Version 0.2.4
Date 2015-11-25
Title R Dependency Injection

Package ‘injectoR’

October 13, 2022

Author Lev Kuznetsov

Maintainer Lev Kuznetsov <levk@jimmy.harvard.edu>
Depends R (>=3.1.0)
Suggests testthat

Description R dependency injection framework. Dependency injection allows

a program design to follow the dependency inversion principle. The user
delegates to external code (the injector) the responsibility of providing its
dependencies. This separates the responsibilities of use and construction.

License LGPL (>=3)

URL https://github.com/dfci-cccb/injectoR

BugReports https://github.com/dfci-cccb/injectoR/issues

RoxygenNote 5.0.1

NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-30 08:17:48

R topics documented:

Index

binder
default
define

inject

injectoR L
multibindo

shim

SINGIetOn e e e e e e

https://github.com/dfci-cccb/injectoR
https://github.com/dfci-cccb/injectoR/issues

2 default

binder Binder factory

Description

Binder factory

Usage

binder(parent = .binder, callback = function(binder) binder)

Arguments

parent of the new binder, injection will propagate up the parent stack looking for keys;
if omitted defaults to root binder

callback called with the newly created binder and the result is returned; if omitted just
the new binder is returned

Value

result of the injected callback if one is specified, otherwise the new binder

Examples

b <- binder ()

default Default scope, bindings are provisioned each time a bean is injected

Description

Default scope, bindings are provisioned each time a bean is injected

Usage

default(provider)

Arguments

provider unscoped delegate, no argument function responsible for provision

define

define

Creates a key to factory binding

Description

Creates a key to factory binding

Usage

define(..., scope = default, binder = .binder)

Arguments

scope

binder

Examples

define (hello =

injectable bean identifier to factory mappings, the key is the name is matched
to a parameter name during injection, the factory responsible for provisioning
of the bean, a factory may accept any number of arguments in which case the
framework will attempt to inject the argument if a binding to the parameter name
exists; if it does not, that argument will not be injected, in which case it is the
factory’s responsibility to deal with a missing argument

of the bean, wraps the injected factory call specifying provisioning strategy, if
omitted a new bean instance will be provisioned each time injection is requested;
injectoR also ships with with the singleton scope which will provide once and
cache the bean for subsequent calls. Interface allows for custom scoping, the
scope parameter must be a function accepting key (name) and the provider - the
wrapped injected factory call - a function accepting no parameters responsible
for actual provisioning

for this binding, if omitted the new binding is added to the root binder

function () 'world', binder = binder ())

inject

Injects the callback function

Description

Injects the callback function

Usage

inject(callback, binder = .binder)

4 multibind
Arguments
callback function to inject, a function accepting arguments to be matched to injectable
keys; no errors are thrown if no binding is found for a key, this is the intended
mechanic for optional injection, if the callback is able to deal with a missing
argument the argument becomes optional
binder containing the injectables, defaults to root binder if omitted
Value
result of the injected callback evaluation
Examples
inject (function (two) two, define (two = function () 2, binder = binder ()))
inject (function (power) power (2, 4),
define (power = function (power) function (x, n) if (n<1) 1 else x * power (x, n - 1)))
inject (function (fibonacci) fibonacci (8),
define (fibonacci = function (fibonacci)
function (n) if (n < 3) 1
else fibonacci (n - 1) + fibonacci (n - 2), binder = binder ()))
injectoR Dependency injection framework
Description
Dependency injection framework
Author(s)
levk
multibind Aggregates multiple factories under one key
Description
Aggregates multiple factories under one key
Usage

multibind(key, scope = default, combine = function(this, parent)
base::c(this, parent), binder = .binder)

shim 5

Arguments
key injectable bean identifier
scope of the bean, wraps the injected factory call specifying provisioning strategy, if
omitted a new bean instance will be provisioned each time injection is requested;
injectoR also ships with with the singleton scope which will provide once and
cache the bean for subsequent calls. Interface allows for custom scoping, the
scope parameter must be a function accepting key (name) and the provider - the
wrapped injected factory call - a function accepting no parameters responsible
for actual provisioning
combine aggregation procedure for combination of context and inherited values, a func-
tion accepting a list of injectable values from the current binder context and a
no argument function to retrieve values of the parent context; if omitted will the
binding will aggregate all values
binder for this binding, if omitted the binding is added to the root binder
Value

a function accepting one or more factories for adding elements to the binding; naming the facto-
ries will result in named values injected; optionally accepts a scope for the bindings, if omitted
defaults to provide on injection; please be aware that the scope is called without key for unnamed
multibinding

Examples

multibind ('keys', binder = binder ()) (function () 'skeleton')

shim Shims libraries

Description

Shims libraries

Usage
shim(..., library.paths = .libPaths(), callback = function() binder,
binder = .binder)
Arguments

zero or more library names to shim binding each exported variable to the binder;

if a library name is specified in a named list format (for example shim(s4="stats4’,callback=function(s4.Al
all exported variable names from that library will be prepended with that name

and a dot (as in the example); if a library cannot be loaded, no bindings are cre-

ated for that library and no errors are thrown (but there is an error to console as

reported by requireNamespace)

6 singleton

library.paths to use for loading namespace

callback injected for convenience using the binder specified after shim is completed, if
omitted the call returns the binder
binder for this shim
Value

result of the callback if specified, binder otherwise

Examples

shim ('injectoR', callback = function (inject) inject, binder = binder ())

singleton Singleton scope, bindings of this scope are provided once, on initial
demand

Description

Singleton scope, bindings of this scope are provided once, on initial demand

Usage

singleton(provider)
Arguments

provider unscoped delegate, no argument function responsible for provision
Examples

define (three = function () 3, scope = singleton, binder = binder ())

Index

binder, 2

default, 2
define, 3

inject, 3

injectoR, 4

injectoR-package (injectoR), 4
multibind, 4

shim, 5
singleton, 6

	binder
	default
	define
	inject
	injectoR
	multibind
	shim
	singleton
	Index

