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Jubilee: Forecasting Long-Term Growth
of S&P 500 Index
by Stephen H.-T. Lihn (stevelihn@gmail.com, v0.2.6, released on Dec 31, 2019)

Abstract This tutorial shows how to use the jubilee package in R to forecast the 10-year and 20-year
growth trajectory of S&P 500 Index. R programs are provided to run the regressions, make predictions,
and plot the charts. Additionally, in order to capture the short-horizon volatility (less than 10 years),
we derive a new quantity that shows the deviation between the realized index level and the forecast.
Interestingly, this quantity is mean-reverting in the same frequencies as the commonly-known business
cycles. We attempt to locate potential leading indicator(s) for the next bear market and recession. A
few factors are explored, among which yield spread inversion is considered most important.

Introduction

In Lihn (2018), we enhanced the CAPE model (Campbell and Shiller (1988); Campbell and Shiller
(1998)) and provided a regression framework called the “Jubilee-Tectonic Model” to forecast the
long-term growth of S&P 500 (SPX) index. The R2 of the regression is above 80%, indicating very high
consistency with historical data, and therefore, explanatory power. The data and utilities are packaged
into the jubilee package in R. This tutorial provides an introduction how to use the package and
generate the forecasts.

The main objective of long-term forecast is to regress the 10-year and 20-year forward nominal log-
returns of SPX: rnom

f 10 (t) and rnom
f 20 (t), from which we can derive the predicted log-index Xpred (t) from

the realized total-return log-index X (t). The 10-year forecast is popular in asset management, since the
time horizon is reasonable for long-term asset allocators, such as pensions and endowments. However,
as we found in Lihn (2018), the 20-year period matches the natural frequency of the long-term mean
reversion cycles. Thus the 20-year regression requires the least tectonic adjustments.

The forecast horizon is called the “look-forward period”, denoted as ∆Tf = 10 or 20. We construct
the 5-factor forecast model as follows:

rnom
f ,∆Tf

(t) ∼ β0 + β1Y (t) + β2R (t) + β3CPI10 (t) + β4CPI20 (t) + β5 log CAPEadj
∆Tf

(t) + ε; (1)

CPI10 (t) and CPI20 (t) are the 10-year and 20-year log-returns of CPI (FRED symbol: CPIAUCSL).
The channel return R (t) and channel deviation Y (t) are two important quantities derived from the
trend-following channel in Section 2.3 of Lihn (2018). Y (t) is the difference between X (t) and the
trend-following channel moving average α (t), that is, Y (t) = X (t)− α (t). Y (t) is mean-reverting
with an approximate 40-year cycle (See Figure 1 below).

We briefly review the concept of the trend-following channel and mean-reversion decomposition
here. However, the reader can skip this paragraph since the detail here is encapsulated in the R
package, and will not be used explicitly in this paper. Given a channel look-back period ∆Tb = 45
years, at time t, we apply the causal regression X (τ) ∼ α (t) + R (t) (τ − t) , where τ ∈ [t− ∆Tb, t], to
produce α (t) and R (t), and therefore Y (t). Using the discrete notation on X(τ) and τ, the input data
points to the regression are {(Xi = X(τi), τi) , ∀i = 1 · · ·N, τi ∈ [t− ∆Tb, t]}. And the regression yields

analytical solutions: α (t) = 〈Xi〉 +
√

3
(

N+1
N

)
Cor (Xi, τi) Stdev (Xi); R (t) = Cor (Xi, τi)

Stdev(Xi)
Stdev(τi)

;

and Y (t) = X (t)− 〈Xi〉 −
√

3
(

N+1
N

)
Cor (Xi, τi) Stdev (Xi). From the 〈Xi〉 term in α (t), we can see

why α (t) resembles some kind of moving average.

We assume the in-sample window is t ∈ [Tstart, Tend] during which period all the factors are
available. Due to the forward-looking nature of rnom

f ,∆Tf
(t), it is NaN after t > Tend − ∆Tf . Thus

the regression is performed for t ∈
[

Tstart, Tend − ∆Tf

]
, and the factor loadings are used to make

prediction, denoted as
[
rnom

f ,∆Tf
(t)
]

pred
, that extends to t ∈

[
Tend − ∆Tf , Tend

]
.

The log-CAPE is tectonically adjusted by the fault lines
{(

tadj
i , ∆i log CAPE∆Tf

)
, ∀i = 1 · · ·N

}

with the linear “ramp-up” period ∆tramp such that
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log CAPEadj
∆Tf

(t) = log CAPE∆Tf (t) + ∑
i=1···N





0, t < tadj
i ;

t− tadj
i

∆tramp
∆i log CAPE∆Tf

t ∈
[
tadj
i , tadj

i + ∆tramp

]
;

∆i log CAPE∆Tf , t ≥ tadj
i + ∆tramp,

(2)
where CAPE∆Tf is the cyclically adjusted P/E ratio for ∆Tf years. Each tuple

(
tadj
i , ∆i log CAPE∆Tf

)

describes a jump in log-CAPE at time tadj
i , which is called a “fault line”, as if the economy was going

through an earth quake and a crack was left on the ground.

When ∆tramp → 0, the fault line adjustments converge to the step function approach described
in Section 1.2 of Lihn (2018). The purpose of introducing the ∆tramp parameter is to eliminate the
discontinuity in the index prediction Xpred (t) such that the short-horizon mean-reversion quantity
Z∆Tf (t) in Eq. (4) makes more sense. We apply ∆tramp = 5 to the 20-year forecast in this tutorial. It is
set to zero for the 10-year forecast so that it is consistent with Lihn (2018).

The objective of optimization is to minimize the AIC of the regression by a nonlinear optimization
on the fault lines as well as the factor loadings {βi}. We view our tectonic 5-factor model as a
meaningful extension from the one-factor CAPE model, rreal

f ,∆Tf
(t) ∼ log CAPE∆Tf (t) + ε.

The nominal return forecast can be translated into index level prediction without the complication
of inflation forecast. The regressed forward return rnom

f ,∆Tf
(t) is converted to the predicted log-index

Xpred (t) and future SPX level (dividend included) ppred (t) via (See Section 7 of Lihn (2018))

Xpred

(
t + ∆Tf

)
= X (t) +

[
rnom

f ,∆Tf
(t)
]

pred
∆Tf , where t ∈ [Tstart, Tend] ;

and ppred (t) = p (Tend) exp
(

Xpred (t)− X (Tend)
)

.
(3)

The the total-return price p (t) is rebased to the price level of the most recent month, using the
relation between p (Tend) and X (Tend), such that p (t) = p (Tend) exp (X (t)− X (Tend)). Therefore,
the predicted total-return price ppred (t) is calculated in the same manner.

The difference between the realized log-index path X (t) and the predicted path Xpred (t) yields a
new quantity, called the “short-horizon mean-reversion” (SMR) index:

Z∆Tf (t) ≡ X (t)− Xpred (t)
∣∣∣
∆Tf

, where t ∈ [Tstart, Tend] ;

= X (t)− X
(

t− ∆Tf

)
−
[
rnom

f ,∆Tf

(
t− ∆Tf

)]
pred

∆Tf .
(4)

We find that Z∆Tf (t) is mean-reverting between -0.5 and 0.5 (see Figure 7), in the same frequencies
as the commonly-known business cycles, about 5-10 years. Thus it is called the “short horizon”.

From the perspective of Y (t), we have the alternative expression:

Z∆Tf (t) ≡ Y (t)− Ypred (t)
∣∣∣
∆Tf

, where Ypred (t) ≡ Xpred (t)− α (t) . (5)

That is, Z∆Tf (t) is the residual between the realized Y (t) and the predicted Y (t), thus mean-reverting
in much shorter cycles.

This quantity explains the difference between long-term investing and short-term market-timing.
For long-term investors, Z∆Tf (t) can be considered as “short-term noises.” But for savvy portfolio
managers, if its behavior is predictable, its pattern can be taken advantage of in each business cycle.
We find that Z∆Tf (t) is deeply correlated to the interest rate policy, and more specifically, the yield
curve inversion. It will be briefly touched upon in this tutorial.

Loading Package and Preparing Data

We begin with loading the jubilee package and setting up several essential data tables:

> library(jubilee)
> repo <- jubilee.repo(online=FALSE)

[1] "Maximum date in raw ie.data is 2019.12 and SPX average at 3223.38"
[1] "Maximum date for unrate is 2019-12-16 and for GDP, 2019-08-16"

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



CONTRIBUTED ARTICLE 3

> ju <- jubilee(repo@ie, lookback.channel=45, fwd.rtn.duration=10)
> dt <- ju@dtb
> dj <- ju@reg.dtb

The repo object is an instance of the jubilee.repo class. It stores the raw data, mainly in the
repo@ie data table slot, which is named after “irrational exuberance” to honor the main data source of
Shiller (2018). The ju object is an instance of the jubilee class that most functions are based on. Inside
the ju object, the dt=ju@dtb data table contains simple time series, many are directly copied from the
repo@ie data table. The dj=ju@reg.dtb data table contains derived time series required for regression.
The separation is to prevent each data table from getting too bulky. We will work with the dj data
table most of the time.

The lookback.channel parameter is set to 45 years, according to Section 2.4 of Lihn (2018). The
user is not expected to change this setting. The fwd.rtn.duration parameter corresponds to ∆Tf ,
which is set to 10 for the 10-year forecast.

The package comes with static data going back 100-200 years. The static data will be only updated
by the infrequent releases of the package. The user can choose to amend the most recent data from the
internet by specifying online=TRUE. This will allow you to make timely forecasts.

The mapping between the mathematical notations and the columns in the data tables is described
as follows:

• t = dj$fraction : Time in years. Each month is in the 1/12 unit. Note that we follow Shiller’s
“middle of the month” convention since he averages the quantity. But when we download the
monthly data from FRED, we use the monthly data as is.

• X (t) = dj$log.tri: The logarithm of the total return index for SPX.

• rnom
f 10 (t) = dj$eqty.logr.f10: The 10-year forward returns of X (t).

• rnom
f 20 (t) = dj$eqty.logr.f20: The 20-year forward returns of X (t).

• CPI10 (t) = dj$cpi.logr.10: The 10-year (backward) log-return of CPI.

• CPI20 (t) = dj$cpi.logr.20: The 20-year (backward) log-return of CPI.

• R (t) = dj$eqty.lm.r: The channel return.

• Y (t) = dj$eqty.lm.y: The channel deviation.

• α (t) = dj$eqty.lm.a: The trend-following channel moving average.

• log (CAPE10 (t)) = dj$log.cape.10: The 10-year log-CAPE.

• log (CAPE20 (t)) = dj$log.cape.20: The 20-year log-CAPE.

As a starter, the following R code demonstrates a plot on the channel deviation Y(t) via the corre-
sponding column dj$eqty.lm.y in the data table. Y(t) is the major analytical quantity that enhances
the CAPE model. In Figure 1, we observe four bottoms (1896, 1932, 1974, 2009) approximately 40 years
apart. Such long cycle is essential for the long-term forecast model. But it is too long to work with for
the business cycle forecast, which we will address in Section “Short-Horizon Mean Reversion”.
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> J <- which(dj$fraction > 1881) # defines the in-sample window
> plot(dj$fraction[J], dj$eqty.lm.y[J], col="blue", type="l",
+ xlab="$t$", ylab="$Y(t)$",
+ main="The channel deviation Y(t)")
> abline(h=0, col="red", lty=2)
>
> lines(dj$fraction, dj$usrec.nber*0.25-1.0, col="gray", lty=1)

1880 1900 1920 1940 1960 1980 2000 2020

-1
.0

-0
.5

0.
0

0.
5

1.
0

The channel deviation Y(t)

t

Y
(t
)

Figure 1: The channel deviation Y(t). It is mean-reverting with an approximate 40-year long-term
cycle. The NBER recession indicator is drawn in gray line to illustrate the relative scale to the short-term
business cycles.

Regression of The 10-Year Returns

The fault lines
{(

tadj
i , ∆i log CAPE∆Tf

)
, ∀i = 1 · · ·N

}
have been pre-packaged into data sets inside

the function jubilee.std_fault_line(). The user only needs to choose which data set to use. Here we
use “r_nom_f10_5ftr_4fl”, which means “for nominal return regression, forward 10 years, 5-factors,
4 fault lines”. Its content is shown below:

> fl.10 <- jubilee.std_fault_line("r_nom_f10_5ftr_4fl")
> fl.10

fraction shift
1 1907.06 1.464
2 1935.61 -1.499
3 1944.48 -1.245
4 1985.85 -0.511

The following R code shows the procedure described in Eq. (Introduction) and Eq. (Introduction)
to adjust log-CAPE with the fault lines, perform the regression, and generate the prediction:

> dj$log.cape10.adj <- jubilee.adj_fault_line(dj$fraction, dj$log.cape10, fl.10)
> J <- which(dj$fraction > 1881) # defines the in-sample window
> df <- dj[J,] # defines the in-sample data set
> lm.10 <- lm(eqty.logr.f10 ~
+ eqty.lm.y + eqty.lm.r + log.cape10.adj + cpi.logr.10 + cpi.logr.20,
+ data=df)
> pred.10 <- jubilee.predict(ju, lm.10, df)
> summary(lm.10)
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Call:
lm(formula = eqty.logr.f10 ~ eqty.lm.y + eqty.lm.r + log.cape10.adj +

cpi.logr.10 + cpi.logr.20, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.109464 -0.012396 -0.000075 0.013694 0.066083

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4059376 0.0064490 62.95 <2e-16 ***
eqty.lm.y -0.0885762 0.0018667 -47.45 <2e-16 ***
eqty.lm.r -2.7814138 0.0595289 -46.72 <2e-16 ***
log.cape10.adj -0.0432007 0.0008091 -53.40 <2e-16 ***
cpi.logr.10 -0.0575684 0.0340685 -1.69 0.0913 .
cpi.logr.20 0.9964247 0.0441279 22.58 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02039 on 1541 degrees of freedom
(121 observations deleted due to missingness)

Multiple R-squared: 0.8139, Adjusted R-squared: 0.8133
F-statistic: 1348 on 5 and 1541 DF, p-value: < 2.2e-16

The summary statistics shows R2 above 80%, indicating the regression has very high explanatory
power. The prediction logic is encapsulated in the jubilee.predict() function, which produces the
pred.10 data table, containing many useful columns in a single table. The some column definitions in
pred.10 are described below:

• Xpred (t) = pred.10$log.tri : The predicted log-index.

•
[
rnom

f 10 (t)
]

pred
= pred.10$logr : The predicted nominal returns.

• ppred (t) = pred.10$price : The predicted SPX total-return price, rebased according to the SPX
price of the most recent month.

• Ypred (t) = pred.10$eqty.lm.y : The predicted Y (t).

• X (t) = pred.10$log.tri.source : The realized log-index. (An interpolated copy.)

• p (t) = pred.10$tri.source : The realized SPX total-return price, rebased according to the SPX
price of the most recent month. (An interpolated copy.)

• α (t) = pred.10$eqty.lm.a.source : The realized α (t). (An interpolated copy.)

The forward-return regression can be visualized in Figure 2 by the following R code:
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> plot(pred.10$fraction[J], pred.10$logr[J]*100, col="red", type="l",
+ xlab="$t$", ylab="$r_{f10}^{nom}(t)$",
+ main="10-year nominal forecast, 5-factor tectonic CAPE model")
> lines(df$fraction, df$eqty.logr.f10*100, col="blue")
> for (i in 1:NROW(fl.10)) { abline(v=fl.10[i,1], col="blue", lty=2) } # faults
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10-year nominal forecast, 5-factor tectonic CAPE model
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0
(t
)

Figure 2: The 10-year nominal return forecast by 5-factor tectonic CAPE model. The blue line is the
realized returns. The red line is the predicted returns. The dotted blue lines are the locations of the
faults.

We can also visualize the log-index as well as the price-level forecast since 1997 via the following
plots in Figure 3. We observe that the predicted index is much smoother than the actual index. The
prediction is of the long-term nature, forecasting SPX will exceed 5000 in ten years (dividend included).
But it leaves out the short-horizon fluctuations unexplained, such as the late-1990 rally, the dot-com
crash, and the 2008-2009 crash and rebound.
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> J10 <- which(pred.10$fraction >= 1997)
> par(mfcol=c(2,1))
> plot(pred.10$fraction[J10], pred.10$log.tri[J10], col="red", type="l",
+ xlab="$t$", ylab="$X(t)$",
+ main="Forecast of log-index X(t) in 10y model")
> lines(dj$fraction, dj$log.tri, cex=0.1, col="blue")
>
> legend(x=2000, y=17, bg="transparent",
+ legend=c("Actual", "10y"),
+ lwd=c(1,1), lty=c(1,1), cex=0.6,
+ col=c("blue", "red"))
>
> plot(pred.10$fraction[J10], pred.10$price[J10], col="red", type="l",
+ xlab="$t$", ylab="$p(t)$",
+ main="Forecast of price index p(t) in 10y Model")
> lines(pred.10$fraction, pred.10$tri.source, cex=0.1, col="blue")
> abline(h=3000, col="black", lty=3)
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Figure 3: The log-index X (t) and the price-level p (t) forecasts since 1997 in the 10-year model. The
blue lines are the realized values. The red lines are the predicted values.

Forecast in The 20-Year Model

It was mentioned in the introduction that the 20-year period matches the natural frequency of the
long-term mean-reversion cycles. Thus the 20-year regression requires the least tectonic adjustments.
We also find that the 20-year model is more suitable to describe the short-horizon fluctuation. This
gives us the incentive to explore it in depth here in the tutorial.
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We repeat the data loading procedure, except that the fwd.rtn.duration parameter ∆Tf is set to
20 years:

> repo <- jubilee.repo(online=FALSE)

[1] "Maximum date in raw ie.data is 2019.12 and SPX average at 3223.38"
[1] "Maximum date for unrate is 2019-12-16 and for GDP, 2019-08-16"

> ju <- jubilee(repo@ie, lookback.channel=45, fwd.rtn.duration=20)
> dt <- ju@dtb
> dj <- ju@reg.dtb

Next, we use the fault line data set “r_nom_f20_5ftr_2fl_ramp5y”, which means “for nominal
return regression, forward 20 years, 5-factors, 2 fault lines, 5-year ramp-up”, shown below. The 5-year
ramp-up time smooths out the two jumps caused by the fault lines.

> fl.20 <- jubilee.std_fault_line("r_nom_f20_5ftr_2fl_ramp5y")
> fl.20

fraction shift
1 1902.42 -1.077
2 1929.20 -1.499

Note that the two fault lines are before WWII. We like the fact that they are not intrusive to the
modern history after WWII. This indicates that, from the perspective of 20-year window, the modern
economic history has been quite stable. The forward-return regression is performed as following:

> dj$log.cape20.adj <- jubilee.adj_fault_line(dj$fraction, dj$log.cape20, fl.20, months=12*5)
> J <- which(dj$fraction > 1881)
> df <- dj[J,]
> lm.20 <- lm(eqty.logr.f20 ~
+ eqty.lm.y + eqty.lm.r + log.cape20.adj + cpi.logr.10 + cpi.logr.20,
+ data=df)
> pred.20 <- jubilee.predict(ju, lm.20, df)
> summary(lm.20)

Call:
lm(formula = eqty.logr.f20 ~ eqty.lm.y + eqty.lm.r + log.cape20.adj +

cpi.logr.10 + cpi.logr.20, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.042841 -0.007351 0.000205 0.006378 0.046092

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0951878 0.0020242 47.03 <2e-16 ***
eqty.lm.y -0.0262233 0.0010905 -24.05 <2e-16 ***
eqty.lm.r 0.3891438 0.0247056 15.75 <2e-16 ***
log.cape20.adj -0.0248452 0.0003942 -63.02 <2e-16 ***
cpi.logr.10 0.3253286 0.0164986 19.72 <2e-16 ***
cpi.logr.20 -0.8882677 0.0263884 -33.66 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01098 on 1302 degrees of freedom
(360 observations deleted due to missingness)

Multiple R-squared: 0.8624, Adjusted R-squared: 0.8618
F-statistic: 1631 on 5 and 1302 DF, p-value: < 2.2e-16

The summary statistics shows R2 above 85%, indicating the regression has very high explanatory
power. All the factors are highly significant. The return regression can be visualized in Figure 4 by the
following R code:
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> plot(pred.20$fraction[J], pred.20$logr[J]*100, col="red", type="l",
+ xlab="$t$", ylab="$r_{f20}^{nom}(t)$", ylim=c(2,17),
+ main="20-year nominal forecast, 5-factor tectonic CAPE model")
> lines(df$fraction, df$eqty.logr.f20*100, col="blue")
> for (i in 1:NROW(fl.20)) { abline(v=fl.20[i,1], col="blue", lty=2) } # faults
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Figure 4: The 20-year nominal return forecast by 5-factor tectonic CAPE model. The blue line is the
realized returns. The red line is the predicted returns. The dotted blue lines are the locations of the
faults.

Prediction of X(t) and Y(t)

The log-index forecast from the 20-year model is shown in the upper panel of Figure 5. The blue line
is the realized X (t). The solid red line is the predicted path from the 20-year model. The dotted red
line is the predicted path from the 10-year model. We observe that the two red lines generally agree.
But the 20-year model produces slightly more optimistic forecast than the 10-year model for the next
decade. Such optimism looks more pronounced in the price level foreast in the lower panel.
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> par(mfcol=c(2,1))
> J20 <- which(pred.20$fraction >= 1988 & pred.20$fraction <= 2038)
> plot(pred.20$fraction[J20], pred.20$log.tri[J20], type="l", col="red",
+ xlab="$t$", ylab="$X(t)$",
+ main="Prediction of log index X(t) in 20y model")
> lines(dt$fraction, dt$log.tri, cex=0.1, col="blue")
> lines(pred.10$fraction[J20], pred.10$log.tri[J20], type="l", col="red", lty=2)
>
> legend(x=1990, y=18, bg="transparent",
+ legend=c("Actual", "20y", "10y"),
+ lwd=c(1,1,1), lty=c(1,1,2), cex=0.6,
+ col=c("blue", "red", "red"))
>
> J20a <- which(pred.20$fraction >= 1995 & pred.20$fraction <= 2025)
> plot(pred.20$fraction[J20a], pred.20$price[J20a], col="red", type="l",
+ xlab="$t$", ylab="$p(t)$",
+ main="Forecast of price index p(t) in 20y Model")
> lines(pred.10$fraction, pred.10$tri.source, cex=0.1, col="blue")
> lines(pred.10$fraction, pred.10$price, type="l", col="red", lty=2)
> abline(h=3000, col="black", lty=3)
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Figure 5: Upper Panel: The log-index X (t) forecasts since 1988 in both the 10-year and 20-year models.
The blue line is the realized X (t). The solid red line is the predicted path from the 20-year model.
The dotted red line is the predicted path from the 10-year model. Lower Panel: The price-level p (t)
forecasts in both the 10-year and 20-year models.

We notice again that the predicted path is much smoother than the realized path in the in-sample
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> par(mfcol=c(1,1))
>
> JY <- which(dj$fraction > 1912)
> plot(dj$fraction[JY], dj$eqty.lm.y[JY], type="l", col="blue",
+ xlab="$t$", ylab="$Y(t)$",
+ main="Predicted and realized Y(t) in 20y model")
> lines(pred.20$fraction[JY], pred.20$eqty.lm.y[JY], col="red")
> lines(pred.10$fraction[JY], pred.10$eqty.lm.y[JY], col="red", lty=2)
> rect(1937, 0.5, 1945, 0.7, col="orange") # WWII
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Figure 6: The blue line is the realized Y (t), since 1912. Since Y (t) is mean-reverting, a clear historical
plot can be presented. The solid red line is the predicted path Ypred (t) from the 20-year model. The
predicted path is much smoother than the realized path. As a comparison, the dotted red line is
Ypred (t) from the 10-year model. The orange box represents WWII.

period. This difference can be best illustrated by the Y (t) plot in Figure 6. The blue line is the realized
Y (t). The solid red line is Ypred (t) from the 20-year model. Their difference leads us to define the next
important quantity: the “short-horizon mean reversion” index, which captures the impact from the
business cycles. It will be explored in the rest of this paper.

Short-Horizon Mean Reversion

The long-term model leaves ample room for short-horizon fluctuations. If you are truly a buy-and-hold
long-term investor, this fluctuation should not trouble you. However, individuals and organizations
have utilities in limited time frame. Asset bubble forces you to buy at expensive prices. Steep downside
fluctuation becomes an acute problem when you have to withdraw funds from your investment. In
this section, we provide a preliminary framework to understand such fluctuation. This topic is still
under research, thus the exploration here is quite open-ended.

An interesting outcome of the 20-year model is that the “short-horizon mean reversion” (SMR)
index is least noisy and most meaningful. It is mainly due to the fact that there is no fault line
adjustment after WWII.

Z20 (t) ≡ X (t)− Xpred (t)
∣∣∣
∆Tf =20

.

≡ Y (t)− Ypred (t)
∣∣∣
∆Tf =20

(6)

Z20 (t) is stored in the log.tri.smr column in the pred.20 data table. Its style statistics is shown
below:

> mean(pred.20$log.tri.smr, na.rm=TRUE)

[1] -1.449178e-05

> sd(pred.20$log.tri.smr, na.rm=TRUE)
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[1] 0.2192973

> moments::skewness(pred.20$log.tri.smr, na.rm=TRUE)

[1] 0.161753

> moments::kurtosis(pred.20$log.tri.smr, na.rm=TRUE)

[1] 4.321367

As one can see, its mean is zero, thus a mean-reverting process. As shown in Figure 7, whenever
Z20 (t) swings to 2-stdev, it usually indicates the market is in extreme conditions, either over-sold or
over-bought.

> J <- which(dj$fraction > 1912)
> plot(pred.20$fraction[J], pred.20$log.tri.smr[J], type="l", col="blue",
+ ylab="$Z_{20}(t)$", xlab="$t$",
+ main="Short-horizon mean reversion in 20y model")
> abline(h=0, col="red", lty=2)
> sd2 <- 2*sd(pred.20$log.tri.smr, na.rm=TRUE)
> abline(h=sd2, col="blue", lty=2)
> abline(h=-sd2, col="blue", lty=2)
> rect(1937, 0.5, 1945, 0.7, col="orange") # WWII
>
> lines(dj$fraction, dj$usrec.nber*0.25-0.9, col="gray", lty=1)
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Figure 7: The short-horizon mean reversion (SMR) index Z20 (t), drawn in the blue line. The dotted
blue lines are the ±2-stdev of Z20 (t). The orange box represents WWII. The NBER recession indicator
is drawn in gray line to illustrate the short-term business cycles.

The log-index X (t) can be viewed as a decomposition of the long-term component Xpred (t) and the
short-term component Z20 (t). The long-term component can be predicted by our enhanced “Tectonic
CAPE” model. What drives the short-term component? Our view is that Z20 (t) is mainly influenced
by the interest rate policy, barring major world wars. We will also examine the unemployment rate
and inflation.

Interest Rate Policy and Yield Spread

Yield curve inversion has been found to be one of the most reliable leading indicators of the past
several large-scale bear markets. Yield spread is the most powerful policy tool that affects all aspects
of macro-economics.
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The economic reasoning of yield curve inversion is quite appealing: The stock market can be
viewed as a large financial operation that borrows on the short-term rate and lends on the long-term
rate. Companies such as banks can build leverage to enhance their returns from the spread. But
some companies can use excessive leverage to “game the system”, so to speak. Thus, modulating
the yield spread is a key policy tool for FED to tame the speculation. When the yield spread turns
negative, there is no profit to be made from the spread, causing dismal earnings for several quarters,
and the stock price crashes due to lower valuation. A few of them with poor balance sheet may go
into bankruptcy. This chilling effect usually lingers for about 12-24 months.

Furthermore, the narrowing of yield spread creates a regime switching scenario. In a red hot
economy, as the yield spread becomes smaller, some executives would not think of reducing their
balance sheet risk. Instead, many of them would choose to increase the leverage, in order to generate
equal or more profit and justify the rising stock price. Suddenly, the yield curve is inverted, the
mathematics of leveraging reaches a singularity. And the balance sheets of these companies collapse.

Later, we will introduce the concept of “unemployment rate as high-yield bond”. This extends the
influence of interest rate policy far beyond the financial sector. In the internet age, the largest companies
are all in the consumer sector selling goods and products to the vast consumers. Employment rate is
their borrowing.

In some occasions, FED’s tightening was in a straight path to inversion. But in other times, FED
might swing in short cycles of tightening and easing before touching down on the ultimate inversion.
The current trend points to next inversion around year 2020, but it is totally up to the FED to make it
happen or not.

Given the following attributes:

• GS10 (t) = dj$rate.gs10: the yield of 10-year Treasury,

• GS3m (t) = dj$rate.tb3ms: the yield of 3-month Treasury bill,

• YS (t) ≡ GS10 (t)− GS3m (t) = dj$rate.spread: the yield spread,

we define the centered yield spread normalized by the 10-year yield:

ŶS (t) ≡ YS (t)− 〈YS (t)〉
GS10 (t)

. (7)

It is calculated and stored in dj$rate.spread.norm column. Here 〈YS (t)〉 is the mean of YS (t), which
is approximately 1.5% as shown by the variable rate.spread.mean below, which is also a slot in the
ju object. It is the equilibrium level of yield spread.

Our first finding is that Z20 (t) is deeply related to ŶS (t). This is illustrated in Figure 8. The two
quantities have nearly the same magnitude, that is, Z20 (t) ≈ ŶS (t). They often move in tandem.
Every yield curve inversion (shown as vertical dotted red lines) coincides with the market top, and the
following easing matches the bottom of the selloff. For the equity market, yield spread inversion is
the decisive turning point that causes regime switching from a bull market to a bear market. On the
contrary, the market switches back from a bear market to a bull market expeditiously once the yield
spread is widened large enough.
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> rate.spread.mean <- mean(dj$rate.spread, na.rm=TRUE)
> rate.spread.mean

[1] 1.452224

> J <- which(dj$fraction > 1912)
> ma <- function(x,n,sides=1){filter(x,rep(1/n,n), sides=sides)}
> plot(pred.20$fraction[J], pred.20$log.tri.smr[J], type="l", lwd=1, col="blue",
+ ylab="$Z_{20}(t)$ vs $-\\widehat{YS}(t)$", xlab="$t$",
+ main="Short-horizon mean reversion and yield spread inversion")
> lines(dj$fraction[J], ma(-dj$rate.spread.norm,3)[J], type="l", col="red")
> for (t in repo@yield.inversion) { abline(v=t, lty=2, col="red") }
> abline(h=0, col="blue", lty=2)
> rect(1937, 0.5, 1945, 0.7, col="orange") # WWII
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Figure 8: Overlay of normalized yield spread −ŶS (t) (red line) with Z20 (t) (blue line). The vertical
dotted red lines are the locations of maximum yield spread inversion in each business cycle. Here
ŶS (t) is smoothed by 3-month moving average to make it less noisy in the plot. The orange box
represents WWII.

The Uncertainty Principle

How wide of the yield spread is “wide enough”? Is the fluctuation of the stock market affected by
the interest rate environment it is in? We think this is related to the following quantity. Define the
modified inverse of 10-year yield GSI (t) as

GSI (t) ≡ 〈YS (t)〉
GS10 (t)

. (8)

It is calculated and stored in dj$rate.gs10.modinv column. The fact that Z20 (t) ≈ ŶS (t) implies that
the maximum amplitude of Z20 (t) is approximately GSI (t), which associates the volatility of the
equity market with the inverse of the long-term interest rate. We call this relation the Uncertainty
Principle. This explains that, on one hand, in a low interest rate environment, the equity market is
susceptible to high volatility. On the other hand, the equity market is fairly dormant in a high interest
rate environment, e.g. Dow was flat from 1966 to 1981.

Figure 9 adds the overlay of GSI (t + 74/12) with Z20 (t) and ŶS (t). The 74-month shift is
described in Section 9.1 of Lihn (2018) as the equity market’s lead time over GS10. We draw ±GSI (t)
in purple lines to form an envelope, and we smooth GSI (t) by its 24-month moving average to remove
the noise.

We observe that the GSI (t) envelope indeed describes the fluctuation of Z20 (t) quite well. The
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equity market went through very large swings whenever the Treasury yield was trending into the
low interest rate period. The first incident was marked by the big rally from 1921 to the 1929 peak,
followed by a decade of turmoils, including WWII. The second incident was marked by the irrational
exuberance leading to the 2000 peak, followed by two severe bear markets in the next decade.

Statistically speaking, it is far from certain to prove whether such statement can be true or not. The
GS10 cycle is so long (80 years) that you won’t see the next low interest rate environment until the end
of the century.

> plot(pred.20$fraction[J], pred.20$log.tri.smr[J], type="l", lwd=1, col="blue",
+ ylab="$Z_{20}(t)$", xlab="$t$",
+ main="Uncertainty principle: Z(t) and inverse of GS10 (GSI)")
> rect(1937, 0.8, 1945, 0.95, col="orange") # WWII
> lines(dj$fraction[J], ma(-dj$rate.spread.norm,3)[J], type="l", col="red")
> abline(h=0, col="blue", lty=2)
> GSI <- dj$rate.gs10.modinv
> lines(dj$fraction[J]-74/12, ma(GSI,24)[J], col="purple", lty=2, lwd=2)
> lines(dj$fraction[J]-74/12, -ma(GSI,24)[J], col="purple", lty=2, lwd=2)
> lines(dj$fraction[J], GSI[J], col="purple", lty=3, lwd=1)
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Figure 9: Overlay of GSI (t + 74/12) with Z20 (t) (the blue line). The 74-month shift is the equity
market’s lead time over Treasury market. We draw ±GSI (t + 74/12) in thick purple dotted lines to
form an envelope, which are smoothed by 24-month moving average to remove the noise. The red
line is the yield spread. We draw GSI (t) in thin purple dotted line to indicate where inversion occurs.
The orange box represents WWII.

Unemployment Rate as Alternative High-Yield Bond

The unemployment rate (UNRATE) is highly correlated to the interest rate policy and is a major
barometer of the health of the economy. We observe that, after WWII, the unemployment rate can be
thought of as a high-yield bond. That is, in a low interest rate environment, the lowest unemployment
rate tends to be very low. In a high interest rate environment, even the best unemployment rate is still
quite high. This makes sense. Corporations have to compare the cost of employment to the cost of the
capital.

In addition, the unemployment rate is a clear indicator how the economy responds to the yield
spread tightening and easing. We find that the unemployment rate since 1950 (post-WWII) can be
regressed in the following three-factor model:

UNRATE (t) ∼ β0 + β1GS10 (t) + β2GSI (t) + β3ŶS (t) + ε. (9)

The role of the β2GSI (t) term can be seen as modifying the weight of the mean 〈YS (t)〉 inside
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ŶS (t) from 1 to (1− β2/β3). This regression is shown below:

> J <- which (dt$fraction >= 1950 & dt$fraction <= 2019)
> a <- lm(unrate ~ rate.gs10 + rate.gs10.modinv + rate.spread.norm, data=dj[J])
> summary(a)

Call:
lm(formula = unrate ~ rate.gs10 + rate.gs10.modinv + rate.spread.norm,

data = dj[J])

Residuals:
Min 1Q Median 3Q Max

-1.9918 -0.8227 -0.0183 0.6844 3.2611

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.33592 0.26146 8.934 < 2e-16 ***
rate.gs10 0.40549 0.02408 16.839 < 2e-16 ***
rate.gs10.modinv 3.36193 0.40125 8.379 2.29e-16 ***
rate.spread.norm 4.74594 0.16454 28.843 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.028 on 824 degrees of freedom
Multiple R-squared: 0.6084, Adjusted R-squared: 0.607
F-statistic: 426.8 on 3 and 824 DF, p-value: < 2.2e-16

All three factors are highly significant. The R2 is above 60%, which is quite high1. β0 ≈ 2.34 can
be interpreted as a baseline unemployment rate. The remaining terms expand into a complicated
nonlinear relation on GS10 (t) such as

UNRATE (t) ∼ β0 + β1GS10 (t) + β3
YS (t)− (1− β2/β3) 〈YS (t)〉

GS10 (t)
+ ε.

∼ (β0 + β3) + β1GS10 (t) + (β2 − β3)
〈YS (t)〉
GS10 (t)

− β3
GS3m (t)
GS10 (t)

+ ε

(10)

Figure 10 shows the result of this regression. UNRATE (t) is the blue line and the regression is
the red line. At each peak of a business cycle when YS (t) ≈ 0, we have GS3m (t) ≈ GS10 (t) and
ŶS (t) ≈ −GSI (t). Then the lowest unemployment rate at that moment can be estimated by

UNRATEmin (t) ≡ β0 + β1GS10 (t) + (β2 − β3)
〈YS (t)〉
GS10 (t)

.

≈ 2.34 + 0.41× GS10 (t)−
2.0

GS10 (t)

(11)

Notice that UNRATEmin (t) depends on GS10 (t) alone. We observe in Figure 10 that UNRATEmin (t)
matches the lowest unemployment rate in each cycle peak quite well (with 1970 as a major exception).
It provides a lower bound on the unemployment rate.

A cyclically increasing unemployment rate is the best confirmation of a bear market. There are
unemployment spikes at the depths of some recessions, e.g. in 1974-75, in early 1980, and around 2010,
that are not captured by the regression. These spikes, recorded by the residual ε, are what we call the
“high-yield” elements in the unemployment rate.

In this business cycle, between 2013 and 2016, UNRATEmin (t) went below 2% briefly when
GS10 (t) was below 1.85%. When the next yield spread will be inverted (in 2020?), if GS10 (t) stays
below 3%, the minimum unemployment rate can go as low as 3%.

1Note that it would yield similar R2 if the first factor is replaced with β1GS3m (t).
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> J <- which (dt$fraction >= 1950 & is.finite(dt$unrate))
> plot(dj$fraction[J], dj$unrate[J], type="l", col="blue",
+ ylab="UNRATE", xlab="$t$", ylim=c(1.5,11),
+ main=sprintf("Unemployment rate as alternative high-yield bond"))
> lines(dj$fraction[J], predict(a, newdata=dj[J]), col="red")
> ac <- a$coefficients
> unrate.min <- ac[1]+ac[2]*dj$rate.gs10+(ac[3]-ac[4])*dj$rate.gs10.modinv
> lines(dj$fraction[J], ma(unrate.min,3)[J], col="black", lwd=2, lty=3)
> for (t in repo@yield.inversion) { abline(v=t, lty=2, col="red") }
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Figure 10: Unemployment rate UNRATE (t) (the blue line) and its 3-factor regression to the bond
market (the red line). The dotted vertical red lines mark the locations of yield spread inversion. The
dotted black line is UNRATEmin (t) (smoothed by 3-month moving average).

One-Year Change of Unemployment Rate

Just as important as observing the yield spread inversion, we also want to observe the inversion of the
unemployment rate. The 1-year change (log-return) of the unemployment rate rUNR (t) is defined as

rUNR (t) ≡ log UNRATE (t)− log UNRATE (t− 1) . (12)

We find that rUNR (t) shows striking correlation with −ŶS (t) and Z20 (t), as shown in Figure 11. The
combination of a weakening employment and the yield spread inversion appears to provide very
convincing signal for a coming bear market. After the yield spread inversion, if rUNR (t) also turn
negative, the recession is around the corner. The economy will continue to shed jobs until the yield
spread is wide enough to provide corporations incentive to hire again. This process usually takes
12-24 months from past experiences.
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> J <- which (dt$fraction >= 1950)
> plot(pred.20$fraction[J], pred.20$log.tri.smr[J], type="l", col="blue",
+ ylab="$Z_{20}(t)$", xlab="$t$", ylim=c(-0.6,0.6),
+ main="Z(t) and YoY log-change of UNRATE")
> lines(dj$fraction[J], -ma(dj$unrate.logr.1,3)[J], type="l", col="red", lwd=2)
> abline(h=0, col="blue", lty=2)
> lines(dj$fraction[J], ma(-dj$rate.spread.norm,3)[J], type="l", col="gray50")
> for (t in repo@yield.inversion) { abline(v=t, lty=2, col="gray50") }
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Figure 11: The reversal of Z20 (t) (the blue line), rUNR (t) (the red line) and −ŶS (t) (the gray line).
When rUNR (t) turns negative and ŶS (t) undergoes a yield spread inversion, it is a clear indicator
that Z20 (t) has entered a bear market.

Inflation

Lastly, in some circumstances, FED raises short-term rate in order to combat the rising inflation. Let
∆CPI f 1 (t) be the forward 1-year inflation rate CPI f 1 (t) in excess of GS10 (t). They are defined as

CPI f 1 (t) ≡ log CPI (t + 1)− log CPI (t) ;

∆CPI f 1 (t) ≡ CPI f 1 (t)− GS10 (t) .
(13)

We find that ∆CPI f 1 (t) is correlated with the yield spread during some periods. This is illustrated
in Figure 12. The policy of combating inflation is quite obvious in the 1970’s. ∆CPI f 1 (t) moves in
tandem with −2 (YS (t)− 〈YS (t)〉). After 1980, ∆CPI f 1 (t) is mostly negative, there has been a fairly
large premium between GS10 (t) and one-year inflation. Thus such policy goal is much less clear.
After 2000, FED was able to maintain ∆CPI f 1 (t) barely below zero. Only recently, such premium is
disappearing gradually, ∆CPI f 1 (t) is inching up above zero. And FED is indeed raising the short-term
rate to combat it.
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> plot(dj$fraction[J], (dj$cpi.logr.f1*100-dj$rate.gs10)[J],
+ type="l", col="blue", ylab="$\\Delta\\mathrm{CPI}_{f1}(t)$", xlab="$t$",
+ ylim=c(-10, 10),
+ main=sprintf("YoY forward inflation vs yield spread"))
> lines(dj$fraction[J], (-2*(dj$rate.spread-ju@rate.spread.mean))[J], col="red")
> abline(h=0, lty=2, col="blue")
> abline(h=ju@rate.spread.mean*2, lty=2, col="blue")
> for (t in repo@yield.inversion) { abline(v=t, lty=2, col="red") }
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Figure 12: The 1-year forward inflation rate in excess of GS10: ∆CPI f 1 (t) (blue line). The red line
is −2 (YS (t)− 〈YS (t)〉) indicating the strength of yield spread needed to suppress the runaway
inflation. The top dotted blue line is the constant 2 〈YS (t)〉, showing where the yield spread becomes
inverted.

Discussion

We’ve shown that yield spread inversion is likely a major factor that causes the stock market to
turn south. It can cause the stock market to drop 40-50% in 12-24 months. It also has a dire social
consequence of causing the unemployment rate to spike. FED must invoke the inversion with extreme
care.

We find that the best interpretation of FED’s motivation to invoke a yield spread inversion is to
cure an asset bubble. In 1970’s, it was for the rising inflation, especially in gold and oil. This was
consummated in 1980 with an ultimate peak of inflation, GS10, and the commodity bubble. In 1990,
it was for the junk bond bubble and the Japanese stock market. Because the level of SPX was fairly
subdued in terms of Z20 (t) during this period, it didn’t cause a big drop in SPX. In 2000, it was for the
dot-com mania. In 2007, it was for the sub-prime debt bubble.

Thus in order to figure out the next bear market in Z20 (t), one will need to watch a few things:

1. YS (t): When will the yield spread become negative?

• https://fred.stlouisfed.org/series/T10Y3M

2. UNRATE (t) and rUNR (t): When will the unemployment rate begin to rise? When will the
1-year change turn negative?

• https://fred.stlouisfed.org/series/UNRATE

3. ∆CPI f 1 (t): Is the 1-year inflation rate expected to exceed the 10-year Treasury yield?

4. Ultimately, is there an asset bubble that makes FED uncomfortable? In SPX? In Nasdaq? In the
bond market? In any major foreign stock market?

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



CONTRIBUTED ARTICLE 20

Acknowledgement

I thank Professor John Mulvey at Princeton University for his guidance and discussions for the series
of works that lead to this R package.

Bibliography

Campbell, John Y., and Robert J. Shiller (1988). Stock Prices, Earnings, and Expected Dividends. Journal of
Finance, Vol. 43, No. 3, pp. 661-676. [p1]

Campbell, John Y., and Robert J. Shiller. (1998). Valuation Ratios and the Long-Run Stock Market Outlook.
Journal of Portfolio Management, Vol. 24, No. 2, pp. 11-26. [p1]

Lihn, Stephen H.-T. (2018). Jubilee Tectonic Model: Forecasting Long-Term Growth and Mean Reversion in
the U.S. Stock Market. SSRN: 3156574. [p1, 2, 3, 14]

Robert J. Shiller (2018). Online Data for U.S. Stock Markets 1871-Present and CAPE Ratio.
http://www.econ.yale.edu/~shiller/data.htm

[p3]

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859


	Jubilee: Forecasting Long-Term Growth of S&P 500 Index 
	Introduction
	Loading Package and Preparing Data
	Regression of The 10-Year Returns 
	Forecast in The 20-Year Model
	Prediction of X(t) and Y(t)

	Short-Horizon Mean Reversion
	Interest Rate Policy and Yield Spread
	The Uncertainty Principle
	Unemployment Rate as Alternative High-Yield Bond
	One-Year Change of Unemployment Rate
	Inflation

	Discussion
	Acknowledgement


