Package ‘luz’

April 17,2023
Title Higher Level 'API' for 'torch’
Version 0.4.0

Description A high level interface for 'torch' providing utilities to reduce the
the amount of code needed for common tasks, abstract away torch details and
make the same code work on both the 'CPU' and 'GPU'. It's flexible enough to
support expressing a large range of models. It's heavily inspired by 'fastai' by
Howard et al. (2020) <arXiv:2002.04688>, 'Keras' by Chollet et al. (2015) and
'PyTorch Lightning' by Falcon et al. (2019) <doi:10.5281/zenodo.3828935>.

License MIT + file LICENSE

URL https://mlverse.github.io/luz/, https://github.com/mlverse/luz
Encoding UTF-8
RoxygenNote 7.2.3

Imports torch (>= 0.9.0), magrittr, zeallot, rlang (>= 1.0.0), coro,
glue, progress, R6, generics, purrr, ellipsis, fs, prettyunits,
cli

Suggests knitr, rmarkdown, testthat (>= 3.0.0), covr, Metrics, withr,
vdiffr, ggplot2 (>= 3.0.0), dplyr, torchvision, tfevents (>=
0.0.2), tidyr

VignetteBuilder knitr
Config/testthat/edition 3

Collate 'accelerator.R' 'as_dataloader.R' 'utils.R' 'callbacks.R'
'callbacks-interrupt.R' 'callbacks-mixup.R'
'callbacks-monitor-metrics.R' 'callbacks-profile.R'
'callbacks-resume.R' 'callbacks-tfevents.R' 'context.R'
'losses.R' 'Ir-finder.R' 'metrics.R' 'metrics-auc.R'
'module-plot.R' 'module-print.R' 'module.R' 'reexports.R’
'serialization.R'

NeedsCompilation no

Author Daniel Falbel [aut, cre, cph],
RStudio [cph]

Maintainer Daniel Falbel <daniel@rstudio.com>

https://arxiv.org/abs/2002.04688
https://doi.org/10.5281/zenodo.3828935
https://mlverse.github.io/luz/
https://github.com/mlverse/luz

2 R topics documented:

Repository CRAN
Date/Publication 2023-04-17 10:00:05 UTC

R topics documented:

accelerator L. L e e e e 3
as_dataloader e e e 3
CONLEXL v it e e e e e e e e e e e 5
CEX o o e e e e e 9
evaluate e e e e e e e e 10
fitluz_module_generator 11
GEE_MELIICS e e e e e 13
Ir finder e e e e e 13
luz_callback e 15
luz_callback_auto_resume e e e e e e 18
luz_callback_csv_logger 20
luz_callback_early_stopping 21
luz_callback_gradient_clip 22
luz_callback_interrupt 22
luz_callback_keep_best_model L 23
luz_callback_Ir_scheduler e 24
luz_callback_metrics e e e e e 25
luz_callback_mixup 25
luz_callback_model_checkpoint, 27
luz_callback profile L 28
luz_callback_progress. L 29
luz_callback_resume_from_checkpoint 29
luz_callback_tfevents e e 30
luz_callback_train_valid e 31
Tuz_load e 32
luz_load_checkpoint L 32
luz_load_model_weights 33
Tuz_metric e e 34
luz_metric_accuracy e e e e e 36
luz_metric_binary_accuracyo i e 37
luz_metric_binary_accuracy_with_logits 38
luz_metric_binary_auroc e e 39
luz_metric_mae e 40
Juz_metric_MSE e e e e e e 41
luz_metric_multiclass_auroc e 41
luz_metric_ImsSe e e 43
Juz_metric_Set e e e e 43
UZ_Save e e 44
nnf_MIXUP oo e e 44
NN_MIXUp_loSs e e e e 45
predictluz_module_fittedo 46

SELUD . & . v e e e e e e e e e e e 47

accelerator 3

set_hparams L e e e 48
set_opt_hparams L e e e 49
Index 50
accelerator Create an accelerator
Description

Create an accelerator

Usage
accelerator(
device_placement = TRUE,
cpu = FALSE,
cuda_index = torch::cuda_current_device()
)
Arguments

device_placement
(logical) whether the accelerator object should handle device placement. De-

fault: TRUE
cpu (logical) whether the training procedure should run on the CPU.
cuda_index (integer) index of the CUDA device to use if multiple GPUs are available. De-

fault: the result of torch::cuda_current_device().

as_dataloader Creates a dataloader from its input

Description
as_dataloader is used internally by luz to convert input data and valid_data as passed to
fit.luz_module_generator() to a torch::dataloader

Usage

as_dataloader(x, ...)

S3 method for class 'dataset'
as_dataloader(x, ..., batch_size = 32)

S3 method for class 'list'
as_dataloader(x, ...)

4 as_dataloader

S3 method for class 'dataloader'

as_dataloader(x, ...)

S3 method for class 'matrix'

as_dataloader(x, ...)

S3 method for class 'numeric'

as_dataloader(x, ...)

S3 method for class 'array'

as_dataloader(x, ...)

S3 method for class 'torch_tensor'

as_dataloader(x, ...)
Arguments

X the input object.

Passed to torch: :dataloader ().

batch_size (int, optional): how many samples per batch to load (default: 1).

Details

as_dataloader methods should have sensible defaults for batch_size, parallel workers, etc.

It allows users to quickly experiment with fit.luz_module_generator() by not requiring to cre-
ate a torch::dataset and a torch::dataloader in simple experiments.

Methods (by class)

as_dataloader(dataset): Converts a torch: :dataset() to a torch: :dataloader().

as_dataloader(list): Converts a list of tensors or arrays with the same size in the first
dimension to a torch: :dataloader()

as_dataloader(dataloader): Returns the same dataloader
as_dataloader(matrix): Converts the matrix to a dataloader
as_dataloader (numeric): Converts the numeric vector to a dataloader
as_dataloader(array): Converts the array to a dataloader

as_dataloader (torch_tensor): Converts the tensor to a dataloader

Overriding

You can implement your own as_dataloader S3 method if you want your data structure to be
automatically supported by luz’s fit.luz_module_generator(). The method must satisfy the
following conditions:

The method should return a torch: :dataloader ().

The only required argument is x. You have good default for all other arguments.

context 5

It’s better to avoid implementing as_dataloader methods for common S3 classes like data. frames.
In this case, its better to assign a different class to the inputs and implement as_dataloader for it.

context Context object

Description

Context object storing information about the model training context. See also ctx.

Public fields

buffers This is a list of buffers that callbacks can use to write temporary information into ctx.

Active bindings

records stores information about values logged with self$log.

device allows querying the current accelerator device

callbacks list of callbacks that will be called.

iter current iteration

batch the current batch data. a list with input data and targets.

input a shortcut for ctx$batch[[1]]

target a shortcut for ctx$batch[[2]]

min_epochs the minimum number of epochs that the model will run on.

max_epochs the maximum number of epochs that the model will run.

hparams a list of hyperparameters that were used to initialize ctx$model.

opt_hparams a list of hyperparameters used to initialize the ctx$optimizers.
train_data a dataloader that is used for training the model

valid_data a dataloader using during model validation

accelerator an accelerator() used to move data, model and etc the the correct device.
optimizers anamed list of optimizers that will be used during model training.

verbose bool wether the process is in verbose mode or not.

handlers List of error handlers that can be used. See rlang: :try_fetch() for more info.
epoch_handlers List of error handlers that can be used. See rlang::try_fetch() for more info.
training A bool indicating if the model is in training or validation mode.

model The model being trained.

pred Last predicted values.

opt Current optimizer.

opt_name Current optimizer name.

data Current dataloader in use.

6 context

loss_fn Loss function used to train the model

loss Last computed loss values. Detached from the graph.

loss_grad Last computed loss value, not detached, so you can do additional tranformation.
epoch Current epoch.

metrics List of metrics that are tracked by the process.

Methods
Public methods:

e context$new()

e context$log()

e context$log_metric()

e context$get_log()

e context$get_metrics()

* context$get_metric()

e context$get_formatted_metrics()
e context$get_metrics_df ()

* context$set_verbose()

e context$clean()

e context$call_callbacks()

* context$state_dict()

e context$unsafe_set_records()
e context$clone()

Method new(): Initializes the context object with minimal necessary information.
Usage:
context$new(verbose, accelerator, callbacks, training)
Arguments:
verbose Whether the context should be in verbose mode or not.
accelerator A luz accelerator() that configures device placement and others.
callbacks A list of callbacks used by the model. See luz_callback().
training A boolean that indicates if the context is in training mode or not.

Method log(): Allows logging arbitrary information in the ctx.

Usage:
context$log(what, set, value, index = NULL, append = TRUE)

Arguments:

what (string) What you are logging.

set (string) Usually ’train’ or ’valid’ indicating the set you want to lot to. But can be arbitrary
info.

value value to log
value Arbitrary value to log.

context 7

index Index that this value should be logged. If NULL the value is added to the end of list,
otherwise the index is used.

append If TRUE and a value in the corresponding index already exists, then value is appended
to the current value. If FALSE value is overwritten in favor of the new value.

Method log_metric(): Log a metric gen its name and value. Metric values are indexed by
epoch.

Usage:

context$log_metric(name, value)

Arguments:

name name of the metric

value value to log

value Arbitrary value to log.

Method get_log(): Get a specific value from the log.

Usage:
context$get_log(what, set, index = NULL)

Arguments:

what (string) What you are logging.

set (string) Usually ’train’ or ’valid’ indicating the set you want to lot to. But can be arbitrary
info.

index Index that this value should be logged. If NULL the value is added to the end of list,
otherwise the index is used.

Method get_metrics(): Get all metric given an epoch and set.

Usage:

context$get_metrics(set, epoch = NULL)

Arguments:

set (string) Usually ’train’ or ’valid’ indicating the set you want to lot to. But can be arbitrary
info.

epoch The epoch you want to extract metrics from.

Method get_metric(): Get the value of a metric given its name, epoch and set.

Usage:

context$get_metric(name, set, epoch = NULL)

Arguments:

name name of the metric

set (string) Usually ’train’ or ’valid’ indicating the set you want to lot to. But can be arbitrary
info.

epoch The epoch you want to extract metrics from.

Method get_formatted_metrics(): Get formatted metrics values

Usage:
context$get_formatted_metrics(set, epoch = NULL)

context

Arguments:

set (string) Usually ’train’ or ’valid’ indicating the set you want to lot to. But can be arbitrary
info.

epoch The epoch you want to extract metrics from.

Method get_metrics_df(): Get a data.frame containing all metrics.
Usage:
context$get_metrics_df ()

Method set_verbose(): Allows setting the verbose attribute.

Usage:
context$set_verbose(verbose = NULL)

Arguments:
verbose boolean. If TRUE verbose mode is used. If FALSE non verbose. if NULL we use the
result of interactive().

Method clean(): Removes unnecessary information from the context object.

Usage:

context$clean()
Method call_callbacks(): Call the selected callbacks. Where name is the callback types to
call, eg "on_epoch_begin’.

Usage:
context$call_callbacks(name)

Arguments:

name name of the metric
Method state_dict(): Returns a list containing minimal information from the context. Used
to create the returned values.

Usage:

context$state_dict()
Method unsafe_set_records(): Are you sure you know what you are doing?

Usage:
context$unsafe_set_records(records)

Arguments:
records New set of records to be set.
Method clone(): The objects of this class are cloneable with this method.
Usage:
context$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

ctx

ctx

Context object

Description

Context objects used in luz to share information between model methods, metrics and callbacks.

Details

The ctx object is used in luz to share information between the training loop and callbacks, model
methods, and metrics. The table below describes information available in the ctx by default. Other
callbacks could potentially modify these attributes or add new ones.

Attribute
verbose
accelerator
model
optimizers
data
train_data
valid_data
min_epochs
max_epochs
epoch
iter
training
callbacks
step
call_callbacks
batch
input
target
pred
loss_fn
loss
opt
opt_nm
metrics
records
handlers
epoch_handlers

Context attributes

Description

The value (TRUE or FALSE) attributed to the verbose argument in fit .

Accelerator object used to query the correct device to place models, data, etc. It assumes the value passed
Initialized nn_module object that will be trained during the fit procedure.

A named list of optimizers used during training.

The currently in-use dataloader. When training it’s ctx$train_data, when doing validation its ctx$vali
Dataloader passed to the data argument in fit. Modified to yield data in the selected device.

Dataloader passed to the valid_data argument in fit. Modified to yield data in the selected device.
Minimum number of epochs the model will be trained for.

Maximum number of epochs the model will be trained for.

Current training epoch.

Current training iteration. It’s reset every epoch and when going from training to validation.

Whether the model is in training or validation mode. See also help(”luz_callback_train_valid")
List of callbacks that will be called during the training procedure. It’s the union of the list passed to the ce
Closure that will be used to do one step of the model. It’s used for both training and validation. Takes no
Call callbacks by name. For example call_callbacks(”on_train_begin") will call all callbacks that p
Last batch obtained by the dataloader. A batch is a 1ist() with 2 elements, one that is used as input and
First element of the last batch obtained by the current dataloader.

Second element of the last batch obtained by the current dataloader.

Last predictions obtained by ctx$model$forward . Note: can be potentially modified by previously ran ¢
The active loss function that will be minimized during training.

Last computed loss from the model. Note: this might not be available if you modified the training or valic
Current optimizer, ie. the optimizer that will be used to do the next step to update parameters.

Current optimizer name. By default it’s opt , but can change if your model uses more than one optimizer
list() with current metric objects that are updated at every on_train_batch_end() or on_valid_batc
list () recording metric values for training and validation for each epoch. See also help("”luz_callbacl
A named list() of handlers that is passed to rlang: :with_handlers() during the training loop and car
A named list of handlers that is used with rlang: :with_handlers(). Those handlers are used inside the

10 evaluate

See Also

Context object: context

evaluate Evaluates a fitted model on a dataset

Description

Evaluates a fitted model on a dataset

Usage

evaluate(
object,
data,
metrics = NULL,
callbacks = list(),
accelerator = NULL,
verbose = NULL,
dataloader_options = NULL

)
Arguments

object A fitted model to evaluate.

data (dataloader, dataset or list) A dataloader created with torch::dataloader()
used for training the model, or a dataset created with torch: :dataset() or a
list. Dataloaders and datasets must return a list with at most 2 items. The first
item will be used as input for the module and the second will be used as a target
for the loss function.
Currently unused.

metrics A list of luz metrics to be tracked during evaluation. If NULL (default) then the
same metrics that were used during training are tracked.

callbacks (list, optional) A list of callbacks defined with luz_callback() that will be
called during the training procedure. The callbacks luz_callback_metrics(),
luz_callback_progress() and luz_callback_train_valid() are always added
by default.

accelerator (accelerator, optional) An optional accelerator () object used to configure de-
vice placement of the components like nn_modules, optimizers and batches of
data.

verbose (logical, optional) An optional boolean value indicating if the fitting procedure

should emit output to the console during training. By default, it will produce
output if interactive() is TRUE, otherwise it won’t print to the console.

fit.luz_module_generator 11

dataloader_options
Options used when creating a dataloader. See torch: :dataloader(). shuffle=TRUE
by default for the training data and batch_size=32 by default. It will error if
not NULL and data is already a dataloader.

Details

Once a model has been trained you might want to evaluate its performance on a different dataset.
For that reason, luz provides the ?evaluate function that takes a fitted model and a dataset and
computes the metrics attached to the model.

Evaluate returns a luz_module_evaluation object that you can query for metrics using the get_metrics
function or simply print to see the results.

For example:

evaluation <- fitted %>% evaluate(data = valid_dl)
metrics <- get_metrics(evaluation)
print(evaluation)

A “luz_module_evaluation®

-- Results - ———-———-------"---—
loss: 1.5146

mae: 1.0251

mse: 1.5159

rmse: 1.2312

See Also

Other training: fit.luz_module_generator(), predict.luz_module_fitted(), setup()

fit.luz_module_generator
Fit a nn_module

Description

Fit a nn_module

Usage
S3 method for class 'luz_module_generator'
fit(
object,
data,
epochs = 10,

callbacks = NULL,
valid_data = NULL,
accelerator = NULL,

12

verbose =

L

fit.luz_module_generator

NULL,

dataloader_options = NULL

)

Arguments

object
data

epochs

callbacks

valid_data

accelerator

verbose

An nn_module that has been setup().

(dataloader, dataset or list) A dataloader created with torch: :dataloader()
used for training the model, or a dataset created with torch: :dataset() or a
list. Dataloaders and datasets must return a list with at most 2 items. The first
item will be used as input for the module and the second will be used as a target
for the loss function.

(int) The maximum number of epochs for training the model. If a single value
is provided, this is taken to be the max_epochs and min_epochs is set to 0.
If a vector of two numbers is provided, the first value is min_epochs and the
second value is max_epochs. The minimum and maximum number of epochs
are included in the context object as ctx$min_epochs and ctx$max_epochs,
respectively.

(list, optional) A list of callbacks defined with luz_callback() that will be
called during the training procedure. The callbacks luz_callback_metrics(),
luz_callback_progress() and luz_callback_train_valid() are always added
by default.

(dataloader, dataset, list or scalar value; optional) A dataloader created with
torch: :dataloader () or a dataset created with torch: :dataset() that will
be used during the validation procedure. They must return a list with (input, tar-
get). If data is a torch dataset or a list, then you can also supply a numeric value
between 0 and 1 - and in this case a random sample with size corresponding to
that proportion from data will be used for validation.

(accelerator, optional) An optional accelerator () object used to configure de-
vice placement of the components like nn_modules, optimizers and batches of
data.

(logical, optional) An optional boolean value indicating if the fitting procedure
should emit output to the console during training. By default, it will produce
output if interactive() is TRUE, otherwise it won’t print to the console.

Currently unused.

dataloader_options

Value

Options used when creating a dataloader. See torch: :dataloader(). shuffle=TRUE
by default for the training data and batch_size=32 by default. It will error if
not NULL and data is already a dataloader.

A fitted object that can be saved with luz_save() and can be printed with print() and plotted

with plot().

get_metrics 13

See Also

predict.luz_module_fitted() for how to create predictions. setup() to find out how to create
modules that can be trained with fit.

Other training: evaluate(), predict.luz_module_fitted(), setup()

get_metrics Get metrics from the object

Description

Get metrics from the object

Usage

get_metrics(object, ...)

S3 method for class 'luz_module_fitted'

get_metrics(object, ...)
Arguments
object The object to query for metrics.

Currently unused.

Value

A data.frame containing the metric values.

Methods (by class)

e get_metrics(luz_module_fitted): Extract metrics from a luz fitted model.

1r_finder Learning Rate Finder

Description

Learning Rate Finder

14 Ir_finder

Usage
1r_finder(
object,
data,
steps = 100,
start_lr = 1e-07,
end_1r = 0.1,

log_spaced_intervals = TRUE,

L

verbose = NULL

)
Arguments

object An nn_module that has been setup().

data (dataloader) A dataloader created with torch::dataloader() used for learning rate
finding.

steps (integer) The number of steps to iterate over in the learning rate finder. Default:
100.

start_1r (float) The smallest learning rate. Default: le-7.

end_1r (float) The highest learning rate. Default: le-1.

log_spaced_intervals
(logical) Whether to divide the range between start_Ir and end_Ir into log-spaced
intervals (alternative: uniform intervals). Default: TRUE

Other arguments passed to fit.

verbose Wether to show a progress bar during the process.

Value

A dataframe with two columns: learning rate and loss

Examples

if (torch::torch_is_installed()) {
library(torch)
ds <- torch::tensor_dataset(x = torch_randn(100, 10), y = torch_randn(100, 1))
dl <- torch::dataloader(ds, batch_size = 32)
model <- torch::nn_linear
model <- model %>% setup(

loss = torch::nn_mse_loss(),

optimizer = torch::optim_adam
) %%

set_hparams(in_features = 10, out_features = 1)
records <- lr_finder(model, dl, verbose = FALSE)
plot(records)
3

luz_callback

15

luz_callback

Create a new callback

Description

Create a new callback

Usage

luz_callback(
name = NULL,
private = NULL,
active = NULL,

parent_env = parent.frame(),

inherit = NULL

Arguments
name name of the callback
Public methods of the callback. The name of the methods is used to know how
they should be called. See the details section.
private An optional list of private members, which can be functions and non-functions.
active An optional list of active binding functions.
parent_env An environment to use as the parent of newly-created objects.
inherit A R6ClassGenerator object to inherit from; in other words, a superclass. This is
captured as an unevaluated expression which is evaluated in parent_env each
time an object is instantiated.
Details

Let’s implement a callback that prints ‘Iteration n’ (where n is the iteration number) for every batch

in the training set and ‘Done’ when an epoch is finished. For that task we use the luz_callback

function:

print_callback <- luz_callback(
name = "print_callback”,
initialize = function(message) {
self$message <- message

b

on_train_batch_end = function() {
cat("Iteration ", ctx$iter, "\n")

b

on_epoch_end = function() {
cat(self$message, "\n")

16 luz_callback

luz_callback() takes named functions as ... arguments, where the name indicates the moment
at which the callback should be called. For instance on_train_batch_end() is called for every
batch at the end of the training procedure, and on_epoch_end() is called at the end of every epoch.

The returned value of luz_callback() is a function that initializes an instance of the callback.
Callbacks can have initialization parameters, like the name of a file where you want to log the
results. In that case, you can pass an initialize method when creating the callback definition,
and save these parameters to the self object. In the above example, the callback has a message
parameter that is printed at the end of each epoch.

Once a callback is defined it can be passed to the fit function via the callbacks parameter:

fitted <- net %>%
setup(...) %>%
fit(..., callbacks = list(
print_callback(message = "Done!")

))

Callbacks can be called in many different positions of the training loop, including combinations of
them. Here’s an overview of possible callback breakpoints:

Start Fit
- on_fit_begin
Start Epoch Loop
- on_epoch_begin
Start Train
- on_train_begin
Start Batch Loop
- on_train_batch_begin
Start Default Training Step
- on_train_batch_after_pred
- on_train_batch_after_loss
- on_train_batch_before_backward
- on_train_batch_before_step
- on_train_batch_after_step
End Default Training Step:
- on_train_batch_end
End Batch Loop
- on_train_end
End Train
Start Valid
- on_valid_begin
Start Batch Loop
- on_valid_batch_begin
Start Default Validation Step
- on_valid_batch_after_pred
- on_valid_batch_after_loss

luz_callback 17

End Default Validation Step
- on_valid_batch_end
End Batch Loop
- on_valid_end
End Valid
- on_epoch_end
End Epoch Loop
- on_fit_end
End Fit

Every step market with on_x is a point in the training procedure that is available for callbacks to be
called.

The other important part of callbacks is the ctx (context) object. See help("ctx") for details.

By default, callbacks are called in the same order as they were passed to fit (or predict or
evaluate), but you can provide a weight attribute that will control the order in which it will be
called. For example, if one callback has weight = 10 and another has weight =1, then the first
one is called after the second one. Callbacks that don’t specify a weight attribute are considered
weight = 0. A few built-in callbacks in luz already provide a weight value. For example, the
?1luz_callback_early_stopping has a weight of Inf, since in general we want to run it as the
last thing in the loop.

Value

A luz_callback that can be passed to fit.luz_module_generator()

Prediction callbacks

You can also use callbacks when using predict(). In this case the supported callback methods are
detailed above.

Start predict

- on_predict_begin

Start prediction loop

- on_predict_batch_begin

- on_predict_batch_end

End prediction loop

- on_predict_end

End predict

Evaluate callbacks

Callbacks can also be used with evaluate(), in this case, the callbacks that are used are equivalent
to those of the validation loop when using fit():

Start Valid
- on_valid_begin
Start Batch Loop
- on_valid_batch_begin

18 luz_callback_auto_resume

Start Default Validation Step
- on_valid_batch_after_pred
- on_valid_batch_after_loss
End Default Validation Step
- on_valid_batch_end
End Batch Loop
- on_valid_end
End Valid

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_interrupt(), luz_callback_keep_best_model (), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(),
luz_callback_progress(), luz_callback_resume_from_checkpoint(), luz_callback_train_valid()

Examples
print_callback <- luz_callback(
name = "print_callback”,
on_train_batch_end = function() {
cat("Iteration ", ctx$iter, "\n")
}’

on_epoch_end = function() {
cat("Done!\n")

}

)

luz_callback_auto_resume
Resume training callback

Description

This callback allows you to resume training a model.

Usage

luz_callback_auto_resume(path = "./state.pt")
Arguments

path Path to save state files for the model.
Details

When using it, model weights, optimizer state are serialized at the end of each epoch. If something
fails during training simply re-running the same script will restart the model training from the epoch
right after the last epoch that was serialized.

luz_callback_auto_resume 19

Customizing serialization

By default model, optimizer state and records are serialized. Callbacks can be used to customize

serialization by implementing the state_dict() and load_state_dict () methods. If those meth-

ods are implemented, then state_dict () is called at the end of each epoch and load_state_dict()
is called when the model is resumed.

Note

In general you will want to add this callback as the last in the callbacks list, this way, the se-
rialized state is likely to contain all possible changes that other callbacks could have made at
"on_epoch_end'. The default weight attribute of this callback is Inf.

Read the checkpointing article in the pkgdown website for more information.

See Also

Other luz_callbacks: 1uz_callback_csv_logger(), luz_callback_early_stopping(), luz_callback_interrupt(),
luz_callback_keep_best_model(), luz_callback_1r_scheduler(), luz_callback_metrics(),
luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

Examples

if (torch::torch_is_installed()) {
library(torch)
library(luz)

x <- torch_randn(1000, 10)
y <= torch_randn(1000, 1)

model <- nn_linear %>%
setup(optimizer = optim_sgd, loss = nnf_mse_loss) %>%
set_hparams(in_features = 10, out_features = 1) %>%
set_opt_hparams(lr = 0.01)

simulate a failure in the middle of epoch 5 happening only once.
callback_stop <- luz_callback(
"interrupt”,
failed = FALSE,
on_epoch_end = function() {
if (ctx$epoch == 5 && !self$failed) {
self$failed <- TRUE
stop("Error on epoch 5")
}
}
)

path <- tempfile()
autoresume <- luz_callback_auto_resume(path = path)
interrupt <- callback_stop()

20 luz_callback_csv_logger

try once and the model fails

try({
results <- model %>% fit(
list(x, y),

callbacks = list(autoresume, interrupt),
verbose = FALSE
)
»

model resumes and completes

results <- model %>% fit(
list(x, y),
callbacks = list(autoresume, interrupt),
verbose = FALSE

)

get_metrics(results)

}

luz_callback_csv_logger
CSV logger callback

Description

Logs metrics obtained during training a fiel on disk. The file will have 1 line for each epoch/validation.

Usage

luz_callback_csv_logger(path)

Arguments

path path to a file on disk.

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_early_stopping(), luz_callback_interrupt(),
luz_callback_keep_best_model(), luz_callback_lr_scheduler(), luz_callback_metrics(),
luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

luz_callback_early_stopping 21

luz_callback_early_stopping
Early stopping callback

Description

Stops training when a monitored metric stops improving

Usage

luz_callback_early_stopping(
monitor = "valid_loss”,
min_delta = 0,
patience = 0,

mode = "min”,
baseline = NULL
)
Arguments
monitor A string in the format <set>_<metric> where <set> can be ’train’ or ’valid’
and <metric> can be the abbreviation of any metric that you are tracking during
training. The metric name is case insensitive.
min_delta Minimum improvement to reset the patience counter.
patience Number of epochs without improving until stoping training.
mode Specifies the direction that is considered an improvement. By default 'min’ is
used. Can also be 'max’ (higher is better) and ’zero’ (closer to zero is better).
baseline An initial value that will be used as the best seen value in the begining. Model
will stopm training if no better than baseline value is found in the first patience
epochs.
Value

A luz_callback that does early stopping.

Note

This callback adds a on_early_stopping callback that can be used to call callbacks as soon as the
model stops training.

If verbose=TRUE in fit.luz_module_generator () a message is printed when early stopping.

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_interrupt(),
luz_callback_keep_best_model (), luz_callback_lr_scheduler(), luz_callback_metrics(),
luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

22 luz_callback_interrupt

Examples

cb <- luz_callback_early_stopping()

luz_callback_gradient_clip
Gradient clipping callback

Description

By adding the GradientClip callback, the gradient norm_type (default:2) norm is clipped to at
most max_norm (default:1) using torch::nn_utils_clip_grad_norm_(), which can avoid loss
divergence.

Usage

luz_callback_gradient_clip(max_norm = 1, norm_type = 2)

Arguments

max_norm (float or int): max norm of the gradients

norm_type (float or int): type of the used p-norm. Can be Inf for infinity norm.
References

See FastAl documentation for the GradientClip callback.

luz_callback_interrupt
Interrupt callback

Description
Adds a handler that allows interrupting the training loop using ctrl + C. Also registers aon_interrupt
breakpoint so users can register callbacks to be run on training loop interruption.

Usage

luz_callback_interrupt()

Value

A luz_callback

https://docs.fast.ai/callback.training.html#GradientClip

luz_callback_keep_best_model 23

Note
In general you don’t need to use these callback by yourself because it’s always included by default
in fit.luz_module_generator().

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_keep_best_model(), luz_callback_1r_scheduler(), luz_callback_metrics(),
luz_callback_mixup(), luz_callback_model_checkpoint (), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

Examples

interrupt_callback <- luz_callback_interrupt()

luz_callback_keep_best_model
Keep the best model

Description

Each epoch, if there’s improvement in the monitored metric we serialize the model weights to a
temp file. When training is done, we reload weights from the best model.

Usage
luz_callback_keep_best_model(
monitor = "valid_loss”,
mode = "min”,
min_delta = @
)
Arguments
monitor A string in the format <set>_<metric> where <set> can be ’train’ or ’valid’
and <metric> can be the abbreviation of any metric that you are tracking during
training. The metric name is case insensitive.
mode Specifies the direction that is considered an improvement. By default 'min’ is
used. Can also be 'max’ (higher is better) and *zero’ (closer to zero is better).
min_delta Minimum improvement to reset the patience counter.
See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping(),
luz_callback_interrupt(), luz_callback_lr_scheduler(), luz_callback_metrics(), luz_callback_mixup(),
luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

24 luz_callback_Ir scheduler

Examples

cb <- luz_callback_keep_best_model()

luz_callback_lr_scheduler
Learning rate scheduler callback

Description

Initializes and runs torch: :1r_scheduler()s.

Usage

luz_callback_lr_scheduler(
1r_scheduler,

L

call_on = "on_epoch_end",
opt_name = NULL
)
Arguments

lr_scheduler A torch::1r_scheduler() that will be initialized with the optimizer and the
... parameters.

Additional arguments passed to 1r_scheduler together with the optimizers.

call_on The callback breakpoint that scheduler$step() is called. Defaultis 'on_epoch_end".
See luz_callback() for more information.

opt_name name of the optimizer that will be affected by this callback. Should match
the name given in set_optimizers. If your module has a single optimizer,
opt_name is not used.

Value

A luz_callback() generator.

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_interrupt(), luz_callback_keep_best_model (), luz_callback_metrics(),
luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

Examples

if (torch::torch_is_installed()) {
cb <- luz_callback_1lr_scheduler(torch::1r_step, step_size = 30)

3

luz_callback_metrics 25

luz_callback_metrics Metrics callback

Description

Tracks metrics passed to setup() during training and validation.

Usage

luz_callback_metrics()

Details

This callback takes care of 2 ctx attributes:

* ctx$metrics: stores the current metrics objects that are initialized once for epoch, and are

further update()d and compute()d every batch. You will rarely need to work with these
metrics.

* ctx$records$metrics: Stores metrics per training/validation and epoch. The structure is
very similar to ctx$losses.

Value

A luz_callback

Note

In general you won’t need to explicitly use the metrics callback as it’s used by defaultin fit.luz_module_generator().

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping(),
luz_callback_interrupt(), luz_callback_keep_best_model(), luz_callback_lr_scheduler(),
luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

luz_callback_mixup Mixup callback

Description

Implementation of *mixup: Beyond Empirical Risk Minimization’. As of today, tested only for cat-
egorical data, where targets are expected to be integers, not one-hot encoded vectors. This callback
is supposed to be used together with nn_mixup_loss().

https://arxiv.org/abs/1710.09412

26 luz_callback_mixup

Usage
luz_callback_mixup(alpha = @.4, ..., run_valid = FALSE, auto_loss = FALSE)
Arguments
alpha parameter for the beta distribution used to sample mixing coefficients
currently unused. Just to force named arguments.
run_valid Should it run during validation
auto_loss Should it automatically modify the loss function? This will wrap the loss func-
tion to create the mixup loss. If TRUE make sure that your loss function does not
apply reductions. If run_valid=FALSE, then loss will be mean reduced during
validation.
Details

Overall, we follow the fastai implementation described here. Namely,

* We work with a single dataloader only, randomly mixing two observations from the same
batch.

* We linearly combine losses computed for both targets: loss(output, new_target) =weight
* loss(output, targetl) + (1-weight) * loss(output, target2)

* We draw different mixing coefficients for every pair.

* We replace weight with weight = max(weight, 1-weight) to avoid duplicates.

Value

A luz_callback

See Also

nn_mixup_loss(), nnf_mixup()

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_interrupt(), luz_callback_keep_best_model (), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_model_checkpoint(), luz_callback_profile(), luz_callback_progress
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

Examples

if (torch::torch_is_installed()) {
mixup_callback <- luz_callback_mixup()

}

https://github.com/fastai/fastai/blob/master/fastai/callback/mixup.py
https://forums.fast.ai/t/mixup-data-augmentation/22764

Iuz_callback_model_checkpoint 27

luz_callback_model_checkpoint
Checkpoints model weights

Description

This saves checkpoints of the model according to the specified metric and behavior.

Usage
luz_callback_model_checkpoint(
path,
monitor = "valid_loss”,
save_best_only = FALSE,
mode = "min”,
min_delta = @
)
Arguments
path Path to save the model on disk. The path is interpolated with glue, so you can
use any attribute within the ctx by using '{ctx$epoch}'. Specially the epoch
and monitor quantities are already in the environment. If the specified path is a
path to a directory (ends with / or \), then models are saved with the name given
by epoch-{epoch:02d}-{self$monitor}-{monitor:.3f}.pt. See more in
the examples. You can use sprintf() to quickly format quantities, for exam-
ple: ' {epoch:02d}".
monitor A string in the format <set>_<metric> where <set> can be ’train’ or ’valid’

and <metric> can be the abbreviation of any metric that you are tracking during
training. The metric name is case insensitive.

save_best_only if TRUE models are only saved if they have an improvement over a previously
saved model.

mode Specifies the direction that is considered an improvement. By default 'min’ is
used. Can also be 'max’ (higher is better) and ’zero’ (closer to zero is better).

min_delta Minimum difference to consider as improvement. Only used when save_best_only=TRUE.

Note

mode and min_delta are only used when save_best_only=TRUE. save_best_only will overwrite
the saved models if the path parameter don’t differentiate by epochs.

Read the checkpointing article in the pkgdown website for more information.

28 luz_callback_profile

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_interrupt(), luz_callback_keep_best_model (), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_profile(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

Examples

luz_callback_model_checkpoint(path= "path/to/dir")
luz_callback_model_checkpoint(path= "path/to/dir/epoch-{epoch:02d}/model.pt")
luz_callback_model_checkpoint(path= "path/to/dir/epoch-{epoch:02d}/model-{monitor:.2f}.pt")

luz_callback_profile Profile callback

Description

Computes the times for high-level operations in the training loops.

Usage
luz_callback_profile()

Details

Records are saved in ctx$records$profile. Times are stored as seconds. Data is stored in the
following structure:

* fit time for the entire fit procedure.

 epoch times per epoch

Value

A luz_callback

Note

In general you don’t need to use these callback by yourself because it’s always included by default
in fit.luz_module_generator().

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping(),
luz_callback_interrupt(), luz_callback_keep_best_model(), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_progress(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

luz_callback_progress 29

Examples

profile_callback <- luz_callback_profile()

luz_callback_progress Progress callback

Description

Responsible for printing progress during training.

Usage

luz_callback_progress()

Value

A luz_callback

Note

In general you don’t need to use these callback by yourself because it’s always included by default
in fit.luz_module_generator().

Printing can be disabled by passing verbose=FALSE to fit.luz_module_generator().

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping().
luz_callback_interrupt(), luz_callback_keep_best_model (), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(),
luz_callback_resume_from_checkpoint(), luz_callback_train_valid(), luz_callback()

luz_callback_resume_from_checkpoint
Allow resume model training from a specific checkpoint

Description

Allow resume model training from a specific checkpoint

30 luz_callback_tfevents

Usage

luz_callback_resume_from_checkpoint(
path,
restore_model_state = TRUE,
restore_records = FALSE,
restore_optimizer_state = FALSE,
restore_callbacks_state = FALSE

Arguments

path Path to the checkpoint that you want to resume.

e currently unused.
restore_model_state

Wether to restore the model state from the callback.
restore_records

Wether to restore records from the checkpoint.
restore_optimizer_state

Wether to restore the optimizer state from the checkpoint.
restore_callbacks_state

Wether to restore the callbacks state from the checkpoint.

Note

Read the checkpointing article in the pkgdown website for more information.

See Also

luz_callback_model_checkpoint()

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping(),
luz_callback_interrupt(), luz_callback_keep_best_model(), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(),
luz_callback_progress(), luz_callback_train_valid(), luz_callback()

luz_callback_tfevents tfevents callback

Description
Logs metrics and other model information in the tfevents file format. Assuming tensorboard is
installed, result can be visualized with

Usage

luz_callback_tfevents(logdir = "logs", histograms = FALSE, ...)

luz_callback_train_valid 31

Arguments
logdir A directory to where log will be written to.
histograms A boolean specifying if histograms of model weights should be logged. It can
also be a character vector specifying the name of the parameters that should be
logged (names are the same as names(model$parameters)).
Currently not used. For future expansion.
Details

tensorboard --logdir=logs

Examples

if (torch::torch_is_installed()) {
library(torch)

x <- torch_randn(1000, 10)

y <= torch_randn(1000, 1)

model <- nn_linear %>%
setup(loss = nnf_mse_loss, optimizer = optim_adam) %>%
set_hparams(in_features = 10, out_features = 1) %>%
set_opt_hparams(lr = le-4)

tmp <- tempfile()

model %>% fit(list(x, y), valid_data = 0.2, callbacks = list(
luz_callback_tfevents(tmp, histograms = TRUE)

))

3

luz_callback_train_valid
Train-eval callback

Description

Switches important flags for training and evaluation modes.

Usage

luz_callback_train_valid()

Details
It takes care of the three ctx attributes:

* ctx$model: Responsible for calling ctx$model$train() and ctx$model$eval (), when ap-
propriate.

» ctx$training: Sets this flag to TRUE when training and FALSE when in validation mode.

* ctx$loss: Resets the loss attribute to 1ist () when finished training/ or validating.

32 luz_load_checkpoint

Value

A luz_callback

Note

In general you won’t need to explicitly use the metrics callback as it’s used by defaultin fit.luz_module_generator().

See Also

Other luz_callbacks: 1uz_callback_auto_resume(), luz_callback_csv_logger(), luz_callback_early_stopping(),
luz_callback_interrupt(), luz_callback_keep_best_model(), luz_callback_lr_scheduler(),
luz_callback_metrics(), luz_callback_mixup(), luz_callback_model_checkpoint(), luz_callback_profile(),
luz_callback_progress(), luz_callback_resume_from_checkpoint(), luz_callback()

luz_load Load trained model

Description

Loads a fitted model. See documentation in luz_save().

Usage
luz_load(path)

Arguments

path path in file system so save the object.

See Also

Other luz_save: luz_save()

luz_load_checkpoint Loads a checkpoint

Description

Works with checkpoints created typically with luz_callback_model_checkpoint().

Usage

luz_load_checkpoint(obj, path, ...)

luz_load_model_weights 33

Arguments
obj Object to which we want to laod the checkpoint.
path Path of the checkpoint on disk.

unused. Is there to allow future extensions.

luz_load_model_weights
Loads model weights into a fitted object.

Description
This can be useful when you have saved model checkpoints during training and want to reload the
best checkpoint in the end.

Usage
luz_load_model_weights(obj, path, ...)

luz_save_model_weights(obj, path)

Arguments
obj luz object to which you want to copy the new weights.
path path to saved model in disk.
other arguments passed to torch_load().
Value

Returns NULL invisibly.

Warning

luz_save_model_weights operates inplace, ie modifies the model object to contain the new weights.

34 luz_metric

luz_metric Creates a new luz metric

Description

Creates a new luz metric

Usage

luz_metric(
name = NULL,
private = NULL,
active = NULL,
parent_env = parent.frame(),
inherit = NULL

)
Arguments
name string naming the new metric.
named list of public methods. You should implement at least initialize,
update and compute. See the details section for more information.
private An optional list of private members, which can be functions and non-functions.
active An optional list of active binding functions.
parent_env An environment to use as the parent of newly-created objects.
inherit A R6ClassGenerator object to inherit from; in other words, a superclass. This is
captured as an unevaluated expression which is evaluated in parent_env each
time an object is instantiated.
Details

In order to implement a new luz_metric we need to implement 3 methods:

e initialize: defines the metric initial state. This function is called for each epoch for both
training and validation loops.

» update: updates the metric internal state. This function is called at every training and valida-
tion step with the predictions obtained by the model and the target values obtained from the
dataloader.

* compute: uses the internal state to compute metric values. This function is called whenever we
need to obtain the current metric value. Eg, it’s called every training step for metrics displayed
in the progress bar, but only called once per epoch to record it’s value when the progress bar
is not displayed.

luz_metric 35

Optionally, you can implement an abbrev field that gives the metric an abbreviation that will be
used when displaying metric information in the console or tracking record. If no abbrev is passed,
the class name will be used.

Let’s take a look at the implementation of luz_metric_accuracy so you can see how to implement
anew one:

luz_metric_accuracy <- luz_metric(
An abbreviation to be shown in progress bars, or
when printing progress
abbrev = "Acc",
Initial setup for the metric. Metrics are initialized
every epoch, for both training and validation
initialize = function() {
self$correct <- @
self$total <- 0
h
Run at every training or validation step and updates
the internal state. The update function takes ‘preds®
and ‘target‘ as parameters.
update = function(preds, target) {
pred <- torch::torch_argmax(preds, dim = 2)
self$correct <- self$correct + (pred == target)$
to(dtype = torch::torch_float())$
sum()$
item()
self$total <- self$total + pred$numel()
h
Use the internal state to query the metric value
compute = function() {
self$correct/self$total

Note: It’s good practice that the compute metric returns regular R values instead of torch tensors
and other parts of luz will expect that.
Value

Returns new luz metric.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_mse(),
luz_metric_multiclass_auroc(), luz_metric_rmse()

Examples

luz_metric_accuracy <- luz_metric(

36

An abbreviation to be shown in progress bars, or
when printing progress
abbrev = "Acc”,
Initial setup for the metric. Metrics are initialized
every epoch, for both training and validation
initialize = function() {

self$correct <- @

self$total <- @
1
Run at every training or validation step and updates
the internal state. The update function takes ‘preds®
and ‘target‘ as parameters.
update = function(preds, target) {

pred <- torch::torch_argmax(preds, dim = 2)

self$correct <- self$correct + (pred == target)$
to(dtype = torch::torch_float())$
sum()$
item()

self$total <- self$total + pred$numel()
}Y
Use the internal state to query the metric value
compute = function() {

self$correct/self$total

luz_metric_accuracy

luz_metric_accuracy Accuracy

Description

Computes accuracy for multi-class classification problems.

Usage

luz_metric_accuracy()

Details

This metric expects to take logits or probabilities at every update. It will then take the columnwise
argmax and compare to the target.

Value

Returns new luz metric.

luz_metric_binary_accuracy 37

See Also

Other luz_metrics: luz_metric_binary_accuracy_with_logits(), luz_metric_binary_accuracy(),
luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_mse(), luz_metric_multiclass_auroc(),

luz_metric_rmse(), luz_metric()

Examples

if (torch::torch_is_installed()) {

library(torch)

metric <- luz_metric_accuracy()

metric <- metric$new()

metric$update(torch_randn(100, 10), torch::torch_randint(1, 10, size = 100))
metric$compute()

}

luz_metric_binary_accuracy
Binary accuracy

Description

Computes the accuracy for binary classification problems where the model returns probabilities.
Commonly used when the loss is torch: :nn_bce_loss().

Usage

luz_metric_binary_accuracy(threshold = 0.5)

Arguments

threshold value used to classifiy observations between 0 and 1.

Value

Returns new luz metric.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_mse(), luz_metric_multiclass_auroc(),

luz_metric_rmse(), luz_metric()

38 luz_metric_binary_accuracy_with_logits

Examples

if (torch::torch_is_installed()) {

library(torch)

metric <- luz_metric_binary_accuracy(threshold = 0.5)

metric <- metric$new()

metric$update(torch_rand(100), torch::torch_randint(@, 1, size = 100))
metric$compute()

}

luz_metric_binary_accuracy_with_logits
Binary accuracy with logits

Description

Computes accuracy for binary classification problems where the model return logits. Commonly
used together with torch: :nn_bce_with_logits_loss().

Usage

luz_metric_binary_accuracy_with_logits(threshold = 0.5)

Arguments

threshold value used to classifiy observations between 0 and 1.

Details

Probabilities are generated using torch: :nnf_sigmoid() and threshold is used to classify be-
tween O or 1.

Value

Returns new luz metric.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy(), luz_metric_binary_auroc(),
luz_metric_mae(), luz_metric_mse(), luz_metric_multiclass_auroc(), luz_metric_rmse(),
luz_metric()

luz_metric_binary_auroc 39

Examples

if (torch::torch_is_installed()) {

library(torch)

metric <- luz_metric_binary_accuracy_with_logits(threshold = 0.5)
metric <- metric$new()

metric$update(torch_randn(100), torch::torch_randint(@, 1, size = 100))
metric$compute()

}

luz_metric_binary_auroc
Computes the area under the ROC

Description

To avoid storing all predictions and targets for an epoch we compute confusion matrices across a
range of pre-established thresholds.

Usage

luz_metric_binary_auroc(
num_thresholds = 200,
thresholds = NULL,
from_logits = FALSE

)

Arguments

num_thresholds Number of thresholds used to compute confusion matrices. In that case, thresh-
olds are created by getting num_thresholds values linearly spaced in the unit
interval.

thresholds (optional) If threshold are passed, then those are used to compute the confusion
matrices and num_thresholds is ignored.

from_logits Boolean indicating if predictions are logits, in that case we use sigmoid to put
them in the unit interval.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_mae(), luz_metric_mse(), luz_metric_multiclass_auroc(),
luz_metric_rmse(), luz_metric()

40 luz_metric_mae

Examples

if (torch::torch_is_installed()){
library(torch)

actual <- c(1, 1, 1, 0, 0, @)

predicted <- c(0.9, 0.8, 0.4, 0.5, 0.3, 0.2)

y_true <- torch_tensor(actual)
y_pred <- torch_tensor(predicted)

m <- luz_metric_binary_auroc(thresholds = predicted)
m <- m$new()

m$update(y_pred[1:2], y_true[1:2])
m$update(y_pred[3:4], y_true[3:4])
m$update(y_pred[5:6], y_true[5:6])

m$compute ()
3

luz_metric_mae Mean absolute error

Description

Computes the mean absolute error.

Usage

luz_metric_mae()

Value

Returns new luz metric.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_binary_auroc(), luz_metric_mse(), luz_metric_multiclass_auroc
luz_metric_rmse(), luz_metric()

Examples

if (torch::torch_is_installed()) {

library(torch)

metric <- luz_metric_mae()

metric <- metric$new()
metric$update(torch_randn(100), torch_randn(100))
metric$compute()

3

luz_metric_mse 41

luz_metric_mse Mean squared error

Description

Computes the mean squared error

Usage

luz_metric_mse()

Value

A luz_metric object.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_multiclass_auroc
luz_metric_rmse(), luz_metric()

luz_metric_multiclass_auroc
Computes the multi-class AUROC

Description

The same definition as Keras is used by default. This is equivalent to the 'micro' method in SciKit
Learn too. See docs.

Usage

luz_metric_multiclass_auroc(
num_thresholds = 200,
thresholds = NULL,
from_logits = FALSE,
average = c("micro”, "macro”, "weighted”, "none")

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

42 luz_metric_multiclass_auroc

Arguments

num_thresholds Number of thresholds used to compute confusion matrices. In that case, thresh-
olds are created by getting num_thresholds values linearly spaced in the unit
interval.

thresholds (optional) If threshold are passed, then those are used to compute the confusion
matrices and num_thresholds is ignored.

from_logits If TRUE then we call torch: :nnf_softmax() in the predictions before comput-
ing the metric.

average The averaging method:
* 'micro': Stack all classes and computes the AUROC as if it was a binary
classification problem.
* 'macro': Finds the AUCROC for each class and computes their mean.
* 'weighted': Finds the AUROC for each class and computes their weighted
mean pondering by the number of instances for each class.
* 'none': Returns the AUROC for each class in a list.

Details

Note that class imbalance can affect this metric unlike the AUC for binary classification.

Currently the AUC is approximated using the interpolation’ method described in Keras.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_mse(),
luz_metric_rmse(), luz_metric()

Examples

if (torch::torch_is_installed()) {
library(torch)

actual <- c(1, 1, 1, 0, @, @) + 1L
predicted <- c(0.9, 0.8, 0.4, 0.5, 0.3, 0.2)
predicted <- cbind(1-predicted, predicted)

y_true <- torch_tensor(as.integer(actual))
y_pred <- torch_tensor(predicted)

m <- luz_metric_multiclass_auroc(thresholds = as.numeric(predicted),
average = "micro")
m <- m$new()

m$update(y_pred[1:2,], y_truel[1:2])
m$update(y_pred[3:4,]1, y_true[3:4])
m$update(y_pred[5:6,], y_true[5:6])
m$compute ()

3

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC

luz_metric_rmse 43

luz_metric_rmse Root mean squared error

Description

Computes the root mean squared error.

Usage

luz_metric_rmse()

Value

Returns new luz metric.

See Also

Other luz_metrics: luz_metric_accuracy(), luz_metric_binary_accuracy_with_logits(),
luz_metric_binary_accuracy(), luz_metric_binary_auroc(), luz_metric_mae(), luz_metric_mse(),
luz_metric_multiclass_auroc(), luz_metric()

luz_metric_set Creates a metric set

Description

A metric set can be used to specify metrics that are only evaluated during training, validation or
both.

Usage

luz_metric_set(metrics = NULL, train_metrics = NULL, valid_metrics = NULL)

Arguments
metrics A list of luz_metrics that are meant to be used in both training and validation.
train_metrics A list of luz_metrics that are only used during training.

valid_metrics A list of luz_metrics that are only sued for validation.

44 nnf_mixup

luz_save Saves luz objects to disk

Description

Allows saving luz fitted models to the disk. Objects can be loaded back with 1uz_load().

Usage
luz_save(obj, path, ...)
Arguments
obj an object of class ’luz_module_fitted’ as returned by fit.luz_module_generator().
path path in file system so save the object.
currently unused.
Warning

The ctx is naively serialized. Ie, we only use saveRDS() to serialize it. Don’t expect luz_save
to work correctly if you have unserializable objects in the ctx like torch_tensors and external
pointers in general.

Note

Objects are saved as plain . rds files but obj$model is serialized with torch_save before saving it.

See Also

Other luz_save: luz_load()

nnf_mixup Mixup logic

Description

Logic underlying luz_callback_mixup().

Usage

nnf_mixup(x, y, weight)

nn_mixup_loss 45

Arguments

X an input batch

y a target batch

weight weighting coefficient to be used by torch_lerp()
Details

Based on the passed-in input and target batches, as well as applicable mixing weights, we return new
tensors intended to replace the current batch. The new input batch is a weighted linear combination
of input batch items, while the new target batch bundles the original targets, as well as the mixing
weights, in a nested list.

Value

A list of:

* X, the new, mixed-up input batch
e y,alistof:
— ys,alist of:
% y1, the original target y1
% y2, the mixed-in target y2
— weight, the mixing weights

See Also

luz_callback_mixup()

Examples

if (torch::torch_is_installed()) {

batch_x <- torch::torch_randn(c(10, 768))

batch_y <- torch::torch_randn(10)

weight <- torch::torch_tensor(rep(0.9, 10))$view(c(10, 1))
nnf_mixup(batch_x, batch_y, weight)

}

nn_mixup_loss Loss to be used with callbacks_mixup().

Description

In the training phase, computes individual losses with regard to two targets, weights them item-
wise, and averages the linear combinations to yield the mean batch loss. For validation and testing,
defers to the passed-in loss.

46 predict.luz_module_fitted

Usage

nn_mixup_loss(loss)

Arguments
loss the underlying loss nn_module to call. It must support the reduction field.
During training the attribute will be changed to 'none' so we get the loss for
individual observations. See for for example documentation for the reduction
argument in torch: :nn_cross_entropy_loss().
Details

It should be used together with luz_callback_mixup().

See Also

luz_callback_mixup()

predict.luz_module_fitted
Create predictions for a fitted model

Description

Create predictions for a fitted model

Usage

S3 method for class 'luz_module_fitted'
predict(

object,

newdata,

callbacks = list(),
accelerator = NULL,
verbose = NULL,
dataloader_options = NULL

)

Arguments
object (fitted model) the fitted model object returned from fit.luz_module_generator()
newdata (dataloader, dataset, list or array) returning a list with at least 1 element. The

other elements aren’t used.

Currently unused.

setup 47

callbacks (list, optional) A list of callbacks defined with luz_callback() that will be
called during the training procedure. The callbacks luz_callback_metrics(),
luz_callback_progress() and luz_callback_train_valid() are always added

by default.

accelerator (accelerator, optional) An optional accelerator () object used to configure de-
vice placement of the components like nn_modules, optimizers and batches of
data.

verbose (logical, optional) An optional boolean value indicating if the fitting procedure

should emit output to the console during training. By default, it will produce

output if interactive() is TRUE, otherwise it won’t print to the console.
dataloader_options

Options used when creating a dataloader. See torch: :dataloader(). shuffle=TRUE

by default for the training data and batch_size=32 by default. It will error if

not NULL and data is already a dataloader.

See Also

Other training: evaluate(), fit.luz_module_generator(), setup()

setup Set’s up a nn_module fo use with luz

Description
The setup function is used to set important attributes and method for nn_modules to be used with
luz.

Usage
setup(module, loss = NULL, optimizer = NULL, metrics = NULL, backward = NULL)

Arguments

module (nn_module) The nn_module that you want set up.

loss (function, optional) An optional function with the signature function(input, target).
It’s only requires if your nn_module doesn’t implement a method called loss.

optimizer (torch_optimizer, optional) A function with the signature function(parameters, ...)
that is used to initialize an optimizer given the model parameters.

metrics (list, optional) A list of metrics to be tracked during the training procedure.
Sometimes, you want some metrics to be evaluated only during training or val-
idation, in this case you can pass a luz_metric_set() object to specify mmet-
rics used in each stage.

backward (function) A functions that takes the loss scalar values as it’s parameter. It must

call $backward() or torch::autograd_backward(). In general you don’t
need to set this parameter unless you need to customize how luz calls the backward(),
for example, if you need to add additional arguments to the backward call. Note

that this becomes a method of the nn_module thus can be used by your custom
step() if you override it.

48 set_hparams

Details

It makes sure the module have all the necessary ingredients in order to be fitted.

Value

A luz module that can be trained with fit().

Note

It also adds a device active field that can be used to query the current module device within
methods, with eg self$device. This is useful when ctx() is not available, eg, when calling
methods from outside the 1uz wrappers. Users can override the default by implementing a device
active method in the input module.

See Also

Other training: evaluate(), fit.luz_module_generator(), predict.luz_module_fitted()

set_hparams Set hyper-parameter of a module

Description

This function is used to define hyper-parameters before calling fit for luz_modules.

Usage
set_hparams(module, ...)
Arguments
module An nn_module that has been setup().
The parameters set here will be used to initialize the nn_module, ie they are
passed unchanged to the initialize method of the base nn_module.
Value

The same luz module

See Also

Other set_hparam: set_opt_hparams()

set_opt_hparams 49

set_opt_hparams Set optimizer hyper-parameters

Description

This function is used to define hyper-parameters for the optimizer initialization method.

Usage
set_opt_hparams(module, ...)
Arguments
module An nn_module that has been setup().
The parameters passed here will be used to initialize the optimizers. For exam-
ple, if your optimizer is optim_adam and you pass 1r=0. 1, then the optim_adam
function is called with optim_adam(parameters, 1r=0.1) when fitting the model.
Value

The same luz module

See Also

Other set_hparam: set_hparams()

Index

x luz_callbacks
luz_callback, 15
luz_callback_auto_resume, 18
luz_callback_csv_logger, 20
luz_callback_early_stopping, 21
luz_callback_interrupt, 22

luz_callback_keep_best_model, 23

luz_callback_lr_scheduler, 24
luz_callback_metrics, 25
luz_callback_mixup, 25

luz_callback_model_checkpoint, 27

luz_callback_profile, 28
luz_callback_progress, 29

luz_callback_resume_from_checkpoint,

29
luz_callback_train_valid, 31
* luz_metrics
luz_metric, 34
luz_metric_accuracy, 36
luz_metric_binary_accuracy, 37

luz_metric_binary_accuracy_with_logits,

38
luz_metric_binary_auroc, 39
luz_metric_mae, 40
luz_metric_mse, 41
luz_metric_multiclass_auroc, 41
luz_metric_rmse, 43

* luz_save
luz_load, 32
luz_save, 44

* set_hparam
set_hparams, 48
set_opt_hparams, 49

* training
evaluate, 10
fit.luz_module_generator, 11
predict.luz_module_fitted, 46
setup, 47

accelerator, 3

50

accelerator(), 5, 6, 10, 12,47
as_dataloader, 3

context, 5, 10
ctx, 5,9, 25,27, 44
ctx(), 48

evaluate, 10, 13, 47, 48
evaluate(), 17

fit(), 17,48

fit.luz_module_generator, 11, 11,47, 48

fit.luz_module_generator(), 3,4, 17,21,
23, 25,28, 29, 32,44, 46

get_metrics, 13
interactive(), 8, 10, 12,47

1r_finder, 13
luz_callback, 15, 19-21, 23-26, 28-30, 32
luz_callback(), 6, 10, 12, 24, 47
luz_callback_auto_resume, I8, 18, 20, 21,
23-26, 28-30, 32
luz_callback_csv_logger, 18, 19, 20, 21,
23-26, 28-30, 32
luz_callback_early_stopping, 18-20, 21,
23-26, 28-30, 32
luz_callback_gradient_clip, 22
luz_callback_interrupt, 18-21, 22, 23-26,
28-30, 32
luz_callback_keep_best_model, 18-21, 23,
23, 24-26, 28-30, 32
luz_callback_lr_scheduler, 18-21, 23, 24,
25, 26, 28-30, 32
luz_callback_metrics, /18-21, 23, 24, 25,
26, 28-30, 32
luz_callback_metrics(), 10, 12,47
luz_callback_mixup, 18-21, 23-25, 25,
28-30, 32
luz_callback_mixup(), 4446

INDEX

luz_callback_model_checkpoint, /18-21,
23-26, 27, 28-30, 32
luz_callback_model_checkpoint(), 30, 32
luz_callback_profile, 18-21, 23-26, 28,
28, 29, 30, 32
luz_callback_progress, 18-21, 23-26, 28,
29, 30, 32
luz_callback_progress(), 10, 12,47
luz_callback_resume_from_checkpoint,
18-21, 23-26, 28, 29, 29, 32
luz_callback_tfevents, 30
luz_callback_train_valid, 18-21, 23-26,
28-30, 31
luz_callback_train_valid(), 10, 12,47
luz_load, 32, 44
luz_load(), 44
luz_load_checkpoint, 32
luz_load_model_weights, 33
luz_metric, 34, 3743
luz_metric_accuracy, 35, 36, 3743
luz_metric_binary_accuracy, 35, 37, 37,
3843
luz_metric_binary_accuracy_with_logits,
35, 37,38, 3943
luz_metric_binary_auroc, 35, 37, 38, 39,
40-43
luz_metric_mae, 35, 37-39, 40, 4143
luz_metric_mse, 35, 3740, 41, 42, 43
luz_metric_multiclass_auroc, 35, 3741,
41,43
luz_metric_rmse, 35, 37—42, 43
luz_metric_set, 43
luz_metric_set(), 47
luz_save, 32, 44
luz_save(), 12, 32
luz_save_model_weights
(luz_load_model_weights), 33

nn_mixup_loss, 45
nn_mixup_loss(), 25, 26
nn_module, 70, 12,47
nnf_mixup, 44
nnf_mixup(), 26

plot(), 12

predict(), 17
predict.luz_module_fitted, /1, 13,46, 48
predict.luz_module_fitted(), I3
print(), 12

51

rlang::try_fetch(), 5

saveRDS(), 44
set_hparams, 48, 49
set_opt_hparams, 48, 49
setup, 11, 13,47,47
setup(), 12, 13, 25,48, 49
sprintf(), 27

torch: :autograd_backward(), 47
torch: :dataloader, 3, 4

torch: :dataloader(), 4, 10-12,47
torch: :dataset, 4

torch: :dataset(), 4, 10, 12

torch: :1r_scheduler(), 24

torch: :nn_bce_loss(), 37

torch: :nn_bce_with_logits_loss(), 38
torch: :nn_cross_entropy_loss(), 46
torch: :nn_utils_clip_grad_norm_(), 22
torch: :nnf_sigmoid(), 38

torch: :nnf_softmax(), 42
torch_load(), 33

	accelerator
	as_dataloader
	context
	ctx
	evaluate
	fit.luz_module_generator
	get_metrics
	lr_finder
	luz_callback
	luz_callback_auto_resume
	luz_callback_csv_logger
	luz_callback_early_stopping
	luz_callback_gradient_clip
	luz_callback_interrupt
	luz_callback_keep_best_model
	luz_callback_lr_scheduler
	luz_callback_metrics
	luz_callback_mixup
	luz_callback_model_checkpoint
	luz_callback_profile
	luz_callback_progress
	luz_callback_resume_from_checkpoint
	luz_callback_tfevents
	luz_callback_train_valid
	luz_load
	luz_load_checkpoint
	luz_load_model_weights
	luz_metric
	luz_metric_accuracy
	luz_metric_binary_accuracy
	luz_metric_binary_accuracy_with_logits
	luz_metric_binary_auroc
	luz_metric_mae
	luz_metric_mse
	luz_metric_multiclass_auroc
	luz_metric_rmse
	luz_metric_set
	luz_save
	nnf_mixup
	nn_mixup_loss
	predict.luz_module_fitted
	setup
	set_hparams
	set_opt_hparams
	Index

