## ----setup, include = FALSE--------------------------------------------------- options(tinytex.verbose = TRUE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(latentcor) ## ----data_generation---------------------------------------------------------- simdata = gen_data(n = 100, types = c("ter", "con")) ## ----data_output-------------------------------------------------------------- names(simdata) ## ----data_matrix-------------------------------------------------------------- X = simdata$X head(X, n = 6L) ## ----data_plot---------------------------------------------------------------- simdata$plotX ## ----estimation--------------------------------------------------------------- estimate = latentcor(X, types = c("ter", "con")) ## ----estimation_output-------------------------------------------------------- names(estimate) ## ----zratios------------------------------------------------------------------ estimate$zratios ## ----Kendall------------------------------------------------------------------ estimate$K ## ----latent_correlation_pointwise--------------------------------------------- estimate$Rpointwise ## ----latent_correlation------------------------------------------------------- estimate$R ## ----heatmap------------------------------------------------------------------ estimate$plotR ## ----mtcars------------------------------------------------------------------- head(mtcars, n = 6L) ## ----unique------------------------------------------------------------------- apply(mtcars, 2, table) ## ----mtcars_estimation-------------------------------------------------------- estimate_mtcars = latentcor(mtcars, types = c("con", "ter", "con", "con", "con", "con", "con", "bin", "bin", "ter", "con")) ## ----mtcars_types, message = FALSE-------------------------------------------- estimate_mtcars = latentcor(mtcars, types = get_types(mtcars)) ## ----mtcars_estimation_output------------------------------------------------- names(estimate_mtcars) ## ----mtcars_zratios----------------------------------------------------------- estimate_mtcars$zratios ## ----mtcars_Kendall----------------------------------------------------------- estimate_mtcars$K ## ----mtcars_latent_correlation_pointwise-------------------------------------- estimate_mtcars$Rpointwise ## ----mtcars_latent_correlation------------------------------------------------ estimate_mtcars$R ## ----mtcars_heatmap----------------------------------------------------------- estimate_mtcars$plotR ## ----data_generation 2-------------------------------------------------------- simdata2 = gen_data(n = 100, types = c(rep("ter", 3), "con", rep("bin", 3))) ## ----types subsampling-------------------------------------------------------- types = get_types(simdata2$X) types ## ----subsampling-------------------------------------------------------------- start_time = proc.time() for (s in 1:10){ # Select a random subsample of size 80 subsample = sample(1:100, 80) # Estimate latent correlation on subsample specifying the types Rs = latentcor(simdata2$X[subsample, ], types = types) } proc.time() - start_time ## ----subsampling 2------------------------------------------------------------ start_time = proc.time() for (s in 1:10){ # Select a random subsample of size 80 subsample = sample(1:100, 80) # Estimate latent correlation on subsample specifying the types Rs = latentcor(simdata2$X[subsample, ], types = get_types(simdata2$X)) } proc.time() - start_time