Package ‘jtools’

August 25, 2024
Type Package

Title Analysis and Presentation of Social Scientific Data
Version 2.3.0

Description This is a collection of tools for more efficiently understanding
and sharing the results of (primarily) regression analyses. There are also a
number of miscellaneous functions for statistical and programming purposes.
Support for models produced by the survey and Ime4 packages are points of
emphasis.

URL https://jtools.jacob-long.com

BugReports https://github.com/jacob-long/jtools/issues
License GPL (>=3)

Encoding UTF-8

LazyData true

Imports cli, generics, broom, broom.mixed, ggplot2 (>= 3.4.0),
magrittr, pander, pkgconfig, rlang, sandwich, tibble

Suggests boot, huxtable, kableExtra, Ime4, ImerTest, MASS, methods,
pbkrtest, RColorBrewer, scales, survey, weights, knitr,
rmarkdown, testthat, vdiffr

Enhances brms, quantreg, rstanarm

RoxygenNote 7.3.2

VignetteBuilder knitr

Depends R (>= 3.6.0)

NeedsCompilation no

Author Jacob A. Long [aut, cre] (<https://orcid.org/0000-0002-1582-6214>)
Maintainer Jacob A. Long <jacob.long@sc.edu>

Repository CRAN

Date/Publication 2024-08-25 13:20:02 UTC

https://jtools.jacob-long.com
https://github.com/jacob-long/jtools/issues
https://orcid.org/0000-0002-1582-6214

2 Contents

Contents
add_gridlines 3
L&) 11) 3
center_mod e e e e 4
effect_plot L e 6
EXPOTt_SUMMS . . .« . v v v v v e 11
GEeL_COIOTS L e e e 14
get_formula 15
get_offset_name 16
GEL_TODUSL_SE o o i e e e e e e 17
gscale . .o 18
interact_ploto e e 21
Jtools_colors L. e e e e e e 21
knit_print.summ.dm Lo 22
make_new_data L e e e e e e e 23
make_predictions L e 24
md_table e e e e 27
MOVIES . . . v v v v e 28
NUIM_PINE . . L v n ot et e e e e e e e e e e e e e e e e e 29
partialize oL e e e e 29
PELSV_LEeSt . . . L e 31
PIOL_SUMMS L o e e e e e e e e e 32
predict_merMod L 36
scale_mod e e 37
set_summ_defaults 39
standardize L e e e 41
SUMIM L & v b vt v v et e 42
summ.glmo 43
summ.m L. e e e e e 46
summ.merMod L L e e e 49
SUIMIMLIQ .+« o v v v v e e e e e e e e e e e e e e e e e e 54
SUMMLSVYZIM o e e e e e e e e 56
SVYCOT . . v vt it i e e e e e e e 59
SVYSA L o e e e 61
theme_apa e 62
theme_nice e e e e e e e e 64
tdy.Summo e e 65
weights_tests e e 66
WEHESE . . . o o o e e e e e e e e e e e e e e e e e e 68
WIAP_SET « o v ot e e e e e e e e e e e e e e e e e e e 70
wtdasd .. e e e e e 71
GoninTo e 72
GonOt%o e e e e e e 72

Index 76

add_gridlines 3

add_gridlines Add and remove gridlines

Description
These are convenience wrappers for editing ggplot2: : theme()’s panel.grid.major and panel.grid.minor
parameters with sensible defaults.

Usage

add_gridlines(x = TRUE, y = TRUE, minor = TRUE)

add_x_gridlines(minor = TRUE)
add_y_gridlines(minor = TRUE)

drop_gridlines(x = TRUE, y = TRUE, minor.only = FALSE)

drop_x_gridlines(minor.only = FALSE)

drop_y_gridlines(minor.only = FALSE)
Arguments

X Apply changes to the x axis?

y Apply changes to the y axis?

minor Add minor gridlines in addition to major?

minor.only Remove only the minor gridlines?

center Mean-center vectors, data frames, and survey designs

Description

This function is a wrapper around gscale() that is configured to mean-center variables without
affecting the scaling of those variables.

Usage
center(
data = NULL,
vars = NULL,
binary.inputs = "center”,

binary.factors = FALSE,
weights = NULL

4 center_mod

Arguments
data A data frame or survey design. Only needed if you would like to rescale multiple
variables at once. If x = NULL, all columns will be rescaled. Otherwise, x should
be a vector of variable names. If x is a numeric vector, this argument is ignored.
vars If datais a data.frame or similar, you can scale only select columns by providing

a vector column names to this argument.

binary.inputs Options for binary variables. Defaultis center; @/1 keeps original scale; -0.5/0.5
rescales 0 as -0.5 and 1 as 0.5; center subtracts the mean; and full subtracts
the mean and divides by 2 sd.

binary.factors Coerce two-level factors to numeric and apply scaling functions to them? De-
fault is FALSE.

weights A vector of weights equal in length to x. If iterating over a data frame, the
weights will need to be equal in length to all the columns to avoid errors. You
may need to remove missing values before using the weights.

Details

Some more information can be found in the documentation for gscale()

Value

A transformed version of the data argument.

See Also

standardization, scaling, and centering tools center_mod(), gscale(), scale_mod(), standardize()

Examples

Standardize just the "gsec” variable in mtcars

standardize(mtcars, vars = "gsec")
center_mod Center variables in fitted regression models
Description

center_mod (previously known as center_1m) takes fitted regression models and mean-centers
the continuous variables in the model to aid interpretation, especially in the case of models with
interactions. It is a wrapper to scale_mod.

center_mod

Usage

center_mod(
model,

binary.inputs = "@/1",
center.response = FALSE,

data = NULL,

apply.weighted.contrasts = getOption("jtools-weighted.contrasts”, FALSE),

Arguments

model

binary.inputs

center.response

data

A regression model of type 1m, glm, or svyglm; others may work as well but
have not been tested.

Options for binary variables. Defaultis @/1; /1 keeps original scale; -0.5,0.5
rescales O as -0.5 and 1 as 0.5; center subtracts the mean; and full treats them
like other continuous variables.

Should the response variable also be centered? Default is FALSE.

If you provide the data used to fit the model here, that data frame is used to re-fit
the model instead of the stats: :model. frame() of the model. This is particu-
larly useful if you have variable transformations or polynomial terms specified
in the formula.

apply.weighted.contrasts

Details

Factor variables cannot be scaled, but you can set the contrasts such that the
intercept in a regression model will reflect the true mean (assuming all other
variables are centered). If set to TRUE, the argument will apply weighted ef-
fects coding to all factors. This is similar to the R default effects coding, but
weights according to how many observations are at each level. An adapted ver-
sion of contr.wec() from the wec package is used to do this. See that package’s
documentation and/or Grotenhuis et al. (2016) for more info.

Arguments passed on to gscale().

This function will mean-center all continuous variables in a regression model for ease of interpre-
tation, especially for those models that have interaction terms. The mean for svyglm objects is
calculated using svymean, so reflects the survey-weighted mean. The weight variables in svyglm
are not centered, nor are they in other 1m family models.

This function re-estimates the model, so for large models one should expect a runtime equal to the

first run.

Value

The functions returns a 1m or glm object, inheriting from whichever class was supplied.

6 effect_plot

Author(s)

Jacob Long <jacob.long@sc.edu>

References

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Infer-
ential and graphical techniques. Multivariate Behavioral Research, 40(3), 373-400.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analyses for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

See Also

sim_slopes performs a simple slopes analysis.
interact_plot creates attractive, user-configurable plots of interaction models.

standardization, scaling, and centering tools center(), gscale(), scale_mod(), standardize()

Examples

fit <- Im(formula = Murder ~ Income * Illiteracy,
data = as.data.frame(state.x77))
fit_center <- center_mod(fit)

With weights

fitw <- lm(formula = Murder ~ Income * Illiteracy,
data = as.data.frame(state.x77),
weights = Population)

fitw_center <- center_mod(fitw)

With svyglm

if (requireNamespace("survey”)) {

library(survey)

data(api)

dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw,
data = apistrat, fpc =~ fpc)

regmodel <- svyglm(api@@ ~ ell x meals, design = dstrat)

regmodel_center <- center_mod(regmodel)

}

effect_plot Plot simple effects in regression models

Description

effect_plot() plots regression paths. The plotting is done with ggplot2 rather than base graphics,
which some similar functions use.

effect_plot 7

Usage
effect_plot(
model,
pred,
pred.values = NULL,
centered = "all”,

plot.points = FALSE,
interval = FALSE,

data = NULL,

at = NULL,

int.type = c("confidence”, "prediction"),
int.width = 0.95,
outcome.scale = "response”,
robust = FALSE,

cluster = NULL,

vcov = NULL,

set.offset = 1,

x.label = NULL,

y.label = NULL,

pred.labels = NULL,
main.title = NULL,

colors = "black”,
line.colors = colors,
line.thickness = 1.1,
point.size = 1.5,
point.alpha = 0.6,

jitter = 0,

rug = FALSE,

rug.sides = "1b",

force.cat = FALSE,

cat.geom = c("point”, "line", "bar"),
cat.interval.geom = c("errorbar”, "linerange"),

cat.pred.point.size = 3.5,
partial.residuals = FALSE,
color.class = colors,
facet.by = NULL,

)
Arguments
model A regression model. The function is tested with 1m, glm, svyglm, merMod, rq,
brmsfit, stanreg models. Models from other classes may work as well but are
not officially supported. The model should include the interaction of interest.
pred The name of the predictor variable involved in the interaction. This can be a

bare name or string. Note that it is evaluated using rlang, so programmers can
use the !'! syntax to pass variables instead of the verbatim names.

pred.values

centered

plot.points

interval

data

at

int.type

int.width

outcome.scale

robust

cluster

VCoV

set.offset

effect_plot

Values of pred to use instead of the equi-spaced series by default (for continuous
variables) or all unique values (for non-continuous variables).

A vector of quoted variable names that are to be mean-centered. If "all”, all
non-focal predictors are centered. You may instead pass a character vector of
variables to center. User can also use "none" to base all predictions on variables
set at 0. The response variable, pred, weights, and offset variables are never
centered.

Logical. If TRUE, plots the actual data points as a scatterplot on top of the inter-
action lines. The color of the dots will be based on their moderator value.

Logical. If TRUE, plots confidence/prediction intervals around the line using
geom_ribbon.

Optional, default is NULL. You may provide the data used to fit the model. This
can be a better way to get mean values for centering and can be crucial for mod-
els with variable transformations in the formula (e.g., log(x)) or polynomial
terms (e.g., poly(x, 2)). You will see a warning if the function detects prob-
lems that would likely be solved by providing the data with this argument and
the function will attempt to retrieve the original data from the global environ-
ment.

If you want to manually set the values of other variables in the model, do so
by providing a named list where the names are the variables and the list values
are vectors of the values. This can be useful especially when you are exploring
interactions or other conditional predictions.

Type of interval to plot. Options are "confidence" or "prediction". Default is
confidence interval.

How large should the interval be, relative to the standard error? The default,
.95, corresponds to roughly 1.96 standard errors and a .05 alpha level for values
outside the range. In other words, for a confidence interval, .95 is analogous to
a 95% confidence interval.

For nonlinear models (i.e., GLMs), should the outcome variable be plotted on
the link scale (e.g., log odds for logit models) or the original scale (e.g., predicted
probabilities for logit models)? The default is "response”, which is the original
scale. For the link scale, which will show straight lines rather than curves, use
"link".

Should robust standard errors be used to find confidence intervals for supported
models? Default is FALSE, but you should specify the type of sandwich stan-
dard errors if you’d like to use them (i.e., "HC@", "HC1", and so on). If TRUE,
defaults to "HC3" standard errors.

For clustered standard errors, provide the column name of the cluster variable in
the input data frame (as a string). Alternately, provide a vector of clusters.

Optional. You may supply the variance-covariance matrix of the coefficients
yourself. This is useful if you are using some method for robust standard error
calculation not supported by the sandwich package.

For models with an offset (e.g., Poisson models), sets an offset for the predicted
values. All predicted values will have the same offset. By default, this is set to
1, which makes the predicted values a proportion. See details for more about
offset support.

effect_plot 9

x.label A character object specifying the desired x-axis label. If NULL, the variable name
is used.

y.label A character object specifying the desired x-axis label. If NULL, the variable name
is used.

pred.labels A character vector of labels for categorical predictors. If NULL, the default, the
factor labels are used.

main.title A character object that will be used as an overall title for the plot. If NULL, no
main title is used.

colors See jtools_colors for details on the types of arguments accepted. Default is
"black". This affects the coloration of the line as well as confidence intervals
and points unless you give a different argument to 1ine.color.

line.colors See jtools_colors for details on the types of arguments accepted. Default is
colors. This affects the coloration of the line as well as confidence intervals,
but not the points.

line.thickness How thick should the plotted lines be? Default is 1.1; ggplot’s default is 1.

point.size What size should be used for observed data when plot.points is TRUE? De-
fault is 1.5.

point.alpha What should the alpha aesthetic for plotted points of observed data be? Default
is 0.6, and it can range from O (transparent) to 1 (opaque).

jitter How much should plot.points observed values be "jittered" via ggplot2: :position_jitter()?

When there are many points near each other, jittering moves them a small amount
to keep them from totally overlapping. In some cases, though, it can add confu-
sion since it may make points appear to be outside the boundaries of observed
values or cause other visual issues. Default is 0, but try various small values
(e.g., 0.1) and increase as needed if your points are overlapping too much. If the
argument is a vector with two values, then the first is assumed to be the jitter for
width and the second for the height.

rug Show a rug plot in the margins? This uses ggplot2: :geom_rug() to show the
distribution of the predictor (top/bottom) and/or response variable (left/right) in
the original data. Default is FALSE.

rug.sides On which sides should rug plots appear? Default is "1b", meaning both left and
bottom. "t" and/or "b" show the distribution of the predictor while "1" and/or "r"
show the distribution of the response.

force.cat Force the continuous pred to be treated as categorical? default is FALSE, but
this can be useful for things like dummy 0/1 variables.

cat.geom If pred is categorical (or force.cat is TRUE), what type of plot should this
be? There are several options here since the best way to visualize categorical
interactions varies by context. Here are the options:

e "point”: The default. Simply plot the point estimates. You may want to
use point.shape = TRUE with this and you should also consider interval
= TRUE to visualize uncertainty.

e "line": This connects observations across levels of the pred variable with
a line. This is a good option when the pred variable is ordinal (ordered).
You may still consider point.shape = TRUE and interval = TRUE is still a
good idea.

10 effect_plot

e "bar”: A bar chart. Some call this a "dynamite plot." Many applied re-
searchers advise against this type of plot because it does not represent the
distribution of the observed data or the uncertainty of the predictions very
well. Itis best to at least use the interval = TRUE argument with this geom.

cat.interval.geom
For categorical by categorical interactions. One of "errorbar" or "linerange". If
the former, ggplot2: :geom_errorbar() is used. If the latter, ggplot2: : geom_linerange()
is used.

cat.pred.point.size
(for categorical pred) If TRUE and geom is "point” or "line”, sets the size
of the predicted points. Default is 3.5. Note the distinction from point.size,
which refers to the observed data points.

partial.residuals
Instead of plotting the observed data, you may plot the partial residuals (control-
ling for the effects of variables besides pred).

color.class Deprecated. Now known as colors.

facet.by A variable in the data by which you want to plot the effects separately. This
will cause the plot to include multiple panels, basically a separate plot for each
unique value of the variable in facet.by. This will be most useful when plotting
effects from multilevel models (e.g., as fit by 1me4’s models) with a random
slope for the pred variable. You should generally only want to use this if you
expect the different panels to look meaningfully different. Default is NULL.

extra arguments passed to make_predictions()

Details
This function provides a means for plotting effects for the purpose of exploring regression estimates.
You must have the package ggplot2 installed to benefit from these plotting functions.

By default, all numeric predictors other than the one specified in the pred argument are mean-
centered, which usually produces more intuitive plots. This only affects the y-axis in linear models,
but may be especially important/influential in non-linear/generalized linear models.

This function supports nonlinear and generalized linear models and by default will plot them on
their original scale (outcome.scale = "response”).

While mixed effects models from 1me4 are supported, only the fixed effects are plotted. 1me4 does
not provide confidence intervals, so they are not supported with this function either.

Note: to use transformed predictors, e.g., log(x), or polynomials, e.g., poly(x, 2), provide the
raw variable name (x) to the pred = argument. You will need to input the data frame used to fit the
model with the data = argument.

Value
The functions returns a ggplot object, which can be treated like a user-created plot and expanded
upon as such.

Author(s)

Jacob Long <jacob.long@sc.edu>

export_summs 11

See Also

interact_plot from the interactions package plots interaction effects, producing plots like this
function but with separate lines for different levels of a moderator. cat_plot from interactions
does the same for categorical by categorical interactions.

Examples

Using a fitted 1m model

states <- as.data.frame(state.x77)

states$HSGrad <- states$ HS Grad"

fit <- Im(Income ~ HSGrad + Murder,
data = states)

effect_plot(model = fit, pred = Murder)

Using polynomial predictor, plus intervals
fit <- 1m(accel ~ poly(mag,3) + dist, data = attenu)
effect_plot(fit, pred = mag, interval = TRUE,
int.type = "confidence”, int.width = .8, data = attenu) # note data arg.

With svyglm

if (requireNamespace("survey”)) {

library(survey)

data(api)

dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw,
data = apistrat, fpc = ~fpc)

regmodel <- svyglm(api@® ~ ell + meals, design = dstrat)

effect_plot(regmodel, pred = ell, interval = TRUE)

3

With 1lme4

Not run:

library(1me4)

data(VerbAgg)

mv <- glmer(r2 ~ Anger + mode + (1 | item), data = VerbAgg,
family = binomial,
control = glmerControl("bobyga"))

effect_plot(mv, pred = Anger)

End(Not run)

export_summs Export regression summaries to tables

Description

This function allows users to use the features of summ() (e.g., standardization, robust standard
errors) in the context of shareable HTML, LaTeX, and Microsoft Word tables. It relies heavily on
huxtable: :huxreg() to do the table formatting. This is particularly useful for putting the results
of multiple models into a single table.

12 export_summs

Usage

export_summs (
error_format = "({std.error})",
error_pos = c("below”, "right"”, "same"),
ci_level = 0.95,
statistics = NULL,
model.names = NULL,
coefs = NULL,
to.file = NULL,
file.name = NULL

Arguments

At minimum, a regression object(s). See details for more arguments.

error_format Which of standard error, confidence intervals, test statistics, or p values should
be used to express uncertainty of estimates for regression coefficients? See de-
tails for more info. Default: " ({std.error})"

error_pos Where should the error statistic defined in error_style be placed relative to
the coefficient estimate? Default: "below"

ci_level If reporting confidence intervals, what should the confidence level be? By de-
fault, it is .95 if confidence intervals are requested in error_format.

statistics Which model summary statistics should be included? See huxreg for more on
usage. The default for this function depends on the model type. See details for
more on the defaults by model type.

model.names If you want to give your model(s) names at the top of each column, provide
them here as a character vector. Otherwise, they will just be labeled by number.
Default: NULL

coefs If you want to include only a subset of the coefficients in the table, specify them
here in a character vector. If you want the table to show different names for the
coefficients, give a named vector where the names are the preferred coefficient
names. See details for more.

to.file Export the table to a Microsoft Word, PDF, or HTML document? This func-
tionality relies on huxtable’s quick_ functions (huxtable: :quick_docx(),
huxtable: :quick_pdf (), huxtable: :quick_html (), huxtable: :quick_x1lsx()).
Acceptable arguments are "Word" or "docx" (equivalent), "pdf", "html", or "xIsx".
All are case insensitive. Default is NULL, meaning the table is not saved.

file.name File name with (optionally) file path to save the file. Ignored if to.file is
FALSE. Default: NULL

Details

There are many optional parameters not documented above. Any argument that you would want
to pass to summ(), for instance, will be used. Of particular interest may be the robust and scale
arguments. Note that some summ arguments may not have any bearing on the table output.

export_summs 13

The default model summary statistics reporting follows this logic:

e summ.Im = c(N = "nobs"”, R2 = "r.squared"),

e summ.glm=c(N = "nobs", AIC = "AIC", BIC = "BIC", “Pseudo R2™ = "pseudo.r.squared"),

e summ.svyglm = c(N = "nobs", R2 = "r.squared"),

e summ.merMod =c(N = "nobs”, AIC = "AIC", BIC = "BIC", "R2 (fixed)™ ="r.squared.fixed",
“R2 (total)™ ="r.squared")

e summ.rq = c(N = "nobs”, tau="tau", R1="r.1", AIC = "AIC", BIC = "BIC")

Be sure to look at the summ() documentation for more on the calculation of these and other statistics,
especially for mixed models.

If you set statistics = "all”, then the statistics argument passed to huxreg will be NULL, which
reports whichever model statistics are available via glance. If you want no model summary statis-
tics, set the argument to character(9).

You have a few options for the error_format argument. You can include anything returned by
broom: :tidy() (see also tidy.summ()). For the most part, you will be interested in std.error
(standard error), statistic (test statistic, e.g. t-value or z-value), p.value, or conf.high and
conf. low, which correspond to the upper and lower bounds of the confidence interval for the esti-
mate. Note that the default ci_level argument is .95, but you can alter that as desired.

To format the error statistics, simply put the statistics desired in curly braces wherever you want
them in a character string. For example, if you want the standard error in parentheses, the argument
would be " ({std.error})"”, which is the default. Some other ideas:

o "({statistic})", which gives you the test statistic in parentheses.

e "({statistic}, p={p.value})"”, which gives the test statistic followed by a "p =" p value
all in parentheses. Note that you’ll have to pay special attention to rounding if you do this to
keep cells sufficiently narrow.

* "[{conf.low}, {conf.high}]1", which gives the confidence interval in the standard bracket
notation. You could also explicitly write the confidence level, e.g., "CI [{conf.low}, {conf.high}]".

For coef's, the argument is slightly different than what is default in huxreg. If you provide a named
vector of coefficients, then the table will refer to the selected coefficients by the names of the vector
rather than the coefficient names. For instance, if I want to include only the coefficients for the
hp and mpg but have the table refer to them as "Horsepower" and "Miles/gallon", I'd provide the
argument like this: c("Horsepower” = "hp", "Miles/gallon” = "mpg")

You can also pass any argument accepted by the huxtable: :huxreg() function. A few that are
likely to be oft-used are documented above, but visit huxreg’s documentation for more info.

For info on converting the huxtable: :huxtable() object to HTML or LaTeX, see huxtable’s
documentation.

Value

A huxtable.

See Also

summ

huxreg

14 get_colors

Examples

states <- as.data.frame(state.x77)

fit1l <- Im(Income ~ Frost, data = states)

fit2 <- Im(Income ~ Frost + Illiteracy, data = states)

fit3 <- Im(Income ~ Frost + Illiteracy + Murder, data = states)

if (requireNamespace("huxtable”)) {
Export all 3 regressions with "Model #" labels,
standardized coefficients, and robust standard errors
export_summs(fitl, fit2, fit3,
model.names = c("Model 1","Model 2","Model 3"),

coefs = c("Frost Days" = "Frost”,
"% Illiterate” = "Illiteracy",
"Murder Rate"” = "Murder"),
scale = TRUE, robust = TRUE)
3
get_colors Get colors for plotting functions
Description

This is a helper function that provides hex color codes for jtools, interactions, and perhaps
other packages.

Usage

get_colors(colors, num.colors = 1, reverse = FALSE, gradient = FALSE)

Arguments
colors The name of the desired color class or a vector of colors. See details of jtools_colors.
num. colors How many colors should be returned? Default is 1.
reverse Should the colors be returned in reverse order, compared to normal? Default is
FALSE.
gradient Return endpoints for a gradient? Default is FALSE. If TRUE, num. colors is

ignored.

get_formula 15

get_formula Retrieve formulas from model objects

Description

This function is primarily an internal helper function in jtools and related packages to standardize
the different types of formula objects used by different types of models.

Usage

get_formula(model, ...)

Default S3 method:
get_formula(model, ...)

S3 method for class 'brmsfit'
get_formula(model, resp = NULL, dpar = NULL, ...)

S3 method for class 'panelmodel'

get_formula(model, ...)
Arguments
model The fitted model object.
Ignored.
resp For brmsfit objects, the response variable for which the formula is desired.

brmsfit objects may have multiple formulas, so this selects a particular one. If
NULL, the first formula is chosen (unless dpar is specified).

dpar For brmsfit objects, the distributional variable for which the formula is desired.
If NULL, no distributional parameter is used. If there are multiple responses with
distributional parameters, then resp should be specified or else the first formula
will be used by default.

Value

A formula object.

Examples

data(mtcars)
fit <- Im(mpg ~ cyl, data = mtcars)
get_formula(fit)

16 get_offset_name

get_offset_name Utility functions for generating model predictions

Description

These functions get information and data from regression models.

Usage

get_offset_name(model)

get_weights(model, data)

get_data(model, formula = NULL, warn = TRUE, ...)
get_response_name(model, ...)
Arguments
model The model (e.g., 1m, glm, merMod, svyglm)
data For get_weights(), the data used to fit the model.
formula The formula for model, if desired. Otherwise get_formula() is called.
warn For get_data(), should there be a warning when model . frame() won’t work

because of variable transformations? Default is TRUE but this may not be
desired when get_data() is used inside of another function or used multiple
times.

Arguments passed to get_formula()

Value

e get_data(): The data used to fit the model.
* get_response_name(): The name of the response variable.
e get_offset_name(): The name of the offset variable.

* get_weights(): Alist with weights_name, the name of the weighting variable, and weights,
the weights themselves (or all 1 when there are no weights).

get_robust_se 17

get_robust_se Calculate robust standard errors and produce coefficient tables

Description

This function wraps around several sandwich and Imtest functions to calculate robust standard
errors and returns them in a useful format.

Usage
get_robust_se(
model,
type = "HC3",

cluster = NULL,
data = model.frame(model),

vcov = NULL
)
Arguments
model A regression model, preferably of class 1m or glm
type One of "HC3", "const"”, "HC", "HC@", "HC1", "HC2", "HC4", "HC4m", "HC5".
See sandwich: :vcovHC() for some more details on these choices. Note that
some of these do not work for clustered standard errors (see sandwich: : vcovCL()).
cluster If you want clustered standard errors, either a string naming the column in data
that represents the clusters or a vector of clusters that is the same length as the
number of rows in data.
data The data used to fit the model. Default is to just get the model. frame from
model.
vcov You may provide the variance-covariance matrix yourself and this function will
just calculate standard errors, etc. based on that. Default is NULL.
Value

A list with the following:

coefs: a coefficient table with the estimates, standard errors, t-statistics, and p-values from
Imtest.

ses: The standard errors from coef's.

ts: The t-statistics from coef's.

ps: The p-values from coef's.

type: The argument to robust.

use_cluster: TRUE or FALSE indicator of whether clusters were used.
cluster: The clusters or name of cluster variable used, if any.

vecov: The robust variance-covariance matrix.

18 gscale

gscale Scale and/or center data, including survey designs

Description

gscale standardizes variables by dividing them by 2 standard deviations and mean-centering them
by default. It contains options for handling binary variables separately. gscale() is a fork of
rescale from the arm package—the key feature difference is that gscale() will perform the same
functions for variables in svydesign objects. gscale() is also more user-friendly in that it is more
flexible in how it accepts input.

Usage
gscale(
data = NULL,
vars = NULL,
binary.inputs = "center”,
binary.factors = FALSE,
n.sd = 2,

center.only = FALSE,

scale.only = FALSE,

weights = NULL,

apply.weighted.contrasts = getOption("jtools-weighted.contrasts”, FALSE),

x = NULL,
messages = FALSE
)
Arguments
data A data frame or survey design. Only needed if you would like to rescale multiple
variables at once. If x = NULL, all columns will be rescaled. Otherwise, x should
be a vector of variable names. If x is a numeric vector, this argument is ignored.
vars If data is a data.frame or similar, you can scale only select columns by providing

a vector column names to this argument.

binary.inputs Options for binary variables. Defaultis center; @/1 keeps original scale; -0.5/0.5
rescales 0 as -0.5 and 1 as 0.5; center subtracts the mean; and full subtracts
the mean and divides by 2 sd.

binary.factors Coerce two-level factors to numeric and apply scaling functions to them? De-

fault is FALSE.

n.sd By how many standard deviations should the variables be divided by? De-
fault for gscale is 2, like arm’s rescale. 1 is the more typical standardization
scheme.

center.only A logical value indicating whether you would like to mean -center the values,

but not scale them.

scale.only A logical value indicating whether you would like to scale the values, but not
mean-center them.

gscale 19

weights A vector of weights equal in length to x. If iterating over a data frame, the
weights will need to be equal in length to all the columns to avoid errors. You
may need to remove missing values before using the weights.

apply.weighted.contrasts
Factor variables cannot be scaled, but you can set the contrasts such that the
intercept in a regression model will reflect the true mean (assuming all other
variables are centered). If set to TRUE, the argument will apply weighted ef-
fects coding to all factors. This is similar to the R default effects coding, but
weights according to how many observations are at each level. An adapted ver-
sion of contr.wec() from the wec package is used to do this. See that package’s
documentation and/or Grotenhuis et al. (2016) for more info.

X Deprecated. Pass numeric vectors to data. Pass vectors of column names to
vars.
messages Print messages when variables are not processed due to being non-numeric or

all missing? Default is FALSE.

Details

This function is adapted from the rescale function of the arm package. It is named gscale() after
the popularizer of this scaling method, Andrew Gelman. By default, it works just like rescale. But
it contains many additional options and can also accept multiple types of input without breaking a
sweat.

Only numeric variables are altered when in a data.frame or survey design. Character variables,
factors, etc. are skipped.

For those dealing with survey data, if you provide a survey.design object you can rest assured
that the mean-centering and scaling is performed with help from the svymean() and svyvar()
functions, respectively. It was among the primary motivations for creating this function. gscale()
will not center or scale the weights variables defined in the survey design unless the user specifically
requests them in the x = argument.

Author(s)

Jacob Long <jacob.long@sc.edu>

References

Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in
Medicine, 27, 2865-2873. http://www.stat.columbia.edu/~gelman/research/published/
standardizing7.pdf

Grotenhuis, M. te, Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-Catran, A., & Konig, R.
(2017). When size matters: Advantages of weighted effect coding in observational studies. Inter-
national Journal of Public Health, 62, 163—167. https://doi.org/10.1007/s00038-016-0901-1 (open
access)

See Also

j_summ is a replacement for the summary function for regression models. On request, it will center
and/or standardize variables before printing its output.

http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf

20 gscale

standardization, scaling, and centering tools center (), center_mod(), scale_mod(), standardize()

Examples

x <= rnorm(10Q, 2, 1)
x2 <- rbinom(10, 1, .5)

Basic use

gscale(x)

Normal standardization
gscale(x, n.sd = 1)

Scale only

gscale(x, scale.only = TRUE)

Center only

gscale(x, center.only = TRUE)

Binary inputs

gscale(x2, binary.inputs = "0/1")

gscale(x2, binary.inputs = "full”) # treats it like a continous var
gscale(x2, binary.inputs = "-0.5/0.5") # keep scale, center at zero
gscale(x2, binary.inputs = "center"”) # mean center it

Data frame as input
loops through each numeric column
gscale(data = mtcars, binary.inputs = "-0.5/0.5")

Specified vars in data frame
gscale(mtcars, vars = c("hp”, "wt"”, "vs"), binary.inputs = "center")

Weighted inputs

wts <- runif(1e, o, 1)

gscale(x, weights = wts)

If using a weights column of data frame, give its name
mtcars$weights <- runif(32, 0, 1)

gscale(mtcars, weights = weights) # will skip over mtcars$weights

If using a weights column of data frame, can still select variables
gscale(mtcars, vars = c("hp", "wt"”, "vs"), weights = weights)

Survey designs
if (requireNamespace("survey”)) {
library(survey)
data(api)
Create survey design object
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw,
data = apistrat, fpc=~fpc)
Creating test binary variable
dstrat$variables$binary <- rbinom(200, 1, 0.5)

gscale(data = dstrat, binary.inputs = "-0.5/0.5")
gscale(data = dstrat, vars = c("api@@”, "meals”,"binary"”),
binary.inputs = "-0.5/0.5")

interact_plot 21

interact_plot Deprecated interaction functions

Description

These functions are now part of the interactions package.

Usage

interact_plot(...)
cat_plot(...)
sim_slopes(...)
johnson_neyman(...)

probe_interaction(...)

Arguments
arguments are ignored
jtools_colors Color palettes in jtools functions
Description

jtools combines several options into the colors argument in plotting functions.

Details

The argument to colors in functions like effect_plot, plot_coefs, and others is very flexible
but may also cause confusion.

If you provide an argument of length 1, it is assumed that you are naming a palette. jtools provides
6 color palettes design for qualitative data. 4 of the 6 are based on Paul Tol’s suggestions (see
references) and are meant to both optimize your ability to quickly differentiate the colors and to be
distinguishable to colorblind people. These are called "Quall”, "Qual2"”, "Qual3"”, "CUD", "CUD
Bright"”, and "Rainbow”. Each of the "Qual" schemes comes from Paul Tol. "Rainbow" is Paul
Tol’s compromise rainbow color scheme that is fairly differentiable for colorblind people and when
rendered in grayscale. "CUD Bright" is a brightened and reordered version of Okabe and Ito’s
suggestions for Color Universal Design’ while "CUD" is their exact scheme (see references). "CUD
Bright" is the default for qualitative scales in jtools functions.

22

knit_print.summ.Im

You may also provide any color palette supported by RColorBrewer. See all of those options
at RColorBrewer: :brewer.pal()’s documentation. If you provide one of RColorBrewer’s se-
quential palettes, like "Blues”, jtools automatically requests one more color than needed from
brewer.pal and then drops the lightest color. My experience is that those scales tend to give one
color that is too light to easily differentiate against a white background.

For gradients, you can use any of the RColorBrewer sequential palette names and get comparable
results on a continuous scale. There are also some jtools-specific gradient schemes: "blue”,

"blue2"”, "green”, "red”, "purple”, "seagreen”. If you want something a little non-standard,
I’d suggest taking a look at "blue2” or "seagreen”.

Lastly, you may provide colors by name. This must be a vector of the same length as whatever it
is the colors will correspond to. The format must be one understood by ggplot2’s manual scale
functions. This basically means it needs to be in hex format (e.g., "#000000") or one of the many
names R understands (e.g., "red"; use colors() to see all of those options).

References

Paul Tol’s site is what is used to derive 4 of the 6 jtools-specific qualitative palettes: https:
//personal.sron.nl/~pault/

Okabe and Ito’s palette inspired "CUD Bright", though "CUD Bright" is not exactly the same.
"CUD" is the same. See https://web.archive.org/web/20190216090108/jfly.iam.u-tokyo.
ac. jp/color/ for more.

knit_print.summ.1m knitr methods for summ

Description

There’s no reason for end users to utilize these functions, but CRAN requires it to be documented.

Usage

S3 method for class 'summ.lm'
knit_print(x, options = NULL, ...)

S3 method for class 'summ.glm'
knit_print(x, options = NULL, ...)
S3 method for class 'summ.svyglm'
knit_print(x, options = NULL, ...)

S3 method for class 'summ.merMod'
knit_print(x, options = NULL, ...)

S3 method for class 'summ.rq'
knit_print(x, options = NULL, ...)

https://personal.sron.nl/~pault/
https://personal.sron.nl/~pault/
https://web.archive.org/web/20190216090108/jfly.iam.u-tokyo.ac.jp/color/
https://web.archive.org/web/20190216090108/jfly.iam.u-tokyo.ac.jp/color/

make _new_data

Arguments

X

options

23

The summ object
Chunk options.
Ignored.

make_new_data

Make new data for generating predicted data from regression models.

Description

This is a convenience function that helps automate the process of generating predicted data from
regression model from a predictor(s). It is designed to give you the data frame for the predict
method’s newdata argument.

Usage

make_new_data(

model,
pred,

pred.values = NULL,

at = NULL

data = NULL,

center =

num. preds

Arguments

model

pred

pred.values

at

data

’

TRUE,
set.offset = NULL,

100,

The model (e.g., Im, glm, merMod, svyglm)

The name of the focal predictor as a string. This is the variable for which, if you
are plotting, you’d likely have along the x-axis (with the dependent variable as
the y-axis).

The values of pred you want to include. Default is NULL, which means a
sequence of equi-spaced values over the range of a numeric predictor or each
level of a non-numeric predictor.

If you want to manually set the values of other variables in the model, do so
by providing a named list where the names are the variables and the list values
are vectors of the values. This can be useful especially when you are exploring
interactions or other conditional predictions.

The data frame used in fitting the model. Default is NULL, in which case the
data will be retrieved via model . frame or, if there are variable transformations
in the formula, by looking in the environment for the data.

24 make_predictions

center Set numeric covariates to their mean? Default is TRUE. You may also just
provide a vector of names (as strings) of covariates to center. Note that for
svyglm models, the survey-weighted means are used. For models with weights,
these are weighted means.

set.offset If the model has an offset, the value to use for the offset variable. Default is
NULL, in which case the median of the offset variable is used.

num.preds The number of predictions to generate. Default is 100. Ignored if pred.values
is not NULL.

Extra arguments passed to get_formula()

Details

Please bear in mind that this does not generate the predictions. You will need to do that with a
predict function for your model or another interface, such as the prediction package’s titular
function.

Value

A data frame.

Examples

fit <- Im(Income ~ Frost + Illiteracy + Murder, data = as.data.frame(state.x77))
Basic use

new_data <- make_new_data(fit, pred = "Frost")

Set covariate to specific value

new_data <- make_new_data(fit, pred = "Frost”, at = list(Murder = 5))

Set covariate to several specific values

new_data <- make_new_data(fit, pred = "Frost”, at = list(Murder = c(5, 10, 15)))

make_predictions Generate predicted data for plotting results of regression models

Description

This is an alternate interface to the underlying tools that make up effect_plot() as well as
interactions::interact_plot() and interactions::cat_plot() fromthe interactions pack-
age. make_predictions() creates the data to be plotted and adds information to the original data
to make it more amenable for plotting with the predicted data.

make_predictions

Usage

25

make_predictions(model, ...)

Default S3 method:
make_predictions(

model,
pred,

pred.values = NULL,
at = NULL,

data = NULL,

center = TRUE,
interval = TRUE,

int.type = c("confidence”, "prediction"),
int.width = .95,
outcome.scale = "response”,

robust = FALSE,

cluster = NULL,

vcov = NULL,

set.offset = NULL,
new_data = NULL,
return.orig.data = FALSE,

partial.residuals = FALSE,

Arguments

model

pred

pred.values

at

data

The model (e.g., Im, glm, merMod, svyglm)
Ignored.

The name of the focal predictor as a string. This is the variable for which, if you
are plotting, you’d likely have along the x-axis (with the dependent variable as
the y-axis).

The values of pred you want to include. Default is NULL, which means a
sequence of equi-spaced values over the range of a numeric predictor or each
level of a non-numeric predictor.

If you want to manually set the values of other variables in the model, do so
by providing a named list where the names are the variables and the list values
are vectors of the values. This can be useful especially when you are exploring
interactions or other conditional predictions.

Optional, default is NULL. You may provide the data used to fit the model. This
can be a better way to get mean values for centering and can be crucial for mod-
els with variable transformations in the formula (e.g., log(x)) or polynomial
terms (e.g., poly(x, 2)). You will see a warning if the function detects prob-
lems that would likely be solved by providing the data with this argument and
the function will attempt to retrieve the original data from the global environ-
ment.

26

center

interval

int.type

int.width

outcome.scale

robust

cluster

vCoVv

set.offset

new_data

make_predictions

Set numeric covariates to their mean? Default is TRUE. You may also just
provide a vector of names (as strings) of covariates to center. Note that for
svyglm models, the survey-weighted means are used. For models with weights,
these are weighted means.

Logical. If TRUE, plots confidence/prediction intervals around the line using
geom_ribbon.

Type of interval to plot. Options are "confidence" or "prediction". Default is
confidence interval.

How large should the interval be, relative to the standard error? The default,
.95, corresponds to roughly 1.96 standard errors and a .05 alpha level for values
outside the range. In other words, for a confidence interval, .95 is analogous to
a 95% confidence interval.

For nonlinear models (i.e., GLMs), should the outcome variable be plotted on
the link scale (e.g., log odds for logit models) or the original scale (e.g., predicted
probabilities for logit models)? The default is "response”, which is the original
scale. For the link scale, which will show straight lines rather than curves, use
"link".

Should robust standard errors be used to find confidence intervals for supported
models? Default is FALSE, but you should specify the type of sandwich stan-
dard errors if you’d like to use them (i.e., "HC@", "HC1", and so on). If TRUE,
defaults to "HC3" standard errors.

For clustered standard errors, provide the column name of the cluster variable in
the input data frame (as a string). Alternately, provide a vector of clusters.

Optional. You may supply the variance-covariance matrix of the coefficients
yourself. This is useful if you are using some method for robust standard error
calculation not supported by the sandwich package.

For models with an offset (e.g., Poisson models), sets an offset for the predicted
values. All predicted values will have the same offset. By default, this is set to
1, which makes the predicted values a proportion. See details for more about
offset support.

If you would prefer to generate your own hypothetical (or not hypothetical) data
rather than have the function make a call to make_new_data(), you can provide
it.

return.orig.data

Instead of returning a just the predicted data frame, should the original data be
returned as well? If so, then a list will be return with both the predicted data
(as the first element) and the original data (as the second element). Default is
FALSE.

partial.residuals

If return.orig.data is TRUE, should the observed dependent variable be re-
placed with the partial residual? This makes a call to partialize(), where you
can find more details.

md_table

27

md_table

Print attractive data frames in the console

Description

This function takes data frame input and prints to the console as an ASCII/markdown table for

better readability.
Usage
md_table(
X,
format = getOption("md_table_format”, "grid"),
digits = getOption("jtools-digits"”, 2),
sig.digits = TRUE,
row.names = rownames(x),
col.names = colnames(x),
align = NULL
)
Arguments
X A data frame or matrix.
format The style, which can be one of the following: "multiline", "grid", "simple" (also
"pandoc"), "rmarkdown" (also "markdown"). Default: "markdown"
digits How many digits to print for numbers. Default: 2
sig.digits Should each number be printed with digits number of digits or only when there
are at least that many significant digits? Default is TRUE, meaning only print
digits number of significant digits.
row.names if FALSE, row names are suppressed. A character vector of row names can also
be specified here. By default, row names are included if rownames(t) is neither
NULL nor identical to 1:nrow(x).
col.names a character vector of column names to be used in the table
align Column alignment: a character vector consisting of “’1” (left), “’c” (center)

and/or “’r” (right). By default or if ‘align = NULL’, numeric columns are right-
aligned, and other columns are left-aligned.

28 movies

movies Data about movies

Description

A dataset containing information about films, how popular they were, and the extent to which they
feature women.

Usage

movies

Format
A data frame with 841 rows and 24 variables:

title The movie’s title

year The year of the movie’s US theatrical release

release_date The exact date of the movie’s US theatrical release

runtime The length of the movie in hours

genreS The movie’s primary genre per IMDB, fit into one of 5 broad categories
genre_detailed The verbatim genre description per IMDB

rated The movie’s MPA rating (G, PG, PG-13, R, or NC-17) as an ordered factor
director The name of the movie’s director(s)

writer The name of the movie’s screenwriter(s)

actors A comma-separated string of leading actors in the film

language The movie’s language(s), per IMDB

country The country(ies) in which the movie was produced

metascore The movie’s score on MetaCritic, ranging from 0 to 100
imdb_rating The movie’s rating on IMDB, ranging from O to 10

imdb_votes The number of users who submitted a rating on IMDB

imdb_id The unique identifier for the movie at IMDB

studio The studio(s) who produced the movie

bechdel_binary A logical indicating whether the movie passed the Bechdel test

bechdel_ordinal A more granular measure of the bechdel test, indicating not just whether the
movie passed or failed but how close it got to passing if it did fail

us_gross The movie’s US gross in 2013 US dollars

int_gross The movie’s international gross in 2013 US dollars

budget The movie’s budget in 2013 US dollars

men_lines The proportion of spoken lines that were spoken by male characters

lines_data The raw data used to calculate men_lines; see Source for more information

num_print 29

Source

These data are aggregated from several sources. Metadata is gathered from IMDB. Other in-
formation, particularly about the lines, is collected from The Pudding. The data regarding the
Bechdel Test, as well as about finances, comes from FiveThirtyEight and its associated R package
(fivethirtyeight and its dataset, bechdel).

num_print Numbering printing with signed zeroes and trailing zeroes

Description
This function will print exactly the amount of digits requested as well as signed zeroes when appro-
priate (e.g, -0.00).

Usage

num_print(x, digits = getOption("jtools-digits”, 2), format = "f")

Arguments
X The number(s) to print
digits Number of digits past the decimal to print
format equal to "d"” (for integers), "f", "e", "E", "g", "G", "fg" (for reals). Default is
n .Fll
partialize Adjust observed data for partial residuals plots
Description

This function is designed to facilitate the creation of partial residual plots, in which you can plot
observed data alongside model predictions. The difference is instead of the actual observed data,
the outcome variable is adjusted for the effects of the covariates.

Usage

partialize(model, ...)

Default S3 method:

partialize(
model,
vars = NULL,
data = NULL,

at = NULL,

https://github.com/matthewfdaniels/scripts/

30

center =

partialize

TRUE,

scale = c("response”, "link"),

set.offset

Arguments

model

vars

data

at

center

scale

set.offset

Details

1,

A regression model.
Ignored.

The variable(s) to not adjust for, as a string (or vector of strings). If I want to
show the effect of x adjusting for the effect of z, then I would make "x" the
vars argument.

Optionally, provide the data used to fit the model (or some other data frame with
the same variables). Otherwise, it will be retrieved from the model or the global
environment.

If you want to manually set the values of other variables in the model, do so
by providing a named list where the names are the variables and the list values
are vectors of the values. This can be useful especially when you are exploring
interactions or other conditional predictions.

Set numeric covariates to their mean? Default is TRUE. You may also just
provide a vector of names (as strings) of covariates to center. Note that for
svyglm models, the survey-weighted means are used. For models with weights,
these are weighted means.

For GLMs, should the outcome variable be returned on the link scale or response
scale? Default is "response”.

For models with an offset (e.g., Poisson models), sets an offset for the predicted
values. All predicted values will have the same offset. By default, this is set to
1, which makes the predicted values a proportion. See details for more about
offset support.

The main use for working with partial residuals rather than the observed values is to explore patterns
in the model fit with respect to one or more variables while "controlling out" the effects of others.
Plotting a predicted line along with observed data may make a very well-fitting model look as if it
is a poor fit if a lot of variation is accounted for by variables other than the one on the x-axis.

I advise consulting Fox and Weisberg (available free) for more details on what partial residuals are.
This function is designed to produce data in a similar format to effects::Effect() when that
function has residuals set to TRUE and is plotted. I wanted a more modular function to produce
the data separately. To be clear, the developers of the effects package have nothing to do with this
function; ‘partialize* is merely designed to replicate some of that functionality.

Value

data plus the residualized outcome variable.

pf_sv_test 31

References

Fox, J., & Weisberg, S. (2018). Visualizing fit and lack of fit in complex regression models
with predictor effect plots and partial residuals. Journal of Statistical Software, 87(9), 1-27.
https://doi.org/10.18637/jss.v087.109

pf_sv_test Test whether sampling weights are needed

Description

Use the test proposed in Pfeffermann and Sverchkov (1999) to check whether a regression model is
specified correctly without weights.

Usage
pf_sv_test(
model,
data = NULL,
weights,
sims = 1000,
digits = getOption("jtools-digits"”, default = 3)
)
Arguments
model The fitted model, without weights
data The data frame with the data fed to the fitted model and the weights
weights The name of the weights column in model’s data frame or a vector of weights
equal in length to the number of observations included in model.
sims The number of bootstrap simulations to use in estimating the variance of the
residual correlation. Default is 1000, but for publications or when computing
power/time is sufficient, a higher number is better.
digits An integer specifying the number of digits past the decimal to report in the out-
put. Default is 3. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.
Details

This is a test described by Pfeffermann and Sverchkov (1999) that is designed to help analysts
decide whether they need to use sample weights in their regressions to avoid biased parameter
estimation.

It first checks the correlation of the residuals of the model with the weights. It then uses boot-
strapping to estimate the variance of the correlation, ending with a t-test of whether the correlation
differs from zero. This is done for the squared residuals and cubed residuals as well. If anyone of

32 plot_summs

them are statistically significant (at whatever level you feel appropriate), it is best to do a weighted
regression. Note that in large samples, a very small correlation may have a low p-value without a
large bias in the unweighted regression.

References

Pfeffermann, D., & Sverchkov, M. (1999). Parametric and semi-parametric estimation of regression
models fitted to survey data. Sankhya: The Indian Journal of Statistics, 61. 166-186.

See Also

Other survey tools: svycor(), svysd(), weights_tests(), wgttest()

Examples

Note: This is a contrived example to show how the function works,
not a case with actual sammpling weights from a survey vendor
if (requireNamespace("boot")) {
states <- as.data.frame(state.x77)
set.seed(100)
states$wts <- runif (50, 0, 3)
fit <- Im(Murder ~ Illiteracy + Frost, data = states)
pf_sv_test(model = fit, data = states, weights = wts, sims = 100)

plot_summs Plot Regression Summaries

Description

plot_summs and plot_coef's create regression coefficient plots with ggplot2.

Usage

plot_summs(
ci_level = 0.95,
model.names = NULL,
coefs = NULL,
omit.coefs = "(Intercept)”,
inner_ci_level = NULL,
colors = "CUD Bright",
plot.distributions = FALSE,
rescale.distributions = FALSE,
exp = FALSE,
point.shape = TRUE,
point.size = 5,

plot_summs 33

line.size = c(0.8, 2),
legend.title = "Model”,
groups = NULL,
facet.rows = NULL,
facet.cols = NULL,
facet.label.pos = "top",
color.class = colors,

resp = NULL,
dpar = NULL,
coefs.match = c("exact”, "regex")

)

plot_coefs(

ci_level = 0.95,
inner_ci_level = NULL,
model.names = NULL,

coefs = NULL,

omit.coefs = c("(Intercept)”, "Intercept”),
colors = "CUD Bright",
plot.distributions = FALSE,
rescale.distributions = FALSE,
exp = FALSE,

point.shape = TRUE,

point.size = 5,

line.size = ¢c(0.8, 2),
legend.title = "Model”,

groups = NULL,

facet.rows = NULL,

facet.cols = NULL,
facet.label.pos = "top”,
color.class = colors,

resp = NULL,
dpar = NULL,
coefs.match = c("exact”, "regex")
)
Arguments
regression model(s). You may also include arguments to be passed to tidy().
ci_level The desired width of confidence intervals for the coefficients. Default: 0.95
model . names If plotting multiple models simultaneously, you can provide a vector of names
here. If NULL, they will be named sequentially as "Model 1", "Model 2", and
so on. Default: NULL
coefs If you’d like to include only certain coefficients, provide them as a vector. If it

is a named vector, then the names will be used in place of the variable names.
See details for examples. Default: NULL

plot_summs

omit.coefs If you’d like to specify some coefficients to not include in the plot, provide them
as a vector. This argument is overridden by coefs if both are provided. By
default, the intercept term is omitted. To include the intercept term, just set
omit.coefs to NULL.

inner_ci_level Plot a thicker line representing some narrower span than ci_level. Default is
NULL, but good options are .9, .8, or .5.

colors See jtools_colors for more on your color options. Default: *CUD Bright’

plot.distributions
Instead of just plotting the ranges, you may plot normal distributions represent-
ing the width of each estimate. Note that these are completely theoretical and
not based on a bootstrapping or MCMC procedure, even if the source model was
fit that way. Default is FALSE.

rescale.distributions
If plot.distributions is TRUE, the default behavior is to plot each normal
density curve on the same scale. If some of the uncertainty intervals are much
wider/narrower than others, that means the wide ones will have such a low height
that you won’t be able to see the curve. If you set this parameter to TRUE, each
curve will have the same maximum height regardless of their width.

exp If TRUE, all coefficients are exponentiated (e.g., transforms logit coefficents
from log odds scale to odds). The reference line is also moved to 1 instead of 0.

point.shape When using multiple models, should each model’s point estimates use a different
point shape to visually differentiate each model from the others? Default is
TRUE. You may also pass a vector of shapes to specify shapes yourself.

point.size Change the size of the points. Default is 3.

line.size Change the thickness of the error bar lines. Default is ¢(0.8, 2). The first
number is the size for the full width of the interval, the second number is used
for the thicker inner interval when inner.ci is TRUE.

legend.title What should the title for the legend be? Default is "Model", but you can specify
it here since it is rather difficult to change later via ggplot2’s typical methods.

groups If you would like to have facets (i.e., separate panes) for different groups of
coefficients, you can specify those groups with a list here. See details for more
on how to do this.

facet.rows The number of rows in the facet grid (the nrow argument to ggplot2: : facet_wrap()).

facet.cols The number of columns in the facet grid (the nrow argument to ggplot2: : facet_wrap()).

facet.label.pos
Where to put the facet labels. One of "top" (the default), "bottom", "left", or

"right".
color.class Deprecated. Now known as colors.
resp For any models that are brmsfit and have multiple response variables, specify

them with a vector here. If the model list includes other types of models, you
do not need to enter resp for those models. For instance, if I want to plot a 1m
object and two brmsfit objects, you only need to provide a vector of length 2
for resp.

plot_summs 35

dpar For any models that are brmsfit and have a distributional dependent variable,
that can be specified here. If NULL, it is assumed you want coefficients for the
location/mean parameter, not the distributional parameter(s).

coefs.match This modifies the way the coefs and omit.coefs arguments are interpreted.
The default "exact” which represents the legacy behavior, will include/exclude
coefficients that match exactly with your inputs to those functions. If "regex”,
coefsandomit.coefs are used as the pattern argument for grepl () matching
the coefficient names. Note that using "regex” means you will be unable to
override the default coefficient names via a named vector.

Details

A note on the distinction between plot_summs and plot_coefs: plot_summs only accepts models
supported by summ() and allows users to take advantage of the standardization and robust standard
error features (among others as may be relevant). plot_coefs supports any models that have a
broom: : tidy () method defined in the broom package, but of course lacks any additional features
like robust standard errors. To get a mix of the two, you can pass summ objects to plot_coef's too.

For coefs, if you provide a named vector of coefficients, then the plot will refer to the selected
coefficients by the names of the vector rather than the coefficient names. For instance, if I want to
include only the coefficients for the hp and mpg but have the plot refer to them as "Horsepower"
and "Miles/gallon", I'd provide the argument like this: c("Horsepower” = "hp", "Miles/gallon”
="mpg")

To use the groups argument, provide a (preferably named) list of character vectors. If I want
separate panes with "Frost" and "Illiteracy" in one and "Population" and "Area" in the other, I'd
make a list like this:

list(pane_1 =c("Frost"”, "Illiteracy”), pane_2 =c("Population”, "Area"))

Value

A ggplot object.

Examples

states <- as.data.frame(state.x77)

fit1l <- Im(Income ~ Frost + Illiteracy + Murder +
Population + Area + “Life Exp™ + “HS Grad”,
data = states, weights = runif(50, 0.1, 3))

fit2 <- 1lm(Income ~ Frost + Illiteracy + Murder +
Population + Area + “Life Exp™ + “HS Grad”,
data = states, weights = runif(50, 0.1, 3))

fit3 <- 1lm(Income ~ Frost + Illiteracy + Murder +
Population + Area + “Life Exp™ + “HS Grad”,
data = states, weights = runif(50, 0.1, 3))

Plot all 3 regressions with custom predictor labels,
standardized coefficients, and robust standard errors
plot_summs(fit1, fit2, fit3,
coefs = c("Frost Days” = "Frost”, "% Illiterate” = "Illiteracy”,
"Murder Rate” = "Murder"),

36

predict_merMod

scale = TRUE, robust = TRUE)

predict_merMod

Alternative interface for merMod predictions

Description

This function generates predictions for merMod models, but with the ability to get standard errors as

well.

Usage

predict_merMod(

object,

newdata = NULL,
se.fit = FALSE,

use.re.var

FALSE,

allow.new.levels = FALSE,

type = c("link"”, "response”, "terms"),
na.action = na.pass,

re.form = NULL,

boot = FALSE,
sims = 100,
prog.arg = "none”,
)
Arguments
object a fitted model object
newdata data frame for which to evaluate predictions.
se.fit Include standard errors with the predictions? Note that these standard errors by

use.re.var

default include only fixed effects variance. See details for more info. Default is
FALSE.

If se.fit is TRUE, include random effects variance in standard errors? Default
is FALSE.

allow.new.levels

type

na.action

logical if new levels (or NA values) in newdata are allowed. If FALSE (default),
such new values in newdata will trigger an error; if TRUE, then the prediction
will use the unconditional (population-level) values for data with previously un-
observed levels (or NAs).

character string - either "1ink", the default, or "response” indicating the type
of prediction object returned.

function determining what should be done with missing values for fixed effects
in newdata. The default is to predict NA: see na.pass.

scale_mod 37

re.form (formula, NULL, or NA) specify which random effects to condition on when pre-
dicting. If NULL, include all random effects; if NA or ~@, include no random
effects.

boot Use bootstrapping (via 1me4: :bootMer()) to estimate variance for se.fit?
Default is FALSE

sims If boot is TRUE, how many simulations should be run? Default is 100.

prog.arg Ifboot and se. fit are TRUE, a character string - type of progress bar to display.

Default is "none"; the function will look for a relevant *ProgressBar function,
so "txt" will work in general; "tk" is available if the tcltk package is loaded; or
"win" on Windows systems. Progress bars are disabled (with a message) for
parallel operation.

When boot and se.fit are TRUE, any additional arguments are passed to
1me4: :bootMer ().

Details

The developers of Ime4 omit an se. fit argument for a reason, which is that it’s not perfectly clear
how best to estimate the variance for these models. This solution is a logical one, but perhaps not
perfect. Bayesian models are one way to do better.

The method used here is based on the one described here: http://bbolker.github.io/mixedmodels-misc/
glmmFAQ. html#predictions-andor-confidence-or-prediction-intervals-on-predictions

scale_mod Scale variables in fitted regression models

Description

scale_mod (previously known as scale_1lm) takes fitted regression models and scales all predictors
by dividing each by 1 or 2 standard deviations (as chosen by the user).

Usage

scale_mod(model, ...)

Default S3 method:
scale_mod(
model,
binary.inputs = "@/1",
n.sd =1,
center = TRUE,
scale.response = FALSE,
center.only = FALSE,
scale.only = FALSE,
data = NULL,
vars = NULL,
apply.weighted.contrasts = getOption("jtools-weighted.contrasts”, FALSE),

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#predictions-andor-confidence-or-prediction-intervals-on-predictions
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#predictions-andor-confidence-or-prediction-intervals-on-predictions

38

Arguments

model

binary.inputs

n.sd

center

scale.response
center.only

scale.only

data

vars

scale_mod

A regression model of type 1m, glm, svyglm, or Ime4::merMod. Other model
types may work as well but are not tested.

Arguments passed on to gscale().

Options for binary variables. Default is "@/1"; "0/1" keeps original scale;
"-0.5,0.5" rescales 0 as -0.5 and 1 as 0.5; center subtracts the mean; and
full treats them like other continuous variables.

How many standard deviations should you divide by for standardization? De-
fault is 1, though some prefer 2.

Default is TRUE. If TRUE, the predictors are also mean-centered. For binary pre-
dictors, the binary. inputs argument supersedes this one.

Should the response variable also be rescaled? Default is FALSE.
Rather than actually scale predictors, just mean-center them.

A logical value indicating whether you would like to scale the values, but not
mean-center them.

If you provide the data used to fit the model here, that data frame is used to re-fit
the model instead of the stats: :model. frame() of the model. This is particu-
larly useful if you have variable transformations or polynomial terms specified
in the formula.

A character vector of variable names that you want to be scaled. If NULL, the
default, it is all predictors.

apply.weighted.contrasts

Details

Factor variables cannot be scaled, but you can set the contrasts such that the
intercept in a regression model will reflect the true mean (assuming all other
variables are centered). If set to TRUE, the argument will apply weighted ef-
fects coding to all factors. This is similar to the R default effects coding, but
weights according to how many observations are at each level. An adapted ver-
sion of contr.wec() from the wec package is used to do this. See that package’s
documentation and/or Grotenhuis et al. (2016) for more info.

This function will scale all continuous variables in a regression model for ease of interpretation,
especially for those models that have interaction terms. It can also mean-center all of them as well,

if requested.

The scaling happens on the input data, not the terms themselves. That means interaction terms are
still properly calculated because they are the product of standardized predictors, not a standardized
product of predictors.

This function re-estimates the model, so for large models one should expect a runtime equal to the

first run.

Value

The functions returns a re-fitted model object, inheriting from whichever class was supplied.

set_summ_defaults 39

Author(s)

Jacob Long <jacob.long@sc.edu>

References

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Infer-
ential and graphical techniques. Multivariate Behavioral Research, 40(3), 373-400.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analyses for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

See Also

sim_slopes performs a simple slopes analysis.
interact_plot creates attractive, user-configurable plots of interaction models.

standardization, scaling, and centering tools center (), center_mod(), gscale(), standardize()

Examples

fit <- 1Im(formula = Murder ~ Income * Illiteracy,
data = as.data.frame(state.x77))

fit_scale <- scale_mod(fit)

fit_scale <- scale_mod(fit, center = TRUE)

With weights
fitw <- Im(formula = Murder ~ Income * Illiteracy,
data = as.data.frame(state.x77),
weights = Population)
fitw_scale <- scale_mod(fitw)
fitw_scale <- scale_mod(fitw, center = TRUE, binary.input = "0/1")

With svyglm

if (requireNamespace("survey”)) {

library(survey)

data(api)

dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
regmodel <- svyglm(api@@~ell*meals,design=dstrat)

regmodel_scale <- scale_mod(regmodel)

regmodel_scale <- scale_mod(regmodel, binary.input = "@/1")

}

set_summ_defaults Set defaults for summ() functions

40

Description

set_summ_defaults

This function is convenience wrapper for manually setting options using options(). This gives a
handy way to, for instance, set the arguments to be used in every call to summ() in your script/session.

To make the settings persist across sessions, you can run this in your .Rprofile file.

Note that arguments that do not apply (e.g., robust for merMod models) are silently ignored when
those types of models are used.

Usage

set_summ_defaults(
digits = NULL,

model.info =

NULL,

model.fit = NULL,

model.coefs =

pvals = NULL,

NULL,

robust = NULL,
confint = NULL,
ci.width = NULL,

vifs = NULL,

conf.method =

table.format

Arguments

digits

model.info

model.fit
model . coefs
pvals

robust

confint

ci.width

NULL,
= NULL

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

Toggles printing of basic information on sample size, name of DV, and number
of predictors.

Toggles printing of model fit statistics.
Toggles printing of model coefficents.
Show p values? If FALSE, these are not printed. Default is TRUE.

If not FALSE, reports heteroskedasticity-robust standard errors instead of con-
ventional SEs. These are also known as Huber-White standard errors. There
are several options provided by sandwich: :vcovHC(): "HC@", "HC1", "HC2",
”HC3”, ”HC4H, HHC4mll’ IIHCSH.

Default is FALSE.

This requires the sandwich package to compute the standard errors.
Show confidence intervals instead of standard errors? Default is FALSE.

A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

standardize

vifs

conf.method

table.format

41

If TRUE, adds a column to output with variance inflation factors (VIF). Default
is FALSE.

Argument passed to Ime4: :confint.merMod(). Defaultis "Wald", but "profile”
or "boot" are better when accuracy is a priority. Be aware that both of the alter-
nate methods are sometimes very time-consuming.

A format understood by md_table()

standardize

Standardize vectors, data frames, and survey designs

Description

This function is a wrapper around gscale() that is configured to do a conventional standardization
of continuous variables, mean-centering and dividing by one standard deviation.

Usage
standardize(
data = NULL,
vars = NULL,

binary.inputs

= "center”,

binary.factors = FALSE,
weights = NULL

Arguments

data

vars

binary.inputs

binary.factors

weights

Details

A data frame or survey design. Only needed if you would like to rescale multiple
variables at once. If x = NULL, all columns will be rescaled. Otherwise, x should
be a vector of variable names. If x is a numeric vector, this argument is ignored.

If data is a data.frame or similar, you can scale only select columns by providing
a vector column names to this argument.

Options for binary variables. Default is center; @/1 keeps original scale; -0.5/0.5
rescales 0 as -0.5 and 1 as 0.5; center subtracts the mean; and full subtracts
the mean and divides by 2 sd.

Coerce two-level factors to numeric and apply scaling functions to them? De-
fault is FALSE.

A vector of weights equal in length to x. If iterating over a data frame, the
weights will need to be equal in length to all the columns to avoid errors. You
may need to remove missing values before using the weights.

Some more information can be found in the documentation for gscale ()

42 summ

Value

A transformed version of the data argument.

See Also

standardization, scaling, and centering tools center (), center_mod(), gscale(), scale_mod()

Examples

Standardize just the "gsec” variable in mtcars

standardize(mtcars, vars = "gsec")
summ Regression summaries with options
Description

To get specific documentation, choose the appropriate link to the type of model that you want to
summarize from the details section.

Usage
summ(model, ...)
j_summ(model, ...)
Arguments
model A 1m, glm, svyglm, merMod, rq object.
Other arguments to be passed to the model-specific function.
Details
e summ.1lm
e summ.glm

e summ.svyglm
e summ.merMod

e summ.rq

summ.glm

43

summ.glm

Generalized linear regression summaries with options

Description

summ() prints output for a regression model in a fashion similar to summary (), but formatted dif-
ferently with more options.

Usage

S3 method for class 'glm'

summ(
model,
scale

FALSE,

confint = getOption("summ-confint"”, FALSE),
ci.width = getOption("summ-ci.width”, 0.95),

robust

cluster

vifs =
digits

pvals
n.sd =
center

getOption(”summ-robust”, FALSE),

NULL,

getOption("summ-vifs"”, FALSE),
getOption("jtools-digits"”, default = 2),
exp = FALSE,

getOption(”summ-pvals”, TRUE),

FALSE,

transform.response = FALSE,
scale.only = FALSE,

data =

model.info

getOption("summ-model.info"”, TRUE),

model.fit = getOption(”"summ-model.fit”, TRUE),

model . coef's
which.cols

VCov =

Arguments

model

scale

confint

ci.width

getOption(”summ-model.coefs”, TRUE),

NULL,

A glm object.

If TRUE, reports standardized regression coefficients by scaling and mean-centering
input data (the latter can be changed via the scale.only argument). Default is
FALSE.

Show confidence intervals instead of standard errors? Default is FALSE.

A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

44

robust

cluster

vifs

digits

exp

pvals
n.sd

center

summ.glm

If not FALSE, reports heteroskedasticity-robust standard errors instead of con-
ventional SEs. These are also known as Huber-White standard errors. There
are several options provided by sandwich: :vcovHC(): "HC@", "HC1", "HC2",
HHC3II’ IIHC4II, HHC4m”’ IIHC5II.

Default is FALSE.

This requires the sandwich package to compute the standard errors.

For clustered standard errors, provide the column name of the cluster variable in
the input data frame (as a string). Alternately, provide a vector of clusters. Note
that you must set robust to either "HC1", "HC2", or "HC3" in order to have
clustered standard errors ("HC4" and "HC5" are not supported.

If TRUE, adds a column to output with variance inflation factors (VIF). Default
is FALSE.

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

If TRUE, reports exponentiated coefficients with confidence intervals for expo-
nential models like logit and Poisson models. This quantity is known as an odds
ratio for binary outcomes and incidence rate ratio for count models.

Show p values? If FALSE, these are not printed. Default is TRUE.

If scale = TRUE, how many standard deviations should predictors be divided
by? Default is 1, though some suggest 2.

If you want coefficients for mean-centered variables but don’t want to standard-
ize, set this to TRUE. Note that setting this to false does not affect whether scale
mean-centers variables. Use scale.only for that.

transform.response

scale.only

data

model.info

model.fit
model. coefs
which.cols

VvCoVv

Should scaling/centering apply to response variable? Default is FALSE.

If you want to scale but not center, set this to TRUE. Note that for legacy reasons,
setting scale = TRUE and center = FALSE will not achieve the same effect. De-
fault is FALSE.

If you provide the data used to fit the model here, that data frame is used to
re-fit the model (if scale is TRUE) instead of the stats::model.frame() of
the model. This is particularly useful if you have variable transformations or
polynomial terms specified in the formula.

Toggles printing of basic information on sample size, name of DV, and number
of predictors.

Toggles printing of model fit statistics.
Toggles printing of model coefficents.

Developmental feature. By providing columns by name, you can add/remove/reorder

requested columns in the output. Not fully supported, for now.

You may provide your own variance-covariance matrix for the regression coef-
ficients if you want to calculate standard errors in some way not accommodated
by the robust and cluster options.

Among other things, arguments are passed to scale_mod() or center_mod()
when center or scale is TRUE.

summ.glm 45

Details

By default, this function will print the following items to the console:

* The sample size

* The name of the outcome variable

* The chi-squared test, (Pseudo-)R-squared value and AIC/BIC.

* A table with regression coefficients, standard errors, z values, and p values.
There are several options available for robust. The heavy lifting is done by sandwich: : vcovHC(),
where those are better described. Put simply, you may choose from "HC@" to "HC5". Based on the
recommendation of the developers of sandwich, the default is set to "HC3". Stata’s default is "HC1",
so that choice may be better if the goal is to replicate Stata’s output. Any option that is understood

by vcovHC() will be accepted. Cluster-robust standard errors are computed if cluster is set to the
name of the input data’s cluster variable or is a vector of clusters.

The scale and center options are performed via refitting the model with scale_mod() and center_mod(),
respectively. Each of those in turn uses gscale() for the mean-centering and scaling.

Value

If saved, users can access most of the items that are returned in the output (and without rounding).

coeftable The outputted table of variables and coefficients

model The model for which statistics are displayed. This would be most useful in cases
in which scale = TRUE.

Much other information can be accessed as attributes.

Author(s)

Jacob Long <jacob.long@sc.edu>

References

King, G., & Roberts, M. E. (2015). How robust standard errors expose methodological problems
they do not fix, and what to do about it. Political Analysis, 23(2), 159-179. doi:10.1093/pan/
mpuO15

Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The Importance of the Normality Assump-
tion in Large Public Health Data Sets. Annual Review of Public Health, 23, 151-169. doi:10.1146/
annurev.publhealth.23.100901.140546

See Also

scale_mod() can simply perform the standardization if preferred.
gscale() does the heavy lifting for mean-centering and scaling behind the scenes.

Other summ: summ. Im(), summ.merMod (), summ.rq(), summ.svyglm()

https://doi.org/10.1093/pan/mpu015
https://doi.org/10.1093/pan/mpu015
https://doi.org/10.1146/annurev.publhealth.23.100901.140546
https://doi.org/10.1146/annurev.publhealth.23.100901.140546

46

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :

counts <- ¢(18,17,15,20,10,20,25,13,12)

outcome <- gl1(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family = poisson)

Summarize with standardized coefficients
summ(glm.D93, scale = TRUE)

summ.Im

summ. 1m Linear regression summaries with options

Description

summ() prints output for a regression model in a fashion similar to summary (), but formatted dif-

ferently with more options.

Usage

S3 method for class 'lm'

summ(
model,
scale = FALSE,
confint = getOption(”summ-confint”, FALSE),
ci.width = getOption("summ-ci.width”, @.95),
robust = getOption("summ-robust”, FALSE),
cluster = NULL,
vifs = getOption("summ-vifs"”, FALSE),
digits = getOption("jtools-digits"”, 2),
pvals = getOption("”summ-pvals”, TRUE),
n.sd =1,
center = FALSE,
transform.response = FALSE,
scale.only = FALSE,
data = NULL,
part.corr = FALSE,
model.info = getOption("summ-model.info", TRUE),
model.fit = getOption("”"summ-model.fit"”, TRUE),
model.coefs = getOption(”summ-model.coefs”, TRUE),
which.cols = NULL,
vcov = NULL,

summ.Im

Arguments

model

scale

confint

ci.width

robust

cluster

vifs

digits

pvals

n.sd

center

47

A 1m object.

If TRUE, reports standardized regression coefficients by scaling and mean-centering
input data (the latter can be changed via the scale.only argument). Default is
FALSE.

Show confidence intervals instead of standard errors? Default is FALSE.

A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

If not FALSE, reports heteroskedasticity-robust standard errors instead of con-
ventional SEs. These are also known as Huber-White standard errors. There
are several options provided by sandwich: :vcovHC(): "HC@", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5".

Default is FALSE.

This requires the sandwich package to compute the standard errors.

For clustered standard errors, provide the column name of the cluster variable in
the input data frame (as a string). Alternately, provide a vector of clusters. Note
that you must set robust to either "HC1", "HC2", or "HC3" in order to have
clustered standard errors ("HC4" and "HCS5" are not supported.

If TRUE, adds a column to output with variance inflation factors (VIF). Default
is FALSE.

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

Show p values? If FALSE, these are not printed. Default is TRUE.

If scale = TRUE, how many standard deviations should predictors be divided
by? Default is 1, though some suggest 2.

If you want coefficients for mean-centered variables but don’t want to standard-
ize, set this to TRUE. Note that setting this to false does not affect whether scale
mean-centers variables. Use scale.only for that.

transform. response

scale.only
data
part.corr

Should scaling/centering apply to response variable? Default is FALSE.

If you want to scale but not center, set this to TRUE. Note that for legacy reasons,
setting scale = TRUE and center = FALSE will not achieve the same effect. De-
fault is FALSE.

If you provide the data used to fit the model here, that data frame is used to
re-fit the model (if scale is TRUE) instead of the stats: :model.frame() of
the model. This is particularly useful if you have variable transformations or
polynomial terms specified in the formula.

Print partial (labeled "partial.r") and semipartial (labeled "part.r") correlations
with the table? Default is FALSE. See details about these quantities when robust
standard errors are used.

48 summ.Im

model.info Toggles printing of basic information on sample size, name of DV, and number
of predictors.
model.fit Toggles printing of model fit statistics.
model. coef's Toggles printing of model coefficents.
which.cols Developmental feature. By providing columns by name, you can add/remove/reorder

requested columns in the output. Not fully supported, for now.

vcov You may provide your own variance-covariance matrix for the regression coef-
ficients if you want to calculate standard errors in some way not accommodated
by the robust and cluster options.

Among other things, arguments are passed to scale_mod() or center_mod()
when center or scale is TRUE.

Details
By default, this function will print the following items to the console:

* The sample size
* The name of the outcome variable
* The R-squared value plus adjusted R-squared

* A table with regression coefficients, standard errors, t-values, and p values.

There are several options available for robust. The heavy lifting is done by sandwich: : vcovHC(),
where those are better described. Put simply, you may choose from "HC@" to "HC5". Based on the
recommendation of the developers of sandwich, the default is set to "HC3". Stata’s default is "HC1",
so that choice may be better if the goal is to replicate Stata’s output. Any option that is understood
by vcovHC() will be accepted. Cluster-robust standard errors are computed if cluster is set to the
name of the input data’s cluster variable or is a vector of clusters.

The scale and center options are performed via refitting the model with scale_mod() and center_mod(),
respectively. Each of those in turn uses gscale() for the mean-centering and scaling.

If using part. corr = TRUE, then you will get these two common effect size metrics on the far right
two columns of the output table. However, it should be noted that these do not go hand in hand
with robust standard error estimators. The standard error of the coefficient doesn’t change the point
estimate, just the uncertainty. However, this function uses #-statistics in its calculation of the partial
and semipartial correlation. This provides what amounts to a heteroskedasticity-adjusted set of
estimates, but I am unaware of any statistical publication that validates this type of use. Please use
these as a heuristic when used alongside robust standard errors; do not report the "robust" partial
and semipartial correlations in publications.

Value

If saved, users can access most of the items that are returned in the output (and without rounding).

coeftable The outputted table of variables and coefficients

model The model for which statistics are displayed. This would be most useful in cases
in which scale = TRUE.

Much other information can be accessed as attributes.

summ.merMod 49

Author(s)

Jacob Long <jacob.long@sc.edu>

References

King, G., & Roberts, M. E. (2015). How robust standard errors expose methodological problems
they do not fix, and what to do about it. Political Analysis, 23(2), 159-179. doi:10.1093/pan/
mpu015

Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The Importance of the Normality Assump-
tion in Large Public Health Data Sets. Annual Review of Public Health, 23, 151-169. doi:10.1146/
annurev.publhealth.23.100901.140546

See Also
scale_mod() can simply perform the standardization if preferred.
gscale() does the heavy lifting for mean-centering and scaling behind the scenes.

Other summ: summ.glm(), summ.merMod(), summ.rq(), summ.svyglm()

Examples

Create 1m object
fit <- Im(Income ~ Frost + Illiteracy + Murder,
data = as.data.frame(state.x77))

Print the output with standardized coefficients and 3 digits
summ(fit, scale = TRUE, digits = 3)

summ. merMod Mixed effects regression summaries with options

Description

summ() prints output for a regression model in a fashion similar to summary (), but formatted dif-
ferently with more options.

Usage

S3 method for class 'merMod'
summ(
model,
scale = FALSE,
confint = getOption("summ-confint"”, FALSE),
ci.width = getOption("”"summ-ci.width”, 0.95),
conf.method = getOption("”summ-conf.method”, c("Wald"”, "profile”, "boot")),
digits = getOption("jtools-digits", default = 2),
r.squared = TRUE,

https://doi.org/10.1093/pan/mpu015
https://doi.org/10.1093/pan/mpu015
https://doi.org/10.1146/annurev.publhealth.23.100901.140546
https://doi.org/10.1146/annurev.publhealth.23.100901.140546

50 summ.merMod

pvals = getOption("”summ-pvals”, NULL),
n.sd =1,
center = FALSE,
transform.response = FALSE,
scale.only = FALSE,

data = NULL,
exp = FALSE,
t.df = NULL,

model.info = getOption("summ-model.info", TRUE),
model.fit = getOption("summ-model.fit"”, TRUE),
model.coefs = getOption("summ-model.coefs”, TRUE),

re.variance = getOption("summ-re.variance”, c("sd”, "var")),

which.cols
re.table =

groups.table

Arguments

model

scale

confint
ci.width

conf.method

digits

r.squared

pvals

n.sd

center

NULL,
getOption(”summ-re.table", TRUE),
= getOption("”summ-groups.table”, TRUE),

A merMod object.

If TRUE, reports standardized regression coefficients by scaling and mean-centering
input data (the latter can be changed via the scale.only argument). Default is
FALSE.

Show confidence intervals instead of standard errors? Default is FALSE.

A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

Argument passed to Ime4: : confint.merMod(). Defaultis "Wald", but "profile”
or "boot" are better when accuracy is a priority. Be aware that both of the alter-
nate methods are sometimes very time-consuming.

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

Calculate an r-squared model fit statistic? Default is TRUE, but if it has errors or
takes a long time to calculate you may want to consider setting to FALSE.

Show p values? If FALSE, these are not printed. Default is TRUE, except for
merMod objects (see details).

If scale = TRUE, how many standard deviations should predictors be divided
by? Default is 1, though some suggest 2.

If you want coefficients for mean-centered variables but don’t want to standard-
ize, set this to TRUE. Note that setting this to false does not affect whether scale
mean-centers variables. Use scale.only for that.

transform.response

Should scaling/centering apply to response variable? Default is FALSE.

summ.merMod 51

scale.only If you want to scale but not center, set this to TRUE. Note that for legacy reasons,
setting scale = TRUE and center = FALSE will not achieve the same effect. De-
fault is FALSE.

data If you provide the data used to fit the model here, that data frame is used to
re-fit the model (if scale is TRUE) instead of the stats: :model.frame() of
the model. This is particularly useful if you have variable transformations or
polynomial terms specified in the formula.

exp If TRUE, reports exponentiated coefficients with confidence intervals for expo-
nential models like logit and Poisson models. This quantity is known as an odds
ratio for binary outcomes and incidence rate ratio for count models.

t.df For 1merMod models only. User may set the degrees of freedom used in con-
ducting t-tests. See details for options.

model.info Toggles printing of basic information on sample size, name of DV, and number
of predictors.

model.fit Toggles printing of model fit statistics.

model . coef's Toggles printing of model coefficents.

re.variance Should random effects variances be expressed in standard deviations or vari-

ances? Default, to be consistent with previous versions of jtools, is "sd". Use
"var"” to get the variance instead.

which.cols Developmental feature. By providing columns by name, you can add/remove/reorder
requested columns in the output. Not fully supported, for now.

re.table Show table summarizing variance of random effects? Default is TRUE.
groups.table Show table summarizing the grouping variables? Default is TRUE.

Among other things, arguments are passed to scale_mod() or center_mod()
when center or scale is TRUE.

Details

By default, this function will print the following items to the console:

* The sample size
¢ The name of the outcome variable
The (Pseudo-)R-squared value and AIC/BIC.

* A table with regression coefficients, standard errors, and t-values.

The scale and center options are performed via refitting the model with scale_mod () and center_mod(),
respectively. Each of those in turn uses gscale() for the mean-centering and scaling.

merMod models are a bit different than the others. The 1me4 package developers have, for instance,
made a decision not to report or compute p values for Imer () models. There are good reasons for
this, most notably that the t-values produced are not "accurate" in the sense of the Type I error rate.
For certain large, balanced samples with many groups, this is no big deal. What’s a "big" or "small"
sample? How much balance is necessary? What type of random effects structure is okay? Good
luck getting a statistician to give you any clear guidelines on this. Some simulation studies have
been done on fewer than 100 observations, so for sure if your sample is around 100 or fewer you

52 summ.merMod

should not interpret the t-values. A large number of groups is also crucial for avoiding bias using
t-values. If groups are nested or crossed in a linear model, it is best to just get the pbkrtest package.

By default, this function follows 1me4’s lead and does not report the p values for 1Imer () models.
If the user has pbkrtest installed, however, p values are reported using the Kenward-Roger d.f.
approximation unless pvals = FALSE or t.df is set to something other than NULL. In publications,
you should cite the Kenward & Roger (1997) piece as well as either this package or pbkrtest
package to explain how the p values were calculated.

See pvalues from the Ime4 for more details. If you're looking for a simple test with no extra
packages installed, it is better to use the confidence intervals and check to see if they exclude zero
than use the t-test. For users of glmer (), see some of the advice there as well. While 1me4 and by
association summ() does as well, they are still imperfect.

You have some options to customize the output in this regard with the t.df argument. If NULL,
the default, the degrees of freedom used depends on whether the user has ImerTest or pbkrtest
installed. If 1ImerTest is installed, the degrees of freedom for each coefficient are calculated using
the Satterthwaite method and the p values calculated accordingly. If only pbkrtest is installed or
t.df is "k-r", the Kenward-Roger approximation of the standard errors and degrees of freedom
for each coefficient is used. Note that Kenward-Roger standard errors can take longer to calculate
and may cause R to crash with models fit to large (roughly greater than 5000 rows) datasets.

If neither is installed and the user sets pvals = TRUE, then the residual degrees of freedom is used.
If t.df = "residual”, then the residual d.f. is used without a message. If the user prefers to use
some other method to determine the d.f., then any number provided as the argument will be used.

About pseudo-R”2

There is no one way to calculate R*2 for mixed models or nonlinear models. Many caution against
interpreting or even using such approximations outside of OLS regression. With that said, this
package reports one version for your benefit, though you should of course understand that it is not
an unambiguous measure of model fit.

This package calculates R*2 for mixed models using an adapted version of rsquared() from the
piecewiseSEM package. This is an implementation of the Nakagawa & Schielzeth (2013) procedure
with refinements by Johnson (2014). If you choose to report the pseudo-R”2 in a publication, you
should cite Nakagawa & Schielzeth to explain how the calculation was done.

Value

If saved, users can access most of the items that are returned in the output (and without rounding).

coeftable The outputted table of variables and coefficients

rcoeftable The secondary table with the grouping variables and random coefficients.
gvars The tertiary table with the grouping variables, numbers of groups, and ICCs.
model The model for which statistics are displayed. This would be most useful in cases

in which scale = TRUE.

Much other information can be accessed as attributes.

Author(s)

Jacob Long <jacob.long@sc.edu>

summ.merMod 53

References

Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth’s $R"2_GLMMS$ to random slopes
models. Methods in Ecology and Evolution, 5, 944-946. doi:10.1111/2041210X.12225

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983. doi:10.2307/2533558

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest package: Tests in linear
mixed effects models. Journal of Statistical Software, 82. doi:10.18637/jss.v082.113

Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research
Methods, 49, 1494-1502. doi:10.3758/s134280160809y

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining $R*2$ from
generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133—142. doi:10.1111/
j-2041210x.2012.00261.x

See Also

scale_mod() can simply perform the standardization if preferred.
gscale() does the heavy lifting for mean-centering and scaling behind the scenes.

pbkrtest::get_ddf_Lb() gets the Kenward-Roger degrees of freedom if you have pbkrtest in-
stalled.

A tweaked version of piecewiseSEM: : rsquared() is used to generate the pseudo-R-squared esti-
mates for linear models.

Other summ: summ.glm(), summ.1m(), summ.rq(), summ.svyglm()

Examples

if (requireNamespace("1lme4")) {
library(lme4, quietly = TRUE)
data(sleepstudy)
mv <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

summ(mv) # Note lack of p values if you don't have lmerTest/pbkrtest

Without lmerTest/pbkrtest, you'll get message about Type 1 errors
summ(mv, pvals = TRUE)

To suppress message, manually specify t.df argument
summ(mv, t.df = "residual”)

Confidence intervals may be better alternative to p values
summ(mv, confint = TRUE)

Use conf.method to get profile intervals (may be slow to run)
summ(mv, confint = TRUE, conf.method = "profile")

https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.2307/2533558
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.3758/s13428-016-0809-y
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x

54

summ.rq

summ. rq

Quantile regression summaries with options

Description

summ() prints output for a regression model in a fashion similar to summary (), but formatted dif-
ferently with more options.

Usage

S3 method for class 'rq'

summ(
model,
scale

FALSE,

confint = getOption("summ-confint"”, FALSE),
ci.width = getOption("summ-ci.width”, @.95),
se = c("nid", "rank", "iid", "ker", "boot"),
boot.sims = 1000,

boot.method = "xy",

vifs = getOption("summ-vifs”, FALSE),

digits = getOption("jtools-digits"”, 2),

pvals
n.sd =
center

getOption("summ-pvals”, TRUE),

FALSE,

transform.response = FALSE,

data = NULL,
model.info

getOption(”summ-model.info"”, TRUE),

model.fit = getOption("”"summ-model.fit”, TRUE),

model. coefs
which.cols

Arguments

model

scale

confint
ci.width

se

getOption("summ-model.coefs”, TRUE),

NULL,

A rq model. At this time, rqs models (multiple tau parameters) are not sup-
ported.

If TRUE, reports standardized regression coefficients by scaling and mean-centering
input data (the latter can be changed via the scale.only argument). Default is
FALSE.

Show confidence intervals instead of standard errors? Default is FALSE.

A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

One of "nid", "rank", "iid", "ker", or "boot". "nid" is default. See quantreg: : summary.rq()
documentation for more about these options.

summ.rq 55

boot.sims If se = "boot", the number of bootstrap replications to perform. This is passed
as the R argument to boot.rq

boot.method If se = "boot", the type of bootstrapping method to use. Default is "xy", but see
quantreg: :boot.rq() for more options.

vifs If TRUE, adds a column to output with variance inflation factors (VIF). Default
is FALSE.
digits An integer specifying the number of digits past the decimal to report in the out-

put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

pvals Show p values? If FALSE, these are not printed. Default is TRUE.

n.sd If scale = TRUE, how many standard deviations should predictors be divided
by? Default is 1, though some suggest 2.

center If you want coefficients for mean-centered variables but don’t want to standard-
ize, set this to TRUE. Note that setting this to false does not affect whether scale
mean-centers variables. Use scale.only for that.

transform.response
Should scaling/centering apply to response variable? Default is FALSE.

data If you provide the data used to fit the model here, that data frame is used to
re-fit the model (if scale is TRUE) instead of the stats: :model.frame() of
the model. This is particularly useful if you have variable transformations or
polynomial terms specified in the formula.

model.info Toggles printing of basic information on sample size, name of DV, and number
of predictors.
model.fit Toggles printing of model fit statistics.
model. coef's Toggles printing of model coefficents.
which.cols Developmental feature. By providing columns by name, you can add/remove/reorder

requested columns in the output. Not fully supported, for now.

Among other things, arguments are passed to scale_mod() or center_mod()
when center or scale is TRUE.

Details
This method implements most of the things I think most users would asking summary. rq for. hs,
U, and gamma are ignored.
Note that when using se = "rank”, there are no standard errors, test statistics, or p values calculated.

About the R1 fit statistic: Described in Koenker & Machado (1999), this offers an interpretation
similar to R-squared in OLS regression. While you could calculate R-squared for these models, it
goes against the underlying theoretical rationale for them. Koenker himself is not a big fan of R1
either, but it’s something. See Koenker & Machado (1999) for more info.

References

Koenker, R., & Machado, J. A. F. (1999). Goodness of fit and related inference processes for quan-
tile regression. Journal of the American Statistical Association, 94, 1296—1310. https://doi.org/10.1080/01621459.1999.1047

56 summ.svyglm

See Also

Other summ: summ. glm(), summ.1m(), summ.merMod(), summ.svyglm()

Examples

if (requireNamespace("quantreg”)) {

library(quantreg)

data(engel)

fitrq <- rg(income ~ foodexp, data = engel, tau = 0.5)
summ(fitrq)

3

summ.svyglm Complex survey regression summaries with options

Description

summ() prints output for a regression model in a fashion similar to summary (), but formatted dif-
ferently with more options.

Usage

S3 method for class 'svyglm'

summ(
model,
scale = FALSE,
confint = getOption("summ-confint"”, FALSE),
ci.width = getOption("”summ-ci.width”, 0.95),
digits = getOption("jtools-digits”, default = 2),
pvals = getOption("summ-pvals”, TRUE),
n.sd =1,
center = FALSE,
transform.response = FALSE,
scale.only = FALSE,
exp = FALSE,
vifs = getOption("summ-vifs"”, FALSE),
model.info = getOption("summ-model.info", TRUE),
model.fit = getOption("”"summ-model.fit”, TRUE),
model.coefs = getOption(”summ-model.coefs”, TRUE),
which.cols = NULL,

summ.svyglm 57

Arguments

model A svyglm object.

scale If TRUE, reports standardized regression coefficients by scaling and mean-centering
input data (the latter can be changed via the scale.only argument). Default is
FALSE.

confint Show confidence intervals instead of standard errors? Default is FALSE.

ci.width A number between 0 and 1 that signifies the width of the desired confidence in-
terval. Default is . 95, which corresponds to a 95% confidence interval. Ignored
if confint = FALSE.

digits An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

pvals Show p values? If FALSE, these are not printed. Default is TRUE.

n.sd If scale = TRUE, how many standard deviations should predictors be divided
by? Default is 1, though some suggest 2.

center If you want coefficients for mean-centered variables but don’t want to standard-

ize, set this to TRUE. Note that setting this to false does not affect whether scale
mean-centers variables. Use scale.only for that.

transform.response
Should scaling/centering apply to response variable? Default is FALSE.

scale.only If you want to scale but not center, set this to TRUE. Note that for legacy reasons,
setting scale = TRUE and center = FALSE will not achieve the same effect. De-
fault is FALSE.

exp If TRUE, reports exponentiated coefficients with confidence intervals for expo-
nential models like logit and Poisson models. This quantity is known as an odds
ratio for binary outcomes and incidence rate ratio for count models.

vifs If TRUE, adds a column to output with variance inflation factors (VIF). Default
is FALSE.
model. info Toggles printing of basic information on sample size, name of DV, and number
of predictors.
model.fit Toggles printing of model fit statistics.
model. coefs Toggles printing of model coefficents.
which.cols Developmental feature. By providing columns by name, you can add/remove/reorder

requested columns in the output. Not fully supported, for now.

Among other things, arguments are passed to scale_mod() or center_mod()
when center or scale is TRUE.

Details

By default, this function will print the following items to the console:

* The sample size

58 summ.svyglm

* The name of the outcome variable

* The (Pseudo-)R-squared value and AIC.

* A table with regression coefficients, standard errors, t values, and p values.
The scale and center options are performed via refitting the model with scale_mod() and center_mod(),
respectively. Each of those in turn uses gscale() for the mean-centering and scaling. These func-
tions can handle svyglm objects correctly by calling svymean() and svyvar() to compute means

and standard deviations. Weights are not altered. The fact that the model is refit means the runtime
will be similar to the original time it took to fit the model.

Value

If saved, users can access most of the items that are returned in the output (and without rounding).

coeftable The outputted table of variables and coefficients
model The model for which statistics are displayed. This would be most useful in cases
in which scale = TRUE.

Much other information can be accessed as attributes.

Author(s)

Jacob Long <jacob.long@sc.edu>

See Also

scale_mod() can simply perform the standardization if preferred.
gscale() does the heavy lifting for mean-centering and scaling behind the scenes.

Other summ: summ.glm(), summ.1m(), summ.merMod(), summ.rq()

Examples

if (requireNamespace("survey”)) {
library(survey)
data(api)
dstrat <- svydesign(id = ~1, strata =~ stype, weights =~ pw,
data = apistrat, fpc =~ fpc)
regmodel <- svyglm(api@@ ~ ell * meals, design = dstrat)

summ(regmodel)

svycor

59

svycor

Calculate Pearson correlations with complex survey data

Description

svycor extends the survey package by calculating correlations with syntax similar to the original
package, which for reasons unknown lacks such a function.

Usage

svycor(
formula,
design,

na.rm = FALSE,
digits = getOption("jtools-digits", default = 2),
sig.stats = FALSE,

bootn = 1000,
mean1 = TRUE,

Arguments

formula
design
na.rm

digits

sig.stats

bootn

mean1

A formula (e.g., ~varl+var2) specifying the terms to correlate.
The survey.design or svyrep.design object.
Logical. Should cases with missing values be dropped?

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 2. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

Logical. Perform non-parametric bootstrapping (using wtd.cor) to generate
standard errors and associated t- and p-values. See details for some considera-
tions when doing null hypothesis testing with complex survey correlations.

If sig.stats is TRUE, this defines the number of bootstraps to be run to gen-
erate the standard errors and p-values. For large values and large datasets, this
can contribute considerably to processing time.

If sig.stats is TRUE, it is important to know whether the sampling weights
should have a mean of 1. That is, should the standard errors be calculated as if
the number of rows in your dataset is the total number of observations (TRUE)
or as if the sum of the weights in your dataset is the total number of observations
(FALSE)?

Additional arguments passed to svyvar().

60 svycor

Details

This function extends the survey package by calculating the correlations for user-specified vari-
ables in survey design and returning a correlation matrix.

Using the wtd. cor function, this function also returns standard errors and p-values for the corre-
lation terms using a sample-weighted bootstrapping procedure. While correlations do not require
distributional assumptions, hypothesis testing (i.e., 7 > 0) does. The appropriate way to calculate
standard errors and use them to define a probability is not straightforward in this scenario since
the weighting causes heteroskedasticity, thereby violating an assumption inherent in the commonly
used methods for converting Pearson’s correlations into t-values. The method provided here is
defensible, but if reporting in scientific publications the method should be spelled out.

Value

If significance tests are not requested, there is one returned value:
cors The correlation matrix (without rounding)

If significance tests are requested, the following are also returned:

p.values A matrix of p values

t.values A matrix of t values

std.err A matrix of standard errors
Note

This function was designed in part on the procedure recommended by Thomas Lumley, the au-
thor of the survey package, on Stack Overflow. However, he has not reviewed or endorsed this
implementation. All defects are attributed to the author.

Author(s)

Jacob Long <jacob.long@sc.edu>

See Also

wtd. cor, svymean()
Other survey package extensions: svysd()

Other survey tools: pf_sv_test(), svysd(), weights_tests(), wgttest()

Examples

if (requireNamespace("survey")) {

library(survey)

data(api)

Create survey design object

dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw,
data = apistrat, fpc = ~fpc)

Print correlation matrix

https://stackoverflow.com/questions/34418822/pearson-correlation-coefficient-in-rs-survey-package#41031088

svysd 61

svycor(~api@@ + api99 + dnum, design = dstrat)

Save the results, extract correlation matrix
out <- svycor(~api@@ + api99 + dnum, design = dstrat)
out$cors

svysd Calculate standard deviations with complex survey data

Description

svysd extends the survey package by calculating standard deviations with syntax similar to the
original package, which provides only a svyvar () function.

Usage

svysd(
formula,
design,
na.rm = FALSE,
digits = getOption("jtools-digits"”, default = 3),

)
Arguments
formula A formula (e.g., ~varl+var2) specifying the term(s) of interest.
design The survey.design or svyrep.design object.
na.rm Logical. Should cases with missing values be dropped?
digits An integer specifying the number of digits past the decimal to report in the out-
put. Default is 3. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.
Additional arguments passed to svyvar ().
Details

An alternative is to simply do sqrt(svyvar(~term, design = design)). However, if printing and
sharing the output, this may be misleading since the output will say "variance."
Note

This function was designed independent of the survey package and is neither endorsed nor known
to its authors.

62 theme_apa

See Also

svyvar()
Other survey package extensions: svycor ()

Other survey tools: pf_sv_test(), svycor(), weights_tests(), wgttest()

Examples

if (requireNamespace("survey”)) {

library(survey)

data(api)

Create survey design object

dstrat <- svydesign(id = ~1,strata = ~stype, weights = ~pw, data = apistrat,
fpc=~fpc)

Print the standard deviation of some variables
svysd(~api@@+ell+meals, design = dstrat)
3

theme_apa Format ggplot2 figures in APA style

Description

theme_apa() is designed to work like any other complete theme from ggplot. To the extent possi-
ble, it aligns with the (vague) APA figure guidelines.

Usage

theme_apa(
legend.pos = "right”,
legend.use.title = FALSE,
legend.font.size = 12,
x.font.size = 12,
y.font.size = 12,
facet.title.size = 12,
remove.y.gridlines = TRUE,
remove.x.gridlines = TRUE

Arguments

legend.pos Oneof "right"”, "left", "top"”, "bottom”, "topleft”, "topright”, "topmiddle”,
"bottomleft”, "bottomright”, or "bottommiddle”. Positions the legend,
which will layer on top of any geoms, on the plane.

legend.use.title
Logical. Specify whether to include a legend title. Defaults to FALSE.

theme_apa 63

legend.font.size
Integer indicating the font size of the labels in the legend. Default and APA-
recommended is 12, but if there are many labels it may be necessary to choose
a smaller size.

x.font.size Font size of x-axis label.

y.font.size Font size of x-axis label.
facet.title.size

Font size of facet labels.
remove.y.gridlines

Should the coordinate grid on the y-axis (horizontal lines) be removed? Default
is TRUE.

remove.x.gridlines

Should the coordinate grid on the x-axis (vertical lines) be removed? Default is
TRUE.

Details

This function applies a theme to ggplot2 figures with a style that is roughly in line with APA
guidelines. Users may need to perform further operations for their specific use cases.

There are some things to keep in mind about APA style figures:
* Main titles should be written in the word processor or typesetter rather than on the plot image
itself.

* In some cases, users can forgo a legend in favor of describing the figure in a caption (also
written in the word processor/typesetter).

» Legends are typically embedded on the coordinate plane of the figure rather than next to it, as
is default in ggplot2.

 Use of color is generally discouraged since most of the applications for which APA figures are
needed involve eventual publication in non-color print media.

* There are no hard and fast rules on font size, though APA recommends choosing between 8

and 14-point. Fonts in figures should be sans serif.

Because APA style calls for positioning legends on the plane itself, this function includes options
for choosing a position—top left, top right, bottom left, bottom right—to place the legend. ggplot?2
provides no obvious way to automatically choose a position that overlaps least with the geoms (the
plotted data), so users will need to choose one.

Facetting is supported, but APA guidelines are considerably less clear for such situations.

This theme was created with inspiration from Rudolf Cardinal’s code, which required updating for
newer versions of ggplot2 and adaptations for APA style.

Author(s)

Jacob Long <jacob.long@sc.edu>

https://web.archive.org/web/20220616072522/http://egret.psychol.cam.ac.uk/statistics/R/graphs2.html

64 theme_nice

References
American Psychological Association. (2010). Publication manual of the American Psychological
Association, Sixth Edition. Washington, DC: American Psychological Association.

Nicol, A.A.M. & Pexman, PM. (2010). Displaying your findings: A practical guide for creat-
ing figures, posters, and presentations, Sixth Edition. Washington, D.C.: American Psychological
Association.

See Also

ggplot, theme

Examples

Create plot with ggplot2

library(ggplot2)

plot <- ggplot(mpg, aes(cty, hwy)) +
geom_jitter()

Add APA theme with defaults
plot + theme_apa()

theme_nice A nice, flexible ggplot2 theme

Description

theme_nice is designed to work like any other complete theme from ggplot. It has a nice appear-
ance.

Usage

theme_nice(
legend.pos = "right”,
style = c("white”, "light"”, "dark_blue"”, "dark_gray"),
base_size = 11,
base_family = "",
base_line_size = base_size/22,

base_rect_size = base_size/22

Arguments

legend.pos Oneof "right”, "left"”, "top", "bottom” (outside the plotting area), "topleft”,
"topright”, "topmiddle”, "bottomleft”, "bottomright"”, or "bottommiddle”
(inside the plotting area).

tidy.summ 65

style One of "white”, "light", "dark_blue", or "dark_gray"”. "white" sets the
background to white, "1ight" to light gray, "dark_gray" to dark gray, "dark_blue”
to dark blue.

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Author(s)

Jacob Long <jacob.long@sc.edu>

Examples

Create plot with ggplot2

library(ggplot2)

plot <- ggplot(mpg, aes(cty, hwy)) +
geom_jitter() + theme_nice()

tidy.summ Broom extensions for summ objects

Description
These are functions used for compatibility with broom’s tidying functions to facilitate use with
huxreg, thereby making export_summs works.

Usage

S3 method for class 'summ'
tidy(x, conf.int = FALSE, conf.level = .95, ...)

S3 method for class 'summ.merMod'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'summ.lm'
glance(x, ...)

S3 method for class 'summ.glm'
glance(x, ...)

S3 method for class 'summ.svyglm'
glance(x, ...)

S3 method for class 'summ.merMod'

66 weights_tests

glance(x, ...)

S3 method for class 'summ.rq'

glance(x, ...)
Arguments
X The summ object.
conf.int Include confidence intervals? Default is FALSE.
conf.level How wide confidence intervals should be, if requested. Default is .95.

Other arguments (usually ignored)

Value
A data.frame with columns matching those appropriate for the model type per glance documenta-

tion.

See Also

glance

weights_tests Test whether sampling weights are needed

Description

Use the tests proposed in Pfeffermann and Sverchkov (1999) and DuMouchel and Duncan (1983)
to check whether a regression model is specified correctly without weights.

Usage

weights_tests(
model,
weights,
data,
model_output = TRUE,
test = NULL,
sims = 1000,

digits = getOption("jtools-digits", default = 2)

weights_tests 67

Arguments
model The fitted model, without weights
weights The name of the weights column in model’s data frame or a vector of weights
equal in length to the number of observations included in model.
data The data frame with the data fed to the fitted model and the weights

model_output Should a summary of the model with weights as predictor be printed? Default
is TRUE, but you may not want it if you are trying to declutter a document.

test Which type of test should be used in the ANOVA? The default, NULL, chooses
based on the model type ("F" for linear models). This argument is passed to
anova.

sims The number of bootstrap simulations to use in estimating the variance of the

residual correlation. Default is 1000, but for publications or when computing
power/time is sufficient, a higher number is better.

digits An integer specifying the number of digits past the decimal to report in the out-
put. Default is 3. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

Details

This function is a wrapper for the two tests implemented in this package that test whether your
regression model is correctly specified. The first is wgttest, an R adaptation of the Stata macro of
the same name. This test can otherwise be referred to as the DuMouchel-Duncan test. The other
test is the Pfeffermann-Sverchkov test, which can be accessed directly with pf_sv_test.

For more details on each, visit the documentation on the respective functions. This function just
runs each of them for you.

References

DuMouchel, W. H. & Duncan, D.J. (1983). Using sample survey weights in multiple regression
analyses of stratified samples. Journal of the American Statistical Association, 78. 535-543.

Nordberg, L. (1989). Generalized linear modeling of sample survey data. Journal of Official Statis-
tics; Stockholm, 5, 223-239.

Pfeffermann, D., & Sverchkov, M. (1999). Parametric and semi-parametric estimation of regression
models fitted to survey data. Sankhya: The Indian Journal of Statistics, 61. 166-186.

See Also

Other survey tools: pf_sv_test(), svycor(), svysd(), wgttest()

Examples

Note: This is a contrived example to show how the function works,
not a case with actual sammpling weights from a survey vendor
if (requireNamespace("boot")) {

states <- as.data.frame(state.x77)

68

set.seed(100)

wgttest

states$wts <- runif (50, 0, 3)
fit <- Im(Murder ~ Illiteracy + Frost, data = states)
weights_tests(model = fit, data = states, weights = wts, sims = 100)

wgttest

Test whether sampling weights are needed

Description

Use the DuMouchel-Duncan (1983) test to assess the need for sampling weights in your linear
regression analysis.

Usage

wgttest(
model,
weights,
data = NULL,

model_output = FALSE,

test = NULL,

digits = getOption("jtools-digits", default = 3)

Arguments

model

weights

data

model_output

test

digits

The unweighted linear model (must be 1m, glm, see details for other types) you
want to check.

The name of the weights column in model’s data frame or a vector of weights
equal in length to the number of observations included in model.

The data frame with the data fed to the fitted model and the weights

Should a summary of the model with weights as predictor be printed? Default
is FALSE since the output can be very long for complex models.

Which type of test should be used in the ANOVA? The default, NULL, chooses
based on the model type ("F" for linear models). This argument is passed to
anova.

An integer specifying the number of digits past the decimal to report in the out-
put. Default is 3. You can change the default number of digits for all jtools
functions with options(”jtools-digits” =digits) where digits is the de-
sired number.

wgttest 69

Details

This is designed to be similar to the wgttest macro for Stata (http://fmwww.bc.edu/repec/
bocode/w/wgttest.html). This method, advocated for by DuMouchel and Duncan (1983), is
fairly straightforward. To decide whether weights are needed, the weights are added to the linear
model as a predictor and interaction with each other predictor. Then, an omnibus test of significance
is performed to compare the weights-added model to the original; if insignificant, weights are not
significantly related to the result and you can use the more efficient estimation from unweighted
OLS.

It can be helpful to look at the created model using model_output = TRUE to see which variables
might be the ones affected by inclusion of weights.

This test can support most GLMs in addition to LMs, a use validated by Nordberg (1989). This,
to my knowledge, is different from the Stata macro. It does not work for mixed models (e.g.,
1mer or 1me) though it could plausibly be implemented. However, there is no scholarly consensus
how to properly incorporate weights into mixed models. There are other types of models that may
work, but have not been tested. The function is designed to be compatible with as many model
types as possible, but the user should be careful to make sure s/he understands whether this type
of test is appropriate for the model being considered. DuMouchel and Duncan (1983) were only
thinking about linear regression when the test was conceived. Nordberg (1989) validated its use
with generalized linear models, but to this author’s knowledge it has not been tested with other
model types.

References

DuMouchel, W. H. & Duncan, D.J. (1983). Using sample survey weights in multiple regression
analyses of stratified samples. Journal of the American Statistical Association, 78. 535-543.

Nordberg, L. (1989). Generalized linear modeling of sample survey data. Journal of Official Statis-
tics; Stockholm, 5, 223-2309.

Winship, C. & Radbill, L. (1994). Sampling weights and regression analysis. Sociological Methods
and Research, 23, 230-257.

See Also

Other survey tools: pf_sv_test(), svycor(), svysd(), weights_tests()

Examples

First, let's create some fake sampling weights

wts <- runif(50, @, 5)

Create model

fit <- Im(Income ~ Frost + Illiteracy + Murder,
data = as.data.frame(state.x77))

See if the weights change the model

wgttest(fit, weights = wts)

With a GLM

wts <- runif (100, 0, 2)
X <= rnorm(100)

y <- rbinom(100, 1, .5)

http://fmwww.bc.edu/repec/bocode/w/wgttest.html
http://fmwww.bc.edu/repec/bocode/w/wgttest.html

70 wrap_str
fit <- glm(y ~ x, family = binomial)
wgttest(fit, wts)
Can specify test manually
wgttest(fit, weights = wts, test = "Rao")
Quasi family is treated differently than likelihood-based
Dobson (1990) Page 93: Randomized Controlled Trial (plus some extra values):
counts <- c(18,17,15,20,10,20,25,13,12,18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,18)
treatment <- gl(3,6)
glm.D93 <- glm(counts ~ outcome + treatment, family = quasipoisson)
wts <- runif(18, @, 3)
wgttest(glm.D93, weights = wts)
wrap_str cat, message, warning, and stop wrapped to fit the console’s width.

Description

These are convenience functions that format printed output to fit the width of the user’s console.

Usage
wrap_str(..., sep = "")
cat_wrap(..., brk = "")
warn_wrap(..., brk = "\n", class = NULL, call. = FALSE)
stop_wrap(
brk = "\n",
trace = rlang::trace_back(bottom = rlang::caller_env()),
class = NULL,
call = rlang::caller_env(),
call. = FALSE
)
msg_wrap(..., class = NULL, brk = "\n")
Arguments

Objects to print. For stop_wrap(), warn_wrap(), and msg_wrap(), any named

objects are instead diverted to the . . . argument of rlang: :abort(), rlang: :warn(),

and rlang: :inform(), respectively.

sep Separator between . . ., Default: ”

wtd.sd 71

brk What should the last character of the message/warning/error be? Default is
"\n", meaning the console output ends with a new line.

class Subclass of the condition.

call. Here for legacy reasons. It is ignored.

trace A trace object created by trace_back().

call The actual calling environment to report in the error message. By default,

rlang::caller_env().

Details

The point of these functions is to allow you to print output/messages/warnings/errors to the console
without having to figure out where to place newline characters. These functions get the width of the
console from the "width” option, which in most editors adjusts dynamically as you resize.

So instead of writing a warning like this:

warning("I have to give you this very important message that may be too\n”,
"wide for your screen”)

You can do it like this:

warn_wrap("I have to give you this very important message that may be
too wide for your screen”)

And the function will automatically insert line breaks to fit the console. As a note, it will also ignore
any newlines you insert. This means you can make your own fit your editor’s screen and indent in
the middle of a string without that formatting being carried over into the output.

wtd. sd Weighted standard deviation calculation

Description
This function calculates standard deviations with weights and is a counterpart to the built-in weighted.mean
function.

Usage

wtd.sd(x, weights)

Arguments

X A vector of values for which you want the standard deviation

weights A vector of weights equal in length to x

72 %not%

%Nin% Not %in%

Description

This function does the very opposite of %in%

Usage

X %nin% table

Arguments

X An object

table The object you want see if x is not in
Value

A logical vector

See Also

Other subsetters: %not%()

%»not% Subsetting operators

Description

%just% and %not% are subsetting convenience functions for situations when you would do x[x %in%
y1 or x[x %nin% y]. See details for behavior when x is a data frame or matrix.

Usage

X %not% y

X %not% y <- value
X %just% y

X %just% y <- value

Default S3 method:
X %not% y

Default S3 method:

Jonot %

X %not% y <- value

S3 method for class 'data.frame'
X %not% y

S3 method for class 'data.frame'
X %not% y <- value

S3 method for class 'matrix'
X %not% y

S3 method for class 'matrix'
X %not% y <- value

S3 method for class 'list'
X %not% y

S3 method for class 'list'
X %not% y <- value

Default S3 method:
X %justk% y

Default S3 method:
X %just% y <- value

S3 method for class 'data.frame'
X %just% y

S3 method for class 'data.frame'
X %just% y <- value

S3 method for class 'matrix'
X %just% y

S3 method for class 'matrix'
X %just% y <- value

S3 method for class 'list'
X %just% y

S3 method for class 'list'
X %just% y <- value
Arguments

X Object to subset

y List of items to include if they are/aren’t in x

74 %not%
value The object(s) to assign to the subsetted x

Details

The behavior of %not% and %just% are different when you’re subsetting data frames or matrices.
The subset y in this case is interpreted as column names or indices.

You can also make assignments to the subset in the same way you could if subsetting with brackets.

Value

All of x that are in y (%just%) or all of x that are not in y (%not%).

See Also

Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()
Other subsetters: %nin%()

Examples
X <= 1:5
y <- 3:8

X %justk y # 3 45
X %not% y # 1 2

Jonot %

Assignment works too
X %just% y <- NA # 1 2 NA NA NA
x %not%k y <- NA # NANA 3 45

mtcars %just% c("mpg", "gsec”, "cyl") # keeps only columns with those names
mtcars %not% 1:5 # drops columns 1 through 5

Assignment works for data frames as well
mtcars %just% c("mpg", "qgsec") <- gscale(mtcars, c("mpg”, "gsec"))
mtcars %not% c("mpg"”, "gsec") <- gscale(mtcars %not% c("mpg"”, "qgsec"))

75

Index

+ datasets
movies, 28

+x model_utils
get_offset_name, 16

* plotting tools
make_predictions, 24

x standardization
center, 3
center_mod, 4
gscale, 18
scale_mod, 37
standardize, 41

+ subsetters
%nin%, 72
%not%, 72

* summ
summ. glm, 43
summ. 1m, 46
summ.merMod, 49
summ. rq, 54
summ. svyglm, 56

* survey package extensions
svycor, 59
svysd, 61

* survey tools
pf_sv_test, 31
svycor, 59
svysd, 61
weights_tests, 66
wgttest, 68

%justdk% (%not%), 72

%just%<- (%not%), 72

%not%<- (%not%), 72

%nin%, 72, 74

%not%, 72,72

add_gridlines, 3
add_x_gridlines (add_gridlines), 3
add_y_gridlines (add_gridlines), 3

76

broom: :tidy(), 13, 35

cat_plot (interact_plot), 21
cat_wrap (wrap_str), 70
center, 3, 6, 20, 39, 42

center_lm (center_mod), 4
center_mod, 4, 4, 20, 39, 42
center_mod(), 44, 45,48, 51, 55, 57, 58

drop_gridlines (add_gridlines), 3
drop_x_gridlines (add_gridlines), 3
drop_y_gridlines (add_gridlines), 3

effect_plot, 6
effect_plot(), 24
export_summs, 11, 65

function, 36

geom_ribbon, 8, 26
get_colors, 14

get_data (get_offset_name), 16
get_formula, 15
get_offset_name, 16

get_response_name (get_offset_name), 16

get_robust_se, 17

get_weights (get_offset_name), 16
ggplot, 62, 64
ggplot2::facet_wrap(), 34
ggplot2: :geom_errorbar(), 10
ggplot2::geom_linerange(), 10
ggplot2: :geom_rug(), 9
ggplot2::position_jitter(), 9
ggplot2: :theme(), 3

glance, 66

glance.summ.glm (tidy.summ), 65
glance.summ.1m (tidy.summ), 65
glance.summ.merMod (tidy.summ), 65
glance.summ.rq (tidy.summ), 65
glance.summ.svyglm (tidy.summ), 65
grepl(), 35

INDEX

gscale, 4, 6, 18, 39, 42
gscale(), 3-5, 38,41, 45,48, 49, 51, 53, 58

huxreg, 12, 13

huxtable: :huxreg(), 11, 13
huxtable: :huxtable(), I3
huxtable: :quick_docx(), 12
huxtable::quick_html(), 12
huxtable: :quick_pdf(), 12
huxtable: :quick_x1sx(), 12

interact_plot, 6, 21, 39

j_summ, /9

j_summ (summ), 42

j_summ.glm (summ.glm), 43
j_summ.1lm (summ.1m), 46
j_summ.merMod (summ.merMod), 49
j_summ.svyglm (summ.svyglm), 56
johnson_neyman (interact_plot), 21
jtools_colors, 9, 14,21, 34

knit_print.summ.glm
(knit_print.summ.1lm), 22
knit_print.summ.1lm, 22
knit_print.summ.merMod
(knit_print.summ.1lm), 22
knit_print.summ.rq
(knit_print.summ.1m), 22
knit_print.summ.svyglm
(knit_print.summ.1lm), 22

1me4: :bootMer (), 37
1me4: :confint.merMod(), 41, 50
1me4: :merMod, 38

make_new_data, 23
make_new_data(), 26
make_predictions, 24
md_table, 27
md_table(), 41
merMod, 7, 42, 50
movies, 28

msg_wrap (wrap_str), 70

na.pass, 36
num_print, 29

options(), 40

partialize, 29

77

partialize(), 26
pbkrtest::get_ddf_Lb(), 53
pf_sv_test, 31, 60, 62, 67, 69
plot_coefs (plot_summs), 32
plot_summs, 32

predict_merMod, 36

probe_interaction (interact_plot), 21
pvalues, 52

quantreg: :boot.rq(), 55
quantreg: :summary.rq(), 54

RColorBrewer: :brewer.pal(), 22
rlang: :abort(), 70
rlang::inform(), 70

rlang: :warn(), 70

rqg, 7,42

sandwich: :vcovCL(), 17

sandwich: :vcovHC(), 17, 40, 44, 45, 47, 48
scale_lm (scale_mod), 37
scale_mod, 4, 6, 20, 37, 42
scale_mod(), 44, 45,48, 49,51, 53,55, 57, 58
set_summ_defaults, 39

sim_slopes, 6, 39

sim_slopes (interact_plot), 21
standardize, 4, 6, 20, 39, 41
stats::model.frame(), 5, 38, 44,47, 51, 55
stop_wrap (wrap_str), 70

summ, /3,42

summ(), 11-13, 35, 40
summ.glm, 42, 43, 49, 53, 56, 58

summ. 1m, 42, 45, 46, 53, 56, 58
summ.merMod, 42, 45, 49, 49, 56, 58
summ.rq, 42, 45,49, 53, 54, 58

summ. svyglm, 42, 45,49, 53, 56, 56
svycor, 32,59, 62, 67, 69

svydesign, 18

svyglm, 5, 7, 38, 42

svymean(), 19, 60

svysd, 32, 60, 61, 67, 69
svyvar(), 19, 59,61, 62

theme, 64
theme_apa, 62
theme_nice, 64
tidy.summ, 65
tidy.summ(), 13
trace_back(), 71

78 INDEX

warn_wrap (wrap_str), 70
weights_tests, 32, 60, 62, 66, 69
wgttest, 32, 60, 62, 67, 68
wrap_str, 70

wtd.cor, 59, 60

wtd. sd, 71

	add_gridlines
	center
	center_mod
	effect_plot
	export_summs
	get_colors
	get_formula
	get_offset_name
	get_robust_se
	gscale
	interact_plot
	jtools_colors
	knit_print.summ.lm
	make_new_data
	make_predictions
	md_table
	movies
	num_print
	partialize
	pf_sv_test
	plot_summs
	predict_merMod
	scale_mod
	set_summ_defaults
	standardize
	summ
	summ.glm
	summ.lm
	summ.merMod
	summ.rq
	summ.svyglm
	svycor
	svysd
	theme_apa
	theme_nice
	tidy.summ
	weights_tests
	wgttest
	wrap_str
	wtd.sd
	nin
	not
	Index

