indices". In U. Brandes and T. Erlebach (eds.), Network Analysis: Methodolog-
ical Foundations. Berlin: Springer.

On stress centrality:
Shimbel, A. 1953. "Structural Parameters of Communication Networks". Bulletin of Mathemati-
cal Biophysics, 15:501-507. doi:10.1007/BF02476438

See Also

Other centrality: measure_central_close, measure_central_degree, measure_central_eigen

Other measures: measure_attributes, measure_central_close, measure_central_degree,
measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

node_betweenness(ison_southern_women)
node_induced(ison_adolescents)
(tb <- tie_betweenness(ison_adolescents))
plot(tb)
ison_adolescents %>% mutate_ties(weight = tb) %>%

graphr()
net_betweenness(ison_southern_women, direction = "in")

measure_central_close Measures of closeness-like centrality and centralisation

Description

These functions calculate common closeness-related centrality measures that rely on path-length
for one- and two-mode networks:

• node_closeness() measures the closeness centrality of nodes in a network.

• node_reach() measures nodes’ reach centrality, or how many nodes they can reach within k
steps.

• node_harmonic() measures nodes’ harmonic centrality or valued centrality, which is thought
to behave better than reach centrality for disconnected networks.

https://doi.org/10.1016/j.socnet.2010.06.004
https://doi.org/10.1007/BF02476438

measure_central_close 119

• node_information() measures nodes’ information centrality or current-flow closeness cen-
trality.

• node_eccentricity() measures nodes’ eccentricity or maximum distance from another node
in the network.

• node_distance() measures nodes’ geodesic distance from or to a given node.

• tie_closeness() measures the closeness of each tie to other ties in the network.

• net_closeness() measures a network’s closeness centralization.

• net_reach() measures a network’s reach centralization.

• net_harmonic() measures a network’s harmonic centralization.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_closeness(.data, normalized = TRUE, direction = "out", cutoff = NULL)

node_harmonic(.data, normalized = TRUE, cutoff = -1)

node_reach(.data, normalized = TRUE, cutoff = 2)

node_information(.data, normalized = TRUE)

node_eccentricity(.data, normalized = TRUE)

node_distance(.data, from, to, normalized = TRUE)

node_vitality(.data, normalized = TRUE)

tie_closeness(.data, normalized = TRUE)

net_closeness(.data, normalized = TRUE, direction = c("all", "out", "in"))

net_reach(.data, normalized = TRUE, cutoff = 2)

net_harmonic(.data, normalized = TRUE, cutoff = 2)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

120 measure_central_close

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

cutoff Maximum path length to use during calculations.

from, to Index or name of a node to calculate distances from or to.

Closeness centrality

Closeness centrality or status centrality is defined as the reciprocal of the farness or distance, d,
from a node to all other nodes in the network:

CC(i) =
1∑

j d(i, j)

When (more commonly) normalised, the numerator is instead N − 1.

Harmonic centrality

Harmonic centrality or valued centrality reverses the sum and reciprocal operations compared to
closeness centrality:

CH(i) =
∑
i,i ̸=j

1

d(i, j)

where 1
d(i,j) = 0 where there is no path between i and j. Normalization is by N − 1. Since the

harmonic mean performs better than the arithmetic mean on unconnected networks, i.e. networks
with infinite distances, harmonic centrality is to be preferred in these cases.

Reach centrality

In some cases, longer path lengths are irrelevant and ’closeness’ should be defined as how many
others are in a local neighbourhood. How many steps out this neighbourhood should be defined as
is given by the ’cutoff’ parameter. This is usually termed k or m in equations, which is why this is
sometimes called (m- or) k-step reach centrality:

CR(i) =
∑
j

d(i, j) ≤ k

The maximum reach score is N−1, achieved when the node can reach all other nodes in the network
in k steps or less, but the normalised version, CR

N−1 , is more common. Note that if k = 1 (i.e. cutoff
= 1), then this returns the node’s degree. At higher cutoff reach centrality returns the size of the
node’s component.

measure_central_close 121

Information centrality

Information centrality, also known as current-flow centrality, is a hybrid measure relating to both
path-length and walk-based measures. The information centrality of a node is the harmonic average
of the “bandwidth” or inverse path-length for all paths originating from the node.

As described in the {sna} package, information centrality works on an undirected but potentially
weighted network excluding isolates (which take scores of zero). It is defined as:

CI =
1

T +
∑

T−2
∑

C1

|N |

where C = B−1 with B is a pseudo-adjacency matrix replacing the diagonal of 1−A with 1 + k,
and T is the trace of C and SR an arbitrary row sum (all rows in C have the same sum).

Nodes with higher information centrality have a large number of short paths to many others in the
network, and are thus considered to have greater control of the flow of information.

Eccentricity centrality

Eccentricity centrality, graph centrality, or the Koenig number, is the (if normalized, inverse of) the
distance to the furthest node:

CE(i) =
1

maxj∈Nd(i, j)

where the distance from i to j is ∞ if unconnected. As such it is only well defined for connected
networks.

Closeness vitality centrality

The closeness vitality of a node is the change in the sum of all distances in a network, also known
as the Wiener Index, when that node is removed. Note that the closeness vitality may be negative
infinity if removing that node would disconnect the network.

References

On closeness centrality:
Bavelas, Alex. 1950. "Communication Patterns in Task-Oriented Groups". The Journal of the
Acoustical Society of America, 22(6): 725–730. doi:10.1121/1.1906679
Harary, Frank. 1959. "Status and Contrastatus". Sociometry, 22(1): 23–43. doi:10.2307/2785610

On harmonic centrality:
Marchiori, Massimo, and Vito Latora. 2000. "Harmony in the small-world". Physica A 285:
539-546. doi:10.1016/S03784371(00)003113
Dekker, Anthony. 2005. "Conceptual distance in social network analysis". Journal of Social
Structure 6(3).

On reach centrality:
Borgatti, Stephen P., Martin G. Everett, and J.C. Johnson. 2013. Analyzing social networks.
London: SAGE Publications Limited.

https://doi.org/10.1121/1.1906679
https://doi.org/10.2307/2785610
https://doi.org/10.1016/S0378-4371%2800%2900311-3

122 measure_central_degree

On information centrality:
Stephenson, Karen, and Marvin Zelen. 1989. "Rethinking centrality: Methods and examples".
Social Networks 11(1):1-37. doi:10.1016/03788733(89)900166
Brandes, Ulrik, and Daniel Fleischer. 2005. "Centrality Measures Based on Current Flow". Proc.
22nd Symp. Theoretical Aspects of Computer Science LNCS 3404: 533-544. doi:10.1007/9783-
540318569_44

On eccentricity centrality:
Hage, Per, and Frank Harary. 1995. "Eccentricity and centrality in networks". Social Networks,
17(1): 57-63. doi:10.1016/03788733(94)002489

Koschuetzki, Dirk, Katharina Lehmann, Leon Peeters, Stefan Richter, Dagmar Tenfelde-Podehl,
and Oliver Zlotowski. 2005. "Centrality Indices", in Brandes, Ulrik, and Thomas Erlebach (eds.).
Network Analysis: Methodological Foundations. Springer: Berlin, pp. 16-61.

See Also

Other centrality: measure_central_between, measure_central_degree, measure_central_eigen

Other measures: measure_attributes, measure_central_between, measure_central_degree,
measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

node_closeness(ison_southern_women)
node_reach(ison_adolescents)
(ec <- tie_closeness(ison_adolescents))
plot(ec)
ison_adolescents %>% mutate_ties(weight = ec) %>%

graphr()
net_closeness(ison_southern_women, direction = "in")

measure_central_degree

Measures of degree-like centrality and centralisation

Description

These functions calculate common degree-related centrality measures for one- and two-mode net-
works:

• node_degree() measures the degree centrality of nodes in an unweighted network, or weighted
degree/strength of nodes in a weighted network; there are several related shortcut functions:

– node_deg() returns the unnormalised results.
– node_indegree() returns the direction = 'in' results.
– node_outdegree() returns the direction = 'out' results.

https://doi.org/10.1016/0378-8733%2889%2990016-6
https://doi.org/10.1007/978-3-540-31856-9_44
https://doi.org/10.1007/978-3-540-31856-9_44
https://doi.org/10.1016/0378-8733%2894%2900248-9

measure_central_degree 123

• node_multidegree() measures the ratio between types of ties in a multiplex network.

• node_posneg() measures the PN (positive-negative) centrality of a signed network.

• node_leverage() measures the leverage centrality of nodes in a network.

• tie_degree() measures the degree centrality of ties in a network

• net_degree() measures a network’s degree centralization; there are several related shortcut
functions:

– net_indegree() returns the direction = 'out' results.
– net_outdegree() returns the direction = 'out' results.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_degree(
.data,
normalized = TRUE,
alpha = 1,
direction = c("all", "out", "in")

)

node_deg(.data, alpha = 0, direction = c("all", "out", "in"))

node_outdegree(.data, normalized = TRUE, alpha = 0)

node_indegree(.data, normalized = TRUE, alpha = 0)

node_multidegree(.data, tie1, tie2)

node_posneg(.data)

node_leverage(.data)

tie_degree(.data, normalized = TRUE)

net_degree(.data, normalized = TRUE, direction = c("all", "out", "in"))

net_outdegree(.data, normalized = TRUE)

net_indegree(.data, normalized = TRUE)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

124 measure_central_degree

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

alpha Numeric scalar, the positive tuning parameter introduced in Opsahl et al (2010)
for trading off between degree and strength centrality measures. By default,
alpha = 0, which ignores tie weights and the measure is solely based upon de-
gree (the number of ties). alpha = 1 ignores the number of ties and provides the
sum of the tie weights as strength centrality. Values between 0 and 1 reflect dif-
ferent trade-offs in the relative contributions of degree and strength to the final
outcome, with 0.5 as the middle ground. Values above 1 penalise for the number
of ties. Of two nodes with the same sum of tie weights, the node with fewer ties
will obtain the higher score. This argument is ignored except in the case of a
weighted network.

direction Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

tie1 Character string indicating the first uniplex network.

tie2 Character string indicating the second uniplex network.

Value

A single centralization score if the object was one-mode, and two centralization scores if the object
was two-mode.

Depending on how and what kind of an object is passed to the function, the function will return a
tidygraph object where the nodes have been updated

Degree centrality

A node’s degree is the number of connections it has. It is also sometimes called the valency of a
node, d(v). The maximum degree in a network is often denoted ∆(G) and the minimum degree
in a network δ(G). The total degree of a network is the sum of all degrees,

∑
v d(v). The de-

gree sequence is the set of all nodes’ degrees, ordered from largest to smallest. Directed networks
discriminate between outdegree (degree of outgoing ties) and indegree (degree of incoming ties).

Leverage centrality

Leverage centrality concerns the degree of a node compared with that of its neighbours, J :

CL(i) =
1

d(i)

∑
j∈J(i)

d(i)− d(j)

d(i) + d(j)

measure_central_degree 125

References

On multimodal centrality:
Faust, Katherine. 1997. "Centrality in affiliation networks." Social Networks 19(2): 157-191.
doi:10.1016/S03788733(96)003000

Borgatti, Stephen P., and Martin G. Everett. 1997. "Network analysis of 2-mode data." Social
Networks 19(3): 243-270. doi:10.1016/S03788733(96)003012

Borgatti, Stephen P., and Daniel S. Halgin. 2011. "Analyzing affiliation networks." In The SAGE
Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington, 417–33.
London, UK: Sage. doi:10.4135/9781446294413.n28

On strength centrality:
Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted net-
works: Generalizing degree and shortest paths." Social Networks 32, 245-251. doi:10.1016/
j.socnet.2010.03.006

On signed centrality:
Everett, Martin G., and Stephen P. Borgatti. 2014. “Networks Containing Negative Ties.” Social
Networks 38:111–20. doi:10.1016/j.socnet.2014.03.005

On leverage centrality:
Joyce, Karen E., Paul J. Laurienti, Jonathan H. Burdette, and Satoru Hayasaka. 2010. "A New
Measure of Centrality for Brain Networks". PLoS ONE 5(8): e12200. doi:10.1371/journal.pone.0012200

See Also

to_undirected() for removing edge directions and to_unweighted() for removing weights from
a graph.

Other centrality: measure_central_between, measure_central_close, measure_central_eigen

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

node_degree(ison_southern_women)
tie_degree(ison_adolescents)
net_degree(ison_southern_women, direction = "in")

https://doi.org/10.1016/S0378-8733%2896%2900300-0
https://doi.org/10.1016/S0378-8733%2896%2900301-2
https://doi.org/10.4135/9781446294413.n28
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2014.03.005
https://doi.org/10.1371/journal.pone.0012200

126 measure_central_eigen

measure_central_eigen Measures of eigenvector-like centrality and centralisation

Description

These functions calculate common eigenvector-related centrality measures, or walk-based eigen-
measures, for one- and two-mode networks:

• node_eigenvector() measures the eigenvector centrality of nodes in a network.

• node_power() measures the Bonacich, beta, or power centrality of nodes in a network.

• node_alpha() measures the alpha or Katz centrality of nodes in a network.

• node_pagerank() measures the pagerank centrality of nodes in a network.

• node_hub() measures how well nodes in a network serve as hubs pointing to many authorities.

• node_authority() measures how well nodes in a network serve as authorities from many
hubs.

• tie_eigenvector() measures the eigenvector centrality of ties in a network.

• net_eigenvector() measures the eigenvector centralization for a network.

All measures attempt to use as much information as they are offered, including whether the networks
are directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization measures
return normalized measures by default, including for two-mode networks.

Usage

node_eigenvector(.data, normalized = TRUE, scale = TRUE)

node_power(.data, normalized = TRUE, scale = FALSE, exponent = 1)

node_alpha(.data, alpha = 0.85)

node_pagerank(.data)

node_authority(.data)

node_hub(.data)

tie_eigenvector(.data, normalized = TRUE)

net_eigenvector(.data, normalized = TRUE)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

measure_central_eigen 127

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

scale Logical scalar, whether to rescale the vector so the maximum score is 1.

exponent Decay rate or attentuation factor for the Bonacich power centrality score. Can
be positive or negative.

alpha A constant that trades off the importance of external influence against the impor-
tance of connection. When α = 0, only the external influence matters. As α gets
larger, only the connectivity matters and we reduce to eigenvector centrality. By
default α = 0.85.

Details

We use {igraph} routines behind the scenes here for consistency and because they are often faster.
For example, igraph::eigencentrality() is approximately 25% faster than sna::evcent().

Value

A numeric vector giving the eigenvector centrality measure of each node.

A numeric vector giving each node’s power centrality measure.

Eigenvector centrality

Eigenvector centrality operates as a measure of a node’s influence in a network. The idea is that be-
ing connected to well-connected others results in a higher score. Each node’s eigenvector centrality
can be defined as:

xi =
1

λ

∑
j∈N

ai,jxj

where ai,j = 1 if i is linked to j and 0 otherwise, and λ is a constant representing the principal
eigenvalue. Rather than performing this iteration, most routines solve the eigenvector equation
Ax = λx. Note that since {igraph} v2.1.1, the values will always be rescaled so that the maximum
is 1.

Power or beta (or Bonacich) centrality

Power centrality includes an exponent that weights contributions to a node’s centrality based on
how far away those other nodes are.

cb(i) =
∑

A(i, j)(α = βc(j))

Where β is positive, this means being connected to central people increases centrality. Where β is
negative, this means being connected to central people decreases centrality (and being connected to
more peripheral actors increases centrality). When β = 0, this is the outdegree. α is calculated to
make sure the root mean square equals the network size.

128 measure_central_eigen

Alpha centrality

Alpha or Katz (or Katz-Bonacich) centrality operates better than eigenvector centrality for directed
networks. Eigenvector centrality will return 0s for all nodes not in the main strongly-connected
component. Each node’s alpha centrality can be defined as:

xi =
1

λ

∑
j∈N

ai,jxj + ei

where ai,j = 1 if i is linked to j and 0 otherwise, λ is a constant representing the principal eigen-
value, and ei is some external influence used to ensure that even nodes beyond the main strongly
connected component begin with some basic influence. Note that many equations replace 1

λ with
α, hence the name.

For example, if α = 0.5, then each direct connection (or alter) would be worth (0.5)1 = 0.5, each
secondary connection (or tertius) would be worth (0.5)2 = 0.25, each tertiary connection would be
worth (0.5)3 = 0.125, and so on.

Rather than performing this iteration though, most routines solve the equation x = (I − 1
λA

T)−1e.

References

On eigenvector centrality:
Bonacich, Phillip. 1991. “Simultaneous Group and Individual Centralities.” Social Networks
13(2):155–68. doi:10.1016/03788733(91)90018O

On power centrality:
Bonacich, Phillip. 1987. “Power and Centrality: A Family of Measures.” The American Journal
of Sociology, 92(5): 1170–82. doi:10.1086/228631.

On alpha centrality:
Katz, Leo 1953. "A new status index derived from sociometric analysis". Psychometrika. 18(1):
39–43.
Bonacich, P. and Lloyd, P. 2001. “Eigenvector-like measures of centrality for asymmetric rela-
tions” Social Networks. 23(3):191-201.

On pagerank centrality:
Brin, Sergey and Page, Larry. 1998. "The anatomy of a large-scale hypertextual web search
engine". Proceedings of the 7th World-Wide Web Conference. Brisbane, Australia.

On hub and authority centrality:
Kleinberg, Jon. 1999. "Authoritative sources in a hyperlinked environment". Journal of the ACM
46(5): 604–632. doi:10.1145/324133.324140

See Also

Other centrality: measure_central_between, measure_central_close, measure_central_degree

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

https://doi.org/10.1016/0378-8733%2891%2990018-O
https://doi.org/10.1086/228631
https://doi.org/10.1145/324133.324140

measure_closure 129

Examples

node_eigenvector(ison_southern_women)
node_power(ison_southern_women, exponent = 0.5)
tie_eigenvector(ison_adolescents)
net_eigenvector(ison_southern_women)

measure_closure Measures of network closure

Description

These functions offer methods for summarising the closure in configurations in one-, two-, and
three-mode networks:

• net_reciprocity() measures reciprocity in a (usually directed) network.

• node_reciprocity() measures nodes’ reciprocity.

• net_transitivity() measures transitivity in a network.

• node_transitivity() measures nodes’ transitivity.

• net_equivalency() measures equivalence or reinforcement in a (usually two-mode) net-
work.

• net_congruency() measures congruency across two two-mode networks.

Usage

net_reciprocity(.data, method = "default")

node_reciprocity(.data)

net_transitivity(.data)

node_transitivity(.data)

net_equivalency(.data)

node_equivalency(.data)

net_congruency(.data, object2)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package

130 measure_closure

• tbl_graph, from the {tidygraph} package

method For reciprocity, either default or ratio. See ?igraph::reciprocity

object2 Optionally, a second (two-mode) matrix, igraph, or tidygraph

Details

For one-mode networks, shallow wrappers of igraph versions exist via net_reciprocity and
net_transitivity.

For two-mode networks, net_equivalency calculates the proportion of three-paths in the network
that are closed by fourth tie to establish a "shared four-cycle" structure.

For three-mode networks, net_congruency calculates the proportion of three-paths spanning two
two-mode networks that are closed by a fourth tie to establish a "congruent four-cycle" structure.

Equivalency

The net_equivalency() function calculates the Robins and Alexander (2004) clustering coeffi-
cient for two-mode networks. Note that for weighted two-mode networks, the result is divided by
the average tie weight.

References

On equivalency or four-cycles:
Robins, Garry L, and Malcolm Alexander. 2004. Small worlds among interlocking directors:
Network structure and distance in bipartite graphs. Computational & Mathematical Organization
Theory 10(1): 69–94. doi:10.1023/B:CMOT.0000032580.12184.c0.

On congruency:
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press. doi:10.1017/
9781108985000

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

net_reciprocity(ison_southern_women)
node_reciprocity(to_unweighted(ison_networkers))
net_transitivity(ison_adolescents)
node_transitivity(ison_adolescents)
net_equivalency(ison_southern_women)
node_equivalency(ison_southern_women)

https://doi.org/10.1023/B%3ACMOT.0000032580.12184.c0
https://doi.org/10.1017/9781108985000
https://doi.org/10.1017/9781108985000

measure_cohesion 131

measure_cohesion Measures of network cohesion or connectedness

Description

These functions return values or vectors relating to how connected a network is and the number of
nodes or edges to remove that would increase fragmentation.

• net_density() measures the ratio of ties to the number of possible ties.

• net_components() measures the number of (strong) components in the network.

• net_cohesion() measures the minimum number of nodes to remove from the network needed
to increase the number of components.

• net_adhesion() measures the minimum number of ties to remove from the network needed
to increase the number of components.

• net_diameter() measures the maximum path length in the network.

• net_length() measures the average path length in the network.

• net_independence() measures the independence number, or size of the largest independent
set in the network.

• net_strength() measures the number of ties that would need to be removed from a network
to increase its number of components.

• net_toughness() measures the number of nodes that would need to be removed from a
network to increase its number of components.

Usage

net_density(.data)

net_components(.data)

net_cohesion(.data)

net_adhesion(.data)

net_diameter(.data)

net_length(.data)

net_independence(.data)

net_strength(.data)

net_toughness(.data)

132 measure_cohesion

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

Cohesion

To get the ’weak’ components of a directed graph, please use manynet::to_undirected() first.

References

On cohesion:
White, Douglas R and Frank Harary. 2001. "The Cohesiveness of Blocks In Social Networks:
Node Connectivity and Conditional Density." Sociological Methodology 31(1): 305-59. doi:10.1111/
00811750.00098

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties, member_diffusion

Examples

net_density(ison_adolescents)
net_density(ison_southern_women)

net_components(fict_thrones)
net_components(to_undirected(fict_thrones))

net_cohesion(ison_marvel_relationships)
net_cohesion(to_giant(ison_marvel_relationships))
net_adhesion(ison_marvel_relationships)
net_adhesion(to_giant(ison_marvel_relationships))
net_diameter(ison_marvel_relationships)
net_diameter(to_giant(ison_marvel_relationships))
net_length(ison_marvel_relationships)
net_length(to_giant(ison_marvel_relationships))
net_independence(ison_adolescents)
net_strength(ison_adolescents)
net_toughness(ison_adolescents)

https://doi.org/10.1111/0081-1750.00098
https://doi.org/10.1111/0081-1750.00098

measure_diffusion_infection 133

measure_diffusion_infection

Measures of network infection

Description

These functions allow measurement of various features of a diffusion process at the network level:

• net_infection_complete() measures the number of time steps until (the first instance of)
complete infection. For diffusions that are not observed to complete, this function returns the
value of Inf (infinity). This makes sure that at least ordinality is respected.

• net_infection_total() measures the proportion or total number of nodes that are infected/activated
at some time by the end of the diffusion process. This includes nodes that subsequently re-
cover. Where reinfection is possible, the proportion may be higher than 1.

• net_infection_peak() measures the number of time steps until the highest infection rate is
observed.

Usage

net_infection_complete(.data)

net_infection_total(.data, normalized = TRUE)

net_infection_peak(.data)

Arguments

.data Network data with nodal changes, as created by play_diffusion(), or a valid
network diffusion model, as created by as_diffusion().

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_net,
measure_diffusion_node, measure_features, measure_heterogeneity, measure_hierarchy,
measure_holes, measure_periods, measure_properties, member_diffusion

Other diffusion: make_play, measure_diffusion_net, measure_diffusion_node, member_diffusion

Examples

smeg <- generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
net_infection_complete(smeg_diff)
net_infection_total(smeg_diff)
net_infection_peak(smeg_diff)

134 measure_diffusion_net

measure_diffusion_net Measures of network diffusion

Description

These functions allow measurement of various features of a diffusion process at the network level:

• net_transmissibility() measures the average transmissibility observed in a diffusion sim-
ulation, or the number of new infections over the number of susceptible nodes.

• net_recovery() measures the average number of time steps nodes remain infected once they
become infected.

• net_reproduction() measures the observed reproductive number in a diffusion simulation
as the network’s transmissibility over the network’s average infection length.

• net_immunity() measures the proportion of nodes that would need to be protected through
vaccination, isolation, or recovery for herd immunity to be reached.

Usage

net_transmissibility(.data)

net_recovery(.data, censor = TRUE)

net_reproduction(.data)

net_immunity(.data, normalized = TRUE)

Arguments

.data Network data with nodal changes, as created by play_diffusion(), or a valid
network diffusion model, as created by as_diffusion().

censor Where some nodes have not yet recovered by the end of the simulation, right
censored values can be replaced by the number of steps. By default TRUE.
Note that this will likely still underestimate recovery.

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

Transmissibility

net_transmissibility() measures how many directly susceptible nodes each infected node will
infect in each time period, on average. That is:

T =
1

n

n∑
j=1

ij
sj

where i is the number of new infections in each time period, j ∈ n, and s is the number of nodes
that could have been infected in that time period (note that s ̸= S, or the number of nodes that are

measure_diffusion_net 135

susceptible in the population). T can be interpreted as the proportion of susceptible nodes that are
infected at each time period.

Recovery time

net_recovery() measures the average number of time steps that nodes in a network remain in-
fected. Note that in a diffusion model without recovery, average infection length will be infinite.
This will also be the case where there is right censoring. The longer nodes remain infected, the
longer they can infect others.

Reproduction number

net_reproduction() measures a given diffusion’s reproductive number. Here it is calculated as:

R = min

(
T

1/L
, k̄

)
where T is the observed transmissibility in a diffusion and L is the observed recovery length in a
diffusion. Since L can be infinite where there is no recovery or there is right censoring, and since
network structure places an upper limit on how many nodes each node may further infect (their
degree), this function returns the minimum of R0 and the network’s average degree.

Interpretation of the reproduction number is oriented around R = 1. Where R > 1, the ’disease’
will ’infect’ more and more nodes in the network. Where R < 1, the ’disease’ will not sustain itself
and eventually die out. Where R = 1, the ’disease’ will continue as endemic, if conditions allow.

Herd immunity

net_immunity() estimates the proportion of a network that need to be protected from infection for
herd immunity to be achieved. This is known as the Herd Immunity Threshold or HIT:

1− 1

R

where R is the reproduction number from net_reproduction(). The HIT indicates the threshold
at which the reduction of susceptible members of the network means that infections will no longer
keep increasing. Note that there may still be more infections after this threshold has been reached,
but there should be fewer and fewer. These excess infections are called the overshoot. This function
does not take into account the structure of the network, instead using the average degree.

Interpretation is quite straightforward. A HIT or immunity score of 0.75 would mean that 75%
of the nodes in the network would need to be vaccinated or otherwise protected to achieve herd
immunity. To identify how many nodes this would be, multiply this proportion with the number of
nodes in the network.

References

On epidemiological models:
Kermack, William O., and Anderson Gray McKendrick. 1927. "A contribution to the mathemati-
cal theory of epidemics". Proc. R. Soc. London A 115: 700-721. doi:10.1098/rspa.1927.0118

https://doi.org/10.1098/rspa.1927.0118

136 measure_diffusion_node

On the basic reproduction number:
Diekmann, Odo, Hans J.A.P. Heesterbeek, and Hans J.A.J. Metz. 1990. "On the definition and the
computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations". Journal of Mathematical Biology, 28(4): 365–82. doi:10.1007/BF00178324
Kenah, Eben, and James M. Robins. 2007. "Second look at the spread of epidemics on networks".
Physical Review E, 76(3 Pt 2): 036113. doi:10.1103/PhysRevE.76.036113

On herd immunity:
Garnett, G.P. 2005. "Role of herd immunity in determining the effect of vaccines against sexually
transmitted disease". The Journal of Infectious Diseases, 191(1): S97-106. doi:10.1086/425271

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_node, measure_features, measure_heterogeneity, measure_hierarchy,
measure_holes, measure_periods, measure_properties, member_diffusion

Other diffusion: make_play, measure_diffusion_infection, measure_diffusion_node, member_diffusion

Examples

smeg <- generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
plot(smeg_diff)
To calculate the average transmissibility for a given diffusion model
net_transmissibility(smeg_diff)
To calculate the average infection length for a given diffusion model
net_recovery(smeg_diff)
To calculate the reproduction number for a given diffusion model
net_reproduction(smeg_diff)
Calculating the proportion required to achieve herd immunity
net_immunity(smeg_diff)
To find the number of nodes to be vaccinated
net_immunity(smeg_diff, normalized = FALSE)

measure_diffusion_node

Measures of nodes in a diffusion

Description

These functions allow measurement of various features of a diffusion process:

• node_adoption_time(): Measures the number of time steps until nodes adopt/become in-
fected

• node_thresholds(): Measures nodes’ thresholds from the amount of exposure they had
when they became infected

https://doi.org/10.1007/BF00178324
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1086/425271

measure_diffusion_node 137

• node_infection_length(): Measures the average length nodes that become infected remain
infected in a compartmental model with recovery

• node_exposure(): Measures how many exposures nodes have to a given mark

Usage

node_adoption_time(.data)

node_thresholds(.data, normalized = TRUE, lag = 1)

node_recovery(.data)

node_exposure(.data, mark, time = 0)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

lag The number of time steps back upon which the thresholds are inferred.

mark A valid ’node_mark’ object or logical vector (TRUE/FALSE) of length equal to
the number of nodes in the network.

time A time point until which infections/adoptions should be identified. By default
time = 0.

Adoption time

node_adoption_time() measures the time units it took until each node became infected. Note that
an adoption time of 0 indicates that this was a seed node.

Thresholds

node_thresholds() infers nodes’ thresholds based on how much exposure they had when they
were infected. This inference is of course imperfect, especially where there is a sudden increase in
exposure, but it can be used heuristically. In a threshold model, nodes activate when

∑
j:active wji ≥

θi, where w is some (potentially weighted) matrix, j are some already activated nodes, and theta is
some pre-defined threshold value. Where a fractional threshold is used, the equation is

∑
j:active wji∑

j wji
≥

θi. That is, theta is now a proportion, and works regardless of whether w is weighted or not.

138 measure_features

Infection length

node_infection_length() measures the average length of time that nodes that become infected
remain infected in a compartmental model with recovery. Infections that are not concluded by the
end of the study period are calculated as infinite.

Exposure

node_exposure() calculates the number of infected/adopting nodes to which each susceptible node
is exposed. It usually expects network data and an index or mark (TRUE/FALSE) vector of those
nodes which are currently infected, but if a diff_model is supplied instead it will return nodes
exposure at t = 0.

References

On diffusion measures:
Valente, Tom W. 1995. Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_features, measure_heterogeneity, measure_hierarchy,
measure_holes, measure_periods, measure_properties, member_diffusion

Other diffusion: make_play, measure_diffusion_infection, measure_diffusion_net, member_diffusion

Examples

smeg <- generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
plot(smeg_diff)
To measure when nodes adopted a diffusion/were infected
(times <- node_adoption_time(smeg_diff))
To infer nodes' thresholds
node_thresholds(smeg_diff)
To measure how long each node remains infected for
node_recovery(smeg_diff)
To measure how much exposure nodes have to a given mark
node_exposure(smeg, mark = c(1,3))
node_exposure(smeg_diff)

measure_features Measures of network topological features

measure_features 139

Description

These functions measure certain topological features of networks:

• net_core() measures the correlation between a network and a core-periphery model with the
same dimensions.

• net_richclub() measures the rich-club coefficient of a network.

• net_factions() measures the correlation between a network and a component model with
the same dimensions. If no ’membership’ vector is given for the data, node_partition() is
used to partition nodes into two groups.

• net_modularity() measures the modularity of a network based on nodes’ membership in
defined clusters.

• net_smallworld() measures the small-world coefficient for one- or two-mode networks.
Small-world networks can be highly clustered and yet have short path lengths.

• net_scalefree() measures the exponent of a fitted power-law distribution. An exponent
between 2 and 3 usually indicates a power-law distribution.

• net_balance() measures the structural balance index on the proportion of balanced triangles,
ranging between 0 if all triangles are imbalanced and 1 if all triangles are balanced.

These net_*() functions return a single numeric scalar or value.

Usage

net_core(.data, mark = NULL)

net_richclub(.data)

net_factions(.data, membership = NULL)

net_modularity(.data, membership = NULL, resolution = 1)

net_smallworld(.data, method = c("omega", "sigma", "SWI"), times = 100)

net_scalefree(.data)

net_balance(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

mark A logical vector the length of the nodes in the network. This can be created by,
among other things, any node_is_*() function.

140 measure_features

membership A vector of partition membership.

resolution A proportion indicating the resolution scale. By default 1, which returns the
original definition of modularity. The higher this parameter, the more smaller
communities will be privileged. The lower this parameter, the fewer larger com-
munities are likely to be found.

method There are three small-world measures implemented:

• "sigma" is the original equation from Watts and Strogatz (1998),

C
Cr

L
Lr

, where C and L are the observed clustering coefficient and path length,
respectively, and Cr and Lr are the averages obtained from random net-
works of the same dimensions and density. A σ > 1 is considered to be
small-world, but this measure is highly sensitive to network size.

• "omega" (the default) is an update from Telesford et al. (2011),

Lr

L
− C

Cl

, where Cl is the clustering coefficient for a lattice graph with the same
dimensions. ω ranges between 0 and 1, where 1 is as close to a small-world
as possible.

• "SWI" is an alternative proposed by Neal (2017),

L− Ll

Lr − Ll
× C − Cr

Cl − Cr

, where Ll is the average path length for a lattice graph with the same di-
mensions. SWI also ranges between 0 and 1 with the same interpretation,
but where there may not be a network for which SWI = 1.

times Integer of number of simulations.

Modularity

Modularity measures the difference between the number of ties within each community from the
number of ties expected within each community in a random graph with the same degrees, and
ranges between -1 and +1. Modularity scores of +1 mean that ties only appear within communities,
while -1 would mean that ties only appear between communities. A score of 0 would mean that ties
are half within and half between communities, as one would expect in a random graph.

Modularity faces a difficult problem known as the resolution limit (Fortunato and Barthélemy 2007).
This problem appears when optimising modularity, particularly with large networks or depending
on the degree of interconnectedness, can miss small clusters that ’hide’ inside larger clusters. In
the extreme case, this can be where they are only connected to the rest of the network through a
single tie. To help manage this problem, a resolution parameter is added. Please see the argument
definition for more details.

Source

{signnet} by David Schoch

measure_features 141

References

On core-periphery:
Borgatti, Stephen P., and Martin G. Everett. 2000. “Models of Core/Periphery Structures.” Social
Networks 21(4):375–95. doi:10.1016/S03788733(99)000192

On the rich-club coefficient:
Zhou, Shi, and Raul J. Mondragon. 2004. "The Rich-Club Phenomenon in the Internet Topology".
IEEE Communications Letters, 8(3): 180-182. doi:10.1109/lcomm.2004.823426

On modularity:
Newman, Mark E.J. 2006. "Modularity and community structure in networks", Proceedings of
the National Academy of Sciences 103(23): 8577-8696. doi:10.1073/pnas.0601602103
Murata, Tsuyoshi. 2010. "Modularity for Bipartite Networks". In: Memon, N., Xu, J., Hicks,
D., Chen, H. (eds) Data Mining for Social Network Data. Annals of Information Systems, Vol 12.
Springer, Boston, MA. doi:10.1007/9781441962874_7

On small-worldliness:
Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World’ Net-
works”. Nature 393(6684):440–42. doi:10.1038/30918
Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. 2011. "The ubiquity of small-
world networks". Brain Connectivity 1(5): 367–75. doi:10.1089/brain.2011.0038
Neal, Zachary P. 2017. "How small is it? Comparing indices of small worldliness". Network
Science. 5 (1): 30–44. doi:10.1017/nws.2017.5

On scale-free networks:
Barabasi, Albert-Laszlo, and Reka Albert. 1999. "Emergence of scaling in random networks",
Science, 286(5439): 509-512. doi:10.1126/science.286.5439.509
Clauset, Aaron, Cosma Rohilla Shalizi, and Mark E.J. Newman. 2009. "Power-law distributions
in empirical data", SIAM Review, 51(4): 661-703. doi:10.1137/070710111
Stumpf, Michael P.H., and Mason Porter. 2012. "Critical truths about power laws", Science,
335(6069): 665-666. doi:10.1126/science.1216142
Holme, Petter. 2019. "Rare and everywhere: Perspectives on scale-free networks", Nature Com-
munications, 10(1): 1016. doi:10.1038/s41467019090388

On balance theory:
Heider, Fritz. 1946. "Attitudes and cognitive organization". The Journal of Psychology, 21:
107-112. doi:10.1080/00223980.1946.9917275
Cartwright, D., and Frank Harary. 1956. "Structural balance: A generalization of Heider’s the-
ory". Psychological Review, 63(5): 277-293. doi:10.1037/h0046049

See Also

net_transitivity() and net_equivalency() for how clustering is calculated

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_heterogeneity, measure_hierarchy,
measure_holes, measure_periods, measure_properties, member_diffusion

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.1109/lcomm.2004.823426
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1007/978-1-4419-6287-4_7
https://doi.org/10.1038/30918
https://doi.org/10.1089/brain.2011.0038
https://doi.org/10.1017/nws.2017.5
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1137/070710111
https://doi.org/10.1126/science.1216142
https://doi.org/10.1038/s41467-019-09038-8
https://doi.org/10.1080/00223980.1946.9917275
https://doi.org/10.1037/h0046049

142 measure_heterogeneity

Examples

net_core(ison_adolescents)
net_core(ison_southern_women)
net_richclub(ison_adolescents)

net_factions(ison_southern_women)
net_modularity(ison_adolescents,

node_in_partition(ison_adolescents))
net_modularity(ison_southern_women,

node_in_partition(ison_southern_women))
net_smallworld(ison_brandes)
net_smallworld(ison_southern_women)
net_scalefree(ison_adolescents)
net_scalefree(generate_scalefree(50, 1.5))
net_scalefree(create_lattice(100))
net_balance(ison_marvel_relationships)

measure_heterogeneity Measures of network diversity

Description

These functions offer ways to measure the heterogeneity of an attribute across a network, within
groups of a network, or the distribution of ties across this attribute:

• net_richness() measures the number of unique categories in a network attribute.

• node_richness() measures the number of unique categories of an attribute to which each
node is connected.

• net_diversity() measures the heterogeneity of ties across a network or within clusters by
node attributes.

• node_diversity() measures the heterogeneity of each node’s local neighbourhood.

• net_heterophily() measures how embedded nodes in the network are within groups of
nodes with the same attribute.

• node_heterophily() measures each node’s embeddedness within groups of nodes with the
same attribute.

• net_assortativity() measures the degree assortativity in a network.

• net_spatial() measures the spatial association/autocorrelation (global Moran’s I) in a net-
work.

Usage

net_richness(.data, attribute)

node_richness(.data, attribute)

net_diversity(.data, attribute, clusters = NULL)

measure_heterogeneity 143

node_diversity(.data, attribute)

net_heterophily(.data, attribute)

node_heterophily(.data, attribute)

net_assortativity(.data)

net_spatial(.data, attribute)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

attribute Name of a nodal attribute or membership vector to use as categories for the
diversity measure.

clusters A nodal cluster membership vector or name of a vertex attribute.

net_diversity

Blau’s index (1977) uses a formula known also in other disciplines by other names (Gini-Simpson
Index, Gini impurity, Gini’s diversity index, Gibbs-Martin index, and probability of interspecific
encounter (PIE)):

1−
k∑

i=1

p2i

, where pi is the proportion of group members in ith category and k is the number of categories for
an attribute of interest. This index can be interpreted as the probability that two members randomly
selected from a group would be from different categories. This index finds its minimum value (0)
when there is no variety, i.e. when all individuals are classified in the same category. The maximum
value depends on the number of categories and whether nodes can be evenly distributed across
categories.

net_homophily

Given a partition of a network into a number of mutually exclusive groups then The E-I index is the
number of ties between (or external) nodes grouped in some mutually exclusive categories minus
the number of ties within (or internal) these groups divided by the total number of ties. This value
can range from 1 to -1, where 1 indicates ties only between categories/groups and -1 ties only within
categories/groups.

144 measure_heterogeneity

References

On diversity:
Blau, Peter M. 1977. Inequality and heterogeneity. New York: Free Press.

Page, Scott E. 2010. Diversity and Complexity. Princeton: Princeton University Press. doi:10.1515/
9781400835140

On heterophily:
Krackhardt, David, and Robert N. Stern. 1988. Informal networks and organizational crises: an
experimental simulation. Social Psychology Quarterly 51(2): 123-140. doi:10.2307/2786835

McPherson, Miller, Lynn Smith-Lovin, and James M. Cook. 2001. "Birds of a Feather: Ho-
mophily in Social Networks". Annual Review of Sociology, 27(1): 415-444. doi:10.1146/annurev.soc.27.1.415

On assortativity:
Newman, Mark E.J. 2002. "Assortative Mxing in Networks". Physical Review Letters, 89(20):
208701. doi:10.1103/physrevlett.89.208701

On spatial autocorrelation:
Moran, Patrick Alfred Pierce. 1950. "Notes on Continuous Stochastic Phenomena". Biometrika
37(1): 17-23. doi:10.2307/2332142

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_hierarchy,
measure_holes, measure_periods, measure_properties, member_diffusion

Examples

net_richness(ison_networkers)
node_richness(ison_networkers, "Discipline")
marvel_friends <- to_unsigned(ison_marvel_relationships, "positive")
net_diversity(marvel_friends, "Gender")
net_diversity(marvel_friends, "Attractive")
net_diversity(marvel_friends, "Gender", "Rich")
node_diversity(marvel_friends, "Gender")
node_diversity(marvel_friends, "Attractive")
net_heterophily(marvel_friends, "Gender")
net_heterophily(marvel_friends, "Attractive")
node_heterophily(marvel_friends, "Gender")
node_heterophily(marvel_friends, "Attractive")
net_assortativity(ison_networkers)
net_spatial(ison_lawfirm, "age")

https://doi.org/10.1515/9781400835140
https://doi.org/10.1515/9781400835140
https://doi.org/10.2307/2786835
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1103/physrevlett.89.208701
https://doi.org/10.2307/2332142

measure_hierarchy 145

measure_hierarchy Graph theoretic dimensions of hierarchy

Description

These functions, together with net_reciprocity(), are used jointly to measure how hierarchical
a network is:

• net_connectedness() measures the proportion of dyads in the network that are reachable to
one another, or the degree to which network is a single component.

• net_efficiency() measures the Krackhardt efficiency score.

• net_upperbound() measures the Krackhardt (least) upper bound score.

Usage

net_connectedness(.data)

net_efficiency(.data)

net_upperbound(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

References

On hierarchy:
Krackhardt, David. 1994. Graph theoretical dimensions of informal organizations. In Carley
and Prietula (eds) Computational Organizational Theory, Hillsdale, NJ: Lawrence Erlbaum As-
sociates. Pp. 89-111.
Everett, Martin, and David Krackhardt. 2012. “A second look at Krackhardt’s graph theoretical di-
mensions of informal organizations.” Social Networks, 34: 159-163. doi:10.1016/j.socnet.2011.10.006

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_holes, measure_periods, measure_properties, member_diffusion

https://doi.org/10.1016/j.socnet.2011.10.006

146 measure_holes

Examples

net_connectedness(ison_networkers)
1 - net_reciprocity(ison_networkers)
net_efficiency(ison_networkers)
net_upperbound(ison_networkers)

measure_holes Measures of structural holes

Description

These function provide different measures of the degree to which nodes fill structural holes, as
outlined in Burt (1992):

• node_bridges() measures the sum of bridges to which each node is adjacent.

• node_redundancy() measures the redundancy of each nodes’ contacts.

• node_effsize() measures nodes’ effective size.

• node_efficiency() measures nodes’ efficiency.

• node_constraint() measures nodes’ constraint scores for one-mode networks according to
Burt (1992) and for two-mode networks according to Hollway et al (2020).

• node_hierarchy() measures nodes’ exposure to hierarchy, where only one or two contacts
are the source of closure.

• node_neighbours_degree() measures nodes’ average nearest neighbors degree, or knn, a
measure of the type of local environment a node finds itself in

• tie_cohesion() measures the ratio between common neighbors to ties’ adjacent nodes and
the total number of adjacent nodes, where high values indicate ties’ embeddedness in dense
local environments

Burt’s theory holds that while those nodes embedded in dense clusters of close connections are
likely exposed to the same or similar ideas and information, those who fill structural holes between
two otherwise disconnected groups can gain some comparative advantage from that position.

Usage

node_bridges(.data)

node_redundancy(.data)

node_effsize(.data)

node_efficiency(.data)

node_constraint(.data)

node_hierarchy(.data)

measure_holes 147

node_neighbours_degree(.data)

tie_cohesion(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

Details

A number of different ways of measuring these structural holes are available. Note that we use
Borgatti’s reformulation for unweighted networks in node_redundancy() and node_effsize().
Redundancy is thus 2t

n , where t is the sum of ties and n the sum of nodes in each node’s neighbour-
hood, and effective size is calculated as n− 2t

n . Node efficiency is the node’s effective size divided
by its degree.

References

On structural holes:
Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA:
Harvard University Press.

Borgatti, Steven. 1997. “Structural Holes: Unpacking Burt’s Redundancy Measures” Connections
20(1):35-38.

Burchard, Jake, and Benjamin Cornwell. 2018. “Structural Holes and Bridging in Two-Mode
Networks.” Social Networks 55:11–20. doi:10.1016/j.socnet.2018.04.001

Hollway, James, Jean-Frédéric Morin, and Joost Pauwelyn. 2020. "Structural conditions for nov-
elty: The introduction of new environmental clauses to the trade regime complex." International
Environmental Agreements: Politics, Law and Economics 20 (1): 61–83. doi:10.1007/s10784019-
094645

On neighbours average degree:
Barrat, Alain, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro Vespignani. 2004.
"The architecture of complex weighted networks", Proc. Natl. Acad. Sci. 101: 3747.

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_periods, measure_properties, member_diffusion

http://www.analytictech.com/connections/v20(1)/holes.htm
https://doi.org/10.1016/j.socnet.2018.04.001
https://doi.org/10.1007/s10784-019-09464-5
https://doi.org/10.1007/s10784-019-09464-5

148 measure_periods

Examples

node_bridges(ison_adolescents)
node_bridges(ison_southern_women)
node_redundancy(ison_adolescents)
node_redundancy(ison_southern_women)
node_effsize(ison_adolescents)
node_effsize(ison_southern_women)
node_efficiency(ison_adolescents)
node_efficiency(ison_southern_women)
node_constraint(ison_southern_women)
node_hierarchy(ison_adolescents)
node_hierarchy(ison_southern_women)

measure_periods Measures of network change

Description

These functions measure certain topological features of networks:

• net_waves() measures the number of waves in longitudinal network data.

• net_change() measures the Hamming distance between two or more networks.

• net_stability() measures the Jaccard index of stability between two or more networks.

• net_correlation() measures the product-moment correlation between two networks.

These net_*() functions return a numeric vector the length of the number of networks minus one.
E.g., the periods between waves.

Usage

net_waves(.data)

net_change(.data, object2)

net_stability(.data, object2)

net_correlation(.data, object2)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

object2 A network object.

measure_properties 149

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_properties, member_diffusion

measure_properties Describing network properties

Description

These functions extract certain attributes from given network data:

• net_nodes() returns the total number of nodes (of any mode) in a network.

• net_ties() returns the number of ties in a network.

• net_dims() returns the dimensions of a network in a vector as long as the number of modes
in the network.

• net_node_attributes() returns a vector of nodal attributes in a network.

• net_tie_attributes() returns a vector of tie attributes in a network.

These functions are also often used as helpers within other functions.

Usage

net_nodes(.data)

net_ties(.data)

net_dims(.data)

net_node_attributes(.data)

net_tie_attributes(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

150 member_brokerage

Value
net_*() functions always relate to the overall graph or network, usually returning a scalar. net_dims()
returns an integer of the number of nodes in a one-mode network, or two integers representing the
number of nodes in each nodeset in the case of a two-mode network. net_*_attributes() returns
a string vector with the names of all node or tie attributes in the network.

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, member_diffusion

Examples

net_nodes(ison_southern_women)
net_ties(ison_southern_women)
net_dims(ison_southern_women)
net_dims(to_mode1(ison_southern_women))

net_node_attributes(fict_lotr)
net_tie_attributes(ison_algebra)

member_brokerage Memberships of brokerage

Description

These functions include ways to take a census of the brokerage positions of nodes in a network:

• node_in_brokerage() returns nodes membership as a powerhouse, connector, linchpin, or
sideliner according to Hamilton et al. (2020).

Usage

node_in_brokering(.data, membership)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

membership A vector of partition membership as integers.

member_cliques 151

See Also

Other memberships: mark_core, member_cliques, member_community_hier, member_community_non,
member_components, member_equivalence

member_cliques Clique partitioning algorithms

Description

These functions create a vector of nodes’ memberships in cliques:

• node_in_roulette() assigns nodes to maximally diverse groups.

Usage

node_in_roulette(.data, num_groups, group_size, times = NULL)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

num_groups An integer indicating the number of groups desired.

group_size An integer indicating the desired size of most of the groups. Note that if the
number of nodes is not divisible into groups of equal size, there may be some
larger or smaller groups.

times An integer of the number of search iterations the algorithm should complete.
By default this is the number of nodes in the network multiplied by the number
of groups. This heuristic may be insufficient for small networks and numbers
of groups, and burdensome for large networks and numbers of groups, but can
be overwritten. At every 10th iteration, a stronger perturbation of a number of
successive changes, approximately the number of nodes divided by the num-
ber of groups, will take place irrespective of whether it improves the objective
function.

Maximally diverse grouping problem

This well known computational problem is a NP-hard problem with a number of relevant applica-
tions, including the formation of groups of students that have encountered each other least or least
recently. Essentially, the aim is to return a membership of nodes in cliques that minimises the sum
of their previous (weighted) ties:

152 member_community_hier

m∑
g=1

n−1∑
i=1

n∑
j=i+1

xijyigyjg

where yig = 1 if node i is in group g, and 0 otherwise.

xij is the existing network data. If this is an empty network, the function will just return cliques.
To run this repeatedly, one can join a clique network of the membership result with the original
network, using this as the network data for the next round.

A form of the Lai and Hao (2016) iterated maxima search (IMS) is used here. This performs well
for small and moderately sized networks. It includes both weak and strong perturbations to an
initial solution to ensure that a robust solution from the broader state space is identified. The user is
referred to Lai and Hao (2016) and Lai et al (2021) for more details.

References

On the maximally diverse grouping problem:
Lai, Xiangjing, and Jin-Kao Hao. 2016. “Iterated Maxima Search for the Maximally Diverse
Grouping Problem.” European Journal of Operational Research 254(3):780–800. doi:10.1016/
j.ejor.2016.05.018.
Lai, Xiangjing, Jin-Kao Hao, Zhang-Hua Fu, and Dong Yue. 2021. “Neighborhood Decompo-
sition Based Variable Neighborhood Search and Tabu Search for Maximally Diverse Grouping.”
European Journal of Operational Research 289(3):1067–86. doi:10.1016/j.ejor.2020.07.048.

See Also

Other memberships: mark_core, member_brokerage, member_community_hier, member_community_non,
member_components, member_equivalence

member_community_hier Hierarchical community partitioning algorithms

Description

These functions offer algorithms for hierarchically clustering networks into communities. Since all
of the following are hierarchical, their dendrograms can be plotted:

• node_in_betweenness() is a hierarchical, decomposition algorithm where edges are re-
moved in decreasing order of the number of shortest paths passing through the edge.

• node_in_greedy() is a hierarchical, agglomerative algorithm, that tries to optimize modular-
ity in a greedy manner.

• node_in_eigen() is a top-down, hierarchical algorithm.

• node_in_walktrap() is a hierarchical, agglomerative algorithm based on random walks.

The different algorithms offer various advantages in terms of computation time, availability on
different types of networks, ability to maximise modularity, and their logic or domain of inspiration.

https://doi.org/10.1016/j.ejor.2016.05.018
https://doi.org/10.1016/j.ejor.2016.05.018
https://doi.org/10.1016/j.ejor.2020.07.048

member_community_hier 153

Usage

node_in_betweenness(.data)

node_in_greedy(.data)

node_in_eigen(.data)

node_in_walktrap(.data, times = 50)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

times Integer indicating number of simulations/walks used. By default, times=50.

Edge-betweenness

This is motivated by the idea that edges connecting different groups are more likely to lie on multi-
ple shortest paths when they are the only option to go from one group to another. This method yields
good results but is very slow because of the computational complexity of edge-betweenness calcu-
lations and the betweenness scores have to be re-calculated after every edge removal. Networks of
~700 nodes and ~3500 ties are around the upper size limit that are feasible with this approach.

Fast-greedy

Initially, each node is assigned a separate community. Communities are then merged iteratively
such that each merge yields the largest increase in the current value of modularity, until no further
increases to the modularity are possible. The method is fast and recommended as a first approx-
imation because it has no parameters to tune. However, it is known to suffer from a resolution
limit.

Leading eigenvector

In each step, the network is bifurcated such that modularity increases most. The splits are deter-
mined according to the leading eigenvector of the modularity matrix. A stopping condition prevents
tightly connected groups from being split further. Note that due to the eigenvector calculations in-
volved, this algorithm will perform poorly on degenerate networks, but will likely obtain a higher
modularity than fast-greedy (at some cost of speed).

Walktrap

The general idea is that random walks on a network are more likely to stay within the same com-
munity because few edges lead outside a community. By repeating random walks of 4 steps many
times, information about the hierarchical merging of communities is collected.

154 member_community_non

References

On edge-betweenness community detection:
Newman, Mark, and Michelle Girvan. 2004. "Finding and evaluating community structure in
networks." Physical Review E 69: 026113. doi:10.1103/PhysRevE.69.026113

On fast-greedy community detection:
Clauset, Aaron, Mark E.J. Newman, and Cristopher Moore. 2004. "Finding community structure
in very large networks." Physical Review E, 70: 066111. doi:10.1103/PhysRevE.70.066111

On leading eigenvector community detection:
Newman, Mark E.J. 2006. "Finding community structure using the eigenvectors of matrices"
Physical Review E 74:036104. doi:10.1103/PhysRevE.74.036104

On walktrap community detection:
Pons, Pascal, and Matthieu Latapy. 2005. "Computing communities in large networks using
random walks". 1-20. doi:10.48550/arXiv.physics/0512106

See Also

Other memberships: mark_core, member_brokerage, member_cliques, member_community_non,
member_components, member_equivalence

Examples

node_in_betweenness(ison_adolescents)
node_in_greedy(ison_adolescents)
node_in_eigen(ison_adolescents)
node_in_walktrap(ison_adolescents)

member_community_non Non-hierarchical community partitioning algorithms

Description

These functions offer algorithms for partitioning networks into sets of communities:

• node_in_community() runs either optimal or, for larger networks, finds the algorithm that
maximises modularity and returns that membership vector.

• node_in_optimal() is a problem-solving algorithm that seeks to maximise modularity over
all possible partitions.

• node_in_partition() is a greedy, iterative, deterministic partitioning algorithm that results
in two equally-sized communities.

• node_in_infomap() is an algorithm based on the information in random walks.

• node_in_spinglass() is a greedy, iterative, probabilistic algorithm, based on analogy to
model from statistical physics.

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.48550/arXiv.physics/0512106

member_community_non 155

• node_in_fluid() is a propogation-based partitioning algorithm, based on analogy to model
from fluid dynamics.

• node_in_louvain() is an agglomerative multilevel algorithm that seeks to maximise modu-
larity over all possible partitions.

• node_in_leiden() is an agglomerative multilevel algorithm that seeks to maximise the Con-
stant Potts Model over all possible partitions.

The different algorithms offer various advantages in terms of computation time, availability on
different types of networks, ability to maximise modularity, and their logic or domain of inspiration.

Usage

node_in_community(.data)

node_in_optimal(.data)

node_in_partition(.data)

node_in_infomap(.data, times = 50)

node_in_spinglass(.data, max_k = 200, resolution = 1)

node_in_fluid(.data)

node_in_louvain(.data, resolution = 1)

node_in_leiden(.data, resolution = 1)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

times Integer indicating number of simulations/walks used. By default, times=50.

max_k Integer constant, the number of spins to use as an upper limit of communities to
be found. Some sets can be empty at the end.

resolution The Reichardt-Bornholdt “gamma” resolution parameter for modularity. By de-
fault 1, making existing and non-existing ties equally important. Smaller values
make existing ties more important, and larger values make missing ties more
important.

156 member_community_non

Community

This function runs through all available community detection algorithms for a given network type,
finds the algorithm that returns the largest modularity score, and returns the corresponding mem-
bership partition. Where feasible (a small enough network), the optimal problem solving technique
is used to ensure the maximal modularity partition.

Optimal

The general idea is to calculate the modularity of all possible partitions, and choose the community
structure that maximises this modularity measure. Note that this is an NP-complete problem with
exponential time complexity. The guidance in the igraph package is networks of <50-200 nodes is
probably fine.

Infomap

Motivated by information theoretic principles, this algorithm tries to build a grouping that provides
the shortest description length for a random walk, where the description length is measured by the
expected number of bits per node required to encode the path.

Spin-glass

This is motivated by analogy to the Potts model in statistical physics. Each node can be in one of
k "spin states", and ties (particle interactions) provide information about which pairs of nodes want
similar or different spin states. The final community definitions are represented by the nodes’ spin
states after a number of updates. A different implementation than the default is used in the case of
signed networks, such that nodes connected by negative ties will be more likely found in separate
communities.

Fluid

The general idea is to observe how a discrete number of fluids interact, expand and contract, in a
non-homogenous environment, i.e. the network structure. Unlike the {igraph} implementation
that this function wraps, this function iterates over all possible numbers of communities and returns
the membership associated with the highest modularity.

Louvain

The general idea is to take a hierarchical approach to optimising the modularity criterion. Nodes be-
gin in their own communities and are re-assigned in a local, greedy way: each node is moved to the
community where it achieves the highest contribution to modularity. When no further modularity-
increasing reassignments are possible, the resulting communities are considered nodes (like a re-
duced graph), and the process continues.

Leiden

The general idea is to optimise the Constant Potts Model, which does not suffer from the resolution
limit, instead of modularity. As outlined in the {igraph} package, the Constant Potts Model object
function is:

member_community_non 157

1

2m

∑
ij

(Aij − γninj)δ(σi, σj)

where m is the total tie weight, Aij is the tie weight between i and j, γ is the so-called resolution
parameter, ni is the node weight of node i, and δ(σi, σj) = 1 if and only if i and j are in the same
communities and 0 otherwise. Compared to the Louvain method, the Leiden algorithm additionally
tries to avoid unconnected communities.

References

On optimal community detection:
Brandes, Ulrik, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
Dorothea Wagner. 2008. "On Modularity Clustering", IEEE Transactions on Knowledge and
Data Engineering 20(2):172-188.

On partitioning community detection:
Kernighan, Brian W., and Shen Lin. 1970. "An efficient heuristic procedure for partitioning
graphs." The Bell System Technical Journal 49(2): 291-307. doi:10.1002/j.15387305.1970.tb01770.x

On infomap community detection:
Rosvall, M, and C. T. Bergstrom. 2008. "Maps of information flow reveal community structure
in complex networks", PNAS 105:1118. doi:10.1073/pnas.0706851105
Rosvall, M., D. Axelsson, and C. T. Bergstrom. 2009. "The map equation", Eur. Phys. J. Special
Topics 178: 13. doi:10.1140/epjst/e2010011791

On spinglass community detection:
Reichardt, Jorg, and Stefan Bornholdt. 2006. "Statistical Mechanics of Community Detection"
Physical Review E, 74(1): 016110–14. doi:10.1073/pnas.0605965104
Traag, Vincent A., and Jeroen Bruggeman. 2009. "Community detection in networks with positive
and negative links". Physical Review E, 80(3): 036115. doi:10.1103/PhysRevE.80.036115

On fluid community detection:
Parés Ferran, Dario Garcia Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguade, Jesus
Labarta, Ulises Cortes, and Toyotaro Suzumura. 2018. "Fluid Communities: A Competitive,
Scalable and Diverse Community Detection Algorithm". In: Complex Networks & Their Appli-
cations VI Springer, 689: 229. doi:10.1007/9783319721507_19

On Louvain community detection:
Blondel, Vincent, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre. 2008. "Fast un-
folding of communities in large networks", J. Stat. Mech. P10008.

On Leiden community detection:
Traag, Vincent A., Ludo Waltman, and Nees Jan van Eck. 2019. "From Louvain to Leiden:
guaranteeing well-connected communities", Scientific Reports, 9(1):5233. doi:10.1038/s41598-
01941695z

https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1007/978-3-319-72150-7_19
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z

158 member_components

See Also

Other memberships: mark_core, member_brokerage, member_cliques, member_community_hier,
member_components, member_equivalence

Examples

node_in_optimal(ison_adolescents)
node_in_partition(ison_adolescents)
node_in_partition(ison_southern_women)
node_in_infomap(ison_adolescents)
node_in_spinglass(ison_adolescents)
node_in_fluid(ison_adolescents)
node_in_louvain(ison_adolescents)
node_in_leiden(ison_adolescents)

member_components Component partitioning algorithms

Description

These functions create a vector of nodes’ memberships in components or degrees of coreness:

• node_in_component() assigns nodes’ component membership using edge direction where
available.

• node_in_weak() assigns nodes’ component membership ignoring edge direction.

• node_in_strong() assigns nodes’ component membership based on edge direction.

In graph theory, components, sometimes called connected components, are induced subgraphs from
partitioning the nodes into disjoint sets. All nodes that are members of the same partition as i are
reachable from i.

For directed networks, strongly connected components consist of subgraphs where there are paths in
each direction between member nodes. Weakly connected components consist of subgraphs where
there is a path in either direction between member nodes.

Coreness captures the maximal subgraphs in which each vertex has at least degree k, where k is also
the order of the subgraph. As described in igraph::coreness, a node’s coreness is k if it belongs
to the k-core but not to the (k+1)-core.

Usage

node_in_component(.data)

node_in_weak(.data)

node_in_strong(.data)

member_diffusion 159

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

See Also

Other memberships: mark_core, member_brokerage, member_cliques, member_community_hier,
member_community_non, member_equivalence

member_diffusion Membership of nodes in a diffusion

Description

node_in_adopter() classifies membership of nodes into diffusion categories by where on the dis-
tribution of adopters they fell. Valente (1995) defines five memberships:

• Early adopter: those with an adoption time less than the average adoption time minus one
standard deviation of adoptions times

• Early majority: those with an adoption time between the average adoption time and the aver-
age adoption time minus one standard deviation of adoptions times

• Late majority: those with an adoption time between the average adoption time and the average
adoption time plus one standard deviation of adoptions times

• Laggard: those with an adoption time greater than the average adoption time plus one standard
deviation of adoptions times

• Non-adopter: those without an adoption time, i.e. never adopted

Usage

node_in_adopter(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

160 member_equivalence

References

On adopter classes:
Valente, Tom W. 1995. Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other measures: measure_attributes, measure_central_between, measure_central_close,
measure_central_degree, measure_central_eigen, measure_closure, measure_cohesion, measure_diffusion_infection,
measure_diffusion_net, measure_diffusion_node, measure_features, measure_heterogeneity,
measure_hierarchy, measure_holes, measure_periods, measure_properties

Other diffusion: make_play, measure_diffusion_infection, measure_diffusion_net, measure_diffusion_node

Examples

smeg <- generate_smallworld(15, 0.025)
smeg_diff <- play_diffusion(smeg, recovery = 0.2)
To classify nodes by their position in the adoption curve
(adopts <- node_in_adopter(smeg_diff))
summary(adopts)

member_equivalence Equivalence clustering algorithms

Description

These functions combine an appropriate node_by_*() function together with methods for calculat-
ing the hierarchical clusters provided by a certain distance calculation.

• node_in_equivalence() assigns nodes membership based on their equivalence with respec-
tive to some census/class. The following functions call this function, together with an appro-
priate census.

– node_in_structural() assigns nodes membership based on their having equivalent ties
to the same other nodes.

– node_in_regular() assigns nodes membership based on their having equivalent pat-
terns of ties.

– node_in_automorphic() assigns nodes membership based on their having equivalent
distances to other nodes.

A plot() method exists for investigating the dendrogram of the hierarchical cluster and showing
the returned cluster assignment.

member_equivalence 161

Usage

node_in_equivalence(
.data,
census,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor", "cosine"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_in_structural(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor", "cosine"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_in_regular(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor", "cosine"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

node_in_automorphic(
.data,
k = c("silhouette", "elbow", "strict"),
cluster = c("hierarchical", "concor", "cosine"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
range = 8L

)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

census A matrix returned by a node_by_*() function.

k Typically a character string indicating which method should be used to select the
number of clusters to return. By default "silhouette", other options include
"elbow" and "strict". "strict" returns classes with members only when

162 model_cluster

strictly equivalent. "silhouette" and "elbow" select classes based on the dis-
tance between clusters or between nodes within a cluster. Fewer, identifiable
letters, e.g. "e" for elbow, is sufficient. Alternatively, if k is passed an integer,
e.g. k = 3, then all selection routines are skipped in favour of this number of
clusters.

cluster Character string indicating whether clusters should be clustered hierarchically
("hierarchical") or through convergence of correlations ("concor"). Fewer,
identifiable letters, e.g. "c" for CONCOR, is sufficient.

distance Character string indicating which distance metric to pass on to stats::dist.
By default "euclidean", but other options include "maximum", "manhattan",
"canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.

range Integer indicating the maximum number of (k) clusters to evaluate. Ignored
when k = "strict" or a discrete number is given for k.

Source

https://github.com/aslez/concoR

See Also

Other memberships: mark_core, member_brokerage, member_cliques, member_community_hier,
member_community_non, member_components

Examples

(nse <- node_in_structural(ison_algebra))
(nre <- node_in_regular(ison_southern_women,

cluster = "concor"))
if(require("sna", quietly = TRUE)){
(nae <- node_in_automorphic(ison_southern_women,

k = "elbow"))
}

model_cluster Methods for equivalence clustering

Description

These functions are used to cluster some census object:

• cluster_hierarchical() returns a hierarchical clustering object created by stats::hclust().

• cluster_concor() returns a hierarchical clustering object created from a convergence of
correlations procedure (CONCOR).

These functions are not intended to be called directly, but are called within node_equivalence()
and related functions. They are exported and listed here to provide more detailed documentation.

https://github.com/aslez/concoR

model_cluster 163

Usage

cluster_hierarchical(census, distance)

cluster_cosine(census, distance)

cluster_concor(.data, census)

Arguments

census A matrix returned by a node_by_*() function.

distance Character string indicating which distance metric to pass on to stats::dist.
By default "euclidean", but other options include "maximum", "manhattan",
"canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

CONCOR

First a matrix of Pearson correlation coefficients between each pair of nodes profiles in the given
census is created. Then, again, we find the correlations of this square, symmetric matrix, and
continue to do this iteratively until each entry is either 1 or -1. These values are used to split the
data into two partitions, with members either holding the values 1 or -1. This procedure from
census to convergence is then repeated within each block, allowing further partitions to be found.
Unlike UCINET, partitions are continued until there are single members in each partition. Then a
distance matrix is constructed from records of in which partition phase nodes were separated, and
this is given to stats::hclust() so that dendrograms etc can be returned.

References

On CONCOR clustering:
Breiger, Ronald L., Scott A. Boorman, and Phipps Arabie. 1975. "An Algorithm for Cluster-
ing Relational Data with Applications to Social Network Analysis and Comparison with Mul-
tidimensional Scaling". Journal of Mathematical Psychology, 12: 328-83. doi:10.1016/0022-
2496(75)900280.

https://doi.org/10.1016/0022-2496%2875%2990028-0
https://doi.org/10.1016/0022-2496%2875%2990028-0

164 model_kselect

model_kselect Methods for selecting clusters

Description

These functions help select the number of clusters to return from hc, some hierarchical clustering
object:

• k_strict() selects a number of clusters in which there is no distance between cluster mem-
bers.

• k_elbow() selects a number of clusters in which there is a fair trade-off between parsimony
and fit according to the elbow method.

• k_silhouette() selects a number of clusters that optimises the silhouette score.

These functions are generally not user-facing but used internally in e.g. the *_equivalence()
functions.

Usage

k_strict(hc, .data)

k_elbow(hc, .data, census, range)

k_silhouette(hc, .data, range)

Arguments

hc A hierarchical clustering object.

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

census A motif census object.

range An integer indicating the maximum number of options to consider. The mini-
mum of this and the number of nodes in the network is used.

References

On the elbow method:
Thorndike, Robert L. 1953. "Who Belongs in the Family?". Psychometrika, 18(4): 267–76.
doi:10.1007/BF02289263.

https://doi.org/10.1007/BF02289263

motif_brokerage 165

On the silhouette method:
Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis.” Journal of Computational and Applied Mathematics, 20: 53–65. doi:10.1016/
03770427(87)901257.

motif_brokerage Motifs of brokerage

Description

These functions include ways to take a census of the brokerage positions of nodes in a network:

• node_by_brokerage() returns the Gould-Fernandez brokerage roles played by nodes in a
network.

• net_by_brokerage() returns the Gould-Fernandez brokerage roles in a network.

• node_brokering_activity() measures nodes’ brokerage activity.

• node_brokering_exclusivity() measures nodes’ brokerage exclusivity.

Usage

node_by_brokerage(.data, membership, standardized = FALSE)

net_by_brokerage(.data, membership, standardized = FALSE)

node_brokering_activity(.data, membership)

node_brokering_exclusivity(.data, membership)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R

• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package

• network, from the {network} package

• tbl_graph, from the {tidygraph} package

membership A vector of partition membership as integers.

standardized Whether the score should be standardized into a z-score indicating how many
standard deviations above or below the average the score lies.

https://doi.org/10.1016/0377-0427%2887%2990125-7
https://doi.org/10.1016/0377-0427%2887%2990125-7

166 motif_diffusion

References

On brokerage motifs:
Gould, Roger V., and Roberto M. Fernandez. 1989. “Structures of Mediation: A Formal Ap-
proach to Brokerage in Transaction Networks.” Sociological Methodology, 19: 89-126. doi:10.2307/
270949
Jasny, Lorien, and Mark Lubell. 2015. “Two-Mode Brokerage in Policy Networks.” Social Net-
works 41:36–47. doi:10.1016/j.socnet.2014.11.005

On brokerage activity and exclusivity:
Hamilton, Matthew, Jacob Hileman, and Orjan Bodin. 2020. "Evaluating heterogeneous broker-
age: New conceptual and methodological approaches and their application to multi-level environ-
mental governance networks" Social Networks 61: 1-10. doi:10.1016/j.socnet.2019.08.002

See Also

Other motifs: motif_diffusion, motif_net, motif_node

Examples

node_by_brokerage(ison_networkers, "Discipline")
net_by_brokerage(ison_networkers, "Discipline")
node_brokering_exclusivity(ison_networkers, "Discipline")

motif_diffusion Motifs of diffusion

Description

• net_by_hazard() measures the hazard rate or instantaneous probability that nodes will adopt/become
infected at that time.

• node_by_exposure() produces a motif matrix of nodes’ exposure to infection/adoption by
time step.

Usage

node_by_exposure(.data)

net_by_hazard(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

https://doi.org/10.2307/270949
https://doi.org/10.2307/270949
https://doi.org/10.1016/j.socnet.2014.11.005
https://doi.org/10.1016/j.socnet.2019.08.002

motif_diffusion 167

Hazard rate

The hazard rate is the instantaneous probability of adoption/infection at each time point (Allison
1984). In survival analysis, hazard rate is formally defined as:

λ(t) = lim
h→+0

F (t+ h)− F (t)

h

1

1− F (t)

By approximating h = 1, we can rewrite the equation as

λ(t) =
F (t+ 1)− F (t)

1− F (t)

If we estimate F (t), the probability of not having adopted the innovation in time t, from the pro-
portion of adopters in that time, such that F (t) ∼ qt/n, we now have (ultimately for t > 1):

λ(t) =
qt+1/n− qt/n

1− qt/n
=

qt+1 − qt
n− qt

=
qt − qt−1

n− qt−1

where qi is the number of adopters in time t, and n is the number of vertices in the graph.

The shape of the hazard rate indicates the pattern of new adopters over time. Rapid diffusion with
convex cumulative adoption curves will have hazard functions that peak early and decay over time.
Slow concave cumulative adoption curves will have hazard functions that are low early and rise
over time. Smooth hazard curves indicate constant adoption whereas those that oscillate indicate
variability in adoption behavior over time.

Source

{netdiffuseR}

References

On hazard rates:
Allison, Paul D. 1984. Event history analysis: Regression for longitudinal event data. London:
Sage Publications. doi:10.4135/9781412984195
Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data (2nd ed.).
Cambridge: MIT Press.

See Also

Other motifs: motif_brokerage, motif_net, motif_node

Examples

node_by_exposure(play_diffusion(create_tree(12)))
To calculate the hazard rates at each time point

smeg <- generate_smallworld(15, 0.025)
net_by_hazard(play_diffusion(smeg, transmissibility = 0.3))

https://doi.org/10.4135/9781412984195

168 motif_net

motif_net Motifs at the network level

Description

These functions include ways to take a census of the graphlets in a network:

• net_by_dyad() returns a census of dyad motifs in a network.

• net_by_triad() returns a census of triad motifs in a network.

• net_by_tetrad() returns a census of tetrad motifs in a network.

• net_by_mixed() returns a census of triad motifs that span a one-mode and a two-mode net-
work.

See also graph classes.

Usage

net_by_dyad(.data)

net_by_triad(.data)

net_by_tetrad(.data)

net_by_mixed(.data, object2)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

object2 A second, two-mode migraph-consistent object.

Tetrad census

The tetrad census counts the number of four-node configurations in the network. The function
returns a matrix with a special naming convention:

• E4 (aka co-K4): This is an empty set of four nodes; no ties

• I4 (aka co-diamond): This is a set of four nodes with just one tie

• H4 (aka co-C4): This set of four nodes includes two non-adjacent ties

• L4 (aka co-paw): This set of four nodes includes two adjacent ties

https://www.graphclasses.org/smallgraphs.html

motif_net 169

• D4 (aka co-claw): This set of four nodes includes three adjacent ties, in the form of a triangle
with one isolate

• U4 (aka P4, four-actor line): This set of four nodes includes three ties arranged in a line

• Y4 (aka claw): This set of four nodes includes three ties all adjacent to a single node

• P4 (aka paw, kite): This set of four nodes includes four ties arranged as a triangle with an extra
tie hanging off of one of the nodes

• C4 (aka bifan): This is a symmetric box or 4-cycle or set of shared choices

• Z4 (aka diamond): This resembles C4 but with an extra tie cutting across the box

• X4 (aka K4): This resembles C4 but with two extra ties cutting across the box; a realisation
of all possible ties

Graphs of these motifs can be shown using plot(net_by_tetrad(ison_southern_women)).

Source

Alejandro Espinosa ’netmem’

References

On the dyad census:
Holland, Paul W., and Samuel Leinhardt. 1970. "A Method for Detecting Structure in Sociometric
Data". American Journal of Sociology, 76: 492-513. doi:10.1016/B9780124424500.500286
Wasserman, Stanley, and Katherine Faust. 1994. "Social Network Analysis: Methods and Appli-
cations". Cambridge: Cambridge University Press.

On the triad census:
Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations
in Small Groups.” 55.

On the tetrad census:
Ortmann, Mark, and Ulrik Brandes. 2017. “Efficient Orbit-Aware Triad and Quad Census in
Directed and Undirected Graphs.” Applied Network Science 2(1):13. doi:10.1007/s41109017-
00272.
McMillan, Cassie, and Diane Felmlee. 2020. "Beyond Dyads and Triads: A Comparison of
Tetrads in Twenty Social Networks". Social Psychology Quarterly 83(4): 383-404. doi:10.1177/
0190272520944151

On the mixed census:
Hollway, James, Alessandro Lomi, Francesca Pallotti, and Christoph Stadtfeld. 2017. “Multi-
level Social Spaces: The Network Dynamics of Organizational Fields.” Network Science 5(2):
187–212. doi:10.1017/nws.2017.8

See Also

Other motifs: motif_brokerage, motif_diffusion, motif_node

https://doi.org/10.1016/B978-0-12-442450-0.50028-6
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1177/0190272520944151
https://doi.org/10.1177/0190272520944151
https://doi.org/10.1017/nws.2017.8

170 motif_node

Examples

net_by_dyad(manynet::ison_algebra)
net_by_triad(manynet::ison_adolescents)
net_by_tetrad(ison_southern_women)
marvel_friends <- to_unsigned(ison_marvel_relationships, "positive")
(mixed_cen <- net_by_mixed(marvel_friends, ison_marvel_teams))

motif_node Motifs at the nodal level

Description

These functions include ways to take a census of the positions of nodes in a network:

• node_by_tie() returns a census of the ties in a network. For directed networks, out-ties
and in-ties are bound together. For multiplex networks, the various types of ties are bound
together.

• node_by_triad() returns a census of the triad configurations nodes are embedded in.

• node_by_tetrad() returns a census of nodes’ positions in motifs of four nodes.

• node_by_path() returns the shortest path lengths of each node to every other node in the
network.

Usage

node_by_tie(.data)

node_by_dyad(.data)

node_by_triad(.data)

node_by_tetrad(.data)

node_by_path(.data)

Arguments

.data An object of a manynet-consistent class:

• matrix (adjacency or incidence) from {base} R
• edgelist, a data frame from {base} R or tibble from {tibble}

• igraph, from the {igraph} package
• network, from the {network} package
• tbl_graph, from the {tidygraph} package

motif_node 171

Tetrad census

The nodal tetrad census counts the number of four-node configurations that each node is embedded
in. The function returns a matrix with a special naming convention:

• E4 (aka co-K4): This is an empty set of four nodes; no ties

• I4 (aka co-diamond): This is a set of four nodes with just one tie

• H4 (aka co-C4): This set of four nodes includes two non-adjacent ties

• L4 (aka co-paw): This set of four nodes includes two adjacent ties

• D4 (aka co-claw): This set of four nodes includes three adjacent ties, in the form of a triangle
with one isolate

• U4 (aka P4, four-actor line): This set of four nodes includes three ties arranged in a line

• Y4 (aka claw): This set of four nodes includes three ties all adjacent to a single node

• P4 (aka paw, kite): This set of four nodes includes four ties arranged as a triangle with an extra
tie hanging off of one of the nodes

• C4 (aka bifan): This is a symmetric box or 4-cycle or set of shared choices

• Z4 (aka diamond): This resembles C4 but with an extra tie cutting across the box

• X4 (aka K4): This resembles C4 but with two extra ties cutting across the box; a realisation
of all possible ties

Graphs of these motifs can be shown using plot(node_by_tetrad(ison_southern_women)).

References

On the dyad census:
Holland, Paul W., and Samuel Leinhardt. 1970. "A Method for Detecting Structure in Sociometric
Data". American Journal of Sociology, 76: 492-513. doi:10.1016/B9780124424500.500286

On the triad census:
Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations
in Small Groups.” 55.

On the tetrad census:
Ortmann, Mark, and Ulrik Brandes. 2017. “Efficient Orbit-Aware Triad and Quad Census in
Directed and Undirected Graphs.” Applied Network Science 2(1):13. doi:10.1007/s41109017-
00272.
McMillan, Cassie, and Diane Felmlee. 2020. "Beyond Dyads and Triads: A Comparison of
Tetrads in Twenty Social Networks". Social Psychology Quarterly 83(4): 383-404. doi:10.1177/
0190272520944151

On paths:
Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs". Numerische
Mathematik 1, 269-71. doi:10.1007/BF01386390.
Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted net-
works: Generalizing degree and shortest paths". Social Networks 32(3): 245-51. doi:10.1016/
j.socnet.2010.03.006.

https://doi.org/10.1016/B978-0-12-442450-0.50028-6
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1177/0190272520944151
https://doi.org/10.1177/0190272520944151
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006

172 tutorials

See Also

Other motifs: motif_brokerage, motif_diffusion, motif_net

Examples

task_eg <- to_named(to_uniplex(ison_algebra, "tasks"))
(tie_cen <- node_by_tie(task_eg))
node_by_dyad(ison_networkers)
(triad_cen <- node_by_triad(task_eg))
node_by_tetrad(ison_southern_women)
node_by_path(ison_adolescents)
node_by_path(ison_southern_women)

tutorials Open and extract code from tutorials

Description

These functions make it easy to use the tutorials in the {manynet} and {migraph} packages:

• run_tute() runs a {learnr} tutorial from either the {manynet} or {migraph} packages,
wraps learnr::run_tutorial() with some convenience.

• extract_tute() extracts and opens just the solution code from a {manynet} or {migraph}
tutorial, saving the .R script to the current working directory.

Usage

run_tute(tute)

extract_tute(tute)

Arguments

tute String, name of the tutorial (e.g. "tutorial2").

Index

∗ centrality
measure_central_between, 115
measure_central_close, 118
measure_central_degree, 122
measure_central_eigen, 126

∗ datasets
fict_friends, 5
fict_greys, 6
fict_lotr, 7
fict_potter, 8
fict_starwars, 10
fict_thrones, 11
irps_911, 14
irps_blogs, 15
irps_books, 16
irps_revere, 17
irps_usgeo, 18
irps_wwi, 19
ison_adolescents, 20
ison_algebra, 22
ison_brandes, 23
ison_dolphins, 24
ison_hightech, 25
ison_karateka, 26
ison_koenigsberg, 27
ison_laterals, 28
ison_lawfirm, 31
ison_marvel, 32
ison_monks, 34
ison_networkers, 36
ison_physicians, 37
ison_southern_women, 41

∗ diffusion
make_play, 51
measure_diffusion_infection, 133
measure_diffusion_net, 134
measure_diffusion_node, 136
member_diffusion, 159

∗ makes

make_cran, 42
make_create, 43
make_ego, 45
make_explicit, 46
make_learning, 47
make_motifs, 50
make_play, 51
make_random, 54
make_read, 56
make_stochastic, 58
make_write, 60

∗ mapping
map_graphr, 89
map_graphs, 91
map_grapht, 92
map_layout_configuration, 94
map_layout_partition, 95

∗ marking
mark_features, 103
mark_format, 105
mark_is, 106

∗ marks
mark_diff, 102
mark_nodes, 108
mark_select, 110
mark_tie_select, 112
mark_ties, 111
mark_triangles, 113

∗ measures
measure_attributes, 114
measure_central_between, 115
measure_central_close, 118
measure_central_degree, 122
measure_central_eigen, 126
measure_closure, 129
measure_cohesion, 131
measure_diffusion_infection, 133
measure_diffusion_net, 134
measure_diffusion_node, 136

173

174 INDEX

measure_features, 138
measure_heterogeneity, 142
measure_hierarchy, 145
measure_holes, 146
measure_periods, 148
measure_properties, 149
member_diffusion, 159

∗ memberships
mark_core, 100
member_brokerage, 150
member_cliques, 151
member_community_hier, 152
member_community_non, 154
member_components, 158
member_equivalence, 160

∗ models
make_learning, 47
make_play, 51

∗ modifications
manip_as, 61
manip_correlation, 66
manip_deformat, 67
manip_from, 68
manip_levels, 71
manip_miss, 72
manip_nodes, 73
manip_paths, 75
manip_permutation, 78
manip_preformat, 79
manip_project, 80
manip_reformat, 82
manip_scope, 83
manip_split, 85
manip_ties, 87

∗ motifs
motif_brokerage, 165
motif_diffusion, 166
motif_net, 168
motif_node, 170

add_changes (manip_changes), 64
add_info (manip_info), 70
add_node_attribute (manip_nodes), 73
add_nodes (manip_nodes), 73
add_tie_attribute (manip_ties), 87
add_ties (manip_ties), 87
apply_changes (manip_changes), 64
arrange_ties (manip_ties), 87
as, 43, 45, 58, 61

as_changelist (manip_as), 61
as_diffnet (manip_as), 61
as_diffusion (manip_as), 61
as_edgelist (manip_as), 61
as_graphAM (manip_as), 61
as_igraph (manip_as), 61
as_matrix (manip_as), 61
as_network (manip_as), 61
as_nodelist (manip_as), 61
as_siena (manip_as), 61
as_tidygraph (manip_as), 61

bind_node_attributes (manip_nodes), 73
bind_ties (manip_ties), 87

clear_glossary (glossary), 12
cluster_concor (model_cluster), 162
cluster_cosine (model_cluster), 162
cluster_hierarchical (model_cluster),

162
collect_changes (manip_changes), 64
create_components (make_create), 43
create_core (make_create), 43
create_degree (make_create), 43
create_ego (make_ego), 45
create_empty (make_create), 43
create_explicit (make_explicit), 46
create_filled (make_create), 43
create_lattice (make_create), 43
create_motifs (make_motifs), 50
create_ring (make_create), 43
create_star (make_create), 43
create_tree (make_create), 43

data_overview, 4
delete_nodes (manip_nodes), 73
delete_ties (manip_ties), 87

extract_tute (tutorials), 172

fict_friends, 5
fict_greys, 6
fict_lotr, 7
fict_potter, 8
fict_starwars, 10
fict_thrones, 11
filter_changes (manip_changes), 64
filter_nodes (manip_nodes), 73
filter_ties (manip_ties), 87

INDEX 175

from_egos (manip_from), 68
from_slices (manip_from), 68
from_subgraphs (manip_from), 68
from_ties (manip_from), 68
from_waves (manip_from), 68

generate_citations (make_stochastic), 58
generate_configuration (make_random), 54
generate_fire (make_stochastic), 58
generate_islands (make_stochastic), 58
generate_man (make_random), 54
generate_permutation (make_random), 54
generate_random (make_random), 54
generate_scalefree (make_stochastic), 58
generate_smallworld (make_stochastic),

58
generate_utilities (make_random), 54
gloss (glossary), 12
glossary, 12
graphr (map_graphr), 89
graphs (map_graphs), 91
grapht (map_grapht), 92

interface, 13
irps_911, 14
irps_blogs, 15
irps_books, 16
irps_revere, 17
irps_usgeo, 18
irps_wwi, 19
is_acyclic (mark_features), 103
is_aperiodic (mark_features), 103
is_attributed (mark_format), 105
is_changing (mark_is), 106
is_complex (mark_format), 105
is_connected (mark_features), 103
is_directed (mark_format), 105
is_dynamic (mark_is), 106
is_edgelist (mark_is), 106
is_eulerian (mark_features), 103
is_graph (mark_is), 106
is_labelled (mark_format), 105
is_list (mark_is), 106
is_longitudinal (mark_is), 106
is_manynet (mark_is), 106
is_multiplex (mark_format), 105
is_perfect_matching (mark_features), 103
is_signed (mark_format), 105
is_twomode (mark_format), 105

is_uniplex (mark_format), 105
is_weighted (mark_format), 105
ison_adolescents, 20
ison_algebra, 22
ison_brandes, 23
ison_dolphins, 24
ison_hightech, 25
ison_karateka, 26
ison_koenigsberg, 27
ison_laterals, 28
ison_lawfirm, 31
ison_marvel, 32
ison_marvel_relationships

(ison_marvel), 32
ison_marvel_teams (ison_marvel), 32
ison_monks, 34
ison_networkers, 36
ison_physicians, 37
ison_southern_women, 41

join_nodes (manip_nodes), 73
join_ties (manip_ties), 87

k_elbow (model_kselect), 164
k_silhouette (model_kselect), 164
k_strict (model_kselect), 164

layout_tbl_graph_alluvial
(map_layout_partition), 95

layout_tbl_graph_concentric
(map_layout_partition), 95

layout_tbl_graph_configuration
(map_layout_configuration), 94

layout_tbl_graph_dyad
(map_layout_configuration), 94

layout_tbl_graph_hexad
(map_layout_configuration), 94

layout_tbl_graph_hierarchy
(map_layout_partition), 95

layout_tbl_graph_ladder
(map_layout_partition), 95

layout_tbl_graph_lineage
(map_layout_partition), 95

layout_tbl_graph_multilevel
(map_layout_partition), 95

layout_tbl_graph_pentad
(map_layout_configuration), 94

layout_tbl_graph_railway
(map_layout_partition), 95

176 INDEX

layout_tbl_graph_tetrad
(map_layout_configuration), 94

layout_tbl_graph_triad
(map_layout_configuration), 94

make_cran, 42, 45–48, 51, 53, 56, 58, 60, 61
make_create, 43, 43, 46–48, 51, 53, 56, 58,

60, 61
make_ego, 43, 45, 45, 47, 48, 51, 53, 56, 58,

60, 61
make_explicit, 43, 45, 46, 46, 48, 51, 53, 56,

58, 60, 61
make_learning, 43, 45–47, 47, 51, 53, 56, 58,

60, 61
make_mnet, 49
make_motifs, 43, 45–48, 50, 53, 56, 58, 60, 61
make_play, 43, 45–48, 51, 51, 56, 58, 60, 61,

133, 136, 138, 160
make_random, 43, 45–48, 51, 53, 54, 58, 60, 61
make_read, 43, 45–48, 51, 53, 56, 56, 60, 61
make_stochastic, 43, 45–48, 51, 53, 56, 58,

58, 61
make_write, 43, 45–48, 51, 53, 56, 58, 60, 60
manip_as, 61, 66, 68, 69, 72, 73, 75, 78, 80,

81, 83, 85, 87, 89
manip_changes, 64
manip_correlation, 64, 66, 68, 69, 72, 73,

75, 78, 80, 81, 83, 85, 87, 89
manip_deformat, 64, 66, 67, 69, 72, 73, 75,

78, 80, 81, 83, 85, 87, 89
manip_from, 64, 66, 68, 68, 72, 73, 75, 78, 80,

81, 83, 85, 87, 89
manip_info, 70
manip_levels, 64, 66, 68, 69, 71, 73, 75, 78,

80, 81, 83, 85, 87, 89
manip_miss, 64, 66, 68, 69, 72, 72, 75, 78, 80,

81, 83, 85, 87, 89
manip_nodes, 64, 66, 68, 69, 72, 73, 73, 78,

80, 81, 83, 85, 87, 89
manip_paths, 64, 66, 68, 69, 72, 73, 75, 75,

78, 80, 81, 83, 85, 87, 89
manip_permutation, 64, 66, 68, 69, 72, 73,

75, 78, 78, 80, 81, 83, 85, 87, 89
manip_preformat, 64, 66, 68, 69, 72, 73, 75,

78, 79, 81, 83, 85, 87, 89
manip_project, 64, 66, 68, 69, 72, 73, 75, 78,

80, 80, 83, 85, 87, 89
manip_reformat, 64, 66, 68, 69, 72, 73, 75,

78, 80, 81, 82, 85, 87, 89

manip_scope, 64, 66, 68, 69, 72, 73, 75, 78,
80, 81, 83, 83, 87, 89

manip_split, 64, 66, 68, 69, 72, 73, 75, 78,
80, 81, 83, 85, 85, 89

manip_ties, 64, 66, 68, 69, 72, 73, 75, 78, 80,
81, 83, 85, 87, 87

many_palettes (map_palettes), 97
map_graphr, 89, 92, 94, 95, 97
map_graphs, 91, 91, 94, 95, 97
map_grapht, 91, 92, 92, 95, 97
map_layout_configuration, 91, 92, 94, 94,

97
map_layout_partition, 91, 92, 94, 95, 95
map_palettes, 97
map_scales, 98
map_themes, 100
mark_core, 100, 151, 152, 154, 158, 159, 162
mark_diff, 102, 109, 110, 112–114
mark_features, 103, 106, 107
mark_format, 104, 105, 107
mark_is, 104, 106, 106
mark_nodes, 103, 108, 110, 112–114
mark_select, 103, 109, 110, 112–114
mark_tie_select, 103, 109, 110, 112, 112,

114
mark_ties, 103, 109, 110, 111, 113, 114
mark_triangles, 103, 109, 110, 112, 113, 113
measure_attributes, 114, 118, 122, 125,

128, 130, 132, 133, 136, 138, 141,
144, 145, 147, 149, 150, 160

measure_central_between, 115, 115, 122,
125, 128, 130, 132, 133, 136, 138,
141, 144, 145, 147, 149, 150, 160

measure_central_close, 115, 118, 118, 125,
128, 130, 132, 133, 136, 138, 141,
144, 145, 147, 149, 150, 160

measure_central_degree, 115, 118, 122,
122, 128, 130, 132, 133, 136, 138,
141, 144, 145, 147, 149, 150, 160

measure_central_eigen, 115, 118, 122, 125,
126, 130, 132, 133, 136, 138, 141,
144, 145, 147, 149, 150, 160

measure_closure, 115, 118, 122, 125, 128,
129, 132, 133, 136, 138, 141, 144,
145, 147, 149, 150, 160

measure_cohesion, 115, 118, 122, 125, 128,
130, 131, 133, 136, 138, 141, 144,
145, 147, 149, 150, 160

INDEX 177

measure_diffusion_infection, 53, 115,
118, 122, 125, 128, 130, 132, 133,
136, 138, 141, 144, 145, 147, 149,
150, 160

measure_diffusion_net, 53, 115, 118, 122,
125, 128, 130, 132, 133, 134, 138,
141, 144, 145, 147, 149, 150, 160

measure_diffusion_node, 53, 115, 118, 122,
125, 128, 130, 132, 133, 136, 136,
141, 144, 145, 147, 149, 150, 160

measure_features, 115, 118, 122, 125, 128,
130, 132, 133, 136, 138, 138, 144,
145, 147, 149, 150, 160

measure_heterogeneity, 115, 118, 122, 125,
128, 130, 132, 133, 136, 138, 141,
142, 145, 147, 149, 150, 160

measure_hierarchy, 115, 118, 122, 125, 128,
130, 132, 133, 136, 138, 141, 144,
145, 147, 149, 150, 160

measure_holes, 115, 118, 122, 125, 128, 130,
132, 133, 136, 138, 141, 144, 145,
146, 149, 150, 160

measure_periods, 115, 118, 122, 125, 128,
130, 132, 133, 136, 138, 141, 144,
145, 147, 148, 150, 160

measure_properties, 115, 118, 122, 125,
128, 130, 132, 133, 136, 138, 141,
144, 145, 147, 149, 149, 160

member_brokerage, 102, 150, 152, 154, 158,
159, 162

member_cliques, 102, 151, 151, 154, 158,
159, 162

member_community_hier, 102, 151, 152, 152,
158, 159, 162

member_community_non, 102, 151, 152, 154,
154, 159, 162

member_components, 102, 151, 152, 154, 158,
158, 162

member_diffusion, 53, 115, 118, 122, 125,
128, 130, 132, 133, 136, 138, 141,
144, 145, 147, 149, 150, 159

member_equivalence, 102, 151, 152, 154,
158, 159, 160

model_cluster, 162
model_kselect, 164
motif_brokerage, 165, 167, 169, 172
motif_diffusion, 166, 166, 169, 172
motif_net, 166, 167, 168, 172

motif_node, 166, 167, 169, 170
mutate (manip_nodes), 73
mutate_changes (manip_changes), 64
mutate_net (manip_info), 70
mutate_nodes (manip_nodes), 73
mutate_ties (manip_ties), 87

na_to_mean (manip_miss), 72
na_to_zero (manip_miss), 72
net_adhesion (measure_cohesion), 131
net_assortativity

(measure_heterogeneity), 142
net_balance (measure_features), 138
net_betweenness

(measure_central_between), 115
net_by_brokerage (motif_brokerage), 165
net_by_dyad (motif_net), 168
net_by_hazard (motif_diffusion), 166
net_by_mixed (motif_net), 168
net_by_tetrad (motif_net), 168
net_by_triad (motif_net), 168
net_change (measure_periods), 148
net_closeness (measure_central_close),

118
net_cohesion (measure_cohesion), 131
net_components (measure_cohesion), 131
net_congruency (measure_closure), 129
net_connectedness (measure_hierarchy),

145
net_core (measure_features), 138
net_correlation (measure_periods), 148
net_degree (measure_central_degree), 122
net_density (measure_cohesion), 131
net_diameter (measure_cohesion), 131
net_dims (measure_properties), 149
net_diversity (measure_heterogeneity),

142
net_efficiency (measure_hierarchy), 145
net_eigenvector

(measure_central_eigen), 126
net_equivalency (measure_closure), 129
net_equivalency(), 141
net_factions (measure_features), 138
net_harmonic (measure_central_close),

118
net_heterophily

(measure_heterogeneity), 142
net_immunity (measure_diffusion_net),

134

178 INDEX

net_indegree (measure_central_degree),
122

net_independence (measure_cohesion), 131
net_infection_complete

(measure_diffusion_infection),
133

net_infection_peak
(measure_diffusion_infection),
133

net_infection_total
(measure_diffusion_infection),
133

net_length (measure_cohesion), 131
net_modularity (measure_features), 138
net_node_attributes

(measure_properties), 149
net_nodes (measure_properties), 149
net_outdegree (measure_central_degree),

122
net_reach (measure_central_close), 118
net_reciprocity (measure_closure), 129
net_recovery (measure_diffusion_net),

134
net_reproduction

(measure_diffusion_net), 134
net_richclub (measure_features), 138
net_richness (measure_heterogeneity),

142
net_scalefree (measure_features), 138
net_smallworld (measure_features), 138
net_spatial (measure_heterogeneity), 142
net_stability (measure_periods), 148
net_strength (measure_cohesion), 131
net_tie_attributes

(measure_properties), 149
net_ties (measure_properties), 149
net_toughness (measure_cohesion), 131
net_transitivity (measure_closure), 129
net_transitivity(), 141
net_transmissibility

(measure_diffusion_net), 134
net_upperbound (measure_hierarchy), 145
net_waves (measure_periods), 148
node_adoption_time

(measure_diffusion_node), 136
node_alpha (measure_central_eigen), 126
node_attribute (measure_attributes), 114
node_authority (measure_central_eigen),

126
node_betweenness

(measure_central_between), 115
node_bridges (measure_holes), 146
node_brokering_activity

(motif_brokerage), 165
node_brokering_exclusivity

(motif_brokerage), 165
node_by_brokerage (motif_brokerage), 165
node_by_dyad (motif_node), 170
node_by_exposure (motif_diffusion), 166
node_by_path (motif_node), 170
node_by_tetrad (motif_node), 170
node_by_tie (motif_node), 170
node_by_triad (motif_node), 170
node_closeness (measure_central_close),

118
node_constraint (measure_holes), 146
node_coreness (mark_core), 100
node_deg (measure_central_degree), 122
node_degree (measure_central_degree),

122
node_distance (measure_central_close),

118
node_diversity (measure_heterogeneity),

142
node_eccentricity

(measure_central_close), 118
node_efficiency (measure_holes), 146
node_effsize (measure_holes), 146
node_eigenvector

(measure_central_eigen), 126
node_equivalency (measure_closure), 129
node_exposure (measure_diffusion_node),

136
node_flow (measure_central_between), 115
node_harmonic (measure_central_close),

118
node_heterophily

(measure_heterogeneity), 142
node_hierarchy (measure_holes), 146
node_hub (measure_central_eigen), 126
node_in_adopter (member_diffusion), 159
node_in_automorphic

(member_equivalence), 160
node_in_betweenness

(member_community_hier), 152
node_in_brokering (member_brokerage),

INDEX 179

150
node_in_community

(member_community_non), 154
node_in_component (member_components),

158
node_in_eigen (member_community_hier),

152
node_in_equivalence

(member_equivalence), 160
node_in_fluid (member_community_non),

154
node_in_greedy (member_community_hier),

152
node_in_infomap (member_community_non),

154
node_in_leiden (member_community_non),

154
node_in_louvain (member_community_non),

154
node_in_optimal (member_community_non),

154
node_in_partition

(member_community_non), 154
node_in_regular (member_equivalence),

160
node_in_roulette (member_cliques), 151
node_in_spinglass

(member_community_non), 154
node_in_strong (member_components), 158
node_in_structural

(member_equivalence), 160
node_in_walktrap

(member_community_hier), 152
node_in_weak (member_components), 158
node_indegree (measure_central_degree),

122
node_induced (measure_central_between),

115
node_information

(measure_central_close), 118
node_is_core (mark_core), 100
node_is_cutpoint (mark_nodes), 108
node_is_exposed (mark_diff), 102
node_is_fold (mark_nodes), 108
node_is_independent (mark_nodes), 108
node_is_infected (mark_diff), 102
node_is_isolate (mark_nodes), 108
node_is_latent (mark_diff), 102

node_is_max (mark_select), 110
node_is_mean (mark_select), 110
node_is_mentor (mark_nodes), 108
node_is_min (mark_select), 110
node_is_mode (measure_attributes), 114
node_is_neighbor (mark_nodes), 108
node_is_pendant (mark_nodes), 108
node_is_random (mark_select), 110
node_is_recovered (mark_diff), 102
node_is_universal (mark_core), 100
node_leverage (measure_central_degree),

122
node_multidegree

(measure_central_degree), 122
node_names (measure_attributes), 114
node_neighbours_degree (measure_holes),

146
node_outdegree

(measure_central_degree), 122
node_pagerank (measure_central_eigen),

126
node_posneg (measure_central_degree),

122
node_power (measure_central_eigen), 126
node_reach (measure_central_close), 118
node_reciprocity (measure_closure), 129
node_recovery (measure_diffusion_node),

136
node_redundancy (measure_holes), 146
node_richness (measure_heterogeneity),

142
node_stress (measure_central_between),

115
node_thresholds

(measure_diffusion_node), 136
node_transitivity (measure_closure), 129
node_vitality (measure_central_close),

118

play_diffusion (make_play), 51
play_learning (make_learning), 47
play_segregation (make_learning), 47
print.mnet (make_mnet), 49
print_all (make_mnet), 49
print_glossary (glossary), 12

read_cran (make_cran), 42
read_dynetml (make_read), 56
read_edgelist (make_read), 56

180 INDEX

read_gml (make_read), 56
read_graphml (make_read), 56
read_matrix (make_read), 56
read_nodelist (make_read), 56
read_pajek (make_read), 56
read_ucinet (make_read), 56
rename (manip_nodes), 73
rename_nodes (manip_nodes), 73
rename_ties (manip_ties), 87
run_tute (tutorials), 172

scale_color_centres (map_scales), 98
scale_color_ethz (map_scales), 98
scale_color_iheid (map_scales), 98
scale_color_rug (map_scales), 98
scale_color_sdgs (map_scales), 98
scale_color_uzh (map_scales), 98
scale_colour_centres (map_scales), 98
scale_colour_ethz (map_scales), 98
scale_colour_iheid (map_scales), 98
scale_colour_rug (map_scales), 98
scale_colour_sdgs (map_scales), 98
scale_colour_uzh (map_scales), 98
scale_edge_color_centres (map_scales),

98
scale_edge_color_ethz (map_scales), 98
scale_edge_color_iheid (map_scales), 98
scale_edge_color_rug (map_scales), 98
scale_edge_color_sdgs (map_scales), 98
scale_edge_color_uzh (map_scales), 98
scale_edge_colour_centres (map_scales),

98
scale_edge_colour_ethz (map_scales), 98
scale_edge_colour_iheid (map_scales), 98
scale_edge_colour_rug (map_scales), 98
scale_edge_colour_sdgs (map_scales), 98
scale_edge_colour_uzh (map_scales), 98
scale_fill_centres (map_scales), 98
scale_fill_ethz (map_scales), 98
scale_fill_iheid (map_scales), 98
scale_fill_rug (map_scales), 98
scale_fill_sdgs (map_scales), 98
scale_fill_uzh (map_scales), 98
select (manip_nodes), 73
select_changes (manip_changes), 64
select_nodes (manip_nodes), 73
select_ties (manip_ties), 87
set_manynet_theme (map_themes), 100
snet_abort (interface), 13

snet_info (interface), 13
snet_minor_info (interface), 13
snet_progress_along (interface), 13
snet_progress_nodes (interface), 13
snet_progress_seq (interface), 13
snet_progress_step (interface), 13
snet_prompt (interface), 13
snet_success (interface), 13
snet_unavailable (interface), 13
snet_warn (interface), 13
summarise_ties (manip_ties), 87

table_data (data_overview), 4
theme_ethz (map_themes), 100
theme_iheid (map_themes), 100
theme_rug (map_themes), 100
theme_uzh (map_themes), 100
tie_attribute (measure_attributes), 114
tie_betweenness

(measure_central_between), 115
tie_closeness (measure_central_close),

118
tie_cohesion (measure_holes), 146
tie_degree (measure_central_degree), 122
tie_eigenvector

(measure_central_eigen), 126
tie_is_bridge (mark_ties), 111
tie_is_cyclical (mark_triangles), 113
tie_is_feedback (mark_ties), 111
tie_is_forbidden (mark_triangles), 113
tie_is_imbalanced (mark_triangles), 113
tie_is_loop (mark_ties), 111
tie_is_max (mark_tie_select), 112
tie_is_min (mark_tie_select), 112
tie_is_multiple (mark_ties), 111
tie_is_path (mark_ties), 111
tie_is_random (mark_tie_select), 112
tie_is_reciprocated (mark_ties), 111
tie_is_simmelian (mark_triangles), 113
tie_is_transitive (mark_triangles), 113
tie_is_triangular (mark_triangles), 113
tie_is_triplet (mark_triangles), 113
tie_signs (measure_attributes), 114
tie_weights (measure_attributes), 114
to_acyclic (manip_reformat), 82
to_anti (manip_reformat), 82
to_blocks (manip_scope), 83
to_components (manip_split), 85
to_correlation (manip_correlation), 66

INDEX 181

to_cosine (manip_correlation), 66
to_directed (manip_reformat), 82
to_dominating (manip_paths), 75
to_ego (manip_scope), 83
to_egos (manip_split), 85
to_eulerian (manip_paths), 75
to_giant (manip_scope), 83
to_matching (manip_paths), 75
to_mentoring (manip_paths), 75
to_mode1 (manip_project), 80
to_mode2 (manip_project), 80
to_multilevel (manip_levels), 71
to_named (manip_preformat), 79
to_no_isolates (manip_scope), 83
to_no_missing (manip_scope), 83
to_onemode (manip_levels), 71
to_permuted (manip_permutation), 78
to_reciprocated (manip_reformat), 82
to_redirected (manip_reformat), 82
to_signed (manip_preformat), 79
to_simplex (manip_deformat), 67
to_slices (manip_split), 85
to_subgraph (manip_scope), 83
to_subgraphs (manip_split), 85
to_ties (manip_project), 80
to_time (manip_scope), 83
to_time(), 65
to_tree (manip_paths), 75
to_twomode (manip_levels), 71
to_undirected (manip_deformat), 67
to_undirected(), 116, 119, 123, 125, 126
to_uniplex (manip_deformat), 67
to_unnamed (manip_deformat), 67
to_unsigned (manip_deformat), 67
to_unweighted (manip_deformat), 67
to_unweighted(), 125
to_waves (manip_split), 85
to_weighted (manip_preformat), 79
tutorials, 172

write_edgelist (make_write), 60
write_graphml (make_write), 60
write_matrix (make_write), 60
write_nodelist (make_write), 60
write_pajek (make_write), 60
write_ucinet (make_write), 60

	data_overview
	fict_friends
	fict_greys
	fict_lotr
	fict_potter
	fict_starwars
	fict_thrones
	glossary
	interface
	irps_911
	irps_blogs
	irps_books
	irps_revere
	irps_usgeo
	irps_wwi
	ison_adolescents
	ison_algebra
	ison_brandes
	ison_dolphins
	ison_hightech
	ison_karateka
	ison_koenigsberg
	ison_laterals
	ison_lawfirm
	ison_marvel
	ison_monks
	ison_networkers
	ison_physicians
	ison_southern_women
	make_cran
	make_create
	make_ego
	make_explicit
	make_learning
	make_mnet
	make_motifs
	make_play
	make_random
	make_read
	make_stochastic
	make_write
	manip_as
	manip_changes
	manip_correlation
	manip_deformat
	manip_from
	manip_info
	manip_levels
	manip_miss
	manip_nodes
	manip_paths
	manip_permutation
	manip_preformat
	manip_project
	manip_reformat
	manip_scope
	manip_split
	manip_ties
	map_graphr
	map_graphs
	map_grapht
	map_layout_configuration
	map_layout_partition
	map_palettes
	map_scales
	map_themes
	mark_core
	mark_diff
	mark_features
	mark_format
	mark_is
	mark_nodes
	mark_select
	mark_ties
	mark_tie_select
	mark_triangles
	measure_attributes
	measure_central_between
	measure_central_close
	measure_central_degree
	measure_central_eigen
	measure_closure
	measure_cohesion
	measure_diffusion_infection
	measure_diffusion_net
	measure_diffusion_node
	measure_features
	measure_heterogeneity
	measure_hierarchy
	measure_holes
	measure_periods
	measure_properties
	member_brokerage
	member_cliques
	member_community_hier
	member_community_non
	member_components
	member_diffusion
	member_equivalence
	model_cluster
	model_kselect
	motif_brokerage
	motif_diffusion
	motif_net
	motif_node
	tutorials
	Index

