## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup, include = FALSE--------------------------------------------------- library(latenetwork) ## ---- eval = F, echo = T------------------------------------------------------ # install.packages("latenetwork") ## ---- eval = F, echo = T------------------------------------------------------ # # install.packages("devtools") # if needed # devtools::install_github("tkhdyanagi/latenetwork", build_vignettes = TRUE) ## ---- eval = F, echo = T------------------------------------------------------ # # if needed -------------------------------------------------------------------- # install.packages("igraph") ## ---- eval = T, echo = T------------------------------------------------------ # Generate artificial data from a ring network---------------------------------- set.seed(1) n <- 2000 data <- latenetwork::datageneration(n = n) ## ---- eval = T, echo = T------------------------------------------------------ # Arguments -------------------------------------------------------------------- Y <- data$Y D <- data$D Z <- data$Z A <- data$A IEM <- ifelse(A %*% Z > 0, 1, 0) S <- rep(TRUE, n) K <- 1 z <- 1 t <- 0 t0 <- 0 t1 <- 1 bw <- NULL B <- NULL alp <- 0.05 # Causal inference ------------------------------------------------------------- # The ADE parameters defined by IEM = (A %*% Z > 0) result_direct1 <- latenetwork::direct(Y = Y, D = D, Z = Z, IEM = IEM, S = S, A = A, K = K, t = t, bw = bw, B = B, alp = alp) # The ADE parameters defined by the constant IEM result_direct2 <- latenetwork::direct(Y = Y, D = D, Z = Z, IEM = NULL, S = S, A = A, K = K, t = NULL, bw = bw, B = B, alp = alp) # The AIE parameters defined by K = 1 result_indirect <- latenetwork::indirect(Y = Y, D = D, Z = Z, S = S, A = A, K = K, bw = bw, B = B, alp = alp) # The AOE parameters defined by K = 1 result_overall <- latenetwork::overall(Y = Y, D = D, Z = Z, S = S, A = A, K = K, bw = bw, B = B, alp = alp) # The ASE parameters defined by IEM = (A %*% Z > 0) result_spillover <- latenetwork::spillover(Y = Y, D = D, Z = Z, IEM = IEM, S = S, A = A, K = K, z = z, t0 = t0, t1 = t1, bw = bw, B = B, alp = alp) ## ---- eval = T, echo = T------------------------------------------------------ result_direct1 result_direct2 result_indirect result_overall result_spillover