This vignette provides a guide to kuzuR and performing
basic operations, including creating a database, defining a schema,
loading data from various sources, and executing Cypher queries.
First, load the kuzuR package and create a connection to
a Kuzu database. You can create an in-memory database or specify a path
to a database file on disk.
Kuzu supports a rich set of data types. When creating a schema, you
need to map your R data types to the corresponding Kuzu
LogicalTypeID.
Kuzu LogicalTypeID |
R Type Equivalent | Description |
|---|---|---|
BOOL |
logical |
TRUE/FALSE values |
INT64 |
integer |
64-bit signed integer |
DOUBLE |
numeric |
Double-precision floating-point number |
STRING |
character |
UTF-8 encoded string |
TIMESTAMP |
POSIXct |
Date and time with timezone, stored as microseconds since epoch |
DATE |
Date |
Date (year, month, day) |
INTERVAL |
difftime |
Time interval (e.g., “1 year 2 months 3 days”) |
UUID |
character |
Universally Unique Identifier, stored as a string |
LIST |
list |
Ordered collection of values of the same type |
MAP |
list (named list) |
Unordered collection of key-value pairs |
You can define a schema with node and relationship tables using
kuzu_execute(). Here’s an example of a more complex
schema:
# Create a node table for users with various data types
kuzu_execute(con, paste("CREATE NODE TABLE User(userID UUID, name STRING,",
"age INT64, is_active BOOL, created_at TIMESTAMP,",
"last_login DATE, notes STRING[],",
"PRIMARY KEY (userID))"))
#> <kuzu.query_result.QueryResult object at 0x0000018D81FA36C0>
# Create a node table for products
kuzu_execute(con, "CREATE NODE TABLE Product(productID INT64, name STRING, PRIMARY KEY (productID))")
#> <kuzu.query_result.QueryResult object at 0x0000018D81F4B050>
# Create a relationship table for user purchases
kuzu_execute(con, "CREATE REL TABLE Buys(FROM User TO Product, purchase_date DATE)")
#> <kuzu.query_result.QueryResult object at 0x0000018D81F4ABD0>You can load data into your Kuzu tables from R data frames or external files like CSV.
Use kuzu_copy_from_df() to load data from an R
data.frame.
library(jsonlite)
# Create data frames for nodes and relationships
users <- data.frame(
userID = c("a1b2c3d4-e5f6-7890-1234-567890abcdef", "b2c3d4e5-f6a7-8901-2345-67890abcdef0"),
name = c("Alice", "Bob"),
age = c(35, 45),
is_active = c(TRUE, FALSE),
created_at = as.POSIXct(c("2023-01-15 10:30:00", "2022-11-20 14:00:00")),
last_login = as.Date(c("2023-10-25", "2023-09-30")),
stringsAsFactors = FALSE
)
# LIST types should be formatted as JSON strings
users$notes <- c(toJSON(c("note1", "note2")), toJSON("note3"))
products <- data.frame(
productID = c(101, 102),
name = c("Laptop", "Mouse")
)
buys <- data.frame(
from_user = c("a1b2c3d4-e5f6-7890-1234-567890abcdef", "b2c3d4e5-f6a7-8901-2345-67890abcdef0"),
to_product = c(101, 102),
purchase_date = as.Date(c("2023-02-20", "2023-03-15"))
)
# Load data into Kuzu
kuzu_copy_from_df(con, users, "User")
kuzu_copy_from_df(con, products, "Product")
kuzu_copy_from_df(con, buys, "Buys")Use kuzu_copy_from_csv() to load data from a CSV file.
For this to work, the file should be in the current working
directory.
# Create a CSV file in the project's root directory
csv_filename <- "products.csv"
write.csv(data.frame(productID = c(103, 104), name = c("Keyboard", "Monitor")),
csv_filename, row.names = FALSE)
# Load data from the CSV file using just the filename
kuzu_copy_from_csv(con, csv_filename, "Product")
# Clean up the created file
unlink(csv_filename)You can execute Cypher queries using kuzu_execute() and
convert the results into various R formats.
# Execute a query to get users and their purchases
query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")The QueryResult object returned by
kuzu_execute() acts as an iterator over the results. This
means it can only be consumed once. Functions like
as.data.frame(), as_tibble(),
kuzu_get_all(), and the graph conversion functions will
exhaust this iterator.
# Convert to a data frame
df_result <- as.data.frame(query_result)
print(df_result)
#> u.name p.name b.purchase_date
#> 1 Alice Laptop 2023-02-20 01:00:00
#> 2 Bob Mouse 2023-03-15 01:00:00
# Convert to a tibble
library(tibble)
#>
#> Attaching package: 'tibble'
#> The following object is masked from 'package:igraph':
#>
#> as_data_frame
tibble_result <- as_tibble(query_result)
print(tibble_result)
#> # A tibble: 2 × 3
#> u.name p.name b.purchase_date
#> <chr> <chr> <dttm>
#> 1 Alice Laptop 2023-02-20 01:00:00
#> 2 Bob Mouse 2023-03-15 01:00:00query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")
result <- kuzu_get_all(query_result)
print(result)
#> [[1]]
#> [[1]]$u.name
#> [1] "Alice"
#>
#> [[1]]$p.name
#> [1] "Laptop"
#>
#> [[1]]$b.purchase_date
#> [1] "2023-02-20"
#>
#>
#> [[2]]
#> [[2]]$u.name
#> [1] "Bob"
#>
#> [[2]]$p.name
#> [1] "Mouse"
#>
#> [[2]]$b.purchase_date
#> [1] "2023-03-15"
# only fetch 1. result
query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")
result <- kuzu_get_n(query_result, 1)
print(result)
#> [[1]]
#> [[1]]$u.name
#> [1] "Alice"
#>
#> [[1]]$p.name
#> [1] "Laptop"
#>
#> [[1]]$b.purchase_date
#> [1] "2023-02-20"
#Fetch next result
result <- kuzu_get_next(query_result)
print(result)
#> $u.name
#> [1] "Bob"
#>
#> $p.name
#> [1] "Mouse"
#>
#> $b.purchase_date
#> [1] "2023-03-15"For queries that return graph structures, you can convert the results
into graph objects from packages like igraph or
tidygraph. To do this, the query must return the node and
relationship variables themselves, not just their properties.
# Execute a query that returns a graph structure
graph_query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u, p, b")
igraph_obj <- as_igraph(graph_query_result)
print(igraph_obj)
#> IGRAPH 0ed71a7 DN-- 4 2 --
#> + attr: name (v/c), userID (v/x), age (v/n), is_active (v/x),
#> | created_at (v/n), last_login (v/x), notes (v/x), User (v/x), label
#> | (v/c), productID (v/n), Product (v/x), _dst (e/x), _label (e/c),
#> | purchase_date (e/x), _id (e/x), _src (e/x)
#> + edges from 0ed71a7 (vertex names):
#> [1] User_a1b2c3d4-e5f6-7890-1234-567890abcdef->Product_101
#> [2] User_b2c3d4e5-f6a7-8901-2345-67890abcdef0->Product_102
plot(igraph_obj)
# Convert to a tidygraph object
tidygraph_obj <- as_tidygraph(graph_query_result)
print(tidygraph_obj)
#> # A tbl_graph: 4 nodes and 2 edges
#> #
#> # A rooted forest with 2 trees
#> #
#> # Node Data: 4 × 11 (active)
#> name userID age is_active created_at last_login notes User
#> <chr> <list> <dbl> <list> <dttm> <list> <lis> <lis>
#> 1 User_a… <uuid.UUID> 35 <lgl [1]> 2023-01-15 10:30:00 <date [1]> <chr> <lgl>
#> 2 Produc… <dbl [1]> NaN <dbl [1]> NA <dbl [1]> <dbl> <dbl>
#> 3 User_b… <uuid.UUID> 45 <lgl [1]> 2022-11-20 14:00:00 <date [1]> <chr> <lgl>
#> 4 Produc… <dbl [1]> NaN <dbl [1]> NA <dbl [1]> <dbl> <dbl>
#> # ℹ 3 more variables: label <chr>, productID <dbl>, Product <list>
#> #
#> # Edge Data: 2 × 7
#> from to `_dst` `_label` purchase_date `_id` `_src`
#> <int> <int> <list> <chr> <list> <list> <list>
#> 1 1 2 <named list [2]> Buys <date [1]> <named list> <named list>
#> 2 3 4 <named list [2]> Buys <date [1]> <named list> <named list>
plot(tidygraph_obj)