
Package ‘jrvFinance’
October 13, 2022

Title Basic Finance; NPV/IRR/Annuities/Bond-Pricing; Black Scholes

Version 1.4.3

Description Implements the basic financial analysis
functions similar to (but not identical to) what
is available in most spreadsheet software. This
includes finding the IRR and NPV of regularly
spaced cash flows and annuities. Bond pricing and
YTM calculations are included. In addition, Black
Scholes option pricing and Greeks are also
provided.

Depends R (>= 3.0.0)

License GPL (>= 2)

Encoding UTF-8

VignetteBuilder knitr

Suggests knitr, markdown, rmarkdown

URL https://github.com/jrvarma/jrvFinance

BugReports https://github.com/jrvarma/jrvFinance/issues

RoxygenNote 7.1.1

NeedsCompilation no

Author Jayanth Varma [aut, cre]

Maintainer Jayanth Varma <jrvarma@iima.ac.in>

Repository CRAN

Date/Publication 2021-11-05 13:40:02 UTC

R topics documented:
jrvFinance-package . 2
annuity . 3
bisection.root . 6
bonds . 7

1

https://github.com/jrvarma/jrvFinance
https://github.com/jrvarma/jrvFinance/issues

2 jrvFinance-package

coupons . 9
daycount . 10
duration . 11
edate . 12
equiv.rate . 12
GenBS . 13
GenBSImplied . 14
irr . 15
irr.solve . 16
newton.raphson.root . 17
npv . 19

Index 20

jrvFinance-package Basic Finance: NPV/IRR/annuities, bond pricing, Black Scholes

Description

This package implements the basic financial analysis functions similar to (but not identical to) what
is available in most spreadsheet software. This includes finding the IRR, NPV and duration of
possibly irregularly spaced cash flows and annuities. Bond pricing, YTM and duration calculations
are included. Black Scholes option pricing, Greeks and implied volatility are also provided.

Details

Important functions include:

npv, irr, duration, annuity.pv, bond.price, bond.yield, GenBS, GenBSImplied

For more details, see the vignette

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

References

The 30/360 day count was converted from C++ code in the QuantLib library. The Newton Raphson
solver was converted from C++ code in the Boost library

annuity 3

annuity Present Value of Annuity and Related Functions

Description

Functions to compute present value and future value of annuities, to find instalment given the present
value or future value. Can also find the rate or the number of periods given other parameters.

Usage

annuity.pv(
rate,
n.periods = Inf,
instalment = 1,
terminal.payment = 0,
immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1

)

annuity.fv(
rate,
n.periods = Inf,
instalment = 1,
terminal.payment = 0,
immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1

)

annuity.instalment(
rate,
n.periods = Inf,
pv = if (missing(fv)) 1 else 0,
fv = 0,
terminal.payment = 0,
immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1

)

annuity.periods(
rate,
instalment = 1,
pv = if (missing(fv)) 1 else 0,
fv = 0,
terminal.payment = 0,

4 annuity

immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1,
round2int.digits = 3

)

annuity.rate(
n.periods = Inf,
instalment = 1,
pv = if (missing(fv)) 1 else 0,
fv = 0,
terminal.payment = 0,
immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1

)

annuity.instalment.breakup(
rate,
n.periods = Inf,
pv = 1,
immediate.start = FALSE,
cf.freq = 1,
comp.freq = 1,
period.no = 1

)

Arguments

rate The interest rate in decimal (0.10 or 10e-2 for 10%)

n.periods The number of periods in the annuity.

instalment The instalment (cash flow) per period.

terminal.payment

Any cash flow at the end of the annuity. For example, a bullet repayment at
maturity of the unamortized principal.

immediate.start

Logical variable which is TRUE for immediate annuities (the first instalment is
due immediately) and FALSE for deferred annuities (the first instalment is due at
the end of the first period).

cf.freq Frequency of annuity payments: 1 for annual, 2 for semi-annual, 12 for monthly.

comp.freq Frequency of compounding of interest rates: 1 for annual, 2 for semi-annual, 12
for monthly, Inf for continuous compounding.

pv The present value of all the cash flows including the terminal payment.

fv The future value (at the end of the annuity) of all the cash flows including the
terminal payment.

annuity 5

round2int.digits

Used only in annuity.periods. If the computed number of periods is an integer
when rounded to round2int.digits, then the rounded integer value is returned.
With the default value of 3, 9.9996 is returned as 10, but 9.9994 and 9.39999999
are returned without any rounding.

period.no Used only in annuity.instalment.breakup. This is the period for which the
instalment needs to be broken up into principal and interest parts.

Details

These functions are based on the Present Value relationship:

pv = fv · df = terminal.payment · df +
instalment(1− df)

r

where df = (1 + r)−n.periods is the n.periods discount factor and r is the per period interest rate
computed using rate, cf.freq and comp.freq.

It is intended that only one of pv or fv is used in any function call, but internally the functions use
pv + fv · df as the LHS of the present value relationship under the assumption that only of the two
is non zero.

The function annuity.instalment.breakup regards the annuity as a repayment of a loan equal to
pv plus the present value of terminal.payment. The instalment paid in period period.no is broken up
into the principal repayment (amortization) and interest components.

Value

For most functions, the return value is one of the arguments described above. For example annuity.pv
returns pv. The only exception is annuity.instalment.breakup. This returns a list with the fol-
lowing components:

opening.principal

The principal balance at the beginning of the period

closing.principal

The principal balance at the end of the period

interest.part The portion of the instalment which represents interest

principal.part The portion of the instalment which represents principal repayment

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

6 bisection.root

bisection.root Find zero of a function by bracketing the zero and then using bisection.

Description

Tries to find the zero of a function by using the bisection method (uniroot). To call uniroot,
the zero must be bracketed by finding two points at which the function value has opposite signs.
The main code in this function is a grid search to find such a pair of points. A geometric grid of
points between lower and guess and also between guess and upper. This grid is searched for two
neighbouring points across which the function changes sign. This brackets the root, and then we try
to locate the root by calling uniroot

Usage

bisection.root(f, guess, lower, upper, nstep = 100, toler = 1e-06)

Arguments

f The function whose zero is to be found. An R function object that takes one
numeric argument and returns a numeric value. In an IRR application, this will
be the NPV function. In an implied volatility application, the value will be the
option price.

guess The starting value (guess) from which the solver starts searching for the root.
Must be positive.

lower The lower end of the interval within which to search for the root. Must be
positive.

upper The upper end of the interval within which to search for the root. Must be
positive.

nstep The number of steps in the grid search to bracket the zero. See details.

toler The criterion to determine whether a zero has been found. This is passed on to
uniroot

Value

The root (or NA if the method fails)

Author(s)

Prof. Jayanth R. Varma

bonds 7

bonds Bond pricing using yield to maturity.

Description

bond.price computes the price given the yield to maturity bond.duration computes the duration
given the yield to maturity bond.yield computes the yield to maturity given the price bond.prices,
bond.durations and bond.yields are wrapper functions that use mapply to vectorize bond.price,
bond.duration and bond.yield All arguments to bond.prices, bond.durations and bond.yields can be
vectors. On the other hand, bond.price, bond.duration and bond.yield do not allow vectors Standard
compounding and day count conventions are supported for all functions.

Usage

bond.price(
settle,
mature,
coupon,
freq = 2,
yield,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
comp.freq = freq,
redemption_value = 100

)

bond.yield(
settle,
mature,
coupon,
freq = 2,
price,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
comp.freq = freq,
redemption_value = 100

)

bond.duration(
settle,
mature,
coupon,
freq = 2,
yield,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
modified = FALSE,
comp.freq = freq,
redemption_value = 100

)

8 bonds

bond.TCF(
settle,
mature,
coupon,
freq = 2,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
redemption_value = 100

)

bond.prices(
settle,
mature,
coupon,
freq = 2,
yield,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
comp.freq = freq,
redemption_value = 100

)

bond.yields(
settle,
mature,
coupon,
freq = 2,
price,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
comp.freq = freq,
redemption_value = 100

)

bond.durations(
settle,
mature,
coupon,
freq = 2,
yield,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E"),
modified = FALSE,
comp.freq = freq,
redemption_value = 100

)

Arguments

settle The settlement date for which the bond is traded. Can be a character string or
any object that can be converted into date using as.Date.

coupons 9

mature The maturity date of the bond. Can be a character string or any object that can
be converted into date using as.Date

coupon The coupon rate in decimal (0.10 or 10e-2 for 10%)

freq The frequency of coupon payments: 1 for annual, 2 for semi-annual, 12 for
monthly.

yield The yield to maturity of the bond

convention The daycount convention

comp.freq The frequency of compounding of the bond yield: 1 for annual, 2 for semi-
annual, 12 for monthly. Usually same as freq.

redemption_value

The principal amount that the bond will pay on maturity or call. Typically nec-
essary when the bond is expected to be called at premium to par.

price The clean price of the bond.

modified A logical value used in duration. TRUE to return Modified Duration, FALSE oth-
erwise

Value

bond.TCF returns a list of three components

t A vector of cash flow dates in number of years

cf A vector of cash flows

accrued The accrued interest

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

coupons Bond pricing using yield to maturity.

Description

Convenience functions for finding coupon dates and number of coupons of a bond.

Usage

coupons.dates(settle, mature, freq = 2)

coupons.n(settle, mature, freq = 2)

coupons.next(settle, mature, freq = 2)

coupons.prev(settle, mature, freq = 2)

10 daycount

Arguments

settle The settlement date for which the bond is traded. Can be a character string or
any object that can be converted into date using as.Date.

mature The maturity date of the bond. Can be a character string or any object that can
be converted into date using as.Date

freq The frequency of coupon payments: 1 for annual, 2 for semi-annual, 12 for
monthly.

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

daycount Day count and year fraction for bond pricing

Description

Implements 30/360, ACT/360, ACT/360 and 30/360E day count conventions.

Usage

yearFraction(
d1,
d2,
r1,
r2,
freq = 2,
convention = c("30/360", "ACT/ACT", "ACT/360", "30/360E")

)

daycount.actual(d1, d2, variant = c("bond"))

daycount.30.360(d1, d2, variant = c("US", "EU", "IT"))

Arguments

d1 The starting date of period for day counts

d2 The ending date of period for day counts

r1 The starting date of reference period for ACT/ACT day counts

r2 The ending date of reference period for ACT/ACT day counts

freq The frequency of coupon payments: 1 for annual, 2 for semi-annual, 12 for
monthly.

convention The daycount convention

variant Three variants of the 30/360 convention are implemented, but only one variant
of ACT/ACT is currently implemented

duration 11

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

References

The 30/360 day count was converted from C++ code in the QuantLib library

duration Duration and Modified Duration

Description

Computes Duration and Modified Duration for cash flows with different cash flow and compounding
conventions. Cash flows need not be evenly spaced.

Usage

duration(
cf,
rate,
cf.freq = 1,
comp.freq = 1,
cf.t = seq(from = ifelse(immediate.start, 0, 1/cf.freq), by = 1/cf.freq, along.with =

cf),
immediate.start = FALSE,
modified = FALSE

)

Arguments

cf Vector of cash flows

rate The interest rate in decimal (0.10 or 10e-2 for 10%)

cf.freq Frequency of annuity payments: 1 for annual, 2 for semi-annual, 12 for monthly.

comp.freq Frequency of compounding of interest rates: 1 for annual, 2 for semi-annual, 12
for monthly, Inf for continuous compounding.

cf.t Optional vector of timing (in years) of cash flows. If omitted regular sequence
of years is assumed.

immediate.start

Logical variable which is TRUE when the first cash flows is at the beginning of
the first period (for example, immediate annuities) and FALSE when the first cash
flows is at the end of the first period (for example, deferred annuities)

modified in function duration, TRUE if modified duration is desired. FALSE otherwise.

12 equiv.rate

edate Shift date by a number of months

Description

Convenience function for finding the same date in different months. Used for example to find
coupon dates of bonds given the maturity date. See coupons

Usage

edate(from, months = 1)

Arguments

from starting date - a character string or any object that can be converted into date
using as.Date.

months Number of months (can be negative)

equiv.rate Equivalent Rates under different Compounding Conventions

Description

Converts an interest rate from one compounding convention to another (for example from semi-
annual to monthly compounding or from annual to continuous compounding)

Usage

equiv.rate(rate, from.freq = 1, to.freq = 1)

Arguments

rate The interest rate in decimal (0.10 or 10e-2 for 10%)

from.freq Frequency of compounding of the given interest rate: 1 for annual, 2 for semi-
annual, 12 for monthly, Inf for continuous compounding.

to.freq Frequency of compounding to which the given interest rate is to be converted: 1
for annual, 2 for semi-annual, 12 for monthly, Inf for continuous compounding.

GenBS 13

GenBS Generalized Black Scholes model for pricing vanilla European options

Description

Compute values of call and put options as well as the Greeks - the sensitivities of the option price
to various input arguments using the Generalized Black Scholes model. "Generalized" means that
the asset can have a continuous dividend yield.

Usage

GenBS(s, X, r, Sigma, t, div_yield = 0)

Arguments

s the spot price of the asset (the stock price for options on stocks)

X the exercise or strike price of the option

r the continuously compounded rate of interest in decimal (0.10 or 10e-2 for 10%)
(use equiv.rate to convert to a continuously compounded rate)

Sigma the volatility of the asset price in decimal (0.20 or 20e-2 for 20%)

t the maturity of the option in years

div_yield the continuously compounded dividend yield (0.05 or 5e-2 for 5%) (use equiv.rate
to convert to a continuously compounded rate)

Details

The Generalized Black Scholes formula for call options is
e−rt(s egt Nd1−X Nd2)
where
g = r − div_yield
Nd1 = N(d1) and Nd2 = N(d2)

d1 = log(s/X)+(g+Sigma2/2)t

Sigma
√
t

d2 = d1− Sigma
√
t

N denotes the normal CDF (pnorm)
For put options, the formula is
e−rt(−s egt Nminusd1 +X Nminusd2)
where
Nminusd1 = N(−d1) and Nminusd2 = N(−d2)

Value

A list of the following elements

call the value of a call option

14 GenBSImplied

put the value of a put option

Greeks a list of the following elements
Greeks$callDelta

the delta of a call option - the sensitivity to the spot price of the asset
Greeks$putDelta

the delta of a put option - the sensitivity to the spot price of the asset
Greeks$callTheta

the theta of a call option - the time decay of the option value with passage of
time. Note that time is measured in years. To find a daily theta divided by 365.

Greeks$putTheta

the theta of a put option

Greeks$Gamma the gamma of a call or put option - the second derivative with respect to the spot
price or the sensitivity of delta to the spot price

Greeks$Vega the vega of a call or put option - the sensitivity to the volatility

Greeks$callRho the rho of a call option - the sensitivity to the interest rate

Greeks$putRho the rho of a put option - the sensitivity to the interest rate

extra a list of the following elements

extra$d1 the d1 of the Generalized Black Scholes formula

extra$d2 the d2 of the Generalized Black Scholes formula

extra$Nd1 is pnorm(d1)

extra$Nd2 is pnorm(d2)

extra$Nminusd1 is pnorm(-d1)

extra$Nminusd2 is pnorm(-d2)

extra$callProb the (risk neutral) probability that the call will be exercised = Nd2

extra$putProb the (risk neutral) probability that the put will be exercised = Nminusd2

GenBSImplied Generalized Black Scholes model implied volatility

Description

Find implied volatility given the option price using the generalized Black Scholes model. "Gener-
alized" means that the asset can have a continuous dividend yield.

Usage

GenBSImplied(
s,
X,
r,
price,
t,

irr 15

div_yield,
PutOpt = FALSE,
toler = 1e-06,
max.iter = 100,
convergence = 1e-08

)

Arguments

s the spot price of the asset (the stock price for options on stocks)

X the exercise or strike price of the option

r the continuously compounded rate of interest in decimal (0.10 or 10e-2 for 10%)
(use equiv.rate to convert to a continuously compounded rate)

price the price of the option

t the maturity of the option in years

div_yield the continuously compounded dividend yield (0.05 or 5e-2 for 5%) (use equiv.rate
to convert to a continuously compounded rate)

PutOpt TRUE for put options, FALSE for call options

toler passed on to newton.raphson.root The implied volatility is regarded as cor-
rect if the solver is able to match the option price to within less than toler.
Otherwise the function returns NA

max.iter passed on to newton.raphson.root

convergence passed on to newton.raphson.root

Details

GenBSImplied calls newton.raphson.root and if that fails uniroot

irr Internal Rate of Return

Description

Computes IRR (Internal Rate of Return) for cash flows with different cash flow and compounding
conventions. Cash flows need not be evenly spaced.

Usage

irr(
cf,
interval = NULL,
cf.freq = 1,
comp.freq = 1,
cf.t = seq(from = 0, by = 1/cf.freq, along.with = cf),
r.guess = NULL,

16 irr.solve

toler = 1e-06,
convergence = 1e-08,
max.iter = 100,
method = c("default", "newton", "bisection")

)

Arguments

cf Vector of cash flows

interval the interval c(lower, upper) within which to search for the IRR

cf.freq Frequency of annuity payments: 1 for annual, 2 for semi-annual, 12 for monthly.

comp.freq Frequency of compounding of interest rates: 1 for annual, 2 for semi-annual, 12
for monthly, Inf for continuous compounding.

cf.t Optional vector of timing (in years) of cash flows. If omitted regular sequence
of years is assumed.

r.guess the starting value (guess) from which the solver starts searching for the IRR

toler the argument toler for irr.solve. The IRR is regarded as correct if abs(NPV)
is less than toler. Otherwise the irr function returns NA

convergence the argument convergence for irr.solve

max.iter the argument max.iter for irr.solve

method The root finding method to be used. The default is to try Newton-Raphson
method (newton.raphson.root) and if that fails to try bisection (bisection.root).
The other two choices (newton and bisection force only one of the methods
to be tried.

irr.solve Solve for IRR (internal rate of return) or YTM (yield to maturity)

Description

This function computes the internal rate of return at which the net present value equals zero. It
requires as input a function that computes the net present value of a series of cash flows for a given
interest rate as well as the derivative of the NPV with respect to the interest rate (10,000 times this
derivative is the PVBP or DV01). In this package, irr.solve is primarily intended to be called by
the irr and bond.yield functions. It is made available for those who want to find IRR of more
complex instruments.

Usage

irr.solve(
f,
interval = NULL,
r.guess = NULL,
toler = 1e-06,

newton.raphson.root 17

convergence = 1e-08,
max.iter = 100,
method = c("default", "newton", "bisection")

)

Arguments

f The function whose zero is to be found. An R function object that takes one
numeric argument and returns a list of two components (value and gradient). In
the IRR applications, these two components will be the NPV and its derivative

interval The interval c(lower, upper) within which to search for the IRR

r.guess The starting value (guess) from which the solver starts searching for the IRR

toler The argument toler to newton.raphson.root. The IRR is regarded as correct
if abs(NPV) is less than toler. Otherwise the irr.solve returns NA

convergence The argument convergence to newton.raphson.root.

max.iter The maximum number of iterations of the Newton-Raphson procedure

method The root finding method to be used. The default is to try Newton-Raphson
method (newton.raphson.root) and if that fails to try bisection (bisection.root).
The other two choices (newton and bisection force only one of the methods
to be tried.

Details

The function irr.solve is basically an interface to the general root finder newton.raphson.root.
However, if newton.raphson.root fails, irr.solve makes an attempt to find the root using
uniroot from the R stats package. Uniroot uses bisection and it requires the root to be brack-
eted (the function must be of opposite sign at the two end points - lower and upper).

Value

The function irr.solve returns NA if the IRR/YTM could not be found. Otherwise it returns the
IRR/YTM. When NA is returned, a warning message is printed

Author(s)

Prof. Jayanth R. Varma <jrvarma@iima.ac.in>

newton.raphson.root A Newton Raphson root finder: finds x such that f(x) = 0

Description

The function newton.raphson.root is a general root finder which can find the zero of any function
whose derivative is available. In this package, it is called by irr.solve and by GenBSImplied. It
can be used in other situations as well - see the examples below.

18 newton.raphson.root

Usage

newton.raphson.root(
f,
guess = 0,
lower = -Inf,
upper = Inf,
max.iter = 100,
toler = 1e-06,
convergence = 1e-08

)

Arguments

f The function whose zero is to be found. An R function object that takes one
numeric argument and returns a list of two components (value and gradient). In
an IRR application, these two components will be the NPV and the DV01/10000.
In an implied volatility application, the components will be the option price and
the vega. See also the examples below

guess The starting value (guess) from which the solver starts searching for the IRR

lower The lower end of the interval within which to search for the root

upper The upper end of the interval within which to search for the root

max.iter The maximum number of iterations of the Newton-Raphson procedure

toler The criterion to determine whether a zero has been found. If the value of the
function exceeds toler in absolute value, then NA is returned with a warning

convergence The relative tolerance threshold used to determine whether the Newton-Raphson
procedure has converged. The procedure terminates when the last step is less
than convergence times the current estimate of the root. Convergence can take
place to a non zero local minimum. This is checked using the toler criterion
below

Value

The function returns NA under either of two conditions: (a) the procedure did not converge after
max.iter iterations, or (b) the procedure converged but the function value is not zero within the
limits of toler at this point. The second condition usually implies that the procedure has converged
to a non zero local minimum from which there is no downhill gradient.

If the iterations converge to a genuine root (within the limits of toler), then it returns the root that
was found.

References

The Newton Raphson solver was converted from C++ code in the Boost library

https://www.boost.org/

npv 19

npv Net Present Value

Description

Computes NPV (Net Present Value) for cash flows with different cash flow and compounding con-
ventions. Cash flows need not be evenly spaced.

Usage

npv(
cf,
rate,
cf.freq = 1,
comp.freq = 1,
cf.t = seq(from = if (immediate.start) 0 else 1/cf.freq, by = 1/cf.freq, along.with =

cf),
immediate.start = FALSE

)

Arguments

cf Vector of cash flows

rate The interest rate in decimal (0.10 or 10e-2 for 10%)

cf.freq Frequency of annuity payments: 1 for annual, 2 for semi-annual, 12 for monthly.

comp.freq Frequency of compounding of interest rates: 1 for annual, 2 for semi-annual, 12
for monthly, Inf for continuous compounding.

cf.t Optional vector of timing (in years) of cash flows. If omitted regular sequence
of years is assumed.

immediate.start

Logical variable which is TRUE when the first cash flows is at the beginning of
the first period (for example, immediate annuities) and FALSE when the first cash
flows is at the end of the first period (for example, deferred annuities)

Index

annuity, 3
annuity.pv, 2
as.Date, 8–10, 12

bisection.root, 6, 16, 17
bond.duration (bonds), 7
bond.durations (bonds), 7
bond.price, 2
bond.price (bonds), 7
bond.prices (bonds), 7
bond.TCF (bonds), 7
bond.yield, 2, 16
bond.yield (bonds), 7
bond.yields (bonds), 7
bonds, 7

coupons, 9, 12

daycount, 10
duration, 2, 11

edate, 12
equiv.rate, 12, 13, 15

GenBS, 2, 13
GenBSImplied, 2, 14, 17

irr, 2, 15, 16
irr.solve, 16, 16, 17

jrvFinance (jrvFinance-package), 2
jrvFinance-package, 2

newton.raphson.root, 15–17, 17
npv, 2, 19

pnorm, 13, 14

uniroot, 6, 15, 17

yearFraction (daycount), 10

20

	jrvFinance-package
	annuity
	bisection.root
	bonds
	coupons
	daycount
	duration
	edate
	equiv.rate
	GenBS
	GenBSImplied
	irr
	irr.solve
	newton.raphson.root
	npv
	Index

