
Package ‘lambdr’
November 25, 2023

Title Create a Runtime for Serving Containerised R Functions on 'AWS
Lambda'

Version 1.2.5

Description Runtime for serving containers that can execute R code on the
'AWS Lambda' serverless compute service <https://aws.amazon.com/lambda/>.
Provides the necessary functionality for handling the various endpoints
required for accepting new input and sending responses.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports httr, jsonlite, logger

Suggests withr, testthat (>= 3.0.0), webmockr, knitr, rmarkdown,
lifecycle

Config/testthat/edition 3

URL https://lambdr.mdneuzerling.com/,

https://github.com/mdneuzerling/lambdr

BugReports https://github.com/mdneuzerling/lambdr/issues

VignetteBuilder knitr

NeedsCompilation no

Author David Neuzerling [aut, cre],
James Goldie [ctb]

Maintainer David Neuzerling <david@neuzerling.com>

Repository CRAN

Date/Publication 2023-11-25 11:00:02 UTC

R topics documented:
lambdr-package . 2
as_stringified_json . 3

1

https://aws.amazon.com/lambda/
https://lambdr.mdneuzerling.com/
https://github.com/mdneuzerling/lambdr
https://github.com/mdneuzerling/lambdr/issues

2 lambdr-package

from_base64 . 4
html_response . 4
lambda_config . 6
start_lambda . 8
stop_html . 9

Index 11

lambdr-package lambdr: Create a Runtime for Serving Containerised R Functions on
AWS Lambda

Description

This package provides an R runtime for the AWS Lambda serverless compute service. It is intended
to be used to create containers that can run on AWS Lambda. lambdr provides the necessary func-
tionality for handling the various endpoints required for accepting new input and sending responses.

This package is unofficial. Its creators are not affiliated with Amazon Web Services, nor is its
content endorsed by Amazon Web Services. Lambda, API Gateway, EventBridge, CloudWatch, and
SNS are services of Amazon Web Services.

To see an example of how to use this package to create a runtime, refer to vignette("lambda-runtime-in-container",
package = "lambdr").

The default behaviour is to convert the body of the received event from JSON into arguments for
the handler function using the jsonlite package. For example, a raw event body of {"number":
9} will be converted to list(number = 9). The handler function will then receive the arguments
directly after unlisting, eg. number = 9. This works for direct invocations, as well as situations
where the user wishes to implement behaviour specific to a trigger.

Some invocation types have their own logic for converting the event body into an R object. This
is useful for say, using an R function in a Lambda behind an API Gateway, so that the R function
does not need to deal with the HTML elements of the invocation. The below invocation types have
custom logic implemented. Refer to the vignettes or the package website for more information.

Alternatively, user-defined functions can be provided for parsing event content and serialising re-
sults. The user can also use the identity function as a deserialiser to pass the raw event content —
as a string — to the handler function. Refer to lambda_config for more information.

Direct invocations

[Stable]

REST API Gateway invocations

[Experimental] vignette("api-gateway-invocations", package = "lambdr")

HTML API Gateway invocations

[Experimental] vignette("api-gateway-invocations", package = "lambdr")

https://aws.amazon.com/lambda/

as_stringified_json 3

EventBridge invocations

[Experimental] vignette("eventbridge-and-sns-invocations", package = "lambdr")

SNS invocations

[Experimental] vignette("eventbridge-and-sns-invocations", package = "lambdr")

Author(s)

Maintainer: David Neuzerling <david@neuzerling.com>

Other contributors:

• James Goldie <me@jamesgoldie.dev> [contributor]

See Also

Useful links:

• https://lambdr.mdneuzerling.com/

• https://github.com/mdneuzerling/lambdr

• Report bugs at https://github.com/mdneuzerling/lambdr/issues

as_stringified_json Convert an R object to stringified JSON matching AWS Lambda con-
ventions

Description

Stringified JSON is a string which can be parsed as a JSON. While a standard JSON interpreta-
tion of list(number = 9) would be {"number":9}, a stringified JSON representation would be
"{\"number\":9}".

This function will convert NULL values to JSON "nulls", to match the convention used by Lambda
event inputs, and values are automatically unboxed.

Usage

as_stringified_json(x, ...)

Arguments

x R object to be converted to stringified JSON.

... additional arguments (except auto_unbox and null) passed to toJSON

Value

character

https://lambdr.mdneuzerling.com/
https://github.com/mdneuzerling/lambdr
https://github.com/mdneuzerling/lambdr/issues

4 html_response

Examples

as_stringified_json(list(number = 9))
"{\"number\":9}"

from_base64 Decode a Base64 encoded value to a string

Description

Events coming via an API Gateway can have content with bodies encoded as Base64. This is
especially true for HTML API Gateways (as opposed to REST API Gateways).

This function propagates NULLs. That is, from_base64(NULL) returns NULL.

Usage

from_base64(x)

Arguments

x a Base64 string

Value

character

Examples

from_base64("eyJudW1iZXIiOjd9")

html_response Prepare a HTML response for a Lambda behind an API Gateway

Description

Lambdas behind API Gateways need to send specially formatted responses that look like this:

{
"statusCode": 200,
"headers": {
"Content-Type": "application/json"

},
"isBase64Encoded": false,
"body": "{\"best_animal\": \"corgi\"}"

}

html_response 5

For basic applications where the handler function is returning a simple result, lambdr will do its
best to automatically return a result compatible with API Gateways. It will do this whenever an
event is detected as having come via an API Gateway. For most purposes this is sufficient, and
allows users to focus on the handler function rather than the specifics of how AWS Lambda works.

For more complicated applications, such as when the Lambda needs to return a specific content
type or specific headers, may require a bespoke response. This function will take any R object and
format it in style of the above example, allowing for customisation.

When the handler function returns a html_response the formatted result will be returned to the
API Gateway without further serialisation.

Usage

html_response(
body,
is_base64 = FALSE,
status_code = 200L,
content_type = NULL,
headers = list()

)

Arguments

body the actual result to be delivered. This is not serialised in any way, so if this is a
list to be interpreted JSON it should be stringified, that is, it should be a string
of a JSON. Consider using the as_stringified_json function.

is_base64 logical which indicates if body is Base64 encoded. Defaults to False.

status_code integer status code of the response. Defaults to 200L (OK).

content_type MIME type for the content. This will be appended to the headers (as "Content-
Type"), unless such a value is already provided to headers, in which case this
argument is ignored. If not provided then no information on headers will be sent
in the response, leaving the beahviour up to the defaults of the API Gateway.

headers additional headers, as a named list, to be included in the response. If this con-
tains a "Content-Type" value then content_type is ignored.

Value

A stringified JSON response for an API Gateway, with the "already_serialised" attribute marked as
TRUE. This will stop serialise_result from attempting to serialise the result again.

Examples

html_response("abc")
html_response("YWJj", is_base64 = TRUE)
html_response("abc", headers = list(x = "a"))
html_response(

"<html><body>Hello World!</body></html>",
content_type = "text/html"

)

6 lambda_config

lambda_config Set up endpoints, variables, and configuration for AWS Lambda

Description

This function provides a configuration object that can be passed to start_lambda. By default it
will use the environment variables configured by AWS Lambda and so will often work without
arguments.

The most important configuration variable is the handler function which processes invocations of
the Lambda. This is configured in any of the three below ways, in order of decreasing priority:

1. configured directly through the AWS Lambda console

2. configured as the CMD argument of the Docker container holding the runtime

3. passed as a value to the handler argument of lambda_config

In the first two options, the handler will be made available to the runtime through the "_HANDLER"
environment variable. This function will search for the function in the given environment.

If the handler accepts a context argument then it will receive a list of suitable event context for
every invocation. This argument must be named (... will not work), and the configuration may be
different for each invocation type. See the section below for more details.

Usage

lambda_config(
handler = NULL,
runtime_api = NULL,
task_root = NULL,
deserialiser = NULL,
serialiser = NULL,
decode_base64 = TRUE,
environ = parent.frame()

)

Arguments

handler the function to use for processing inputs from events. The "_HANDLER" en-
vironment variable, as configured in AWS, will always override this value if
present.

runtime_api character. Used as the host in the various endpoints used by AWS Lambda. This
argument is provided for debugging and testing only. The "AWS_LAMBDA_RUNTIME_API"
environment variable, as configured by AWS, will always override this value if
present.

task_root character. Defines the path to the Lambda function code. This argument is
provided for debugging and testing only. The "LAMBDA_TASK_ROOT" en-
vironment variable, as configured by AWS, will always override this value if
present.

lambda_config 7

deserialiser function for deserialising the body of the event. By default, will attempt to
deserialise the body as JSON, based on whether the input is coming from an
API Gateway, scheduled Cloudwatch event, or direct. To use the body as is, pass
the identity function. To ignore the event content, pass function(x) list().
See the vignettes for details on parsing invocations from particular sources.

serialiser function for serialising the result before sending. By default, will attempt to
serialise the body as JSON, based on the request type. To send the result as is,
pass the identity function.

decode_base64 logical. Should Base64 input be automatically decoded? This is only used for
events coming via an API Gateway. Complicated input (such as images) may
be better left as is, so that the handler function can deal with it appropriately.
Defaults to TRUE. Ignored if a custom deserialiser is used.

environ environment in which to search for the function given by the "_HANDLER"
environment variable. Defaults to the parent frame.

Details

As a rule of thumb, it takes longer to retrieve a value from an environment variable than it does to
retrieve a value from R. This is because retrieving an environment variable requires a system call.
Since the environment variables do not change in a Lambda instance, we fetch them once and store
them in a configuration object which is passed to the various internal functions.

AWS Lambda variables

The lambda_config function obtains the configuration values for the Lambda runtime configures
the R session for Lambda based on environment variables made available by Lambda. The follow-
ing environment variables are available:

• Lambda Runtime API, available as the "AWS_LAMBDA_RUNTIME_API" environment vari-
able, is the host of the various HTTP endpoints through which the runtime interacts with
Lambda.

• Lambda Task Root, available as the "LAMBDA_TASK_ROOT" environment variable, defines
the path to the Lambda function code. It isn’t used in container environments with a custom
runtime, as that runtime is responsible for finding and sourcing the function code. Hence, a
missing task root is ignored by this package.

• The handler, available as the "_HANDLER" environment variable, is interpreted by R as the
function that is executed when the Lambda is called. This value could be anything, as the
interpretation is solely up to the runtime, so requiring it to be a function is a standard imposed
by this package.

These handler, runtime_api and task_root arguments to the lambda_config function can also
provide values to these configuration options, although the environment variables will always be
used if available. While it may be sensible to provide the handler function directly, the other two
configuration options are only provided for debugging and testing purposes.

Event context

Context is metadata associated with each invocation. If the handler function accepts a context
argument then it will automatically receive at runtime a named list consisting of these values along

8 start_lambda

with the arguments in the body (if any). For example, a function such as my_func(x, context)
will receive the context argument automatically. The context argument must be named (... will
not work).

Refer to vignette("lambda-runtime-in-container", package = "lambdr") for details.

start_lambda Start the Lambda runtime

Description

This is the main function of the package, responsible for starting the infinite loop of listening for
new invocations. It relies on configuration provided to the config argument and produced by the
lambda_config function.

Usage

start_lambda(
config = lambda_config(environ = parent.frame()),
timeout_seconds = NULL

)

Arguments

config A list of configuration values as created by the lambda_config function.
timeout_seconds

If set, the function will stop listening for events after this timeout. The timeout is
checked between events, so this won’t interrupt the function while it is waiting
for a new event. This argument is provided for testing purposes, and shouldn’t
otherwise need to be set: AWS should handle the shutdown of idle Lambda
instances.

Details

See vignette("lambda-runtime-in-container", package = "lambdr") for an example of how
to use this function to place an R Lambda Runtime in a container.

This package uses the logger package for logging. Debug log entries can be enabled with logger::log_threshold(logger::DEBUG).
This will log additional information such as raw event bodies.

Event context

Context is metadata associated with each invocation. If the handler function accepts a context
argument then it will automatically receive at runtime a named list consisting of these values along
with the arguments in the body (if any). For example, a function such as my_func(x, context)
will receive the context argument automatically. The context argument must be named (... will
not work).

Refer to vignette("lambda-runtime-in-container", package = "lambdr") for details.

stop_html 9

AWS Lambda variables

The lambda_config function obtains the configuration values for the Lambda runtime configures
the R session for Lambda based on environment variables made available by Lambda. The follow-
ing environment variables are available:

• Lambda Runtime API, available as the "AWS_LAMBDA_RUNTIME_API" environment vari-
able, is the host of the various HTTP endpoints through which the runtime interacts with
Lambda.

• Lambda Task Root, available as the "LAMBDA_TASK_ROOT" environment variable, defines
the path to the Lambda function code. It isn’t used in container environments with a custom
runtime, as that runtime is responsible for finding and sourcing the function code. Hence, a
missing task root is ignored by this package.

• The handler, available as the "_HANDLER" environment variable, is interpreted by R as the
function that is executed when the Lambda is called. This value could be anything, as the
interpretation is solely up to the runtime, so requiring it to be a function is a standard imposed
by this package.

These handler, runtime_api and task_root arguments to the lambda_config function can also
provide values to these configuration options, although the environment variables will always be
used if available. While it may be sensible to provide the handler function directly, the other two
configuration options are only provided for debugging and testing purposes.

Examples

Not run:
A general usage pattern involves sourcing necessary functions and running
this `start_lambda` in a `runtime.R` file which is then executed to start
the runtime. In the following example, the function handler can be set to
"lambda" either as the container `CMD`, or configured through AWS Lambda.

parity <- function(number) {
list(parity = if (as.integer(number) %% 2 == 0) "even" else "odd")

}

start_lambda()

Alternatively, it can be passed as an argument `handler = parity` to
the lambda configuration. If the handler is configured through other means
then this will be ignored:

start_lambda(config = lambda_config(handler = parity))

End(Not run)

stop_html Raise an error with an optional HTML status code for API Gateways

10 stop_html

Description

This variation of stop can be used to raise an error with a specific error code. This is provided to
the API Gateway to return an appropriate response. It had no use outside of invocations via an API
Gateway.

If a status code is not provided, a generic "500" internal server error will be used.

Usage

stop_html(..., code = 500L)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator). This forms the error message.

code HTTP status code to return (if applicable). Defaults to 500, which is a generic
"Internal Server Error". This is used when errors are to be returned to an API
Gateway.

Examples

Not run:
stop_html("Resource doesn't exist", code = 404L)

End(Not run)

Index

as_stringified_json, 3, 5

from_base64, 4

html_response, 4

lambda_config, 2, 6, 7–9
lambdr (lambdr-package), 2
lambdr-package, 2
logger, 8

start_lambda, 6, 8
stop_html, 9

toJSON, 3

11

	lambdr-package
	as_stringified_json
	from_base64
	html_response
	lambda_config
	start_lambda
	stop_html
	Index

