
Package ‘kernlab’
August 13, 2024

Version 0.9-33

Title Kernel-Based Machine Learning Lab

Description Kernel-based machine learning methods for classification,
regression, clustering, novelty detection, quantile regression
and dimensionality reduction. Among other methods 'kernlab'
includes Support Vector Machines, Spectral Clustering, Kernel
PCA, Gaussian Processes and a QP solver.

Depends R (>= 2.10)

Imports methods, stats, grDevices, graphics

LazyLoad Yes

License GPL-2

NeedsCompilation yes

Author Alexandros Karatzoglou [aut, cre],
Alex Smola [aut],
Kurt Hornik [aut] (<https://orcid.org/0000-0003-4198-9911>),
National ICT Australia (NICTA) [cph],
Michael A. Maniscalco [ctb, cph],
Choon Hui Teo [ctb]

Maintainer Alexandros Karatzoglou <alexandros.karatzoglou@gmail.com>

Repository CRAN

Date/Publication 2024-08-13 15:25:01 UTC

Contents
as.kernelMatrix . 3
couple . 4
csi . 5
csi-class . 7
dots . 9
gausspr . 11
gausspr-class . 14
inchol . 16

1

https://orcid.org/0000-0003-4198-9911

2 Contents

inchol-class . 18
income . 19
inlearn . 20
ipop . 22
ipop-class . 24
kcca . 25
kcca-class . 27
kernel-class . 28
kernelMatrix . 29
kfa . 31
kfa-class . 33
kha . 34
kha-class . 36
kkmeans . 38
kmmd . 40
kmmd-class . 43
kpca . 44
kpca-class . 47
kqr . 48
kqr-class . 51
ksvm . 53
ksvm-class . 60
lssvm . 63
lssvm-class . 66
musk . 68
onlearn . 69
onlearn-class . 70
plot . 72
prc-class . 73
predict.gausspr . 74
predict.kqr . 75
predict.ksvm . 76
promotergene . 77
ranking . 78
ranking-class . 81
reuters . 82
rvm . 83
rvm-class . 86
sigest . 88
spam . 89
specc . 90
specc-class . 93
spirals . 94
stringdot . 95
ticdata . 96
vm-class . 99

Index 101

as.kernelMatrix 3

as.kernelMatrix Assing kernelMatrix class to matrix objects

Description

as.kernelMatrix in package kernlab can be used to coerce the kernelMatrix class to matrix ob-
jects representing a kernel matrix. These matrices can then be used with the kernelMatrix interfaces
which most of the functions in kernlab support.

Usage

S4 method for signature 'matrix'
as.kernelMatrix(x, center = FALSE)

Arguments

x matrix to be assigned the kernelMatrix class

center center the kernel matrix in feature space (default: FALSE)

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kernelMatrix, dots

Examples

Create toy data
x <- rbind(matrix(rnorm(10),,2),matrix(rnorm(10,mean=3),,2))
y <- matrix(c(rep(1,5),rep(-1,5)))

Use as.kernelMatrix to label the cov. matrix as a kernel matrix
which is eq. to using a linear kernel

K <- as.kernelMatrix(crossprod(t(x)))

K

svp2 <- ksvm(K, y, type="C-svc")

svp2

4 couple

couple Probabilities Coupling function

Description

couple is used to link class-probability estimates produced by pairwise coupling in multi-class
classification problems.

Usage

couple(probin, coupler = "minpair")

Arguments

probin The pairwise coupled class-probability estimates

coupler The type of coupler to use. Currently minpar and pkpd and vote are supported
(see reference for more details). If vote is selected the returned value is a prim-
itive estimate passed on given votes.

Details

As binary classification problems are much easier to solve many techniques exist to decompose
multi-class classification problems into many binary classification problems (voting, error codes,
etc.). Pairwise coupling (one against one) constructs a rule for discriminating between every pair
of classes and then selecting the class with the most winning two-class decisions. By using Platt’s
probabilities output for SVM one can get a class probability for each of the k(k − 1)/2 models
created in the pairwise classification. The couple method implements various techniques to combine
these probabilities.

Value

A matrix with the resulting probability estimates.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Ting-Fan Wu, Chih-Jen Lin, ruby C. Weng
Probability Estimates for Multi-class Classification by Pairwise Coupling
Neural Information Processing Symposium 2003
https://papers.neurips.cc/paper/2454-probability-estimates-for-multi-class-classification-by-pairwise-coupling.
pdf

https://papers.neurips.cc/paper/2454-probability-estimates-for-multi-class-classification-by-pairwise-coupling.pdf
https://papers.neurips.cc/paper/2454-probability-estimates-for-multi-class-classification-by-pairwise-coupling.pdf

csi 5

See Also

predict.ksvm, ksvm

Examples

create artificial pairwise probabilities
pairs <- matrix(c(0.82,0.12,0.76,0.1,0.9,0.05),2)

couple(pairs)

couple(pairs, coupler="pkpd")

couple(pairs, coupler ="vote")

csi Cholesky decomposition with Side Information

Description

The csi function in kernlab is an implementation of an incomplete Cholesky decomposition algo-
rithm which exploits side information (e.g., classification labels, regression responses) to compute
a low rank decomposition of a kernel matrix from the data.

Usage

S4 method for signature 'matrix'
csi(x, y, kernel="rbfdot", kpar=list(sigma=0.1), rank,
centering = TRUE, kappa = 0.99 ,delta = 40 ,tol = 1e-5)

Arguments

x The data matrix indexed by row

y the classification labels or regression responses. In classification y is a m × n
matrix where m the number of data and n the number of classes y and yi is 1 if
the corresponding x belongs to class i.

kernel the kernel function used in training and predicting. This parameter can be set
to any function, of class kernel, which computes the inner product in feature
space between two vector arguments. kernlab provides the most popular kernel
functions which can be used by setting the kernel parameter to the following
strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function

6 csi

• anovadot ANOVA RBF kernel function
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

rank maximal rank of the computed kernel matrix
centering if TRUE centering is performed (default: TRUE)
kappa trade-off between approximation of K and prediction of Y (default: 0.99)
delta number of columns of cholesky performed in advance (default: 40)
tol minimum gain at each iteration (default: 1e-4)

Details

An incomplete cholesky decomposition calculates Z where K = ZZ ′ K being the kernel matrix.
Since the rank of a kernel matrix is usually low, Z tends to be smaller then the complete kernel
matrix. The decomposed matrix can be used to create memory efficient kernel-based algorithms
without the need to compute and store a complete kernel matrix in memory.
csi uses the class labels, or regression responses to compute a more appropriate approximation for
the problem at hand considering the additional information from the response variable.

Value

An S4 object of class "csi" which is an extension of the class "matrix". The object is the decomposed
kernel matrix along with the slots :

pivots Indices on which pivots where done
diagresidues Residuals left on the diagonal
maxresiduals Residuals picked for pivoting
predgain predicted gain before adding each column
truegain actual gain after adding each column
Q QR decomposition of the kernel matrix
R QR decomposition of the kernel matrix

slots can be accessed either by object@slot or by accessor functions with the same name (e.g.,
pivots(object))

csi-class 7

Author(s)

Alexandros Karatzoglou (based on Matlab code by Francis Bach)
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Francis R. Bach, Michael I. Jordan
Predictive low-rank decomposition for kernel methods.
Proceedings of the Twenty-second International Conference on Machine Learning (ICML) 2005
http://www.di.ens.fr/~fbach/bach_jordan_csi.pdf

See Also

inchol, chol, csi-class

Examples

data(iris)

create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1

datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

csi-class Class "csi"

Description

The reduced Cholesky decomposition object

Objects from the Class

Objects can be created by calls of the form new("csi", ...). or by calling the csi function.

http://www.di.ens.fr/~fbach/bach_jordan_csi.pdf

8 csi-class

Slots

.Data: Object of class "matrix" contains the decomposed matrix

pivots: Object of class "vector" contains the pivots performed

diagresidues: Object of class "vector" contains the diagonial residues

maxresiduals: Object of class "vector" contains the maximum residues

predgain Object of class "vector" contains the predicted gain before adding each column

truegain Object of class "vector" contains the actual gain after adding each column

Q Object of class "matrix" contains Q from the QR decomposition of the kernel matrix

R Object of class "matrix" contains R from the QR decomposition of the kernel matrix

Extends

Class "matrix", directly.

Methods

diagresidues signature(object = "csi"): returns the diagonial residues

maxresiduals signature(object = "csi"): returns the maximum residues

pivots signature(object = "csi"): returns the pivots performed

predgain signature(object = "csi"): returns the predicted gain before adding each column

truegain signature(object = "csi"): returns the actual gain after adding each column

Q signature(object = "csi"): returns Q from the QR decomposition of the kernel matrix

R signature(object = "csi"): returns R from the QR decomposition of the kernel matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

csi, inchol-class

Examples

data(iris)

create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1

datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf

dots 9

Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

dots Kernel Functions

Description

The kernel generating functions provided in kernlab.
The Gaussian RBF kernel k(x, x′) = exp(−σ∥x− x′∥2)
The Polynomial kernel k(x, x′) = (scale < x, x′ > +offset)degree

The Linear kernel k(x, x′) =< x, x′ >
The Hyperbolic tangent kernel k(x, x′) = tanh(scale < x, x′ > +offset)
The Laplacian kernel k(x, x′) = exp(−σ∥x− x′∥)
The Bessel kernel k(x, x′) = (−Besseln(ν+1)σ∥x− x′∥2)
The ANOVA RBF kernel k(x, x′) =

∑
1≤i1...<iD≤N

∏D
d=1 k(xid, x

′
id) where k(x,x) is a Gaussian

RBF kernel.
The Spline kernel

∏D
d=1 1 + xixj + xixjmin(xi, xj) − xi+xj

2 min(xi, xj)
2 +

min(xi,xj)
3

3 \ The
String kernels (see stringdot.

Usage

rbfdot(sigma = 1)

polydot(degree = 1, scale = 1, offset = 1)

tanhdot(scale = 1, offset = 1)

vanilladot()

laplacedot(sigma = 1)

besseldot(sigma = 1, order = 1, degree = 1)

anovadot(sigma = 1, degree = 1)

splinedot()

Arguments

sigma The inverse kernel width used by the Gaussian the Laplacian, the Bessel and the
ANOVA kernel

10 dots

degree The degree of the polynomial, bessel or ANOVA kernel function. This has to be
an positive integer.

scale The scaling parameter of the polynomial and tangent kernel is a convenient way
of normalizing patterns without the need to modify the data itself

offset The offset used in a polynomial or hyperbolic tangent kernel

order The order of the Bessel function to be used as a kernel

Details

The kernel generating functions are used to initialize a kernel function which calculates the dot
(inner) product between two feature vectors in a Hilbert Space. These functions can be passed as a
kernel argument on almost all functions in kernlab(e.g., ksvm, kpca etc).

Although using one of the existing kernel functions as a kernel argument in various functions in
kernlab has the advantage that optimized code is used to calculate various kernel expressions, any
other function implementing a dot product of class kernel can also be used as a kernel argument.
This allows the user to use, test and develop special kernels for a given data set or algorithm. For
details on the string kernels see stringdot.

Value

Return an S4 object of class kernel which extents the function class. The resulting function
implements the given kernel calculating the inner (dot) product between two vectors.

kpar a list containing the kernel parameters (hyperparameters) used.

The kernel parameters can be accessed by the kpar function.

Note

If the offset in the Polynomial kernel is set to 0, we obtain homogeneous polynomial kernels, for
positive values, we have inhomogeneous kernels. Note that for negative values the kernel does not
satisfy Mercer’s condition and thus the optimizers may fail.

In the Hyperbolic tangent kernel if the offset is negative the likelihood of obtaining a kernel matrix
that is not positive definite is much higher (since then even some diagonal elements may be nega-
tive), hence if this kernel has to be used, the offset should always be positive. Note, however, that
this is no guarantee that the kernel will be positive.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

stringdot, kernelMatrix , kernelMult, kernelPol

gausspr 11

Examples

rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel

kpar(rbfkernel)

create two vectors
x <- rnorm(10)
y <- rnorm(10)

calculate dot product
rbfkernel(x,y)

gausspr Gaussian processes for regression and classification

Description

gausspr is an implementation of Gaussian processes for classification and regression.

Usage

S4 method for signature 'formula'
gausspr(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature 'vector'
gausspr(x,...)

S4 method for signature 'matrix'
gausspr(x, y, scaled = TRUE, type= NULL, kernel="rbfdot",

kpar="automatic", var=1, variance.model = FALSE, tol=0.0005,
cross=0, fit=TRUE, ... , subset, na.action = na.omit)

Arguments

x a symbolic description of the model to be fit or a matrix or vector when a formula
interface is not used. When not using a formula x is a matrix or vector containing
the variables in the model

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘gausspr’ is called from.

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for regression).

12 gausspr

type Type of problem. Either "classification" or "regression". Depending on whether
y is a factor or not, the default setting for type is classification or regression,
respectively, but can be overwritten by setting an explicit value.

scaled A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally (both x and y variables) to zero
mean and unit variance. The center and scale values are returned and used for
later predictions.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

var the initial noise variance, (only for regression) (default : 0.001)

variance.model build model for variance or standard deviation estimation (only for regression)
(default : FALSE)

tol tolerance of termination criterion (default: 0.001)

fit indicates whether the fitted values should be computed and included in the
model or not (default: ’TRUE’)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data
is performed to assess the quality of the model: the Mean Squared Error for
regression

gausspr 13

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

A Gaussian process is specified by a mean and a covariance function. The mean is a function of
x (which is often the zero function), and the covariance is a function C(x, x′) which expresses the
expected covariance between the value of the function y at the points x and x′. The actual function
y(x) in any data modeling problem is assumed to be a single sample from this Gaussian distribution.
Laplace approximation is used for the parameter estimation in gaussian processes for classification.

The predict function can return class probabilities for classification problems by setting the type
parameter to "probabilities". For the regression setting the type parameter to "variance" or "sdevi-
ation" returns the estimated variance or standard deviation at each predicted point.

Value

An S4 object of class "gausspr" containing the fitted model along with information. Accessor
functions can be used to access the slots of the object which include :

alpha The resulting model parameters

error Training error (if fit == TRUE)

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

C. K. I. Williams and D. Barber
Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342-1351, 1998
https://homepages.inf.ed.ac.uk/ckiw/postscript/pami_final.ps.gz

See Also

predict.gausspr, rvm, ksvm, gausspr-class, lssvm

Examples

train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)

https://homepages.inf.ed.ac.uk/ckiw/postscript/pami_final.ps.gz

14 gausspr-class

test
alpha(test)

predict on the training set
predict(test,iris[,-5])
class probabilities
predict(test, iris[,-5], type="probabilities")

create regression data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)

regression with gaussian processes
foo <- gausspr(x, y)
foo

predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")

#predict and variance
x = c(-4, -3, -2, -1, 0, 0.5, 1, 2)
y = c(-2, 0, -0.5,1, 2, 1, 0, -1)
plot(x,y)
foo2 <- gausspr(x, y, variance.model = TRUE)
xtest <- seq(-4,2,0.2)
lines(xtest, predict(foo2, xtest))
lines(xtest,

predict(foo2, xtest)+2*predict(foo2,xtest, type="sdeviation"),
col="red")

lines(xtest,
predict(foo2, xtest)-2*predict(foo2,xtest, type="sdeviation"),
col="red")

gausspr-class Class "gausspr"

Description

The Gaussian Processes object class

Objects from the Class

Objects can be created by calls of the form new("gausspr", ...). or by calling the gausspr
function

gausspr-class 15

Slots

tol: Object of class "numeric" contains tolerance of termination criteria

kernelf: Object of class "kfunction" contains the kernel function used

kpar: Object of class "list" contains the kernel parameter used

kcall: Object of class "list" contains the used function call

type: Object of class "character" contains type of problem

terms: Object of class "ANY" contains the terms representation of the symbolic model used (when
using a formula)

xmatrix: Object of class "input" containing the data matrix used

ymatrix: Object of class "output" containing the response matrix

fitted: Object of class "output" containing the fitted values

lev: Object of class "vector" containing the levels of the response (in case of classification)

nclass: Object of class "numeric" containing the number of classes (in case of classification)

alpha: Object of class "listI" containing the computes alpha values

alphaindex Object of class "list" containing the indexes for the alphas in various classes (in
multi-class problems).

sol Object of class "matrix" containing the solution to the Gaussian Process formulation, it is
used to compute the variance in regression problems.

scaling Object of class "ANY" containing the scaling coefficients of the data (when case scaled =
TRUE is used).

nvar: Object of class "numeric" containing the computed variance

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross validation error

n.action: Object of class "ANY" containing the action performed in NA

Methods

alpha signature(object = "gausspr"): returns the alpha vector

cross signature(object = "gausspr"): returns the cross validation error

error signature(object = "gausspr"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "gausspr"): returns the call performed

kernelf signature(object = "gausspr"): returns the kernel function used

kpar signature(object = "gausspr"): returns the kernel parameter used

lev signature(object = "gausspr"): returns the response levels (in classification)

type signature(object = "gausspr"): returns the type of problem

xmatrix signature(object = "gausspr"): returns the data matrix used

ymatrix signature(object = "gausspr"): returns the response matrix used

scaling signature(object = "gausspr"): returns the scaling coefficients of the data (when scaled
= TRUE is used)

16 inchol

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

gausspr, ksvm-class, vm-class

Examples

train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)

inchol Incomplete Cholesky decomposition

Description

inchol computes the incomplete Cholesky decomposition of the kernel matrix from a data matrix.

Usage

inchol(x, kernel="rbfdot", kpar=list(sigma=0.1), tol = 0.001,
maxiter = dim(x)[1], blocksize = 50, verbose = 0)

Arguments

x The data matrix indexed by row

kernel the kernel function used in training and predicting. This parameter can be set
to any function, of class kernel, which computes the inner product in feature
space between two vector arguments. kernlab provides the most popular kernel
functions which can be used by setting the kernel parameter to the following
strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

inchol 17

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

tol algorithm stops when remaining pivots bring less accuracy then tol (default:
0.001)

maxiter maximum number of iterations and columns in Z

blocksize add this many columns to matrix per iteration
verbose print info on algorithm convergence

Details

An incomplete cholesky decomposition calculates Z where K = ZZ ′ K being the kernel matrix.
Since the rank of a kernel matrix is usually low, Z tends to be smaller then the complete kernel
matrix. The decomposed matrix can be used to create memory efficient kernel-based algorithms
without the need to compute and store a complete kernel matrix in memory.

Value

An S4 object of class "inchol" which is an extension of the class "matrix". The object is the decom-
posed kernel matrix along with the slots :

pivots Indices on which pivots where done
diagresidues Residuals left on the diagonal
maxresiduals Residuals picked for pivoting

slots can be accessed either by object@slot or by accessor functions with the same name (e.g.,
pivots(object))

Author(s)

Alexandros Karatzoglou (based on Matlab code by S.V.N. (Vishy) Vishwanathan and Alex Smola)
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Francis R. Bach, Michael I. Jordan
Kernel Independent Component Analysis
Journal of Machine Learning Research 3, 1-48
https://www.jmlr.org/papers/volume3/bach02a/bach02a.pdf

https://www.jmlr.org/papers/volume3/bach02a/bach02a.pdf

18 inchol-class

See Also

csi, inchol-class, chol

Examples

data(iris)
datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- inchol(datamatrix,kernel=rbf)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

inchol-class Class "inchol"

Description

The reduced Cholesky decomposition object

Objects from the Class

Objects can be created by calls of the form new("inchol", ...). or by calling the inchol function.

Slots

.Data: Object of class "matrix" contains the decomposed matrix

pivots: Object of class "vector" contains the pivots performed

diagresidues: Object of class "vector" contains the diagonial residues

maxresiduals: Object of class "vector" contains the maximum residues

Extends

Class "matrix", directly.

Methods

diagresidues signature(object = "inchol"): returns the diagonial residues

maxresiduals signature(object = "inchol"): returns the maximum residues

pivots signature(object = "inchol"): returns the pivots performed

income 19

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

inchol, csi-class, csi

Examples

data(iris)
datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- inchol(datamatrix,kernel=rbf)
dim(Z)
pivots(Z)
diagresidues(Z)
maxresiduals(Z)

income Income Data

Description

Customer Income Data from a marketing survey.

Usage

data(income)

Format

A data frame with 14 categorical variables (8993 observations).

Explanation of the variable names:

1 INCOME annual income of household
(Personal income if single) ordinal

2 SEX sex nominal
3 MARITAL.STATUS marital status nominal
4 AGE age ordinal
5 EDUCATION educational grade ordinal
6 OCCUPATION type of work nominal
7 AREA how long the interviewed person has lived

in the San Francisco/Oakland/San Jose area ordinal
8 DUAL.INCOMES dual incomes (if married) nominal

20 inlearn

9 HOUSEHOLD.SIZE persons living in the household ordinal
10 UNDER18 persons in household under 18 ordinal
11 HOUSEHOLDER householder status nominal
12 HOME.TYPE type of home nominal
13 ETHNIC.CLASS ethnic classification nominal
14 LANGUAGE language most often spoken at home nominal

Details

A total of N=9409 questionnaires containing 502 questions were filled out by shopping mall cus-
tomers in the San Francisco Bay area. The dataset is an extract from this survey. It consists of 14
demographic attributes. The dataset is a mixture of nominal and ordinal variables with a lot of miss-
ing data. The goal is to predict the Anual Income of Household from the other 13 demographics
attributes.

Source

Impact Resources, Inc., Columbus, OH (1987).

inlearn Onlearn object initialization

Description

Online Kernel Algorithm object onlearn initialization function.

Usage

S4 method for signature 'numeric'
inlearn(d, kernel = "rbfdot", kpar = list(sigma = 0.1),

type = "novelty", buffersize = 1000)

Arguments

d the dimensionality of the data to be learned

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function

inlearn 21

• anovadot ANOVA RBF kernel function

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

type the type of problem to be learned by the online algorithm : classification,
regression, novelty

buffersize the size of the buffer to be used

Details

The inlearn is used to initialize a blank onlearn object.

Value

The function returns an S4 object of class onlearn that can be used by the onlearn function.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

onlearn, onlearn-class

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2, kernel = "rbfdot", kpar = list(sigma = 0.2),

type = "classification")

learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

22 ipop

sign(predict(on,x))

ipop Quadratic Programming Solver

Description

ipop solves the quadratic programming problem :
min(c′ ∗ x+ 1/2 ∗ x′ ∗H ∗ x)
subject to:
b <= A ∗ x <= b+ r
l <= x <= u

Usage

ipop(c, H, A, b, l, u, r, sigf = 7, maxiter = 40, margin = 0.05,
bound = 10, verb = 0)

Arguments

c Vector or one column matrix appearing in the quadratic function

H square matrix appearing in the quadratic function, or the decomposed form Z of
the H matrix where Z is a nxm matrix with n > m and ZZ ′ = H .

A Matrix defining the constrains under which we minimize the quadratic function

b Vector or one column matrix defining the constrains

l Lower bound vector or one column matrix

u Upper bound vector or one column matrix

r Vector or one column matrix defining constrains

sigf Precision (default: 7 significant figures)

maxiter Maximum number of iterations

margin how close we get to the constrains

bound Clipping bound for the variables

verb Display convergence information during runtime

Details

ipop uses an interior point method to solve the quadratic programming problem.
The H matrix can also be provided in the decomposed form Z where ZZ ′ = H in that case the
Sherman Morrison Woodbury formula is used internally.

ipop 23

Value

An S4 object with the following slots

primal Vector containing the primal solution of the quadratic problem

dual The dual solution of the problem

how Character string describing the type of convergence

all slots can be accessed through accessor functions (see example)

Author(s)

Alexandros Karatzoglou (based on Matlab code by Alex Smola)
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

R. J. Vanderbei
LOQO: An interior point code for quadratic programming
Optimization Methods and Software 11, 451-484, 1999
https://vanderbei.princeton.edu/ps/loqo5.pdf

See Also

solve.QP, inchol, csi

Examples

solve the Support Vector Machine optimization problem
data(spam)

sample a scaled part (500 points) of the spam data set
m <- 500
set <- sample(1:dim(spam)[1],m)
x <- scale(as.matrix(spam[,-58]))[set,]
y <- as.integer(spam[set,58])
y[y==2] <- -1

##set C parameter and kernel
C <- 5
rbf <- rbfdot(sigma = 0.1)

create H matrix etc.
H <- kernelPol(rbf,x,,y)
c <- matrix(rep(-1,m))
A <- t(y)
b <- 0
l <- matrix(rep(0,m))
u <- matrix(rep(C,m))
r <- 0

sv <- ipop(c,H,A,b,l,u,r)

https://vanderbei.princeton.edu/ps/loqo5.pdf

24 ipop-class

sv
dual(sv)

ipop-class Class "ipop"

Description

The quadratic problem solver class

Objects from the Class

Objects can be created by calls of the form new("ipop", ...). or by calling the ipop function.

Slots

primal: Object of class "vector" the primal solution of the problem

dual: Object of class "numeric" the dual of the problem

how: Object of class "character" convergence information

Methods

primal signature(object = "ipop"): Return the primal of the problem

dual signature(object = "ipop"): Return the dual of the problem

how signature(object = "ipop"): Return information on convergence

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

ipop

Examples

solve the Support Vector Machine optimization problem
data(spam)

sample a scaled part (300 points) of the spam data set
m <- 300
set <- sample(1:dim(spam)[1],m)
x <- scale(as.matrix(spam[,-58]))[set,]
y <- as.integer(spam[set,58])
y[y==2] <- -1

kcca 25

##set C parameter and kernel
C <- 5
rbf <- rbfdot(sigma = 0.1)

create H matrix etc.
H <- kernelPol(rbf,x,,y)
c <- matrix(rep(-1,m))
A <- t(y)
b <- 0
l <- matrix(rep(0,m))
u <- matrix(rep(C,m))
r <- 0

sv <- ipop(c,H,A,b,l,u,r)
primal(sv)
dual(sv)
how(sv)

kcca Kernel Canonical Correlation Analysis

Description

Computes the canonical correlation analysis in feature space.

Usage

S4 method for signature 'matrix'
kcca(x, y, kernel="rbfdot", kpar=list(sigma=0.1),
gamma = 0.1, ncomps = 10, ...)

Arguments

x a matrix containing data index by row

y a matrix containing data index by row

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a inner product in feature space
between two vector arguments. kernlab provides the most popular kernel func-
tions which can be used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function

26 kcca

• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

gamma regularization parameter (default : 0.1)

ncomps number of canonical components (default : 10)

... additional parameters for the kpca function

Details

The kernel version of canonical correlation analysis. Kernel Canonical Correlation Analysis (KCCA)
is a non-linear extension of CCA. Given two random variables, KCCA aims at extracting the infor-
mation which is shared by the two random variables. More precisely given x and y the purpose of
KCCA is to provide nonlinear mappings f(x) and g(y) such that their correlation is maximized.

Value

An S4 object containing the following slots:

kcor Correlation coefficients in feature space

xcoef estimated coefficients for the x variables in the feature space

ycoef estimated coefficients for the y variables in the feature space

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Malte Kuss, Thore Graepel
The Geometry Of Kernel Canonical Correlation Analysis
https://www.microsoft.com/en-us/research/publication/the-geometry-of-kernel-canonical-correlation-analysis/

See Also

cancor, kpca, kfa, kha

https://www.microsoft.com/en-us/research/publication/the-geometry-of-kernel-canonical-correlation-analysis/

kcca-class 27

Examples

dummy data
x <- matrix(rnorm(30),15)
y <- matrix(rnorm(30),15)

kcca(x,y,ncomps=2)

kcca-class Class "kcca"

Description

The "kcca" class

Objects from the Class

Objects can be created by calls of the form new("kcca", ...). or by the calling the kcca function.

Slots

kcor: Object of class "vector" describing the correlations

xcoef: Object of class "matrix" estimated coefficients for the x variables

ycoef: Object of class "matrix" estimated coefficients for the y variables

Methods

kcor signature(object = "kcca"): returns the correlations

xcoef signature(object = "kcca"): returns the estimated coefficients for the x variables

ycoef signature(object = "kcca"): returns the estimated coefficients for the y variables

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kcca, kpca-class

Examples

dummy data
x <- matrix(rnorm(30),15)
y <- matrix(rnorm(30),15)

kcca(x,y,ncomps=2)

28 kernel-class

kernel-class Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel"

Description

The built-in kernel classes in kernlab

Objects from the Class

Objects can be created by calls of the form new("rbfkernel"), new{"polykernel"}, new{"tanhkernel"},
new{"vanillakernel"}, new{"anovakernel"}, new{"besselkernel"}, new{"laplacekernel"},
new{"splinekernel"}, new{"stringkernel"}

or by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot,
splinedot, stringdot functions etc..

Slots

.Data: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel parameters

Extends

Class "kernel", directly. Class "function", by class "kernel".

Methods

kernelMatrix signature(kernel = "rbfkernel", x = "matrix"): computes the kernel matrix

kernelMult signature(kernel = "rbfkernel", x = "matrix"): computes the quadratic kernel
expression

kernelPol signature(kernel = "rbfkernel", x = "matrix"): computes the kernel expansion

kernelFast signature(kernel = "rbfkernel", x = "matrix"),,a: computes parts or the full
kernel matrix, mainly used in kernel algorithms where columns of the kernel matrix are com-
puted per invocation

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

dots

kernelMatrix 29

Examples

rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel
is(rbfkernel)
kpar(rbfkernel)

kernelMatrix Kernel Matrix functions

Description

kernelMatrix calculates the kernel matrix Kij = k(xi, xj) or Kij = k(xi, yj).
kernelPol computes the quadratic kernel expression H = zizjk(xi, xj), H = zikjk(xi, yj).
kernelMult calculates the kernel expansion f(xi) =

∑m
i=1 zik(xi, xj)

kernelFast computes the kernel matrix, identical to kernelMatrix, except that it also requires the
squared norm of the first argument as additional input, useful in iterative kernel matrix calculations.

Usage

S4 method for signature 'kernel'
kernelMatrix(kernel, x, y = NULL)

S4 method for signature 'kernel'
kernelPol(kernel, x, y = NULL, z, k = NULL)

S4 method for signature 'kernel'
kernelMult(kernel, x, y = NULL, z, blocksize = 256)

S4 method for signature 'kernel'
kernelFast(kernel, x, y, a)

Arguments

kernel the kernel function to be used to calculate the kernel matrix. This has to be a
function of class kernel, i.e. which can be generated either one of the build
in kernel generating functions (e.g., rbfdot etc.) or a user defined function of
class kernel taking two vector arguments and returning a scalar.

x a data matrix to be used to calculate the kernel matrix, or a list of vector when a
stringkernel is used

y second data matrix to calculate the kernel matrix, or a list of vector when a
stringkernel is used

z a suitable vector or matrix

k a suitable vector or matrix

a the squared norm of x, e.g., rowSums(x^2)

30 kernelMatrix

blocksize the kernel expansion computations are done block wise to avoid storing the
kernel matrix into memory. blocksize defines the size of the computational
blocks.

Details

Common functions used during kernel based computations.
The kernel parameter can be set to any function, of class kernel, which computes the inner product
in feature space between two vector arguments. kernlab provides the most popular kernel functions
which can be initialized by using the following functions:

• rbfdot Radial Basis kernel function

• polydot Polynomial kernel function

• vanilladot Linear kernel function

• tanhdot Hyperbolic tangent kernel function

• laplacedot Laplacian kernel function

• besseldot Bessel kernel function

• anovadot ANOVA RBF kernel function

• splinedot the Spline kernel

(see example.)

kernelFast is mainly used in situations where columns of the kernel matrix are computed per
invocation. In these cases, evaluating the norm of each row-entry over and over again would cause
significant computational overhead.

Value

kernelMatrix returns a symmetric diagonal semi-definite matrix.
kernelPol returns a matrix.
kernelMult usually returns a one-column matrix.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

rbfdot, polydot, tanhdot, vanilladot

Examples

use the spam data
data(spam)
dt <- as.matrix(spam[c(10:20,3000:3010),-58])

initialize kernel function
rbf <- rbfdot(sigma = 0.05)

kfa 31

rbf

calculate kernel matrix
kernelMatrix(rbf, dt)

yt <- as.matrix(as.integer(spam[c(10:20,3000:3010),58]))
yt[yt==2] <- -1

calculate the quadratic kernel expression
kernelPol(rbf, dt, ,yt)

calculate the kernel expansion
kernelMult(rbf, dt, ,yt)

kfa Kernel Feature Analysis

Description

The Kernel Feature Analysis algorithm is an algorithm for extracting structure from possibly high-
dimensional data sets. Similar to kpca a new basis for the data is found. The data can then be
projected on the new basis.

Usage

S4 method for signature 'formula'
kfa(x, data = NULL, na.action = na.omit, ...)

S4 method for signature 'matrix'
kfa(x, kernel = "rbfdot", kpar = list(sigma = 0.1),

features = 0, subset = 59, normalize = TRUE, na.action = na.omit)

Arguments

x The data matrix indexed by row or a formula describing the model. Note, that
an intercept is always included, whether given in the formula or not.

data an optional data frame containing the variables in the model (when using a for-
mula).

kernel the kernel function used in training and predicting. This parameter can be set
to any function, of class kernel, which computes an inner product in feature
space between two vector arguments. kernlab provides the most popular kernel
functions which can be used by setting the kernel parameter to the following
strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function

32 kfa

• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

features Number of features (principal components) to return. (default: 0 , all)
subset the number of features sampled (used) from the data set
normalize normalize the feature selected (default: TRUE)
na.action A function to specify the action to be taken if NAs are found. The default action is

na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

Kernel Feature analysis is similar to Kernel PCA, but instead of extracting eigenvectors of the
training dataset in feature space, it approximates the eigenvectors by selecting training patterns
which are good basis vectors for the training set. It works by choosing a fixed size subset of the
data set and scaling it to unit length (under the kernel). It then chooses the features that maximize
the value of the inner product (kernel function) with the rest of the patterns.

Value

kfa returns an object of class kfa containing the features selected by the algorithm.

xmatrix contains the features selected
alpha contains the sparse alpha vector

The predict function can be used to embed new data points into to the selected feature base.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

kfa-class 33

References

Alex J. Smola, Olvi L. Mangasarian and Bernhard Schoelkopf
Sparse Kernel Feature Analysis
Data Mining Institute Technical Report 99-04, October 1999
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps

See Also

kpca, kfa-class

Examples

data(promotergene)
f <- kfa(~.,data=promotergene,features=2,kernel="rbfdot",

kpar=list(sigma=0.01))
plot(predict(f,promotergene),col=as.numeric(promotergene[,1]))

kfa-class Class "kfa"

Description

The class of the object returned by the Kernel Feature Analysis kfa function

Objects from the Class

Objects can be created by calls of the form new("kfa", ...) or by calling the kfa method. The
objects contain the features along with the alpha values.

Slots

alpha: Object of class "matrix" containing the alpha values

alphaindex: Object of class "vector" containing the indexes of the selected feature

kernelf: Object of class "kfunction" containing the kernel function used

xmatrix: Object of class "matrix" containing the selected features

kcall: Object of class "call" containing the kfa function call

terms: Object of class "ANY" containing the formula terms

Methods

alpha signature(object = "kfa"): returns the alpha values

alphaindex signature(object = "kfa"): returns the index of the selected features

kcall signature(object = "kfa"): returns the function call

kernelf signature(object = "kfa"): returns the kernel function used

predict signature(object = "kfa"): used to embed more data points to the feature base

xmatrix signature(object = "kfa"): returns the selected features.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps

34 kha

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kfa, kpca-class

Examples

data(promotergene)
f <- kfa(~.,data=promotergene)

kha Kernel Principal Components Analysis

Description

Kernel Hebbian Algorithm is a nonlinear iterative algorithm for principal component analysis.

Usage

S4 method for signature 'formula'
kha(x, data = NULL, na.action, ...)

S4 method for signature 'matrix'
kha(x, kernel = "rbfdot", kpar = list(sigma = 0.1), features = 5,

eta = 0.005, th = 1e-4, maxiter = 10000, verbose = FALSE,
na.action = na.omit, ...)

Arguments

x The data matrix indexed by row or a formula describing the model. Note, that
an intercept is always included, whether given in the formula or not.

data an optional data frame containing the variables in the model (when using a for-
mula).

kernel the kernel function used in training and predicting. This parameter can be set
to any function, of class kernel, which computes the inner product in feature
space between two vector arguments (see kernels). kernlab provides the most
popular kernel functions which can be used by setting the kernel parameter to
the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function

kha 35

• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

features Number of features (principal components) to return. (default: 5)

eta The hebbian learning rate (default : 0.005)

th the smallest value of the convergence step (default : 0.0001)

maxiter the maximum number of iterations.

verbose print convergence every 100 iterations. (default : FALSE)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

The original form of KPCA can only be used on small data sets since it requires the estimation of
the eigenvectors of a full kernel matrix. The Kernel Hebbian Algorithm iteratively estimates the
Kernel Principal Components with only linear order memory complexity. (see ref. for more details)

Value

An S4 object containing the principal component vectors along with the corresponding normaliza-
tion values.

pcv a matrix containing the principal component vectors (column wise)

eig The normalization values

xmatrix The original data matrix

all the slots of the object can be accessed by accessor functions.

36 kha-class

Note

The predict function can be used to embed new data on the new space

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Kwang In Kim, M.O. Franz and B. Schölkopf
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis
Max-Planck-Institut für biologische Kybernetik, Tübingen (109)
https://is.mpg.de/fileadmin/user_upload/files/publications/pdf2302.pdf

See Also

kpca, kfa, kcca, pca

Examples

another example using the iris
data(iris)
test <- sample(1:150,70)

kpc <- kha(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2, eta=0.001, maxiter=65)

#print the principal component vectors
pcv(kpc)

#plot the data projection on the components
plot(predict(kpc,iris[,-5]),col=as.integer(iris[,5]),

xlab="1st Principal Component",ylab="2nd Principal Component")

kha-class Class "kha"

Description

The Kernel Hebbian Algorithm class

Objects objects of class "kha"

Objects can be created by calls of the form new("kha", ...). or by calling the kha function.

https://is.mpg.de/fileadmin/user_upload/files/publications/pdf2302.pdf

kha-class 37

Slots

pcv: Object of class "matrix" containing the principal component vectors

eig: Object of class "vector" containing the corresponding normalization values

eskm: Object of class "vector" containing the kernel sum

kernelf: Object of class "kfunction" containing the kernel function used

kpar: Object of class "list" containing the kernel parameters used

xmatrix: Object of class "matrix" containing the data matrix used

kcall: Object of class "ANY" containing the function call

n.action: Object of class "ANY" containing the action performed on NA

Methods

eig signature(object = "kha"): returns the normalization values

kcall signature(object = "kha"): returns the performed call

kernelf signature(object = "kha"): returns the used kernel function

pcv signature(object = "kha"): returns the principal component vectors

eskm signature(object = "kha"): returns the kernel sum

predict signature(object = "kha"): embeds new data

xmatrix signature(object = "kha"): returns the used data matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kha, ksvm-class, kcca-class

Examples

another example using the iris
data(iris)
test <- sample(1:50,20)

kpc <- kha(~.,data=iris[-test,-5], kernel="rbfdot",
kpar=list(sigma=0.2),features=2, eta=0.001, maxiter=65)

#print the principal component vectors
pcv(kpc)
kernelf(kpc)
eig(kpc)

38 kkmeans

kkmeans Kernel k-means

Description

A weighted kernel version of the famous k-means algorithm.

Usage

S4 method for signature 'formula'
kkmeans(x, data = NULL, na.action = na.omit, ...)

S4 method for signature 'matrix'
kkmeans(x, centers, kernel = "rbfdot", kpar = "automatic",

alg="kkmeans", p=1, na.action = na.omit, ...)

S4 method for signature 'kernelMatrix'
kkmeans(x, centers, ...)

S4 method for signature 'list'
kkmeans(x, centers, kernel = "stringdot",

kpar = list(length=4, lambda=0.5),
alg ="kkmeans", p = 1, na.action = na.omit, ...)

Arguments

x the matrix of data to be clustered, or a symbolic description of the model to be
fit, or a kernel Matrix of class kernelMatrix, or a list of character vectors.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘kkmeans’ is called from.

centers Either the number of clusters or a matrix of initial cluster centers. If the first a
random initial partitioning is used.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a inner product in feature space
between two vector arguments (see link{kernels}). kernlab provides the
most popular kernel functions which can be used by setting the kernel parameter
to the following strings:

• rbfdot Radial Basis kernel "Gaussian"
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel

kkmeans 39

• stringdot String kernel

Setting the kernel parameter to "matrix" treats x as a kernel matrix calling the
kernelMatrix interface.

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar a character string or the list of hyper-parameters (kernel parameters). The default
character string "automatic" uses a heuristic the determine a suitable value for
the width parameter of the RBF kernel.

A list can also be used containing the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• length, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

alg the algorithm to use. Options currently include kkmeans and kerninghan.

p a parameter used to keep the affinity matrix positive semidefinite

na.action The action to perform on NA

... additional parameters

Details

kernel k-means uses the ’kernel trick’ (i.e. implicitly projecting all data into a non-linear feature
space with the use of a kernel) in order to deal with one of the major drawbacks of k-means that is
that it cannot capture clusters that are not linearly separable in input space.
The algorithm is implemented using the triangle inequality to avoid unnecessary and computational
expensive distance calculations. This leads to significant speedup particularly on large data sets
with a high number of clusters.
With a particular choice of weights this algorithm becomes equivalent to Kernighan-Lin, and the
norm-cut graph partitioning algorithms.
The function also support input in the form of a kernel matrix or a list of characters for text cluster-
ing.
The data can be passed to the kkmeans function in a matrix or a data.frame, in addition kkmeans
also supports input in the form of a kernel matrix of class kernelMatrix or as a list of character
vectors where a string kernel has to be used.

40 kmmd

Value

An S4 object of class specc which extends the class vector containing integers indicating the
cluster to which each point is allocated. The following slots contain useful information

centers A matrix of cluster centers.

size The number of point in each cluster

withinss The within-cluster sum of squares for each cluster

kernelf The kernel function used

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Inderjit Dhillon, Yuqiang Guan, Brian Kulis
A Unified view of Kernel k-means, Spectral Clustering and Graph Partitioning
UTCS Technical Report
https://people.bu.edu/bkulis/pubs/spectral_techreport.pdf

See Also

specc, kpca, kcca

Examples

Cluster the iris data set.
data(iris)

sc <- kkmeans(as.matrix(iris[,-5]), centers=3)

sc
centers(sc)
size(sc)
withinss(sc)

kmmd Kernel Maximum Mean Discrepancy.

Description

The Kernel Maximum Mean Discrepancy kmmd performs a non-parametric distribution test.

https://people.bu.edu/bkulis/pubs/spectral_techreport.pdf

kmmd 41

Usage

S4 method for signature 'matrix'
kmmd(x, y, kernel="rbfdot",kpar="automatic", alpha = 0.05,

asymptotic = FALSE, replace = TRUE, ntimes = 150, frac = 1, ...)

S4 method for signature 'kernelMatrix'
kmmd(x, y, Kxy, alpha = 0.05,

asymptotic = FALSE, replace = TRUE, ntimes = 100, frac = 1, ...)

S4 method for signature 'list'
kmmd(x, y, kernel="stringdot",

kpar = list(type = "spectrum", length = 4), alpha = 0.05,
asymptotic = FALSE, replace = TRUE, ntimes = 150, frac = 1, ...)

Arguments

x data values, in a matrix, list, or kernelMatrix

y data values, in a matrix, list, or kernelMatrix

Kxy kernlMatrix between x and y values (only for the kernelMatrix interface)

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

42 kmmd

• lenght, lambda, normalized for the "stringdot" kernel where length is
the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well. In the case of a Radial Basis kernel function (Gaussian) kpar
can also be set to the string "automatic" which uses the heuristics in ’sigest’ to
calculate a good ’sigma’ value for the Gaussian RBF or Laplace kernel, from
the data. (default = "automatic").

alpha the confidence level of the test (default: 0.05)
asymptotic calculate the bounds asymptotically (suitable for smaller datasets) (default: FALSE)
replace use replace when sampling for computing the asymptotic bounds (default : TRUE)
ntimes number of times repeating the sampling procedure (default : 150)
frac fraction of points to sample (frac : 1)
... additional parameters.

Details

kmmd calculates the kernel maximum mean discrepancy for samples from two distributions and
conducts a test as to whether the samples are from different distributions with level alpha.

Value

An S4 object of class kmmd containing the results of whether the H0 hypothesis is rejected or not. H0
being that the samples x and y come from the same distribution. The object contains the following
slots :

H0 is H0 rejected (logical)
AsympH0 is H0 rejected according to the asymptotic bound (logical)
kernelf the kernel function used.
mmdstats the test statistics (vector of two)
Radbound the Rademacher bound
Asymbound the asymptotic bound

see kmmd-class for more details.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Gretton, A., K. Borgwardt, M. Rasch, B. Schoelkopf and A. Smola
A Kernel Method for the Two-Sample-Problem
Neural Information Processing Systems 2006, Vancouver
https://papers.neurips.cc/paper/3110-a-kernel-method-for-the-two-sample-problem.
pdf

https://papers.neurips.cc/paper/3110-a-kernel-method-for-the-two-sample-problem.pdf
https://papers.neurips.cc/paper/3110-a-kernel-method-for-the-two-sample-problem.pdf

kmmd-class 43

See Also

ksvm

Examples

create data
x <- matrix(runif(300),100)
y <- matrix(runif(300)+1,100)

mmdo <- kmmd(x, y)

mmdo

kmmd-class Class "kqr"

Description

The Kernel Maximum Mean Discrepancy object class

Objects from the Class

Objects can be created by calls of the form new("kmmd", ...). or by calling the kmmd function

Slots

kernelf: Object of class "kfunction" contains the kernel function used

xmatrix: Object of class "kernelMatrix" containing the data used

H0 Object of class "logical" contains value of : is H0 rejected (logical)

AsympH0 Object of class "logical" contains value : is H0 rejected according to the asymptotic
bound (logical)

mmdstats Object of class "vector" contains the test statistics (vector of two)

Radbound Object of class "numeric" contains the Rademacher bound

Asymbound Object of class "numeric" contains the asymptotic bound

Methods

kernelf signature(object = "kmmd"): returns the kernel function used

H0 signature(object = "kmmd"): returns the value of H0 being rejected

AsympH0 signature(object = "kmmd"): returns the value of H0 being rejected according to the
asymptotic bound

mmdstats signature(object = "kmmd"): returns the values of the mmd statistics

Radbound signature(object = "kmmd"): returns the value of the Rademacher bound

Asymbound signature(object = "kmmd"): returns the value of the asymptotic bound

44 kpca

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kmmd,

Examples

create data
x <- matrix(runif(300),100)
y <- matrix(runif(300)+1,100)

mmdo <- kmmd(x, y)

H0(mmdo)

kpca Kernel Principal Components Analysis

Description

Kernel Principal Components Analysis is a nonlinear form of principal component analysis.

Usage

S4 method for signature 'formula'
kpca(x, data = NULL, na.action, ...)

S4 method for signature 'matrix'
kpca(x, kernel = "rbfdot", kpar = list(sigma = 0.1),

features = 0, th = 1e-4, na.action = na.omit, ...)

S4 method for signature 'kernelMatrix'
kpca(x, features = 0, th = 1e-4, ...)

S4 method for signature 'list'
kpca(x, kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),

features = 0, th = 1e-4, na.action = na.omit, ...)

kpca 45

Arguments

x the data matrix indexed by row or a formula describing the model, or a kernel
Matrix of class kernelMatrix, or a list of character vectors

data an optional data frame containing the variables in the model (when using a for-
mula).

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

features Number of features (principal components) to return. (default: 0 , all)

th the value of the eigenvalue under which principal components are ignored (only
valid when features = 0). (default : 0.0001)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

Using kernel functions one can efficiently compute principal components in high-dimensional fea-
ture spaces, related to input space by some non-linear map.

46 kpca

The data can be passed to the kpca function in a matrix or a data.frame, in addition kpca also
supports input in the form of a kernel matrix of class kernelMatrix or as a list of character vectors
where a string kernel has to be used.

Value

An S4 object containing the principal component vectors along with the corresponding eigenvalues.

pcv a matrix containing the principal component vectors (column wise)

eig The corresponding eigenvalues

rotated The original data projected (rotated) on the principal components

xmatrix The original data matrix

all the slots of the object can be accessed by accessor functions.

Note

The predict function can be used to embed new data on the new space

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Schoelkopf B., A. Smola, K.-R. Mueller :
Nonlinear component analysis as a kernel eigenvalue problem
Neural Computation 10, 1299-1319
doi:10.1162/089976698300017467.

See Also

kcca, pca

Examples

another example using the iris
data(iris)
test <- sample(1:150,20)

kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2)

#print the principal component vectors
pcv(kpc)

#plot the data projection on the components
plot(rotated(kpc),col=as.integer(iris[-test,5]),

xlab="1st Principal Component",ylab="2nd Principal Component")

https://doi.org/10.1162/089976698300017467

kpca-class 47

#embed remaining points
emb <- predict(kpc,iris[test,-5])
points(emb,col=as.integer(iris[test,5]))

kpca-class Class "kpca"

Description

The Kernel Principal Components Analysis class

Objects of class "kpca"

Objects can be created by calls of the form new("kpca", ...). or by calling the kpca function.

Slots

pcv: Object of class "matrix" containing the principal component vectors

eig: Object of class "vector" containing the corresponding eigenvalues

rotated: Object of class "matrix" containing the projection of the data on the principal compo-
nents

kernelf: Object of class "function" containing the kernel function used

kpar: Object of class "list" containing the kernel parameters used

xmatrix: Object of class "matrix" containing the data matrix used

kcall: Object of class "ANY" containing the function call

n.action: Object of class "ANY" containing the action performed on NA

Methods

eig signature(object = "kpca"): returns the eigenvalues

kcall signature(object = "kpca"): returns the performed call

kernelf signature(object = "kpca"): returns the used kernel function

pcv signature(object = "kpca"): returns the principal component vectors

predict signature(object = "kpca"): embeds new data

rotated signature(object = "kpca"): returns the projected data

xmatrix signature(object = "kpca"): returns the used data matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

ksvm-class, kcca-class

48 kqr

Examples

another example using the iris
data(iris)
test <- sample(1:50,20)

kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2)

#print the principal component vectors
pcv(kpc)
rotated(kpc)
kernelf(kpc)
eig(kpc)

kqr Kernel Quantile Regression.

Description

The Kernel Quantile Regression algorithm kqr performs non-parametric Quantile Regression.

Usage

S4 method for signature 'formula'
kqr(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature 'vector'
kqr(x,...)

S4 method for signature 'matrix'
kqr(x, y, scaled = TRUE, tau = 0.5, C = 0.1, kernel = "rbfdot",

kpar = "automatic", reduced = FALSE, rank = dim(x)[1]/6,
fit = TRUE, cross = 0, na.action = na.omit)

S4 method for signature 'kernelMatrix'
kqr(x, y, tau = 0.5, C = 0.1, fit = TRUE, cross = 0)

S4 method for signature 'list'
kqr(x, y, tau = 0.5, C = 0.1, kernel = "strigdot",

kpar= list(length=4, C=0.5), fit = TRUE, cross = 0)

Arguments

x e data or a symbolic description of the model to be fit. When not using a formula
x can be a matrix or vector containing the training data or a kernel matrix of class
kernelMatrix of the training data or a list of character vectors (for use with the
string kernel). Note, that the intercept is always excluded, whether given in the
formula or not.

kqr 49

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which kqr is called from.

y a numeric vector or a column matrix containing the response.

scaled A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally (both x and y variables) to zero
mean and unit variance. The center and scale values are returned and used for
later predictions. (default: TRUE)

tau the quantile to be estimated, this is generally a number strictly between 0 and 1.
For 0.5 the median is calculated. (default: 0.5)

C the cost regularization parameter. This parameter controls the smoothness of
the fitted function, essentially higher values for C lead to less smooth func-
tions.(default: 1)

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains
the parameters to be used with the kernel function. Valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• lenght, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well. In the case of a Radial Basis kernel function (Gaussian) kpar

50 kqr

can also be set to the string "automatic" which uses the heuristics in ’sigest’ to
calculate a good ’sigma’ value for the Gaussian RBF or Laplace kernel, from
the data. (default = "automatic").

reduced use an incomplete cholesky decomposition to calculate a decomposed form Z
of the kernel Matrix K (where K = ZZ ′) and perform the calculations with
Z. This might be useful when using kqr with large datasets since normally an n
times n kernel matrix would be computed. Setting reduced to TRUE makes use
of csi to compute a decomposed form instead and thus only a n × m matrix
where m < n and n the sample size is stored in memory (default: FALSE)

rank the rank m of the decomposed matrix calculated when using an incomplete
cholesky decomposition. This parameter is only taken into account when reduced
is TRUE(default : dim(x)[1]/6)

fit indicates whether the fitted values should be computed and included in the
model or not (default: ’TRUE’)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data is
performed to assess the quality of the model: the Pinball loss and the for quantile
regression

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters.

Details

In quantile regression a function is fitted to the data so that it satisfies the property that a portion
tau of the data y|n is below the estimate. While the error bars of many regression problems can
be viewed as such estimates quantile regression estimates this quantity directly. Kernel quantile
regression is similar to nu-Support Vector Regression in that it minimizes a regularized loss function
in RKHS. The difference between nu-SVR and kernel quantile regression is in the type of loss
function used which in the case of quantile regression is the pinball loss (see reference for details.).
Minimizing the regularized loss boils down to a quadratic problem which is solved using an interior
point QP solver ipop implemented in kernlab.

Value

An S4 object of class kqr containing the fitted model along with information.Accessor functions
can be used to access the slots of the object which include :

alpha The resulting model parameters which can be also accessed by coef.

kernelf the kernel function used.

error Training error (if fit == TRUE)

see kqr-class for more details.

kqr-class 51

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, Alexander J. Smola
Nonparametric Quantile Estimation
Journal of Machine Learning Research 7,2006,1231-1264
https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

See Also

predict.kqr, kqr-class, ipop, rvm, ksvm

Examples

create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))

first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)

predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")

calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",

kpar= list(sigma=10), C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")

calculate 0.1 quantile
qrm <- kqr(x, y, tau = 0.1,C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="green")

print first 10 model coefficients
coef(qrm)[1:10]

kqr-class Class "kqr"

Description

The Kernel Quantile Regression object class

https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

52 kqr-class

Objects from the Class

Objects can be created by calls of the form new("kqr", ...). or by calling the kqr function

Slots

kernelf: Object of class "kfunction" contains the kernel function used
kpar: Object of class "list" contains the kernel parameter used
coef: Object of class "ANY" containing the model parameters
param: Object of class "list" contains the cost parameter C and tau parameter used
kcall: Object of class "list" contains the used function call
terms: Object of class "ANY" contains the terms representation of the symbolic model used (when

using a formula)
xmatrix: Object of class "input" containing the data matrix used
ymatrix: Object of class "output" containing the response matrix
fitted: Object of class "output" containing the fitted values
alpha: Object of class "listI" containing the computes alpha values
b: Object of class "numeric" containing the offset of the model.
scaling Object of class "ANY" containing the scaling coefficients of the data (when case scaled =

TRUE is used).
error: Object of class "numeric" containing the training error
cross: Object of class "numeric" containing the cross validation error
n.action: Object of class "ANY" containing the action performed in NA
nclass: Inherited from class vm, not used in kqr
lev: Inherited from class vm, not used in kqr
type: Inherited from class vm, not used in kqr

Methods

coef signature(object = "kqr"): returns the coefficients (alpha) of the model
alpha signature(object = "kqr"): returns the alpha vector (identical to coef)
b signature(object = "kqr"): returns the offset beta of the model.
cross signature(object = "kqr"): returns the cross validation error
error signature(object = "kqr"): returns the training error
fitted signature(object = "vm"): returns the fitted values
kcall signature(object = "kqr"): returns the call performed
kernelf signature(object = "kqr"): returns the kernel function used
kpar signature(object = "kqr"): returns the kernel parameter used
param signature(object = "kqr"): returns the cost regularization parameter C and tau used
xmatrix signature(object = "kqr"): returns the data matrix used
ymatrix signature(object = "kqr"): returns the response matrix used
scaling signature(object = "kqr"): returns the scaling coefficients of the data (when scaled =

TRUE is used)

ksvm 53

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kqr, vm-class, ksvm-class

Examples

create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))

first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)

predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")

calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",

kpar = list(sigma = 10), C = 0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")

print model coefficients and other information
coef(qrm)
b(qrm)
error(qrm)
kernelf(qrm)

ksvm Support Vector Machines

Description

Support Vector Machines are an excellent tool for classification, novelty detection, and regression.
ksvm supports the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr
(regression) formulations along with native multi-class classification formulations and the bound-
constraint SVM formulations.
ksvm also supports class-probabilities output and confidence intervals for regression.

54 ksvm

Usage

S4 method for signature 'formula'
ksvm(x, data = NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature 'vector'
ksvm(x, ...)

S4 method for signature 'matrix'
ksvm(x, y = NULL, scaled = TRUE, type = NULL,

kernel ="rbfdot", kpar = "automatic",
C = 1, nu = 0.2, epsilon = 0.1, prob.model = FALSE,
class.weights = NULL, cross = 0, fit = TRUE, cache = 40,
tol = 0.001, shrinking = TRUE, ...,
subset, na.action = na.omit)

S4 method for signature 'kernelMatrix'
ksvm(x, y = NULL, type = NULL,

C = 1, nu = 0.2, epsilon = 0.1, prob.model = FALSE,
class.weights = NULL, cross = 0, fit = TRUE, cache = 40,
tol = 0.001, shrinking = TRUE, ...)

S4 method for signature 'list'
ksvm(x, y = NULL, type = NULL,

kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
C = 1, nu = 0.2, epsilon = 0.1, prob.model = FALSE,
class.weights = NULL, cross = 0, fit = TRUE, cache = 40,
tol = 0.001, shrinking = TRUE, ...,
na.action = na.omit)

Arguments

x a symbolic description of the model to be fit. When not using a formula x can
be a matrix or vector containing the training data or a kernel matrix of class
kernelMatrix of the training data or a list of character vectors (for use with the
string kernel). Note, that the intercept is always excluded, whether given in the
formula or not.

data an optional data frame containing the training data, when using a formula. By
default the data is taken from the environment which ‘ksvm’ is called from.

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for regression).

scaled A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally (both x and y variables) to zero
mean and unit variance. The center and scale values are returned and used for
later predictions.

ksvm 55

type ksvm can be used for classification , for regression, or for novelty detection.
Depending on whether y is a factor or not, the default setting for type is C-svc
or eps-svr, respectively, but can be overwritten by setting an explicit value.
Valid options are:

• C-svc C classification
• nu-svc nu classification
• C-bsvc bound-constraint svm classification
• spoc-svc Crammer, Singer native multi-class
• kbb-svc Weston, Watkins native multi-class
• one-svc novelty detection
• eps-svr epsilon regression
• nu-svr nu regression
• eps-bsvr bound-constraint svm regression

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes the inner product in feature space
between two vector arguments (see kernels).
kernlab provides the most popular kernel functions which can be used by setting
the kernel parameter to the following strings:

• rbfdot Radial Basis kernel "Gaussian"
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

Setting the kernel parameter to "matrix" treats x as a kernel matrix calling the
kernelMatrix interface.

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• length, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

56 ksvm

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well. In the case of a Radial Basis kernel function (Gaussian) kpar
can also be set to the string "automatic" which uses the heuristics in sigest to
calculate a good sigma value for the Gaussian RBF or Laplace kernel, from the
data. (default = "automatic").

C cost of constraints violation (default: 1) this is the ‘C’-constant of the regular-
ization term in the Lagrange formulation.

nu parameter needed for nu-svc, one-svc, and nu-svr. The nu parameter sets the
upper bound on the training error and the lower bound on the fraction of data
points to become Support Vectors (default: 0.2).

epsilon epsilon in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm
(default: 0.1)

prob.model if set to TRUE builds a model for calculating class probabilities or in case of
regression, calculates the scaling parameter of the Laplacian distribution fitted
on the residuals. Fitting is done on output data created by performing a 3-fold
cross-validation on the training data. For details see references. (default: FALSE)

class.weights a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named.

cache cache memory in MB (default 40)

tol tolerance of termination criterion (default: 0.001)

shrinking option whether to use the shrinking-heuristics (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data is
performed to assess the quality of the model: the accuracy rate for classification
and the Mean Squared Error for regression

fit indicates whether the fitted values should be computed and included in the
model or not (default: TRUE)

... additional parameters for the low level fitting function

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

Details

ksvm uses John Platt’s SMO algorithm for solving the SVM QP problem an most SVM formula-
tions. On the spoc-svc, kbb-svc, C-bsvc and eps-bsvr formulations a chunking algorithm based
on the TRON QP solver is used.
For multiclass-classification with k classes, k > 2, ksvm uses the ‘one-against-one’-approach, in
which k(k − 1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme,
The spoc-svc and the kbb-svc formulations deal with the multiclass-classification problems by
solving a single quadratic problem involving all the classes.
If the predictor variables include factors, the formula interface must be used to get a correct model

ksvm 57

matrix.
In classification when prob.model is TRUE a 3-fold cross validation is performed on the data and
a sigmoid function is fitted on the resulting decision values f . The data can be passed to the ksvm
function in a matrix or a data.frame, in addition ksvm also supports input in the form of a kernel
matrix of class kernelMatrix or as a list of character vectors where a string kernel has to be used.
The plot function for binary classification ksvm objects displays a contour plot of the decision val-
ues with the corresponding support vectors highlighted.
The predict function can return class probabilities for classification problems by setting the type
parameter to "probabilities".
The problem of model selection is partially addressed by an empirical observation for the RBF ker-
nels (Gaussian , Laplace) where the optimal values of the sigma width parameter are shown to lie
in between the 0.1 and 0.9 quantile of the ∥x−x′∥ statistics. When using an RBF kernel and setting
kpar to "automatic", ksvm uses the sigest function to estimate the quantiles and uses the median
of the values.

Value

An S4 object of class "ksvm" containing the fitted model, Accessor functions can be used to access
the slots of the object (see examples) which include:

alpha The resulting support vectors, (alpha vector) (possibly scaled).

alphaindex The index of the resulting support vectors in the data matrix. Note that this
index refers to the pre-processed data (after the possible effect of na.omit and
subset)

coef The corresponding coefficients times the training labels.

b The negative intercept.

nSV The number of Support Vectors

obj The value of the objective function. In case of one-against-one classification this
is a vector of values

error Training error

cross Cross validation error, (when cross > 0)

prob.model Contains the width of the Laplacian fitted on the residuals in case of regres-
sion, or the parameters of the sigmoid fitted on the decision values in case of
classification.

Note

Data is scaled internally by default, usually yielding better results.

Author(s)

Alexandros Karatzoglou (SMO optimizers in C++ by Chih-Chung Chang & Chih-Jen Lin)
<alexandros.karatzoglou@ci.tuwien.ac.at>

58 ksvm

References

• Chang Chih-Chung, Lin Chih-Jen
LIBSVM: a library for Support Vector Machines
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Chih-Wei Hsu, Chih-Jen Lin
BSVM https://www.csie.ntu.edu.tw/~cjlin/bsvm/

• J. Platt
Probabilistic outputs for support vector machines and comparison to regularized likelihood
methods
Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schoelkopf and D. Schuur-
mans, Eds. Cambridge, MA: MIT Press, 2000.

• H.-T. Lin, C.-J. Lin and R. C. Weng
A note on Platt’s probabilistic outputs for support vector machines
https://www.csie.ntu.edu.tw/~htlin/paper/doc/plattprob.pdf

• C.-W. Hsu and C.-J. Lin
A comparison on methods for multi-class support vector machines
IEEE Transactions on Neural Networks, 13(2002) 415-425.
https://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf

• K. Crammer, Y. Singer
On the learnability and design of output codes for multiclass prolems
Computational Learning Theory, 35-46, 2000.
http://www.learningtheory.org/colt2000/papers/CrammerSinger.pdf

• J. Weston, C. Watkins
Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, Uni-
versity of London, Department of Computer Science.

See Also

predict.ksvm, ksvm-class, couple

Examples

simple example using the spam data set
data(spam)

create test and training set
index <- sample(1:dim(spam)[1])
spamtrain <- spam[index[1:floor(dim(spam)[1]/2)],]
spamtest <- spam[index[((ceiling(dim(spam)[1]/2)) + 1):dim(spam)[1]],]

train a support vector machine
filter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",

kpar=list(sigma=0.05),C=5,cross=3)
filter

predict mail type on the test set
mailtype <- predict(filter,spamtest[,-58])

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/bsvm/
https://www.csie.ntu.edu.tw/~htlin/paper/doc/plattprob.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf
http://www.learningtheory.org/colt2000/papers/CrammerSinger.pdf

ksvm 59

Check results
table(mailtype,spamtest[,58])

Another example with the famous iris data
data(iris)

Create a kernel function using the build in rbfdot function
rbf <- rbfdot(sigma=0.1)
rbf

train a bound constraint support vector machine
irismodel <- ksvm(Species~.,data=iris,type="C-bsvc",

kernel=rbf,C=10,prob.model=TRUE)

irismodel

get fitted values
fitted(irismodel)

Test on the training set with probabilities as output
predict(irismodel, iris[,-5], type="probabilities")

Demo of the plot function
x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2))
y <- matrix(c(rep(1,60),rep(-1,60)))

svp <- ksvm(x,y,type="C-svc")
plot(svp,data=x)

Use kernelMatrix
K <- as.kernelMatrix(crossprod(t(x)))

svp2 <- ksvm(K, y, type="C-svc")

svp2

test data
xtest <- rbind(matrix(rnorm(20),,2),matrix(rnorm(20,mean=3),,2))
test kernel matrix i.e. inner/kernel product of test data with
Support Vectors

Ktest <- as.kernelMatrix(crossprod(t(xtest),t(x[SVindex(svp2),])))

predict(svp2, Ktest)

Use custom kernel

k <- function(x,y) {(sum(x*y) +1)*exp(-0.001*sum((x-y)^2))}
class(k) <- "kernel"

60 ksvm-class

data(promotergene)

train svm using custom kernel
gene <- ksvm(Class~.,data=promotergene[c(1:20, 80:100),],kernel=k,

C=5,cross=5)

gene

Use text with string kernels
data(reuters)
is(reuters)
tsv <- ksvm(reuters,rlabels,kernel="stringdot",

kpar=list(length=5),cross=3,C=10)
tsv

regression
create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)

train support vector machine
regm <- ksvm(x,y,epsilon=0.01,kpar=list(sigma=16),cross=3)
plot(x,y,type="l")
lines(x,predict(regm,x),col="red")

ksvm-class Class "ksvm"

Description

An S4 class containing the output (model) of the ksvm Support Vector Machines function

Objects from the Class

Objects can be created by calls of the form new("ksvm", ...) or by calls to the ksvm function.

Slots

type: Object of class "character" containing the support vector machine type ("C-svc", "nu-svc",
"C-bsvc", "spoc-svc", "one-svc", "eps-svr", "nu-svr", "eps-bsvr")

param: Object of class "list" containing the Support Vector Machine parameters (C, nu, epsilon)

kernelf: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel function parameters (hyperparameters)

kcall: Object of class "ANY" containing the ksvm function call

scaling: Object of class "ANY" containing the scaling information performed on the data

ksvm-class 61

terms: Object of class "ANY" containing the terms representation of the symbolic model used
(when using a formula)

xmatrix: Object of class "input" ("list" for multiclass problems or "matrix" for binary clas-
sification and regression problems) containing the support vectors calculated from the data
matrix used during computations (possibly scaled and without NA). In the case of multi-class
classification each list entry contains the support vectors from each binary classification prob-
lem from the one-against-one method.

ymatrix: Object of class "output" the response "matrix" or "factor" or "vector" or "logical"

fitted: Object of class "output" with the fitted values, predictions using the training set.

lev: Object of class "vector" with the levels of the response (in the case of classification)

prob.model: Object of class "list" with the class prob. model

prior: Object of class "list" with the prior of the training set

nclass: Object of class "numeric" containing the number of classes (in the case of classification)

alpha: Object of class "listI" containing the resulting alpha vector ("list" or "matrix" in case
of multiclass classification) (support vectors)

coef: Object of class "ANY" containing the resulting coefficients

alphaindex: Object of class "list" containing

b: Object of class "numeric" containing the resulting offset

SVindex: Object of class "vector" containing the indexes of the support vectors

nSV: Object of class "numeric" containing the number of support vectors

obj: Object of class vector containing the value of the objective function. When using one-
against-one in multiclass classification this is a vector.

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross-validation error

n.action: Object of class "ANY" containing the action performed for NA

Methods

SVindex signature(object = "ksvm"): return the indexes of support vectors

alpha signature(object = "ksvm"): returns the complete 5 alpha vector (wit zero values)

alphaindex signature(object = "ksvm"): returns the indexes of non-zero alphas (support vec-
tors)

cross signature(object = "ksvm"): returns the cross-validation error

error signature(object = "ksvm"): returns the training error

obj signature(object = "ksvm"): returns the value of the objective function

fitted signature(object = "vm"): returns the fitted values (predict on training set)

kernelf signature(object = "ksvm"): returns the kernel function

kpar signature(object = "ksvm"): returns the kernel parameters (hyperparameters)

lev signature(object = "ksvm"): returns the levels in case of classification

prob.model signature(object="ksvm"): returns class prob. model values

62 ksvm-class

param signature(object="ksvm"): returns the parameters of the SVM in a list (C, epsilon, nu
etc.)

prior signature(object="ksvm"): returns the prior of the training set

kcall signature(object="ksvm"): returns the ksvm function call

scaling signature(object = "ksvm"): returns the scaling values

show signature(object = "ksvm"): prints the object information

type signature(object = "ksvm"): returns the problem type

xmatrix signature(object = "ksvm"): returns the data matrix used

ymatrix signature(object = "ksvm"): returns the response vector

Author(s)

Alexandros Karatzoglou
<alexandros.karatzolgou@ci.tuwien.ac.at>

See Also

ksvm, rvm-class, gausspr-class

Examples

simple example using the promotergene data set
data(promotergene)

train a support vector machine
gene <- ksvm(Class~.,data=promotergene,kernel="rbfdot",

kpar=list(sigma=0.015),C=50,cross=4)
gene

the kernel function
kernelf(gene)
the alpha values
alpha(gene)
the coefficients
coef(gene)
the fitted values
fitted(gene)
the cross validation error
cross(gene)

lssvm 63

lssvm Least Squares Support Vector Machine

Description

The lssvm function is an implementation of the Least Squares SVM. lssvm includes a reduced
version of Least Squares SVM using a decomposition of the kernel matrix which is calculated by
the csi function.

Usage

S4 method for signature 'formula'
lssvm(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature 'vector'
lssvm(x, ...)

S4 method for signature 'matrix'
lssvm(x, y, scaled = TRUE, kernel = "rbfdot", kpar = "automatic",

type = NULL, tau = 0.01, reduced = TRUE, tol = 0.0001,
rank = floor(dim(x)[1]/3), delta = 40, cross = 0, fit = TRUE,
..., subset, na.action = na.omit)

S4 method for signature 'kernelMatrix'
lssvm(x, y, type = NULL, tau = 0.01,

tol = 0.0001, rank = floor(dim(x)[1]/3), delta = 40, cross = 0,
fit = TRUE, ...)

S4 method for signature 'list'
lssvm(x, y, scaled = TRUE,

kernel = "stringdot", kpar = list(length=4, lambda = 0.5),
type = NULL, tau = 0.01, reduced = TRUE, tol = 0.0001,
rank = floor(dim(x)[1]/3), delta = 40, cross = 0, fit = TRUE,
..., subset)

Arguments

x a symbolic description of the model to be fit, a matrix or vector containing the
training data when a formula interface is not used or a kernelMatrix or a list
of character vectors.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘lssvm’ is called from.

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for classification or regres-
sion - currently nor supported -).

64 lssvm

scaled A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally to zero mean and unit variance.
The center and scale values are returned and used for later predictions.

type Type of problem. Either "classification" or "regression". Depending on whether
y is a factor or not, the default setting for type is "classification" or "regression"
respectively, but can be overwritten by setting an explicit value. (regression is
currently not supported)

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel "Gaussian"
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

Setting the kernel parameter to "matrix" treats x as a kernel matrix calling the
kernelMatrix interface.

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• length, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

kpar can also be set to the string "automatic" which uses the heuristics in sigest
to calculate a good sigma value for the Gaussian RBF or Laplace kernel, from
the data. (default = "automatic").

lssvm 65

tau the regularization parameter (default 0.01)

reduced if set to FALSE the full linear problem of the lssvm is solved, when TRUE a re-
duced method using csi is used.

rank the maximal rank of the decomposed kernel matrix, see csi

delta number of columns of cholesky performed in advance, see csi (default 40)

tol tolerance of termination criterion for the csi function, lower tolerance leads to
more precise approximation but may increase the training time and the decom-
posed matrix size (default: 0.0001)

fit indicates whether the fitted values should be computed and included in the
model or not (default: ’TRUE’)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data
is performed to assess the quality of the model: the Mean Squared Error for
regression

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

Least Squares Support Vector Machines are reformulation to the standard SVMs that lead to solv-
ing linear KKT systems. The algorithm is based on the minimization of a classical penalized least-
squares cost function. The current implementation approximates the kernel matrix by an incomplete
Cholesky factorization obtained by the csi function, thus the solution is an approximation to the
exact solution of the lssvm optimization problem. The quality of the solution depends on the ap-
proximation and can be influenced by the "rank" , "delta", and "tol" parameters.

Value

An S4 object of class "lssvm" containing the fitted model, Accessor functions can be used to access
the slots of the object (see examples) which include:

alpha the parameters of the "lssvm"

coef the model coefficients (identical to alpha)

b the model offset.

xmatrix the training data used by the model

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

66 lssvm-class

References

J. A. K. Suykens and J. Vandewalle
Least Squares Support Vector Machine Classifiers
Neural Processing Letters vol. 9, issue 3, June 1999

See Also

ksvm, gausspr, csi

Examples

simple example
data(iris)

lir <- lssvm(Species~.,data=iris)

lir

lirr <- lssvm(Species~.,data= iris, reduced = FALSE)

lirr

Using the kernelMatrix interface

iris <- unique(iris)

rbf <- rbfdot(0.5)

k <- kernelMatrix(rbf, as.matrix(iris[,-5]))

klir <- lssvm(k, iris[, 5])

klir

pre <- predict(klir, k)

lssvm-class Class "lssvm"

Description

The Gaussian Processes object

Objects from the Class

Objects can be created by calls of the form new("lssvm", ...). or by calling the lssvm function

lssvm-class 67

Slots

kernelf: Object of class "kfunction" contains the kernel function used

kpar: Object of class "list" contains the kernel parameter used

param: Object of class "list" contains the regularization parameter used.

kcall: Object of class "call" contains the used function call

type: Object of class "character" contains type of problem

coef: Object of class "ANY" contains the model parameter

terms: Object of class "ANY" contains the terms representation of the symbolic model used (when
using a formula)

xmatrix: Object of class "matrix" containing the data matrix used

ymatrix: Object of class "output" containing the response matrix

fitted: Object of class "output" containing the fitted values

b: Object of class "numeric" containing the offset

lev: Object of class "vector" containing the levels of the response (in case of classification)

scaling: Object of class "ANY" containing the scaling information performed on the data

nclass: Object of class "numeric" containing the number of classes (in case of classification)

alpha: Object of class "listI" containing the computes alpha values

alphaindex Object of class "list" containing the indexes for the alphas in various classes (in
multi-class problems).

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross validation error

n.action: Object of class "ANY" containing the action performed in NA

nSV: Object of class "numeric" containing the number of model parameters

Methods

alpha signature(object = "lssvm"): returns the alpha vector

cross signature(object = "lssvm"): returns the cross validation error

error signature(object = "lssvm"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "lssvm"): returns the call performed

kernelf signature(object = "lssvm"): returns the kernel function used

kpar signature(object = "lssvm"): returns the kernel parameter used

param signature(object = "lssvm"): returns the regularization parameter used

lev signature(object = "lssvm"): returns the response levels (in classification)

type signature(object = "lssvm"): returns the type of problem

scaling signature(object = "ksvm"): returns the scaling values

xmatrix signature(object = "lssvm"): returns the data matrix used

ymatrix signature(object = "lssvm"): returns the response matrix used

68 musk

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

lssvm, ksvm-class

Examples

train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)

musk Musk data set

Description

This dataset describes a set of 92 molecules of which 47 are judged by human experts to be musks
and the remaining 45 molecules are judged to be non-musks.

Usage

data(musk)

Format

A data frame with 476 observations on the following 167 variables.

Variables 1-162 are "distance features" along rays. The distances are measured in hundredths of
Angstroms. The distances may be negative or positive, since they are actually measured relative to
an origin placed along each ray. The origin was defined by a "consensus musk" surface that is no
longer used. Hence, any experiments with the data should treat these feature values as lying on an
arbitrary continuous scale. In particular, the algorithm should not make any use of the zero point or
the sign of each feature value.

Variable 163 is the distance of the oxygen atom in the molecule to a designated point in 3-space.
This is also called OXY-DIS.

Variable 164 is the X-displacement from the designated point.

Variable 165 is the Y-displacement from the designated point.

Variable 166 is the Z-displacement from the designated point.

Class: 0 for non-musk, and 1 for musk

onlearn 69

Source

UCI Machine Learning data repository

Examples

data(musk)

muskm <- ksvm(Class~.,data=musk,kernel="rbfdot",C=1000)

muskm

onlearn Kernel Online Learning algorithms

Description

Online Kernel-based Learning algorithms for classification, novelty detection, and regression.

Usage

S4 method for signature 'onlearn'
onlearn(obj, x, y = NULL, nu = 0.2, lambda = 1e-04)

Arguments

obj obj an object of class onlearn created by the initialization function inlearn
containing the kernel to be used during learning and the parameters of the learned
model

x vector or matrix containing the data. Factors have to be numerically coded. If x
is a matrix the code is run internally one sample at the time.

y the class label in case of classification. Only binary classification is supported
and class labels have to be -1 or +1.

nu the parameter similarly to the nu parameter in SVM bounds the training error.

lambda the learning rate

Details

The online algorithms are based on a simple stochastic gradient descent method in feature space.
The state of the algorithm is stored in an object of class onlearn and has to be passed to the function
at each iteration.

70 onlearn-class

Value

The function returns an S4 object of class onlearn containing the model parameters and the last
fitted value which can be retrieved by the accessor method fit. The value returned in the classifica-
tion and novelty detection problem is the decision function value phi. The accessor methods alpha
returns the model parameters.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Kivinen J. Smola A.J. Williamson R.C.
Online Learning with Kernels
IEEE Transactions on Signal Processing vol. 52, Issue 8, 2004
https://alex.smola.org/papers/2004/KivSmoWil04.pdf

See Also

inlearn

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),

type="classification")

ind <- sample(1:100,100)
learn one data point at the time
for(i in ind)
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

or learn all the data
on <- onlearn(on,x[ind,],y[ind],nu=0.03,lambda=0.1)

sign(predict(on,x))

onlearn-class Class "onlearn"

Description

The class of objects used by the Kernel-based Online learning algorithms

https://alex.smola.org/papers/2004/KivSmoWil04.pdf

onlearn-class 71

Objects from the Class

Objects can be created by calls of the form new("onlearn", ...). or by calls to the function
inlearn.

Slots

kernelf: Object of class "function" containing the used kernel function

buffer: Object of class "numeric" containing the size of the buffer

kpar: Object of class "list" containing the hyperparameters of the kernel function.

xmatrix: Object of class "matrix" containing the data points (similar to support vectors)

fit: Object of class "numeric" containing the decision function value of the last data point

onstart: Object of class "numeric" used for indexing

onstop: Object of class "numeric" used for indexing

alpha: Object of class "ANY" containing the model parameters

rho: Object of class "numeric" containing model parameter

b: Object of class "numeric" containing the offset

pattern: Object of class "factor" used for dealing with factors

type: Object of class "character" containing the problem type (classification, regression, or nov-
elty

Methods

alpha signature(object = "onlearn"): returns the model parameters

b signature(object = "onlearn"): returns the offset

buffer signature(object = "onlearn"): returns the buffer size

fit signature(object = "onlearn"): returns the last decision function value

kernelf signature(object = "onlearn"): return the kernel function used

kpar signature(object = "onlearn"): returns the hyper-parameters used

onlearn signature(obj = "onlearn"): the learning function

predict signature(object = "onlearn"): the predict function

rho signature(object = "onlearn"): returns model parameter

show signature(object = "onlearn"): show function

type signature(object = "onlearn"): returns the type of problem

xmatrix signature(object = "onlearn"): returns the stored data points

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

onlearn, inlearn

72 plot

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),

type="classification")

learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

sign(predict(on,x))

plot plot method for support vector object

Description

Plot a binary classification support vector machine object. The plot function returns a contour plot
of the decision values.

Usage

S4 method for signature 'ksvm'
plot(object, data=NULL, grid = 50, slice = list())

Arguments

object a ksvm classification object created by the ksvm function

data a data frame or matrix containing data to be plotted

grid granularity for the contour plot.

slice a list of named numeric values for the dimensions held constant (only needed if
more than two variables are used). Dimensions not specified are fixed at 0.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

ksvm

prc-class 73

Examples

Demo of the plot function
x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2))
y <- matrix(c(rep(1,60),rep(-1,60)))

svp <- ksvm(x,y,type="C-svc")
plot(svp,data=x)

prc-class Class "prc"

Description

Principal Components Class

Objects of class "prc"

Objects from the class cannot be created directly but only contained in other classes.

Slots

pcv: Object of class "matrix" containing the principal component vectors
eig: Object of class "vector" containing the corresponding eigenvalues
kernelf: Object of class "kfunction" containing the kernel function used
kpar: Object of class "list" containing the kernel parameters used
xmatrix: Object of class "input" containing the data matrix used
kcall: Object of class "ANY" containing the function call
n.action: Object of class "ANY" containing the action performed on NA

Methods

eig signature(object = "prc"): returns the eigenvalues
kcall signature(object = "prc"): returns the performed call
kernelf signature(object = "prc"): returns the used kernel function
pcv signature(object = "prc"): returns the principal component vectors
predict signature(object = "prc"): embeds new data
xmatrix signature(object = "prc"): returns the used data matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

kpca-class,kha-class, kfa-class

74 predict.gausspr

predict.gausspr predict method for Gaussian Processes object

Description

Prediction of test data using Gaussian Processes

Usage

S4 method for signature 'gausspr'
predict(object, newdata, type = "response", coupler = "minpair")

Arguments

object an S4 object of class gausspr created by the gausspr function

newdata a data frame or matrix containing new data

type one of response, probabilities indicating the type of output: predicted val-
ues or matrix of class probabilities

coupler Coupling method used in the multiclass case, can be one of minpair or pkpd
(see reference for more details).

Value

response predicted classes (the classes with majority vote) or the response value in regres-
sion.

probabilities matrix of class probabilities (one column for each class and one row for each
input).

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

• C. K. I. Williams and D. Barber
Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342-1351, 1998
https://homepages.inf.ed.ac.uk/ckiw/postscript/pami_final.ps.gz

• T.F. Wu, C.J. Lin, R.C. Weng.
Probability estimates for Multi-class Classification by Pairwise Coupling
https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

https://homepages.inf.ed.ac.uk/ckiw/postscript/pami_final.ps.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

predict.kqr 75

Examples

example using the promotergene data set
data(promotergene)

create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind,]
genetest <- promotergene[ind,]

train a support vector machine
gene <- gausspr(Class~.,data=genetrain,kernel="rbfdot",

kpar=list(sigma=0.015))
gene

predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype

predict.kqr Predict method for kernel Quantile Regression object

Description

Prediction of test data for kernel quantile regression

Usage

S4 method for signature 'kqr'
predict(object, newdata)

Arguments

object an S4 object of class kqr created by the kqr function

newdata a data frame, matrix, or kernelMatrix containing new data

Value

The value of the quantile given by the computed kqr model in a vector of length equal to the the
rows of newdata.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

76 predict.ksvm

Examples

create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))

first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)

predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")

calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",

kpar= list(sigma=10), C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")

predict.ksvm predict method for support vector object

Description

Prediction of test data using support vector machines

Usage

S4 method for signature 'ksvm'
predict(object, newdata, type = "response", coupler = "minpair")

Arguments

object an S4 object of class ksvm created by the ksvm function

newdata a data frame or matrix containing new data

type one of response, probabilities ,votes, decision indicating the type of out-
put: predicted values, matrix of class probabilities, matrix of vote counts, or
matrix of decision values.

coupler Coupling method used in the multiclass case, can be one of minpair or pkpd
(see reference for more details).

Value

If type(object) is C-svc, nu-svc, C-bsvm or spoc-svc the vector returned depends on the argu-
ment type:

response predicted classes (the classes with majority vote).

promotergene 77

probabilities matrix of class probabilities (one column for each class and one row for each
input).

votes matrix of vote counts (one column for each class and one row for each new
input)

If type(object) is eps-svr, eps-bsvr or nu-svr a vector of predicted values is returned. If
type(object) is one-classification a vector of logical values is returned.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

• T.F. Wu, C.J. Lin, R.C. Weng.
Probability estimates for Multi-class Classification by Pairwise Coupling
https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

• H.T. Lin, C.J. Lin, R.C. Weng (2007), A note on Platt’s probabilistic outputs for support vector
machines. Machine Learning, 68, 267–276. doi:10.1007/s1099400750186.

Examples

example using the promotergene data set
data(promotergene)

create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind,]
genetest <- promotergene[ind,]

train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",

kpar=list(sigma=0.015),C=70,cross=4,prob.model=TRUE)
gene

predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype

promotergene E. coli promoter gene sequences (DNA)

Description

Promoters have a region where a protein (RNA polymerase) must make contact and the helical DNA
sequence must have a valid conformation so that the two pieces of the contact region spatially align.
The data contains DNA sequences of promoters and non-promoters.

https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf
https://doi.org/10.1007/s10994-007-5018-6

78 ranking

Usage

data(promotergene)

Format

A data frame with 106 observations and 58 variables. The first variable Class is a factor with
levels + for a promoter gene and - for a non-promoter gene. The remaining 57 variables V2 to V58
are factors describing the sequence. The DNA bases are coded as follows: a adenine c cytosine g
guanine t thymine

Source

doi:10.24432/C5S01D

References

Towell, G., Shavlik, J. and Noordewier, M.
Refinement of Approximate Domain Theories by Knowledge-Based Artificial Neural Networks.
In Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90)

Examples

data(promotergene)

Create classification model using Gaussian Processes

prom <- gausspr(Class~.,data=promotergene,kernel="rbfdot",
kpar=list(sigma=0.02),cross=4)

prom

Create model using Support Vector Machines

promsv <- ksvm(Class~.,data=promotergene,kernel="laplacedot",
kpar="automatic",C=60,cross=4)

promsv

ranking Ranking

Description

A universal ranking algorithm which assigns importance/ranking to data points given a query.

https://doi.org/10.24432/C5S01D

ranking 79

Usage

S4 method for signature 'matrix'
ranking(x, y,

kernel ="rbfdot", kpar = list(sigma = 1),
scale = FALSE, alpha = 0.99, iterations = 600,
edgegraph = FALSE, convergence = FALSE ,...)

S4 method for signature 'kernelMatrix'
ranking(x, y,

alpha = 0.99, iterations = 600, convergence = FALSE,...)

S4 method for signature 'list'
ranking(x, y,

kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
alpha = 0.99, iterations = 600, convergence = FALSE, ...)

Arguments

x a matrix containing the data to be ranked, or the kernel matrix of data to be
ranked or a list of character vectors

y The index of the query point in the data matrix or a vector of length equal to the
rows of the data matrix having a one at the index of the query points index and
zero at all the other points.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"

80 ranking

• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

scale If TRUE the data matrix columns are scaled to zero mean and unit variance.

alpha The alpha parameter takes values between 0 and 1 and is used to control the
authoritative scores received from the unlabeled points. For 0 no global structure
is found the algorithm ranks the points similarly to the original distance metric.

iterations Maximum number of iterations

edgegraph Construct edgegraph (only supported with the RBF kernel)

convergence Include convergence matrix in results

... Additional arguments

Details

A simple universal ranking algorithm which exploits the intrinsic global geometric structure of the
data. In many real world applications this should be superior to a local method in which the data
are simply ranked by pairwise Euclidean distances. Firstly a weighted network is defined on the
data and an authoritative score is assigned to each query. The query points act as source nodes
that continually pump their authoritative scores to the remaining points via the weighted network
and the remaining points further spread the scores they received to their neighbors. This spreading
process is repeated until convergence and the points are ranked according to their score at the end
of the iterations.

Value

An S4 object of class ranking which extends the matrix class. The first column of the returned
matrix contains the original index of the points in the data matrix the second column contains the
final score received by each point and the third column the ranking of the point. The object contains
the following slots :

edgegraph Containing the edgegraph of the data points.

convergence Containing the convergence matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

D. Zhou, J. Weston, A. Gretton, O. Bousquet, B. Schoelkopf
Ranking on Data Manifolds
Advances in Neural Information Processing Systems 16.
MIT Press Cambridge Mass. 2004
https://papers.neurips.cc/paper/2447-ranking-on-data-manifolds.pdf

https://papers.neurips.cc/paper/2447-ranking-on-data-manifolds.pdf

ranking-class 81

See Also

ranking-class, specc

Examples

data(spirals)

create data from spirals
ran <- spirals[rowSums(abs(spirals) < 0.55) == 2,]

rank points according to similarity to the most upper left point
ranked <- ranking(ran, 54, kernel = "rbfdot",

kpar = list(sigma = 100), edgegraph = TRUE)
ranked[54, 2] <- max(ranked[-54, 2])
c<-1:86
op <- par(mfrow = c(1, 2),pty="s")
plot(ran)
plot(ran, cex=c[ranked[,3]]/40)

ranking-class Class "ranking"

Description

Object of the class "ranking" are created from the ranking function and extend the class matrix

Objects from the Class

Objects can be created by calls of the form new("ranking", ...).

Slots

.Data: Object of class "matrix" containing the data ranking and scores

convergence: Object of class "matrix" containing the convergence matrix

edgegraph: Object of class "matrix" containing the edgegraph

Extends

Class "matrix", directly.

Methods

show signature(object = "ranking"): displays the ranking score matrix

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

82 reuters

See Also

ranking

Examples

data(spirals)

create data set to be ranked
ran<-spirals[rowSums(abs(spirals)<0.55)==2,]

rank points according to "relevance" to point 54 (up left)
ranked<-ranking(ran,54,kernel="rbfdot",

kpar=list(sigma=100),edgegraph=TRUE)

ranked
edgegraph(ranked)[1:10,1:10]

reuters Reuters Text Data

Description

A small sample from the Reuters news data set.

Usage

data(reuters)

Format

A list of 40 text documents along with the labels. reuters contains the text documents and rlabels
the labels in a vector.

Details

This dataset contains a list of 40 text documents along with the labels. The data consist out of 20
documents from the acq category and 20 documents from the crude category. The labels are stored
in rlabels

Source

Reuters

rvm 83

rvm Relevance Vector Machine

Description

The Relevance Vector Machine is a Bayesian model for regression and classification of identical
functional form to the support vector machine. The rvm function currently supports only regression.

Usage

S4 method for signature 'formula'
rvm(x, data=NULL, ..., subset, na.action = na.omit)

S4 method for signature 'vector'
rvm(x, ...)

S4 method for signature 'matrix'
rvm(x, y, type="regression",

kernel="rbfdot", kpar="automatic",
alpha= ncol(as.matrix(x)), var=0.1, var.fix=FALSE, iterations=100,
verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3,
cross = 0, fit = TRUE, ... , subset, na.action = na.omit)

S4 method for signature 'list'
rvm(x, y, type = "regression",

kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
alpha = 5, var = 0.1, var.fix = FALSE, iterations = 100,
verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3,
cross = 0, fit = TRUE, ..., subset, na.action = na.omit)

Arguments

x a symbolic description of the model to be fit. When not using a formula x can
be a matrix or vector containing the training data or a kernel matrix of class
kernelMatrix of the training data or a list of character vectors (for use with the
string kernel). Note, that the intercept is always excluded, whether given in the
formula or not.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘rvm’ is called from.

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for regression).

type rvm can only be used for regression at the moment.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes a dot product between two vector
arguments. kernlab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

84 rvm

• rbfdot Radial Basis kernel "Gaussian"
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• length, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well. In the case of a Radial Basis kernel function (Gaussian) kpar
can also be set to the string "automatic" which uses the heuristics in sigest to
calculate a good sigma value for the Gaussian RBF or Laplace kernel, from the
data. (default = "automatic").

alpha The initial alpha vector. Can be either a vector of length equal to the number of
data points or a single number.

var the initial noise variance

var.fix Keep noise variance fix during iterations (default: FALSE)

iterations Number of iterations allowed (default: 100)

tol tolerance of termination criterion

minmaxdiff termination criteria. Stop when max difference is equal to this parameter (default:1e-
3)

verbosity print information on algorithm convergence (default = FALSE)

fit indicates whether the fitted values should be computed and included in the
model or not (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data
is performed to assess the quality of the model: the Mean Squared Error for
regression

rvm 85

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

... additional parameters

Details

The Relevance Vector Machine typically leads to sparser models then the SVM. It also performs
better in many cases (specially in regression).

Value

An S4 object of class "rvm" containing the fitted model. Accessor functions can be used to access
the slots of the object which include :

alpha The resulting relevance vectors

alphaindex The index of the resulting relevance vectors in the data matrix

nRV Number of relevance vectors

RVindex The indexes of the relevance vectors

error Training error (if fit = TRUE)

...

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Tipping, M. E.
Sparse Bayesian learning and the relevance vector machine
Journal of Machine Learning Research 1, 211-244
https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

See Also

ksvm

Examples

create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

train relevance vector machine

https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

86 rvm-class

foo <- rvm(x, y)
foo
print relevance vectors
alpha(foo)
RVindex(foo)

predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")

rvm-class Class "rvm"

Description

Relevance Vector Machine Class

Objects from the Class

Objects can be created by calls of the form new("rvm", ...). or by calling the rvm function.

Slots

tol: Object of class "numeric" contains tolerance of termination criteria used.
kernelf: Object of class "kfunction" contains the kernel function used
kpar: Object of class "list" contains the hyperparameter used
kcall: Object of class "call" contains the function call
type: Object of class "character" contains type of problem
terms: Object of class "ANY" containing the terms representation of the symbolic model used

(when using a formula interface)
xmatrix: Object of class "matrix" contains the data matrix used during computation
ymatrix: Object of class "output" contains the response matrix
fitted: Object of class "output" with the fitted values, (predict on training set).
lev: Object of class "vector" contains the levels of the response (in classification)
nclass: Object of class "numeric" contains the number of classes (in classification)
alpha: Object of class "listI" containing the the resulting alpha vector
coef: Object of class "ANY" containing the the resulting model parameters
nvar: Object of class "numeric" containing the calculated variance (in case of regression)
mlike: Object of class "numeric" containing the computed maximum likelihood
RVindex: Object of class "vector" containing the indexes of the resulting relevance vectors
nRV: Object of class "numeric" containing the number of relevance vectors
cross: Object of class "numeric" containing the resulting cross validation error
error: Object of class "numeric" containing the training error
n.action: Object of class "ANY" containing the action performed on NA

rvm-class 87

Methods

RVindex signature(object = "rvm"): returns the index of the relevance vectors

alpha signature(object = "rvm"): returns the resulting alpha vector

cross signature(object = "rvm"): returns the resulting cross validation error

error signature(object = "rvm"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "rvm"): returns the function call

kernelf signature(object = "rvm"): returns the used kernel function

kpar signature(object = "rvm"): returns the parameters of the kernel function

lev signature(object = "rvm"): returns the levels of the response (in classification)

mlike signature(object = "rvm"): returns the estimated maximum likelihood

nvar signature(object = "rvm"): returns the calculated variance (in regression)

type signature(object = "rvm"): returns the type of problem

xmatrix signature(object = "rvm"): returns the data matrix used during computation

ymatrix signature(object = "rvm"): returns the used response

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

rvm, ksvm-class

Examples

create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

train relevance vector machine
foo <- rvm(x, y)
foo

alpha(foo)
RVindex(foo)
fitted(foo)
kernelf(foo)
nvar(foo)

show slots
slotNames(foo)

88 sigest

sigest Hyperparameter estimation for the Gaussian Radial Basis kernel

Description

Given a range of values for the "sigma" inverse width parameter in the Gaussian Radial Basis kernel
for use with Support Vector Machines. The estimation is based on the data to be used.

Usage

S4 method for signature 'formula'
sigest(x, data=NULL, frac = 0.5, na.action = na.omit, scaled = TRUE)
S4 method for signature 'matrix'
sigest(x, frac = 0.5, scaled = TRUE, na.action = na.omit)

Arguments

x a symbolic description of the model upon the estimation is based. When not
using a formula x is a matrix or vector containing the data

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘ksvm’ is called from.

frac Fraction of data to use for estimation. By default a quarter of the data is used to
estimate the range of the sigma hyperparameter.

scaled A logical vector indicating the variables to be scaled. If scaled is of length 1,
the value is recycled as many times as needed and all non-binary variables are
scaled. Per default, data are scaled internally to zero mean and unit variance
(since this the default action in ksvm as well). The center and scale values are
returned and used for later predictions.

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

Details

sigest estimates the range of values for the sigma parameter which would return good results when
used with a Support Vector Machine (ksvm). The estimation is based upon the 0.1 and 0.9 quantile
of ∥x− x′∥2. Basically any value in between those two bounds will produce good results.

Value

Returns a vector of length 3 defining the range (0.1 quantile, median and 0.9 quantile) of the sigma
hyperparameter.

spam 89

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

B. Caputo, K. Sim, F. Furesjo, A. Smola,
Appearance-based object recognition using SVMs: which kernel should I use?
Proc of NIPS workshop on Statitsical methods for computational experiments in visual processing
and computer vision, Whistler, 2002.

See Also

ksvm

Examples

estimate good sigma values for promotergene
data(promotergene)
srange <- sigest(Class~.,data = promotergene)
srange

s <- srange[2]
s
create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind,]
genetest <- promotergene[ind,]

train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",

kpar=list(sigma = s),C=50,cross=3)
gene

predict gene type on the test set
promoter <- predict(gene,genetest[,-1])

Check results
table(promoter,genetest[,1])

spam Spam E-mail Database

Description

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as spam or non-spam.
In addition to this class label there are 57 variables indicating the frequency of certain words and
characters in the e-mail.

90 specc

Usage

data(spam)

Format

A data frame with 4601 observations and 58 variables.

The first 48 variables contain the frequency of the variable name (e.g., business) in the e-mail. If
the variable name starts with num (e.g., num650) the it indicates the frequency of the corresponding
number (e.g., 650). The variables 49-54 indicate the frequency of the characters ‘;’, ‘(’, ‘[’, ‘!’,
‘$’, and ‘#’. The variables 55-57 contain the average, longest and total run-length of capital letters.
Variable 58 indicates the type of the mail and is either "nonspam" or "spam", i.e. unsolicited
commercial e-mail.

Details

The data set contains 2788 e-mails classified as "nonspam" and 1813 classified as "spam".

The “spam” concept is diverse: advertisements for products/web sites, make money fast schemes,
chain letters, pornography... This collection of spam e-mails came from the collectors’ postmaster
and individuals who had filed spam. The collection of non-spam e-mails came from filed work and
personal e-mails, and hence the word ’george’ and the area code ’650’ are indicators of non-spam.
These are useful when constructing a personalized spam filter. One would either have to blind such
non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam
filter.

Source

doi:10.24432/C53G6X

References

T. Hastie, R. Tibshirani, J.H. Friedman. The Elements of Statistical Learning. Springer, 2001.

specc Spectral Clustering

Description

A spectral clustering algorithm. Clustering is performed by embedding the data into the subspace
of the eigenvectors of an affinity matrix.

https://doi.org/10.24432/C53G6X

specc 91

Usage

S4 method for signature 'formula'
specc(x, data = NULL, na.action = na.omit, ...)

S4 method for signature 'matrix'
specc(x, centers,

kernel = "rbfdot", kpar = "automatic",
nystrom.red = FALSE, nystrom.sample = dim(x)[1]/6,
iterations = 200, mod.sample = 0.75, na.action = na.omit, ...)

S4 method for signature 'kernelMatrix'
specc(x, centers, nystrom.red = FALSE, iterations = 200, ...)

S4 method for signature 'list'
specc(x, centers,

kernel = "stringdot", kpar = list(length=4, lambda=0.5),
nystrom.red = FALSE, nystrom.sample = length(x)/6,
iterations = 200, mod.sample = 0.75, na.action = na.omit, ...)

Arguments

x the matrix of data to be clustered, or a symbolic description of the model to be
fit, or a kernel Matrix of class kernelMatrix, or a list of character vectors.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘specc’ is called from.

centers Either the number of clusters or a set of initial cluster centers. If the first, a
random set of rows in the eigenvectors matrix are chosen as the initial centers.

kernel the kernel function used in computing the affinity matrix. This parameter can be
set to any function, of class kernel, which computes a dot product between two
vector arguments. kernlab provides the most popular kernel functions which can
be used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian"
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function of class kernel
by passing the function name as an argument.

kpar a character string or the list of hyper-parameters (kernel parameters). The de-
fault character string "automatic" uses a heuristic to determine a suitable value
for the width parameter of the RBF kernel. The second option "local" (local

92 specc

scaling) uses a more advanced heuristic and sets a width parameter for every
point in the data set. This is particularly useful when the data incorporates mul-
tiple scales. A list can also be used containing the parameters to be used with
the kernel function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot"
• scale, offset for the Hyperbolic tangent kernel function "tanhdot"
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".
• length, lambda, normalized for the "stringdot" kernel where length is

the length of the strings considered, lambda the decay factor and normal-
ized a logical parameter determining if the kernel evaluations should be
normalized.

Hyper-parameters for user defined kernels can be passed through the kpar pa-
rameter as well.

nystrom.red use nystrom method to calculate eigenvectors. When TRUE a sample of the
dataset is used to calculate the eigenvalues, thus only a nxm matrix where n
the sample size is stored in memory (default: FALSE

nystrom.sample number of data points to use for estimating the eigenvalues when using the nys-
trom method. (default : dim(x)[1]/6)

mod.sample proportion of data to use when estimating sigma (default: 0.75)

iterations the maximum number of iterations allowed.

na.action the action to perform on NA

... additional parameters

Details

Spectral clustering works by embedding the data points of the partitioning problem into the sub-
space of the k largest eigenvectors of a normalized affinity/kernel matrix. Using a simple clustering
method like kmeans on the embedded points usually leads to good performance. It can be shown
that spectral clustering methods boil down to graph partitioning.
The data can be passed to the specc function in a matrix or a data.frame, in addition specc also
supports input in the form of a kernel matrix of class kernelMatrix or as a list of character vectors
where a string kernel has to be used.

Value

An S4 object of class specc which extends the class vector containing integers indicating the
cluster to which each point is allocated. The following slots contain useful information

centers A matrix of cluster centers.

size The number of point in each cluster

withinss The within-cluster sum of squares for each cluster

kernelf The kernel function used

specc-class 93

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

References

Andrew Y. Ng, Michael I. Jordan, Yair Weiss
On Spectral Clustering: Analysis and an Algorithm
Neural Information Processing Symposium 2001
https://papers.neurips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.
pdf

See Also

kkmeans, kpca, kcca

Examples

Cluster the spirals data set.
data(spirals)

sc <- specc(spirals, centers=2)

sc
centers(sc)
size(sc)
withinss(sc)

plot(spirals, col=sc)

specc-class Class "specc"

Description

The Spectral Clustering Class

Objects from the Class

Objects can be created by calls of the form new("specc", ...). or by calling the function specc.

Slots

.Data: Object of class "vector" containing the cluster assignments
centers: Object of class "matrix" containing the cluster centers
size: Object of class "vector" containing the number of points in each cluster
withinss: Object of class "vector" containing the within-cluster sum of squares for each cluster
kernelf Object of class kernel containing the used kernel function.

https://papers.neurips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
https://papers.neurips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf

94 spirals

Methods

centers signature(object = "specc"): returns the cluster centers

withinss signature(object = "specc"): returns the within-cluster sum of squares for each clus-
ter

size signature(object = "specc"): returns the number of points in each cluster

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

specc, kpca-class

Examples

Cluster the spirals data set.
data(spirals)

sc <- specc(spirals, centers=2)

centers(sc)
size(sc)

spirals Spirals Dataset

Description

A toy data set representing two spirals with Gaussian noise. The data was created with the mlbench.spirals
function in mlbench.

Usage

data(spirals)

Format

A matrix with 300 observations and 2 variables.

Examples

data(spirals)
plot(spirals)

stringdot 95

stringdot String Kernel Functions

Description

String kernels.

Usage

stringdot(length = 4, lambda = 1.1, type = "spectrum", normalized = TRUE)

Arguments

length The length of the substrings considered

lambda The decay factor

type Type of string kernel, currently the following kernels are supported :

spectrum the kernel considers only matching substring of exactly length n (also
know as string kernel). Each such matching substring is given a constant weight.
The length parameter in this kernel has to be length > 1.

boundrange this kernel (also known as boundrange) considers only matching
substrings of length less than or equal to a given number N. This type of string
kernel requires a length parameter length > 1

constant The kernel considers all matching substrings and assigns constant
weight (e.g. 1) to each of them. This constant kernel does not require any
additional parameter.

exponential Exponential Decay kernel where the substring weight decays as
the matching substring gets longer. The kernel requires a decay factor λ > 1

string essentially identical to the spectrum kernel, only computed using a more
conventional way.

fullstring essentially identical to the boundrange kernel only computed in a
more conventional way.

normalized normalize string kernel values, (default: TRUE)

Details

The kernel generating functions are used to initialize a kernel function which calculates the dot
(inner) product between two feature vectors in a Hilbert Space. These functions or their function
generating names can be passed as a kernel argument on almost all functions in kernlab(e.g.,
ksvm, kpca etc.).

96 ticdata

The string kernels calculate similarities between two strings (e.g. texts or sequences) by matching
the common substring in the strings. Different types of string kernel exists and are mainly distin-
guished by how the matching is performed i.e. some string kernels count the exact matchings of n
characters (spectrum kernel) between the strings, others allow gaps (mismatch kernel) etc.

Value

Returns an S4 object of class stringkernel which extents the function class. The resulting
function implements the given kernel calculating the inner (dot) product between two character
vectors.

kpar a list containing the kernel parameters (hyperparameters) used.

The kernel parameters can be accessed by the kpar function.

Note

The spectrum and boundrange kernel are faster and more efficient implementations of the string
and fullstring kernels which will be still included in kernlab for the next two versions.

Author(s)

Alexandros Karatzoglou
<alexandros.karatzoglou@ci.tuwien.ac.at>

See Also

dots , kernelMatrix , kernelMult, kernelPol

Examples

sk <- stringdot(type="string", length=5)

sk

ticdata The Insurance Company Data

Description

This data set used in the CoIL 2000 Challenge contains information on customers of an insurance
company. The data consists of 86 variables and includes product usage data and socio-demographic
data derived from zip area codes. The data was collected to answer the following question: Can you
predict who would be interested in buying a caravan insurance policy and give an explanation why
?

ticdata 97

Usage

data(ticdata)

Format

ticdata: Dataset to train and validate prediction models and build a description (9822 customer
records). Each record consists of 86 attributes, containing sociodemographic data (attribute 1-43)
and product ownership (attributes 44-86). The sociodemographic data is derived from zip codes.
All customers living in areas with the same zip code have the same sociodemographic attributes.
Attribute 86, CARAVAN:Number of mobile home policies, is the target variable.

Data Format

1 STYPE Customer Subtype
2 MAANTHUI Number of houses 1 - 10
3 MGEMOMV Avg size household 1 - 6
4 MGEMLEEF Average age
5 MOSHOOFD Customer main type
6 MGODRK Roman catholic
7 MGODPR Protestant ...
8 MGODOV Other religion
9 MGODGE No religion
10 MRELGE Married
11 MRELSA Living together
12 MRELOV Other relation
13 MFALLEEN Singles
14 MFGEKIND Household without children
15 MFWEKIND Household with children
16 MOPLHOOG High level education
17 MOPLMIDD Medium level education
18 MOPLLAAG Lower level education
19 MBERHOOG High status
20 MBERZELF Entrepreneur
21 MBERBOER Farmer
22 MBERMIDD Middle management
23 MBERARBG Skilled labourers
24 MBERARBO Unskilled labourers
25 MSKA Social class A
26 MSKB1 Social class B1
27 MSKB2 Social class B2
28 MSKC Social class C
29 MSKD Social class D
30 MHHUUR Rented house
31 MHKOOP Home owners
32 MAUT1 1 car
33 MAUT2 2 cars
34 MAUT0 No car
35 MZFONDS National Health Service
36 MZPART Private health insurance

98 ticdata

37 MINKM30 Income >30.000
38 MINK3045 Income 30-45.000
39 MINK4575 Income 45-75.000
40 MINK7512 Income 75-122.000
41 MINK123M Income <123.000
42 MINKGEM Average income
43 MKOOPKLA Purchasing power class
44 PWAPART Contribution private third party insurance
45 PWABEDR Contribution third party insurance (firms)
46 PWALAND Contribution third party insurance (agriculture)
47 PPERSAUT Contribution car policies
48 PBESAUT Contribution delivery van policies
49 PMOTSCO Contribution motorcycle/scooter policies
50 PVRAAUT Contribution lorry policies
51 PAANHANG Contribution trailer policies
52 PTRACTOR Contribution tractor policies
53 PWERKT Contribution agricultural machines policies
54 PBROM Contribution moped policies
55 PLEVEN Contribution life insurances
56 PPERSONG Contribution private accident insurance policies
57 PGEZONG Contribution family accidents insurance policies
58 PWAOREG Contribution disability insurance policies
59 PBRAND Contribution fire policies
60 PZEILPL Contribution surfboard policies
61 PPLEZIER Contribution boat policies
62 PFIETS Contribution bicycle policies
63 PINBOED Contribution property insurance policies
64 PBYSTAND Contribution social security insurance policies
65 AWAPART Number of private third party insurance 1 - 12
66 AWABEDR Number of third party insurance (firms) ...
67 AWALAND Number of third party insurance (agriculture)
68 APERSAUT Number of car policies
69 ABESAUT Number of delivery van policies
70 AMOTSCO Number of motorcycle/scooter policies
71 AVRAAUT Number of lorry policies
72 AAANHANG Number of trailer policies
73 ATRACTOR Number of tractor policies
74 AWERKT Number of agricultural machines policies
75 ABROM Number of moped policies
76 ALEVEN Number of life insurances
77 APERSONG Number of private accident insurance policies
78 AGEZONG Number of family accidents insurance policies
79 AWAOREG Number of disability insurance policies
80 ABRAND Number of fire policies
81 AZEILPL Number of surfboard policies
82 APLEZIER Number of boat policies
83 AFIETS Number of bicycle policies
84 AINBOED Number of property insurance policies

vm-class 99

85 ABYSTAND Number of social security insurance policies
86 CARAVAN Number of mobile home policies 0 - 1

Note: All the variables starting with M are zipcode variables. They give information on the distri-
bution of that variable, e.g., Rented house, in the zipcode area of the customer.

Details

Information about the insurance company customers consists of 86 variables and includes product
usage data and socio-demographic data derived from zip area codes. The data was supplied by
the Dutch data mining company Sentient Machine Research and is based on a real world business
problem. The training set contains over 5000 descriptions of customers, including the information
of whether or not they have a caravan insurance policy. The test set contains 4000 customers. The
test and data set are merged in the ticdata set. More information about the data set and the CoIL
2000 Challenge along with publications based on the data set can be found at http://www.liacs.
nl/~putten/library/cc2000/.

Source

• UCI KDD Archive:http://kdd.ics.uci.edu

• Donor: Sentient Machine Research
Peter van der Putten
Sentient Machine Research
Baarsjesweg 224
1058 AA Amsterdam
The Netherlands
+31 20 6186927
pvdputten@hotmail.com, putten@liacs.nl

References

Peter van der Putten, Michel de Ruiter, Maarten van Someren CoIL Challenge 2000 Tasks and
Results: Predicting and Explaining Caravan Policy Ownership
http://www.liacs.nl/~putten/library/cc2000/

vm-class Class "vm"

Description

An S4 VIRTUAL class used as a base for the various vector machine classes in kernlab

Objects from the Class

Objects from the class cannot be created directly but only contained in other classes.

http://www.liacs.nl/~putten/library/cc2000/
http://www.liacs.nl/~putten/library/cc2000/
http://kdd.ics.uci.edu
http://www.liacs.nl/~putten/library/cc2000/

100 vm-class

Slots

alpha: Object of class "listI" containing the resulting alpha vector (list in case of multiclass
classification) (support vectors)

type: Object of class "character" containing the vector machine type e.g., ("C-svc", "nu-svc",
"C-bsvc", "spoc-svc", "one-svc", "eps-svr", "nu-svr", "eps-bsvr")

kernelf: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel function parameters (hyperparameters)

kcall: Object of class "call" containing the function call

terms: Object of class "ANY" containing the terms representation of the symbolic model used
(when using a formula)

xmatrix: Object of class "input" the data matrix used during computations (support vectors)
(possibly scaled and without NA)

ymatrix: Object of class "output" the response matrix/vector

fitted: Object of class "output" with the fitted values, predictions using the training set.

lev: Object of class "vector" with the levels of the response (in the case of classification)

nclass: Object of class "numeric" containing the number of classes (in the case of classification)

error: Object of class "vector" containing the training error

cross: Object of class "vector" containing the cross-validation error

n.action: Object of class "ANY" containing the action performed for NA

Methods

alpha signature(object = "vm"): returns the complete alpha vector (wit zero values)

cross signature(object = "vm"): returns the cross-validation error

error signature(object = "vm"): returns the training error

fitted signature(object = "vm"): returns the fitted values (predict on training set)

kernelf signature(object = "vm"): returns the kernel function

kpar signature(object = "vm"): returns the kernel parameters (hyperparameters)

lev signature(object = "vm"): returns the levels in case of classification

kcall signature(object="vm"): returns the function call

type signature(object = "vm"): returns the problem type

xmatrix signature(object = "vm"): returns the data matrix used(support vectors)

ymatrix signature(object = "vm"): returns the response vector

Author(s)

Alexandros Karatzoglou
<alexandros.karatzolgou@ci.tuwien.ac.at>

See Also

ksvm-class, rvm-class, gausspr-class

Index

∗ algebra
csi, 5
inchol, 16
kernelMatrix, 29

∗ array
csi, 5
inchol, 16
kernelMatrix, 29

∗ classes
csi-class, 7
gausspr-class, 14
inchol-class, 18
ipop-class, 24
kcca-class, 27
kernel-class, 28
kfa-class, 33
kha-class, 36
kmmd-class, 43
kpca-class, 47
kqr-class, 51
ksvm-class, 60
lssvm-class, 66
onlearn-class, 70
prc-class, 73
ranking-class, 81
rvm-class, 86
specc-class, 93
vm-class, 99

∗ classif
couple, 4
gausspr, 11
inlearn, 20
ksvm, 53
lssvm, 63
onlearn, 69
plot, 72
predict.gausspr, 74
predict.ksvm, 76
ranking, 78

sigest, 88
∗ cluster

kfa, 31
kha, 34
kkmeans, 38
kpca, 44
ranking, 78
specc, 90

∗ datasets
income, 19
musk, 68
promotergene, 77
reuters, 82
spam, 89
spirals, 94
ticdata, 96

∗ htest
kmmd, 40

∗ methods
as.kernelMatrix, 3
csi, 5
gausspr, 11
inchol, 16
kqr, 48
ksvm, 53
lssvm, 63
plot, 72
predict.gausspr, 74
predict.kqr, 75
predict.ksvm, 76

∗ multivariate
kcca, 25

∗ neural
inlearn, 20
ksvm, 53
onlearn, 69

∗ nonlinear
gausspr, 11
kmmd, 40

101

102 INDEX

kqr, 48
ksvm, 53
lssvm, 63
rvm, 83

∗ nonparametric
kmmd, 40

∗ optimize
ipop, 22

∗ regression
gausspr, 11
inlearn, 20
kqr, 48
ksvm, 53
onlearn, 69
plot, 72
predict.gausspr, 74
predict.kqr, 75
predict.ksvm, 76
rvm, 83
sigest, 88

∗ symbolmath
dots, 9
stringdot, 95

∗ ts
inlearn, 20
onlearn, 69

alpha (vm-class), 99
alpha,gausspr-method (gausspr-class), 14
alpha,kfa-method (kfa-class), 33
alpha,kqr-method (kqr-class), 51
alpha,ksvm-method (ksvm-class), 60
alpha,lssvm-method (lssvm-class), 66
alpha,onlearn-method (onlearn-class), 70
alpha,rvm-method (rvm-class), 86
alpha,vm-method (vm-class), 99
alphaindex (ksvm-class), 60
alphaindex,gausspr-method

(gausspr-class), 14
alphaindex,kfa-method (kfa-class), 33
alphaindex,kqr-method (kqr-class), 51
alphaindex,ksvm-method (ksvm-class), 60
alphaindex,lssvm-method (lssvm-class),

66
anovadot (dots), 9
anovakernel-class (kernel-class), 28
as.kernelMatrix, 3
as.kernelMatrix,matrix-method

(as.kernelMatrix), 3

as.kernelMatrix-methods
(as.kernelMatrix), 3

Asymbound (kmmd), 40
Asymbound,kmmd-method (kmmd-class), 43
AsympH0 (kmmd), 40
AsympH0,kmmd-method (kmmd-class), 43

b (ksvm-class), 60
b,kqr-method (kqr-class), 51
b,ksvm-method (ksvm-class), 60
b,lssvm-method (lssvm-class), 66
b,onlearn-method (onlearn-class), 70
besseldot (dots), 9
besselkernel-class (kernel-class), 28
buffer (onlearn-class), 70
buffer,onlearn-method (onlearn-class),

70

cancor, 26
centers (specc-class), 93
centers,specc-method (specc-class), 93
chol, 7, 18
coef,gausspr-method (gausspr), 11
coef,kfa-method (kfa), 31
coef,kqr-method (kqr), 48
coef,ksvm-method (ksvm), 53
coef,lssvm-method (lssvm), 63
coef,rvm-method (rvm), 83
coef,vm-method (ksvm-class), 60
convergence (ranking-class), 81
convergence,ranking-method

(ranking-class), 81
couple, 4, 58
cross (vm-class), 99
cross,gausspr-method (gausspr-class), 14
cross,kqr-method (kqr-class), 51
cross,ksvm-method (ksvm-class), 60
cross,lssvm-method (lssvm-class), 66
cross,rvm-method (rvm-class), 86
cross,vm-method (vm-class), 99
csi, 5, 8, 18, 19, 23, 65, 66
csi,matrix-method (csi), 5
csi-class, 7
csi-methods (csi), 5

diagresidues (inchol-class), 18
diagresidues,csi-method (csi-class), 7
diagresidues,inchol-method

(inchol-class), 18

INDEX 103

dots, 3, 9, 28, 96
dual (ipop-class), 24
dual,ipop-method (ipop-class), 24

edgegraph (ranking-class), 81
edgegraph,ranking-method

(ranking-class), 81
eig (prc-class), 73
eig,kha-method (kha-class), 36
eig,kpca-method (kpca-class), 47
eig,prc-method (prc-class), 73
error (vm-class), 99
error,gausspr-method (gausspr-class), 14
error,kqr-method (kqr-class), 51
error,ksvm-method (ksvm-class), 60
error,lssvm-method (lssvm-class), 66
error,rvm-method (rvm-class), 86
error,vm-method (vm-class), 99
eskm,kha-method (kha-class), 36

fit,onlearn-method (onlearn-class), 70
fitted,ksvm-method (ksvm-class), 60
fitted,vm-method (vm-class), 99
fourierdot (dots), 9
fourierkernel-class (kernel-class), 28

gausspr, 11, 16, 66
gausspr,formula-method (gausspr), 11
gausspr,matrix-method (gausspr), 11
gausspr,vector-method (gausspr), 11
gausspr-class, 14

H0 (kmmd), 40
H0,kmmd-method (kmmd-class), 43
how (ipop-class), 24
how,ipop-method (ipop-class), 24

inchol, 7, 16, 19, 23
inchol,matrix-method (inchol), 16
inchol-class, 18
income, 19
inlearn, 20, 70, 71
inlearn,numeric-method (inlearn), 20
ipop, 22, 24, 51
ipop,ANY,matrix-method (ipop), 22
ipop-class, 24

kcall (vm-class), 99
kcall,gausspr-method (gausspr-class), 14
kcall,kfa-method (kfa-class), 33

kcall,kha-method (kha-class), 36
kcall,kpca-method (kpca-class), 47
kcall,kqr-method (kqr-class), 51
kcall,ksvm-method (ksvm-class), 60
kcall,lssvm-method (lssvm-class), 66
kcall,prc-method (prc-class), 73
kcall,rvm-method (rvm-class), 86
kcall,vm-method (vm-class), 99
kcca, 25, 27, 36, 40, 46, 93
kcca,matrix-method (kcca), 25
kcca-class, 27
kcor (kcca-class), 27
kcor,kcca-method (kcca-class), 27
kernel-class, 28
kernelf (vm-class), 99
kernelf,gausspr-method (gausspr-class),

14
kernelf,kfa-method (kfa-class), 33
kernelf,kha-method (kha-class), 36
kernelf,kmmd-method (kmmd-class), 43
kernelf,kpca-method (kpca-class), 47
kernelf,kqr-method (kqr-class), 51
kernelf,ksvm-method (ksvm-class), 60
kernelf,lssvm-method (lssvm-class), 66
kernelf,onlearn-method (onlearn-class),

70
kernelf,prc-method (prc-class), 73
kernelf,rvm-method (rvm-class), 86
kernelf,specc-method (specc-class), 93
kernelf,vm-method (vm-class), 99
kernelFast (kernelMatrix), 29
kernelFast,anovakernel-method

(kernelMatrix), 29
kernelFast,besselkernel-method

(kernelMatrix), 29
kernelFast,kernel-method

(kernelMatrix), 29
kernelFast,laplacekernel-method

(kernelMatrix), 29
kernelFast,polykernel-method

(kernelMatrix), 29
kernelFast,rbfkernel-method

(kernelMatrix), 29
kernelFast,splinekernel-method

(kernelMatrix), 29
kernelFast,stringkernel-method

(kernelMatrix), 29
kernelFast,tanhkernel-method

104 INDEX

(kernelMatrix), 29
kernelFast,vanillakernel-method

(kernelMatrix), 29
kernelMatrix, 3, 10, 29, 96
kernelMatrix,anovakernel-method

(kernelMatrix), 29
kernelMatrix,besselkernel-method

(kernelMatrix), 29
kernelMatrix,kernel-method

(kernelMatrix), 29
kernelMatrix,laplacekernel-method

(kernelMatrix), 29
kernelMatrix,polykernel-method

(kernelMatrix), 29
kernelMatrix,rbfkernel-method

(kernelMatrix), 29
kernelMatrix,splinekernel-method

(kernelMatrix), 29
kernelMatrix,stringkernel-method

(kernelMatrix), 29
kernelMatrix,tanhkernel-method

(kernelMatrix), 29
kernelMatrix,vanillakernel-method

(kernelMatrix), 29
kernelMatrix-class (as.kernelMatrix), 3
kernelMult, 10, 96
kernelMult (kernelMatrix), 29
kernelMult,anovakernel,ANY-method

(kernelMatrix), 29
kernelMult,besselkernel,ANY-method

(kernelMatrix), 29
kernelMult,character,kernelMatrix-method

(kernelMatrix), 29
kernelMult,kernel-method

(kernelMatrix), 29
kernelMult,laplacekernel,ANY-method

(kernelMatrix), 29
kernelMult,polykernel,ANY-method

(kernelMatrix), 29
kernelMult,rbfkernel,ANY-method

(kernelMatrix), 29
kernelMult,splinekernel,ANY-method

(kernelMatrix), 29
kernelMult,stringkernel,ANY-method

(kernelMatrix), 29
kernelMult,tanhkernel,ANY-method

(kernelMatrix), 29
kernelMult,vanillakernel,ANY-method

(kernelMatrix), 29
kernelPol, 10, 96
kernelPol (kernelMatrix), 29
kernelPol,anovakernel-method

(kernelMatrix), 29
kernelPol,besselkernel-method

(kernelMatrix), 29
kernelPol,kernel-method (kernelMatrix),

29
kernelPol,laplacekernel-method

(kernelMatrix), 29
kernelPol,polykernel-method

(kernelMatrix), 29
kernelPol,rbfkernel-method

(kernelMatrix), 29
kernelPol,splinekernel-method

(kernelMatrix), 29
kernelPol,stringkernel-method

(kernelMatrix), 29
kernelPol,tanhkernel-method

(kernelMatrix), 29
kernelPol,vanillakernel-method

(kernelMatrix), 29
kernels, 34, 55
kernels (dots), 9
kfa, 26, 31, 34, 36
kfa,formula-method (kfa), 31
kfa,matrix-method (kfa), 31
kfa-class, 33
kfunction (dots), 9
kfunction-class (kernel-class), 28
kha, 26, 34, 37
kha,formula-method (kha), 34
kha,matrix-method (kha), 34
kha-class, 36
kkmeans, 38, 93
kkmeans,formula-method (kkmeans), 38
kkmeans,kernelMatrix-method (kkmeans),

38
kkmeans,list-method (kkmeans), 38
kkmeans,matrix-method (kkmeans), 38
kmmd, 40, 44
kmmd,kernelMatrix-method (kmmd), 40
kmmd,list-method (kmmd), 40
kmmd,matrix-method (kmmd), 40
kmmd-class, 43
kpar (dots), 9
kpar,gausspr-method (gausspr-class), 14

INDEX 105

kpar,kernel-method (kernel-class), 28
kpar,kqr-method (kqr-class), 51
kpar,ksvm-method (ksvm-class), 60
kpar,lssvm-method (lssvm-class), 66
kpar,onlearn-method (onlearn-class), 70
kpar,rvm-method (rvm-class), 86
kpar,vm-method (vm-class), 99
kpca, 26, 33, 36, 40, 44, 93
kpca,formula-method (kpca), 44
kpca,kernelMatrix-method (kpca), 44
kpca,list-method (kpca), 44
kpca,matrix-method (kpca), 44
kpca-class, 47
kqr, 48, 53
kqr,formula-method (kqr), 48
kqr,kernelMatrix-method (kqr), 48
kqr,list-method (kqr), 48
kqr,matrix-method (kqr), 48
kqr,vector-method (kqr), 48
kqr-class, 51
ksvm, 5, 13, 51, 53, 62, 66, 72, 85, 89
ksvm,formula-method (ksvm), 53
ksvm,kernelMatrix-method (ksvm), 53
ksvm,list-method (ksvm), 53
ksvm,matrix-method (ksvm), 53
ksvm,vector-method (ksvm), 53
ksvm-class, 60

laplacedot (dots), 9
laplacekernel-class (kernel-class), 28
lev (vm-class), 99
lev,gausspr-method (gausspr-class), 14
lev,ksvm-method (ksvm-class), 60
lev,lssvm-method (lssvm-class), 66
lev,rvm-method (rvm-class), 86
lev,vm-method (vm-class), 99
lssvm, 13, 63, 68
lssvm,formula-method (lssvm), 63
lssvm,kernelMatrix-method (lssvm), 63
lssvm,list-method (lssvm), 63
lssvm,matrix-method (lssvm), 63
lssvm,vector-method (lssvm), 63
lssvm-class, 66
lssvm-methods (lssvm), 63

maxresiduals (inchol-class), 18
maxresiduals,csi-method (csi-class), 7
maxresiduals,inchol-method

(inchol-class), 18

mlike (rvm-class), 86
mlike,rvm-method (rvm-class), 86
mmdstats (kmmd), 40
mmdstats,kmmd-method (kmmd-class), 43
musk, 68

nSV (ksvm-class), 60
nSV,ksvm-method (ksvm-class), 60
nSV,lssvm-method (lssvm-class), 66
nvar (rvm-class), 86
nvar,rvm-method (rvm-class), 86

obj (ksvm-class), 60
obj,ksvm-method (ksvm-class), 60
onlearn, 21, 69, 71
onlearn,onlearn-method (onlearn), 69
onlearn-class, 70

param (ksvm-class), 60
param,kqr-method (kqr-class), 51
param,ksvm-method (ksvm-class), 60
param,lssvm-method (lssvm-class), 66
pcv (prc-class), 73
pcv,kha-method (kha-class), 36
pcv,kpca-method (kpca-class), 47
pcv,prc-method (prc-class), 73
pivots (inchol-class), 18
pivots,csi-method (csi-class), 7
pivots,inchol-method (inchol-class), 18
plot, 72
plot,ksvm,missing-method (plot), 72
plot,ksvm-method (plot), 72
plot.ksvm (plot), 72
polydot, 30
polydot (dots), 9
polykernel-class (kernel-class), 28
prc-class, 73
predgain (csi-class), 7
predgain,csi-method (csi-class), 7
predict,gausspr-method

(predict.gausspr), 74
predict,kfa-method (kfa-class), 33
predict,kha-method (kha), 34
predict,kpca-method (kpca), 44
predict,kqr-method (predict.kqr), 75
predict,ksvm-method (predict.ksvm), 76
predict,lssvm-method (lssvm), 63
predict,onlearn-method (onlearn-class),

70

106 INDEX

predict,rvm-method (rvm), 83
predict.gausspr, 13, 74
predict.kqr, 51, 75
predict.ksvm, 5, 58, 76
primal (ipop-class), 24
primal,ipop-method (ipop-class), 24
prior (ksvm-class), 60
prior,ksvm-method (ksvm-class), 60
prob.model (ksvm-class), 60
prob.model,ksvm-method (ksvm-class), 60
promotergene, 77

Q (csi-class), 7
Q,csi-method (csi-class), 7

R (csi-class), 7
R,csi-method (csi-class), 7
Radbound (kmmd), 40
Radbound,kmmd-method (kmmd-class), 43
ranking, 78, 82
ranking,kernelMatrix-method (ranking),

78
ranking,list-method (ranking), 78
ranking,matrix-method (ranking), 78
ranking-class, 81
rbfdot, 30
rbfdot (dots), 9
rbfkernel-class (kernel-class), 28
reuters, 82
rho (onlearn-class), 70
rho,onlearn-method (onlearn-class), 70
rlabels (reuters), 82
rotated (kpca-class), 47
rotated,kpca-method (kpca-class), 47
RVindex (rvm-class), 86
RVindex,rvm-method (rvm-class), 86
rvm, 13, 51, 83, 87
rvm,formula-method (rvm), 83
rvm,kernelMatrix-method (rvm), 83
rvm,list-method (rvm), 83
rvm,matrix-method (rvm), 83
rvm,vector-method (rvm), 83
rvm-class, 86
rvm-methods (rvm), 83

scaling (ksvm-class), 60
scaling,gausspr-method (gausspr-class),

14
scaling,kqr-method (kqr-class), 51

scaling,ksvm-method (ksvm-class), 60
scaling,lssvm-method (lssvm-class), 66
show (ksvm-class), 60
show,gausspr-method (gausspr), 11
show,kernel-method (dots), 9
show,kfa-method (kfa), 31
show,kmmd-method (kmmd), 40
show,kqr-method (kqr), 48
show,ksvm-method (ksvm), 53
show,lssvm-method (lssvm), 63
show,onlearn-method (onlearn-class), 70
show,ranking-method (ranking-class), 81
show,rvm-method (rvm), 83
show,specc-method (specc), 90
sigest, 56, 64, 84, 88
sigest,formula-method (sigest), 88
sigest,matrix-method (sigest), 88
size (specc-class), 93
size,specc-method (specc-class), 93
spam, 89
specc, 40, 81, 90, 94
specc,formula-method (specc), 90
specc,kernelMatrix-method (specc), 90
specc,list-method (specc), 90
specc,matrix-method (specc), 90
specc-class, 93
spirals, 94
splinedot (dots), 9
splinekernel-class (kernel-class), 28
stringdot, 95
stringkernel-class (kernel-class), 28
SVindex (ksvm-class), 60
SVindex,ksvm-method (ksvm-class), 60

tanhdot, 30
tanhdot (dots), 9
tanhkernel-class (kernel-class), 28
ticdata, 96
truegain (csi-class), 7
truegain,csi-method (csi-class), 7
type (vm-class), 99
type,gausspr-method (gausspr-class), 14
type,ksvm-method (ksvm-class), 60
type,lssvm-method (lssvm-class), 66
type,onlearn-method (onlearn-class), 70
type,rvm-method (rvm-class), 86
type,vm-method (vm-class), 99

vanilladot, 30

INDEX 107

vanilladot (dots), 9
vanillakernel-class (kernel-class), 28
vm-class, 99

withinss (specc-class), 93
withinss,specc-method (specc-class), 93

xcoef (kcca-class), 27
xcoef,kcca-method (kcca-class), 27
xmatrix (vm-class), 99
xmatrix,gausspr-method (gausspr-class),

14
xmatrix,kfa-method (kfa-class), 33
xmatrix,kha-method (kha-class), 36
xmatrix,kpca-method (kpca-class), 47
xmatrix,kqr-method (kqr-class), 51
xmatrix,ksvm-method (ksvm-class), 60
xmatrix,lssvm-method (lssvm-class), 66
xmatrix,onlearn-method (onlearn-class),

70
xmatrix,prc-method (prc-class), 73
xmatrix,rvm-method (rvm-class), 86
xmatrix,vm-method (vm-class), 99
xvar,kcca-method (kcca-class), 27

ycoef (kcca-class), 27
ycoef,kcca-method (kcca-class), 27
ymatrix (vm-class), 99
ymatrix,gausspr-method (gausspr-class),

14
ymatrix,kqr-method (kqr-class), 51
ymatrix,ksvm-method (ksvm-class), 60
ymatrix,lssvm-method (lssvm-class), 66
ymatrix,rvm-method (rvm-class), 86
ymatrix,vm-method (vm-class), 99
yvar,kcca-method (kcca-class), 27

	as.kernelMatrix
	couple
	csi
	csi-class
	dots
	gausspr
	gausspr-class
	inchol
	inchol-class
	income
	inlearn
	ipop
	ipop-class
	kcca
	kcca-class
	kernel-class
	kernelMatrix
	kfa
	kfa-class
	kha
	kha-class
	kkmeans
	kmmd
	kmmd-class
	kpca
	kpca-class
	kqr
	kqr-class
	ksvm
	ksvm-class
	lssvm
	lssvm-class
	musk
	onlearn
	onlearn-class
	plot
	prc-class
	predict.gausspr
	predict.kqr
	predict.ksvm
	promotergene
	ranking
	ranking-class
	reuters
	rvm
	rvm-class
	sigest
	spam
	specc
	specc-class
	spirals
	stringdot
	ticdata
	vm-class
	Index

