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Introduction

The imageseg package provides function that allow users to extract information from vegetation photos using
image segmentation and sophisticated deep learning models, but it tries its best to make it as simple to use
as possible. Thus, most of the complexity is happening behind the curtains, and users only need to provide
input data (images) and download pre-trained models.

We provide two pre-trained models for forest structural metrics They allow the assessment of:

1) canopy closure and canopy cover from canopy photographs
2) understory vegetation density from photographs of a red flysheet at a distance from the observer
(training data used 10m distance).

In this vignette,
Installation and setup walks you through the setup of Keras and TensorFlow.

Part 1 introduces the workflow and shows how pre-trained models can be used for creating predictions based
on images.

Part 2 shows how more advanced users can easily create new model architectures and conduct their own deep
learning experiments.

Part 3 shows how users can use the pre-trained models we provide as a foundation and continue training
with their own data.

Part 4 demonstrates how models with multiple output classes can be trained and used for predictions.

Part 5 demonstrates how models with grayscale input data can be trained and used for binary predictions.

Differences to other implementations

The imageseg package is inspired by the Habitat-Net models (Abrams et al. 2019), and makes a similar
approach available in R. There are noteworthy differences however.

imageseg:

e provides a complete workflow in as an R package with multiple functions instead of Python script
e runs in TensorFlow 2.2.0 instead of TensorFlow 1.10.0, thus allowing for better compatibility with
modern systems
o uses a much simplified model architecture with equal predictive performance (we use the standard
U-Net architecture)
e avoids some of the architectural inconsistencies of Habitat-Net
e uses 256x256 pixels instead of 128x128 pixels for canopy images, providing a better representation with
greater detail due to 4x more pixels.
e uses a much larger and more diverse training data set for both canopy and understory:
— the geographical scope was greatly expanded by including data from Vietnam and Laos in addition
to Sabah, Malaysian Borneo
— canopy: inclusion of hemispherical canopy images from a variety of habitat types in addition to
the canopy cover images
— hemispherical canopy images included a range of camera exposure setting (for each plot, we had
replicated images with -1.3/-1/-0.7EV available and randomly chose one for training).
e has some differences in implementation:
— early stopping strategy to explicitly avoid overfitting



— reducing learning rate when validation loss stops improving (slightly improves accuracy and avoids
overfitting)

— use Adam optimizer instead of SGD.

— 20% of images used for model evaluation instead of 15% (only unaugmented images are used for
evaluation)

To our knowledge our models use the largest and most diverse training data set for assessing forest structural
metrics from images using deep learning. The training data were carefully curated and processed to ensure
the reliability and model quality.

Installation and setup

Installation of keras and TensorFlow

First we need to install the keras package. The R package keras is an interface to ‘Keras’, a high-level
neural networks ‘APT’. For a little background on the keras package, see the “Getting Started with Keras”
vignette in the keras package (https://cran.rstudio.com/web/packages/keras/vignettes/index.html or the
keras/TensorFlow website by Rstudio (https://tensorflow.rstudio.com/tutorials/beginners/).

Below we summarize the steps for setting up keras and TensorFlow. if you haven’t installed it yet, please
follow the step in the order we give. If you installed it already you can skip this section.

If you are using Windows, you need to first install Anaconda or Miniconda, which serve as an environment to
install and run Python in. Python is required to install and run Keras and TensorFlow in. To access Python
from R we need the reticulate package, which is installed via:

install.packages("reticulate")
library(reticulate)

You can check if Miniconda is installed already:

miniconda_path()

If the function above does not return a path, install Miniconda via:

install_miniconda()

Then, the easiest way of installing keras and the TensorFlow backend is via:

install.packages("keras")
library (keras)
install_keras()

This will provide you with the basic CPU-based installation of keras and TensorFlow, which is sufficient for
doing predictions with the pre-trained models (which don’t need GPU acceleration). By default, it will be
installed in the “r-reticulate” environment of miniconda which is a reasonable default. During installation it
will state that “the following packages will be downloaded” / “installed”, and possibly also “removed” for
some packages - that’s fine). It only refers to Python packages, not R packages.

For more information about installation of Keras and TensorFlow for R, please see https://tensorflow.rstudio.
com/installation/ and https://keras.rstudio.com/reference/install_keras.html.

To ensure that TensorFlow works, please run:

library(tensorflow)
tf$constant ("Hello Tensorflow")

## Loaded Tensorflow version 2.2.0

## tf.Tensor(b'Hello Tensorflow', shape=(), dtype=string)


https://cran.rstudio.com/web/packages/keras/vignettes/index.html
https://tensorflow.rstudio.com/tutorials/beginners/
https://tensorflow.rstudio.com/installation/
https://tensorflow.rstudio.com/installation/
https://keras.rstudio.com/reference/install_keras.html

You should see a few lines of output, and the last line should read:

tf.Tensor(b'Hello Tensorflow', O, string)

Note that this is not R code, but the representation of a TensorFlow object. So it looks a bit odd by R
standards, but that’s fine. If you see this line it means that R can communicate with TensorFlow via Keras,
and basic setup is complete.

The installation process above is only necessary once. After the initial installation, keras and TensorFlow are
available in future R sessions as well.

First steps with keras and TensorFlow

If you haven’t used keras or TensorFlow before, you might find the MNIST example from the RStudio
TensorFlow website instructive. It gives a first impression of deep learning in R using a simple example which
runs on all hardware:

https://tensorflow.rstudio.com/guide/keras/#mnist-example

imageseg uses the same principles and steps internally, but with different data and different model architecture.

Installation Troubleshooting

install__keras() fails on Windows There are a few possible complications during installation. From
personal experience, when install keras() fails with the following warning:

WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not

It can help to add miniconda to environment paths. The following function temporarily adds directories to
the PATH variable. Replace “YourUserName” with the correct user name.

addtopath <- function (dir)

{
WPATH <- Sys.getenv("PATH")
WPATH1 <- paste(dir, WPATH, oy
Sys.setenv( WPATH1)
return(invisible(grepl(dir, Sys.getenv("PATH"))))
}

# addtopath temorarily adds a directory to R's PATH environmental variable
addtopath("C:/Users/YourUserName/AppData/Local/r-miniconda")
addtopath("C:/Users/YourUserName/AppData/Local/r-miniconda/Scripts")
addtopath("C:/Users/YourUserName/AppData/Local/r-miniconda/Library/bin")

Afterwards,

install_keras()

should run and provide you with a functioning keras/TensorFlow installation.

keras / TensorFlow is not found after installation If you get the following error:

tf$constant ("Hello Tensorflow")
Error: Valid installation of TensorFlow not found.

Python environments searched for 'tensorflow' package:
C:\Users\YourUserName\AppData\Local\Programs\Python\Python39\python.exe

Python exception encountered:


https://tensorflow.rstudio.com/guide/keras/#mnist-example

ModuleNotFoundError: No module named 'tensorflow'
You can install TensorFlow using the install_tensorflow() function.

even though you installed keras successfully, it means that Python is looking for Tensorflow in the wrong
place. Note that the folder shown may differ depending on your setup, it can for example also be something
like:

Python environments searched for 'tensorflow' package:
C:\Users\YourUserName\Anaconda3\python.exe

If that happens should check which version of Python R wants to use:

library(reticulate)
py_config()

If the paths that are shown don’t contain “r-miniconda” and it says the following at the bottom:

tensorflow: [NOT FOUND]
NOTE: Python version was forced by RETICULATE_PYTHON
it means that the R environmental variable “RETICULATE_PYTHON” is defined and overrides your

Miniconda installation path.

To confirm that that is the problem, check:

Sys.getenv("RETICULATE_PYTHON")

If it is defined (e.g. “C:/Users/YourUserName/AppData/Local/Programs/Python/Python39/python.exe”),
that particular Python installation will be used and not your Miniconda environment. To prevent that

behaviour, start a new R session (this is essentiall), and before doing anything else, overwrite the
RETICULATE PYTHON environment variable:

Sys.setenv( ")

Afterwards, when you run:

library (keras)
library(tensorflow)

tf$constant ("Hello Tensorflow")

you should see in the last line of TensorFlow output:

tf.Tensor(b'Hello Tensorflow', O, string)

(maybe some messages in red also, but check the last line printed in black in RStudio).
This lets you know that R now communicates with TensorFlow and you are ready to proceed.

To avoid this problem in the future, either run this line before anything else every time you are using keras /
TensorFlow:

Sys.setenv( "

or, for a permanent solution, add RETICULATE PYTHON = “” to your .Renviron.

py__config() error: function ‘Rcpp__precious__remove’ not provided by package ‘Rcpp’ If you
see the error:



py_config() produziert: Error in main_process_python_info() : function 'Rcpp_precious_remove'

update the R package Rcpp:
install.packages('Rcpp')

and then try again.

Warnings and errors when starting keras

When first calling keras you may see a number of warnings, messages and potentially even errors from
tensorflow in red. Often these can be ignored. For example, when calling Keras / TensorFlow on a system
without dedicated graphics card (e.g. a laptop with integrated GPU) you may see warnings like these:

2021-07-25 15:30:56.284888: W tensorflow s:r:‘am‘,execut:' platform default dso_loader.cc:55] Could not load dynamic library ‘cudarté4_101.d11°; dlerror: cudart64_101.d11
not found

2021-07-25 15:3

ream_executor /cuda/cu Jart stub.cc:29] Ignore above cudart dlerror n‘ you do not have a GPU set up on your machine.
dsc "

1'; dlerror: nvcuda.d11 not found
stic information for host:

- structions that this TensorFlow bi was not compiled to use: AVX2
36d4b32460 initialized for pla tfc rm Host (-'15 does not guarantee that XLA w

2021-07-25 15:30:58.535156: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor dewice (0): Host, Default Version
Figure 1: Messages when loading keras on a system with an integrated GPU

They look scary, but in this case only tell you that the system doesn’t have the CUDA library, because it has
no (Nvidia) GPU. Therefore, computations will be done by the CPU alone. While slower than a GPU, it is
no problem for model predictions and the messages/ errors can be ignored.

Only model training is painfully slow on a CPU and benefits hugely from being run on a GPU. But even
training is possible on a CPU. If you only want to use the pre-trained model to predict on your own images
just ignore these messages.

Downloading the pre-trained models

Download the pre-trained models in order to use them on your own canopy images. We provide two separate
models, one for canopy cover and one for understory vegetation density. We provide download links to the
hdf5 files containing the trained models. The hdf5 files contain the entire model architecture and the learned
model weights.

The links can be found under:
https://github.com/EcoDynlZW /imageseg

Download the model you need and save the model file in a suitable location. We will later use the function
loadModel() to load them into R. File size is about 90 Mb per model.

Classification examples
Example classifications of test data (which the model was not trained on) are available from:

https://github.com/EcoDynlZW /imageseg

Downloading the training data

This is only needed if you wish to train your own models. In that case you find the links to the training data
under:

https://github.com/EcoDynlZW /imageseg

The zip files contain all images used for model training, validation and evaluation.

)
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If you only want to use the pre-trained models for predictions on your own photos, you don’t need to download
the training data.

Running imageseg on a graphics card (GPU)

While it is possible to run everything on CPU, deep learning applications often benefit from running on
graphics cards (GPUs). More specifically, Nvidia GPUs are supported via the CUDA library. On our
workstation we used an Nvidia GTX 1660 Super GPU with the following software:

e« R4.12

« CUDA v10.1.105

o Keras 2.4.3 (installed automatically by install keras())

o TensorFlow 2.2.0 (installed automatically by install keras())
o R package keras (2.8.0)

o R package tensorflow (2.8.0)

Installation of imageseg

If you haven’t yet, install the imageseg package from GitHub (installation from GitHub requires “remotes” or
“devtools” package, and the “R.rsp” package to build the static pdf vignette):

install.packages("R.rsp")
install.packages("devtools")

library(devtools)
install_github("EcoDynIZW/imageseg", TRUE)

Part 1: Sample workflow for canopy density assessments

The following workflow is demonstrates how the pre-trained model can be used to create predictions of canopy
density from canopy photos. The workflow for understory vegetation density is not demonstrated here, but
essentially the same (it only requires that input image are manually cropped to the extent of the red flysheet,
the rest of the analysis is identical).

We first load the imageseg package:

library(imageseg)

Preparing input for imageseg
Next we prepare the images we wish to classify. This consists of 3 steps:

1. resize image to input dimensions for canopy cover model (256x256 pixels, 3 color channels)
2. load image into R
3. convert images to model input (an array)

There are functions for all three steps.

Resize images

First, raw images need to be resized to the correct dimensions. We provide a convenience function, but
images can also be resized using common image management software.

First, define input and output directories. In this example we use sample images included in the package.

# directory with original images (input)
wd_images_to_resize <- system.file("images/canopy/raw",
"imageseg")



# directory for resized images (output)
wd_images_to_classify <- file.path(tempdir(), "canopy", "resized")

In this example we are using a temporary directory for demonstration and due to R package policies. Use a
permanent directory for your own data.

Now, run resizeImages to automatically resize all images. Note that type = “canopy” is a shorthand for
telling the function you want images in 256x256 pixels (the input dimensions the canopy model expects).
resizeImages ( wd_images_to_resize,

”canopy”,

wd_images_to_classify)

## Processing 3 images in C:/Users/niedballa/Documents/R/win-library/4.1/imageseg/images/canopy/raw
# | I

The function has a few additional arguments, e.g. for providing file names instead of directories, filtering

image file names, for automatically cropping images, defining the output color space, etc..

Load images

Next, we can load the resized images into R. We only need to tell the function the relevant directory.

images <- loadImages( wd_images_to_classify)

## found 3 images

The output is a list containing a data frame of basic information about the images, and a tibble of images
(the standard way images are stored in magick).

Convert images to arrays for keras

The images now need to be converted to a format our TensorFlow model can understand, specifically an
array. The function imagesToKerasInput does that.

x <- imagesToKerasInput (images)

## colorspace is sRGB

## 3 images, 256 x 256 pixels, 3 color channels

Loading the pre-trained model

Now we are ready to load the pre-trained model for canopy cover that was downloaded (see above). This is
done with the function loadModel

# path to model file (on my local machine. Change when you rTun this)
model_file <- "D:/Projects/imageseg/models/canopy/imageseg_canopy_model.hdf5"

# load model into R
model <- loadModel ( model_file)

Creating predictions
Now we have the model and the data ready for analyses.

The canopy model differentiates canopy and sky.

on



The understory vegetation model differentiates vegetation and a red flysheet (and probably more generally,
orange-red objects).

Model predictions on images (v1 - purpose-built function)
results <- imageSegmentation( model, x)

The output of imageSegmentation is a list with 5 slots.

names (results)

## [1] "image" "prediction" "prediction_binary"
## [4] "examples" "summary"

The first four are images, the last is a data frame with image information and vegetation density values.

$image contains the input images.

results$image

R output in this vignette is different than in RStudio. In RStudio all the images will cycled in the viewer.

Individual images can be indexed with [, e.g.:

results$image [2]



$prediction contains the model prediction (continuous values between 0 and 1).

results$prediction[2]

$prediction_ binary contains the binary model prediction (e.g. 0 = canopy, 1 = sky). It is created by rounding
the prediction (values <0.49 become 0, values >0.5 become 1).

10



results$prediction_binary[2]

s TN

i

$examples contains input images, prediction results (probabilities), and the binary masks (in that order).
The red number over the central image is the vegetation density value (canopy cover in this example).

results$examples

11






$vegetation contains a data frame with information about the images and the vegetation density in each
image.

results$vegetation

## NULL

Usually prediction and prediction__binary will look almost identical, indicating the model is rather certain
(values are close to either 0 or 1). Grey areas in predictions indicate model uncertainty (values around 0.5).

Model predictions on images (v2 - manually run it)

You can also run the predictions manually if you wish. Model output are arrays, hence they can’t be displayed
as nicely as above with magick.

predictions <- model %>% predict(x)

The model predictions can be made binary easily:

predictions_binary <- round(predictions)

And one can calculate vegetation density

apply(predictions_binary, 1, function(x) round(1l- mean(x), 3))

## [1] 0.957 0.401 0.756
Plotting data is not so straightforward with this method, and they are rotated if plotted with image(). Here
we plot image 2:

par( c(1,2))
image (predictions[1,,,])
image(predictions_binary[1,,,])

13
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Here, areas in orange indicate model uncertainty (you may need to zoom in to see).

Part 2: Training a new model

You can also train new models to your data or continue training of the existing models to better represent
your own data. Generally, model training requires training data consisting of input (color images in this
example) and the desired output (what we’d like the model to learn and then return on its own on new,
unseen data - binary segmentation masks in this example).

The functions we provide can also be used in other applications, even with more classed (e.g. to differentiate
multiple cell types in microscopic images in medical research).

If you are new to neural networks and keras, please familiarize yourself with the basics first before jumping
into model training.

Many of the functions we used above to create predictions are also useful for model training.

Load training data (images + masks)

Training data consist of pairs of images: the input color images and the binary output, which the model uses
to learn from.

In this vignette we use some training data that are included in the package. You can also download our
complete sets of training data consisting of several thousand images (links above), or use your own data.

As with the predictions, we load the images into R using the loadImages function

Load canopy images

14



wd_images <- system.file("images/canopy/resized",
"imageseg")
images <- loadImages(wd_images)

## found 11 images
Load habitat masks

wd_masks <- system.file("images/canopy/masks",
"imageseg")
masks <- loadImages(wd_masks)

## found 11 images

Split data in test / training / validation data sets (throughout)

We split images into training / test / validation data. In this example we use a 70 / 20 / 10% split. Training
data will be augmented in the next step, validation and test images not.

We can do it manually, but here is a little function that can help create reproducible data splits.

split_data <- function(n, NULL, NULL, seed) {
set.seed(seed) # for reproducible splitting

if(is.null(frac_test)) frac_test <- 0
if(is.null(frac_val)) frac_val <- 0

split_tmp <- sample(rep(1:3,
diff (floor(n * c(0, frac_test, (frac_test + frac_val), 1)))))

test <- which(split_tmp == 1)
validation <- which(split_tmp == 2)
train <- which(split_tmp == 3)

return(list( test,
validation,
train))
}
test_split <- 0.2 # 207 of images for testing
validation_split <- 0.1 # 107 of images for wvalidation
split_tmp <- split_data( nrow(images$info), test_split, validation_split,

# get indices of values 1 (test), 2 (validation), 3 (training images)
test_index  <- split_tmp$index_test

val_index <- split_tmp$index_val

train_index <- split_tmp$index_train

Data augmentation

We provide a function for data augmentation which allows image rotation, mirroring, and random shifts in
brightness, saturation and hue. Data augmentation is optional, and all steps can be used independently.

If data augmentation is used, the masks need to be adjusted in the same way as the input images (only
rotation and mirror). Don’t change brightness, saturation or hue of masks!

15



Data augmentation of the images.

images_aug <- dataAugmentation( images,
train_index,
c(0, 90, 180, 270),
TRUE,

TRUE)

Corresponding data augmentation of the masks

masks,
train_index,
c(0, 90, 180, 270),

masks_aug <- dataAugmentation(

TRUE,
TRUE)

Check they have the same length
length(images_aug$img)

## [1] 48
length(masks_aug$img)

## [1] 48

The data frame with image information also contains information about rotation and mirroring (columns
rotation, flip, flop) and potential color shifts.

summary (images_aug$info)

## filename format width height
## Length:48 Length:48 Min. :256  Min. :256
## Class :character Class :character 1st Qu.:256 1st Qu.:256
## Mode :character Mode :character Median :256 Median :256
## Mean : 256 Mean : 256
## 3rd Qu.:256 3rd Qu.:256
## Max. : 256 Max. 1256
##  colorspace matte filesize density

## Length:48 Mode :logical  Min. :44404  Length:48

## Class :character FALSE:48 1st Qu.:53060 Class :character
## Mode :character Median :58626 Mode :character
## Mean 157778

#i 3rd Qu.:65293

## Max. 167243

## rotation flip flop

## Min. : 0 Mode :logical Mode :logical

## 1st Qu.: O FALSE:40 FALSE:40

## Median : 45 TRUE :8 TRUE :8

## Mean : 90

## 3rd Qu.:180

## Max. 1270

summary (masks_aug$info)

#i# filename format width height
## Length:48 Length:48 Min. :256  Min. 1256
## Class :character Class :character 1st Qu.:256 1st Qu.:256
## Mode :character Mode :character Median :256 Median :256

16



## Mean : 256 Mean : 256

## 3rd Qu.:256 3rd Qu.:256

## Max. : 256 Max. : 256

## colorspace matte filesize density

## Length:48 Mode :logical  Min. :15691  Length:48

## Class :character FALSE:48 1st Qu.:22009 Class :character
## Mode :character Median :24946 Mode :character
## Mean 123591

## 3rd Qu.:26845

## Max. 127653

## rotation flip flop

## Min. : 0 Mode :logical Mode :logical

## 1st Qu.: O FALSE: 40 FALSE:40

## Median : 45 TRUE :8 TRUE :8

## Mean : 90

## 3rd Qu.:180

## Max. 1270

Color shifts are only applied if requested by the user.  The arguments fraction_random_BSH,

brightness_shift_lim, saturation_shift_lim, hue_shift_lim control the details. See 7dataAugmentation

Convert images to arrays for keras

As for the predictions, images are converted to model input (arrays) with imagesToKerasInput. Here, we
load the color images (x_ train) and prediction masks (y___ train) separately.

x_train <- imagesToKerasInput(images_aug, "image")
## colorspace is sRGB

## 48 images, 256 x 256 pixels, 3 color channels

y_train <- imagesToKerasInput(masks_aug, "mask")

## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.
## 48 images, 256 x 256 pixels, 1 color channels

Likewise, we convert the test and validation images to arrays.

x_test <- imagesToKerasInput (images_aug, "image", test_index)

## colorspace is sRGB

## 2 images, 256 x 256 pixels, 3 color channels

y_test <- imagesToKerasInput(masks_aug, "mask", test_index)

## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.

## 2 images, 256 x 256 pixels, 1 color channels

x_val <- imagesToKerasInput(images_aug, "image", val_index)

## colorspace is sRGB

## 1 images, 256 x 256 pixels, 3 color channels

17



y_val <- imagesToKerasInput(masks_aug, "mask", val_index)

## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.

## 1 images, 256 x 256 pixels, 1 color channels

Create a new model

Now that we prepared the data, we need to decide on the model architecture to use. The function u_net
flexibly creates a U-Net based model architecture. It is a slightly modified version of the u_net function from
the platypus package (https://github.com/majull6/platypus).

It provides model architectures flexibly, and lets users adjust:

o image sizes (net_h, net_w)
o numbers of filters

e numbers of blocks and

e number of layers per block.

The latter point is relevant since the original Habitat-Net model had 3 convolutional layers per block as
opposed to the usual 2 in U-Net. We therefore added an argument “layers_per_ block”, but found no
advantage of using 3 layers and thus used 2 layers (as in the standard U-Net architecture) for our pre-trained
models.

It is also possible to create a U-Net++ architecture with the u_net_plusplus function. the main difference
to standard U-Net is the introduction of nested, dense skip pathways (see Zhou et al. 2018)

Here, we create a model architecture for input of 256x256 pixels in the standard U-Net architecture, but
with 16 filters only (instead of 64 in the original U-Net, to simplify things and reduce model run time). See
7u_net for details. There are many more things one can adjust, e.g. dropout rate, whether to use batch
normalization, and possible more target classes (for other classification problems).

Now we can define the model architecture for input images of 256x256 pixels, using 16 filters.

model <- u_net( 256,
256,
16)

Compile model

After creating the model architecture the model needs to be compiled. In this step we also decide what
optimizer to use, which loss function (to assess model quality), and further metrics we’d like to monitor.

For this vignette we define the loss function and dice coefficient (model quality measure) manually. We
provide both in our package.

# load loss functions

bce_dice_loss <- imageseg:::bce_dice_loss
dice_coef <- imageseg:::dice_coef
jaccard_index <- imageseg:::jaccard_index

Compile model with Adam optimizer, using BCE Dice loss for optimization, and additionally monitoring
Dice coefficient.

model %>% compile(
optimizer_adam(),
bce_dice_loss,
list(custom_metric("dice_coef", dice_coef),
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custom_metric("jaccard_index", jaccard_index))

Train model

Now we are ready to train our model. Since this is only a little example we will only train it for a few epochs
(thus training is incomplete and the model will be bad). We also have way too little data in this example to
do any meaningful training, so this is only for demonstration.

One last step before model training, we need to decide on the number of epochs and the batch size. One
epoch is a one training pass over each training image. More epochs lead to better training results, but may
result in overfitting. Batch size is the number of samples per training pass. Default = 32, but is unattainable
on most hardware with our model. The model learns faster with smaller batches due to more frequent updates
of weights (more passes per epoch), but that introduces more stochasticity. Higher batch sizes require more
memory.

# Set epochs and batch size
epochs <- 50
batch_size <- 8

Now we can start model training with the fit function. Note we also set validation_data to use the
validation data we created above. Alternatively, one can use validation_split (which automatically keeps
aside an adjustable fraction of training data), but that would in this example imply using augmented data
for validation, which is usually not recommended. In both cases, validation data are used to check validation
loss and accuracy during training in order to prevent overfitting.

history <- model ¥>% fit(

x_train,

y_train,

epochs,
batch_size,
# validation_split = 0.15
list(x_val, y_val),

)

We can plot how the model learned (loss and Dice coefficient over the iterations). Note that in this example
only little learning happens because we provided only a handful of training data.

plot_history <- plot(history)
plot_history

## “geom_smooth()” using formula 'y ~ x'
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Evaluate model

We used the test data created above for model assessments in using the evaluate function.

scores <- model %>% evaluate(
x_test, y_test, verbose = 0

)

print(scores)

Predictions

As above we can use the trained model to do predictions (ideally on unseen data). We will use the test data
for demonstration.

out <- imageSegmentation(model, x = x_test)
out$examples
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The left column shows the input image, central column the predictions (as probabilities), and the right
column the binarized canopy masks (based on the central column, with a threshold of 0.5).

It’s not perfect and the gray color in some images of the central column indicates the model is not too certain,
but this model was trained on only 48 images, so this performance is still remarkably good.

Saving the model

Now that the model is trained we can save it as a hdfb file.

wd_model <- "C:/Path/To/Your/Model" # dummy directory, please adjust
save_model_hdf5(model, "my_model.hdf5")

Loading the model
As shown above the model can be loaded again from the hdf5 file using 1oadModel.

Now we can easily do predictions with the model we just trained. To do so we need to load it from the hdf5
file (if you used different metrics or loss functions, provide them via the custom_ objects parameter).

If you used the same metrics we did, you can use the helper function loadModel as above.

model <- loadModel( file.path(wd_model, "my_model.hdf5"))

Part 3: Continued training on an existing model

Here we demonstrate how to use the provided pre-trained model and continue training with new data. This
can be relevant if you wish to use our trained model and its weights as a foundation and adapt it to your
own data.

The little toy data set we use is too small to change much about the model, and the number of training
epochs is also very low, but it is only meant to demonstrate the workflow.
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First we load the model (same as above in Part I):

model_file <- "D:/Projects/imageseg/models/canopy/imageseg_canopy_model.hdf5"
model <- loadModel ( model_file)

# Set epochs and batch size
epochs <- b # set a low number for demonstration here
batch_size <- 8

history <- model %>% fit(
x_train,
y_train,
epochs,
batch_size,
0.15
)

plot_history <- plot(history)
plot_history
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Now we have continued training on the existing model using new training data.

The updated model can be used for predictions as shown above.

Part 4: Multi-class models

So far, all predictions were binary. Internally, these networks only learn how to predict 1 class, so in the
examples above U-Net learned to recognize sky, or the red flysheet. In models with multiple classes, we can
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for example train the model to recognize vegetation and the red flysheet as two separate classes. Applications
are not limited to forestry, it can be used for arbitrary image segmentation problems, e.g. in medical images,
cell biology or microscopy as demonstrated below.

Here we will give an example demonstrating the fundamentals of image segmentation with multiple classes.
The example contains microscopic images in which the model learns to differentiate red blood cells, bacteria
and background.

Example 1: Bacteria detection with darkfield microscopy

Here we use the “Bacteria detection with darkfield microscopy” dataset from kaggle (https://www.kaggle.com
/longnguyen2306 /bacteria-detection-with-darkfield-microscopy). It is relatively small with 366 images and
their segmentation masks. The masks contain 3 values (0 = background, 1 = erythrocyte, 2 = spirochaete).

The task is to differentiate the three classes.

We give two implementations. The first is rather simple and straightforward. The second is more complex
and uses data augmentation and some other little tricks to improve model performance.

After download of the data and unzipping them, we have two folders: “images” and “masks”, each with 366
images.

wd_in <- "D:/Testing/imageSegmentation/kaggle/cells_bacteria/original"
wd_out <- "D:/Testing/imageSegmentation/kaggle/cells_bacteria/resize256"

The original images and masks come in different sizes. So we first resize all images to consistent dimensions
(256x256 pixels).

resizeImages( file.path(wd_in, "images"),
c (256, 256),
TRUE,
file.path(wd_out, "images"))

resizeImages( file.path(wd_in, "masks"),
c(256, 256),
TRUE,
file.path(wd_out, "masks"))

preserveAspect = TRUE ensures the aspect ratio of the images is preserves, but it also means that images
are cropped to be square, so we lose some information. It seems more appropriate than changing the aspect
ratio though, since the dimensions of the images vary strongly.

Now we can load the resized images:

img <- loadImages(file.path(wd_out, "images"))

## found 366 images
mask <- loadImages(file.path(wd_out, "masks"))

## found 366 images

And have a look at the images:
# image
img$img[1]
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# mask (image_modulate is to increase the brightness and make the classes wvisible)
# note that the double borders in the mask are present im the training data
magick: :image_modulate (mask$img[1], 10000)

Note that the mask is not perfect, the cells and the bacterium have some sort of outline which is not ideal.
We can still fit our models, it’s just something to be aware of.

As mentioned above, there are 3 classes:

n_classes <- 3
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Converting the images to model input (arrays). x = images, y = masks.

x <- imagesToKerasInput (img)

## colorspace is sRGB
## 366 images, 256 x 256 pixels, 3 color channels

y <- imagesToKerasInput( mask,
"mask" s
n_classes)

## colorspace is Gray
## 366 images, 256 x 256 pixels, 3 color channels

Define the test/training/validation split and create test and training data. In this example, we don’t do data
augmentation and can therefore use validation_ split directly in the model fitting function. We therefore
don’t need to explicitly generate the validation data beforehand.

test_split <- 0.2 # 20/ of images for testing
validation_split <- 0.1 # 104 of images for walidation
split_tmp <- split_data( nrow(x), test_split, 100)

index_test <- split_tmp$index_test
index_train <- split_tmp$index_train

x_test <- x[index_test,,,]

y_test <- yl[index_test,,,, drop = FALSE]
x_train <- x[index_train,,,]

y_train <- y[index_train,,,, drop = FALSE]

In this application, we are more interested in the cells and bacteria than the background, but the background
is more prevalent in most images. To counter this imbalance we can apply weights to ensure the model
pays more attention to the cells and bacteria than the background. Technical note, argument class_weight
in keras:fit() is not suitable here and we need to use sample weight instead. Fore details see https:
/ /www.tensorflow.org/tutorials/images/segmentation#optional imbalanced_ classes and_ class_weights.

Unfortunately, sample_ weight is not compatible with the use of the sampling generator in example 1B, so we
only demonstrate it in example 1A.

Define weights for each pixel, based on the input masks. This is used in weighing the loss, so as to give more
weight to the correct identification of bacteria.

sample_weight <- array(NA, c(dim(y_train) [1:3], 1))
sample_weight [y_train[,,,1] == 1] <- 1 # background

sample_weight [y_train[,,,2] == 1] <- 1 # erythrocyte
sample_weight [y_train[,,,3] == 1] <- 1.2 # spirochaete

Now that the foundation is set, let’s fit some models.

Example 1A: Simple model

Create U-Net model for input of 256x256 pixels with 3 classes:

model <- u_net (256,
256,
n_classes)
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Compile the model. Note that we now use a different loss function (loss__categorical_crossentropy) which
is suitable for classification with multiple classes (not binary as above). Furthermore, we also return
metric_ categorical _accuracy.

model %>% compile(
optimizer_adam(),
loss_categorical_crossentropy,
list(metric_categorical_accuracy)

)

Set epochs and batch size:

epochs <- 20
batch_size <- 8

Fit the model:

history <- model %>% fit(
x_train,
y_train,
epochs,
batch_size,
validation_split,
sample_weight

)

Having a look at loss and accuracy during training:

plot_history <- plot(history)
plot_history

## ~geom_smooth()” using formula 'y ~ x'
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Model evaluation:

scores <- model %>% evaluate(
x_test, y_test, verbose = 0

)

print(scores)

## loss categorical_accuracy
## 0.1085260 0.9579784

Using the trained model for predictions. Here we use the test data for prediction.

out <- imageSegmentation(model, x = x_test)

In the example images, the order is:

e column 1: model input

o column 2: most probable class (coded as grayscale)

o column 3: probability of class 0 (background), white = high, black = low
o column 4: probability of class 1 (erythrocyte), white = high, black = low
o column 5: probability of class 2 (spirochaete), white = high, black = low

out$examples[1]
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out$examples[2]
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Example 1B: More complex model

Here we create a more realistic example with some extras: data augmentation, using a sampling generator,
callbacks to prevent overfitting, and a different model architecture (U-Net++ instead of U-Net).
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Be careful, it requires lots of memory, so better only try this if you have 32Gb or more of RAM!

First, we split the data

test_split <- 0.2 # 207 of images for testing
validation_split <- 0.1 # 107 of images for wvalidation

split_tmp <- split_data(n = nrow(img$info), frac_test = test_split, frac _val = validation_split, seed =

# get indices of values 1 (test), 2 (validation), 3 (training images)
test_index  <- split_tmp$index_test

val_index <- split_tmp$index_val

train_index <- split_tmp$index_train

For data augmentation we rotate images, mirror them along their horizontal and vertical axes, and apply
some random shifts in brightness, saturation and hue to 20% of the images.

img_aug <- dataAugmentation(images = img,
rotation_angles = c(0, 90, 180, 270),
subset = train_index,
flip = TRUE,
flop = TRUE,
fraction_random_BSH = 0.2)

mask_aug <- dataAugmentation(images = mask,
subset = train_index,
rotation_angles = c(0, 90, 180, 270),
flip = TRUE,
flop = TRUE)

The images are converted to keras input (arrays):

x_train <- imagesToKerasInput(img_aug)

## colorspace is sRGB

## 1542 images, 256 x 256 pixels, 3 color channels

y_train <- imagesToKerasInput(images = mask_aug,
type = "mask",
n_class = n_classes)

## colorspace is Gray
## 1542 images, 256 x 256 pixels, 3 color channels

Next, we split the augmented data into test / training and validation data. During model training we use a
sampling generator to prevent memory problems, but when we do so we need to explicitly provide validation
data and can’t just define fit (..., validation_split = ...) like we did above.

# train / validation / test split
set.seed(100) # for reproducibility

train_index <- sort(sample(l:nrow(z), round(nrow(z) * (1 - test_split))))

# select validation (rest is training)

#

#

#

# # select training images (rest is for testing /validation)

#

#

#

# validation_index <- sort(sample(train_indez, round(length(train_index) * validation_split)))

# subset test data
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x_test <- imagesToKerasInput (img,
subset = test_index)

## colorspace is sRGB

## 73 images, 256 x 256 pixels, 3 color channels

y_test <- imagesToKerasInput(images = mask,
subset = test_index,
type = "mask",
n_class = n_classes)

## colorspace is Gray
## 73 images, 256 x 256 pixels, 3 color channels

# x_test <- z[test_indexz,,,]
# y test <- yl[test_indez,,,, drop = FALSE]

# subset walidation data
x_val <- imagesToKerasInput(img,
subset = val_index)

## colorspace is sRGB

## 36 images, 256 x 256 pixels, 3 color channels

y_val <- imagesToKerasInput(images = mask,
subset = val_index,
type = "mask",
n_class = n_classes)

## colorspace is Gray
## 36 images, 256 x 256 pixels, 3 color channels

# x_wval <- z[val_indez,,,]
# y val <- y[val_indez,,,, drop = FALSE]

# # subset training data
# x_train <- z[train_index[!train_index Jinj validation_indezx],,,]
# y_train <- y[train_indexz[!train_index Jin/ wvalidation_index],,,, drop = FALSE]

Define the data generator function. It returns batch-sized chunks of the input data.

sampling_generator <- function(x_data, y_data, batch_size) {
function() {
rows <- sample(l:nrow(x_data),
batch_size,
replace = TRUE)
list(x_datalrows,,,, drop = FALSE], y_datalrows,,,, drop = FALSE])
}
}

Define the model. Here we use a U-Net++ architecture with 32 filters and 3 output classes.

model <- u_net_plusplus(uet w = 256,
net_h = 256,
blocks = 3,
n_class = n_classes,
filters = 32)
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Model compilation is identical to the model in Example 1A.

model %>% compile(
optimizer_adam(),
loss_categorical_crossentropy,
list(metric_categorical_accuracy)

)

Set epochs and batch size (epochs a little lower than above due to the increased number of images from data
augmentation).

epochs <- 15
batch_size <- 8

Callbacks can be useful to prevent overfitting. Here we reduce the learning rate when training stagnates (call-
back reduce Ir _on_ plateau), and stop training it training stagnates a bit longer (callback_early stopping).
The maximum number of epochs is so low (for demonstration) that we will likely not need early stopping
though, but it can help prevent excessively long model training without further improvements.

callbacks <- list(callback_early_stopping( TRUE, ilg
callback_reduce_lr_on_plateau( 0.2, 3, 1))

The call to fit() is a little different than before due to the sampling generator (which is passed to argument x,
with y being empty). Using the sampling generator also requires us to explicitly define and pass the validation
data (instead of just using the validation split). Furthermore this fit() uses the callbacks mentioned above.
history <- model %>% fit(
sampling_generator(x_train, y_train, batch_size),
epochs,
round (nrow(x_train) / batch_size),
list(x_val, y_val),
callbacks

)

Plot model training:

plot_history <- plot(history)
plot_history

## ~geom_smooth()” using formula 'y ~ x'
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Model evaluation:

scores <- model %>% evaluate(
x_test, y_test, verbose = 0
)

print(scores)

## loss categorical_accuracy
## 0.08531713 0.96495414

categorical crossentropy is 0.085 and categorical accuracy is 0.965.

Now we can use the trained model to classify some images:

out <- imageSegmentation(model, x = x_test)
out$examples[1]
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out$examples[2]
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The U-Net++ architecture used here is less deep than the U-Net architecture in Example 1A above and has
only about one quarter the number of parameters. Nevertheless, performance of U-Net++4 is approximatly
equal to a larger U-Net architecture.
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Part 5: Models using grayscale images

So far all models we saw used color images with 3 channels (RGB) as input.

To conclude this vignette, here is an example of a binary classification using grayscale images instead of color
images as input. It uses the Breast Ultrasound Images Dataset from kaggle (https://www.kaggle.com/aryas
hah2k/breast-ultrasound-images-dataset). The dataset contains 780 images of ultrasound scans for breast
cancer in three folders: normal, benign and malignant. The masks indicate the tumors in the scan images

For this example, we will simply conduct a binary classification, not differentiating between benign / malignant
tumors.

After downloading and unzipping the data, we resize images and masks to 256x256 pixels. Again, this is only
for ease of computation. On more powerful hardware (particularly with more graphics memory) you can use
larger images. the original images are around 500x500 pixels.

wd <- "D:/Testing/imageSegmentation/kaggle/breast-ultrasound-images-dataset/Dataset_BUSI_with_GT"
wd_resized <- "D:/Testing/imageSegmentation/kaggle/breast-ultrasound-images-dataset/Dataset_BUSI_with_G

resizeImages (wd,
c(256, 256),
wd_resized)

There is a minor issue with these images. Some images contain multiple tumors, which are saved in separate
mask files. Our models require one mask per image though. For the sake of simplicity, we will remove those
images. This ensures that there are only images with one mask in our data set. The better solution would be
to combine the multiple masks though (adding them).

First, we list all files in the three directories:

1f <- list.files(wd_resized, TRUE, TRUE)

Now we identify all mask images called “mask_1” and “mask_2” and their corresponding images, and remove
them from the list of file names:

which_extra_mask_1 <- grep("mask_1", 1f)

to_remove <- c(sort(c(which_extra_mask_1, which_extra mask_1 - 1, which_extra_mask_1 - 2)),
grep('"mask_2", 1f))

1f_subset <- 1f[-to_remove]

# check that equal number of images and masks remains
summary (grepl("mask", 1f_subset))

## Mode  FALSE TRUE
## logical 763 763

We can now load the images using loadImages, utilizing the argument fileNames this time:

img <- loadImages( 1f_subset, "mask", FALSE)

## found 763 images
mask <- loadImages( 1f _subset, "mask", TRUE)

## found 763 images
This is what the images and masks look like:

magick: :image_append( c(
magick: :image_append(c(img$img[1], img$img[2]), T,
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magick: :image_append(c(mask$img[1], mask$img[2]), T)
)

-
|-

-

# note: image_append() ts only for combining and arranging images

Now let’s split the data into test/training/validation datasets.

test_split <- 0.2 # 20 of images for testing
validation_split <- 0.1 # 107 of images for wvalidation
split_tmp <- split_data( nrow(img$info), test_split,
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# get indices of wvalues 1 (test), 2 (validation), 3 (training images)
test_index  <- split_tmp$index_test

val_index <- split_tmp$index_val

train_index <- split_tmp$index_train

Convert images and masks to 4D arrays for keras:

x_train <- imagesToKerasInput (img,
"image",
TRUE,
train_index)

## Different colorspaces in input images: Gray, sRGB . Will convert all to Gray

## 535 images, 256 x 256 pixels, 1 color channels
y_train <- imagesToKerasInput( mask,

I|maskl| s

train_index)

## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.
## 535 images, 256 x 256 pixels, 1 color channels
In contrast to the examples above, x has only 1 color channel, i.e., it contains grayscale images:

dim(x_train) # the last value is the number of color channels

## [1] 535 256 256 1

Create the test/training/validation split:

x_test <- imagesToKerasInput (img,
"image",
TRUE,
test_index)

## Different colorspaces in input images: Gray, sRGB . Will convert all to Gray

## 152 images, 256 x 256 pixels, 1 color channels
y_test <- imagesToKerasInput ( mask,
"mask" s
test_index)
## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.
## 152 images, 256 x 256 pixels, 1 color channels

x_val <- imagesToKerasInput(img,
"image",
TRUE,
val_index)

## 76 images, 256 x 256 pixels, 1 color channels
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y_val <- imagesToKerasInput ( mask,
"mask" s
val_index)
## colorspace is Gray
## masks are not discrete. Found 256 unique values. Fixed through rounding.
## 76 images, 256 x 256 pixels, 1 color channels

Now we can create the model architecture with the default 1 class for predictions (which in this case will be
tumors). In this example we use U-Net with 32 filters, input images are grayscale, and output is one class.

# model <- u_net_plusplus(net_w = 256,

# net_h = 256,
# blocks = 3,
# grayscale = TRUE,
# n_class = 1,
# filters = 32)
model <- u_net( 256,
256,
TRUE,
1,
32)

Model compilation, using binary crossentropy loss and also measuring binary accuracy.

model %>% compile(
optimizer_adam(),
loss_binary_crossentropy,
list(metric_binary_accuracy)

)

Set epochs and batch size:

epochs <- 20
batch_size <- 8 # U-Net++ requires lots of graphics memory. Reduce batch_size to avotid out—of-memory

We use the same sampling generator as above:

sampling_generator <- function(x_data, y_data, batch_size) {
function() {
rows <- sample(l:nrow(x_data),
batch_size,

TRUE)
list(x_datal[rows,,,, FALSE], y_datalrows,,,, FALSE])
}
}
And can now train the model:
history <- model %>% fit(
sampling_generator(x_train, y_train, batch_size),
epochs,
round (nrow(x_train) / batch_size),
list(x_val, y_val),
callbacks
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Plot training progress

plot_history <- plot(history)
plot_history

## ~geom_smooth()” using formula 'y ~ x'
°

1000 -

loss

500 -

0- S=C—=C—=—=0—C—C—C—C—C0—C—C—0

1.00-

0.75- data

0.50 - =8= ftraining
=e= validation

0.25-

binary_accuracy

0.00100 -

0.00075 -

Ir

0.00050 -
0.00025 -

0.00000 -

epoch

Model evaluation:

scores <- model %>% evaluate(
x_test, y_test, verbose = 0
)

print(scores)

#i# loss binary_accuracy
## 0.1571552 0.9492634

Perform image segmentation on test images. Note the argument “threshold”, which is set to 0.9. This will
only return pixels with a high predicted probability as positives (in other words, where the model is highly
confident):

out <- imageSegmentation(model,
x = X_test,
threshold = 0.8)

Again, the left column of the following two example images shows the model input, the central column shows
the model prediction (as probability), the right column shows the binary classification (only areas with
probability > 0.8 are indicated).
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out$examples[1]
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out$examples [2]

Model performance is not perfect since it is a relatively small data set and we did not do any data augmentation
here, which would almost certainly have improved predictions. Given these constraints model performance is
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still decent.
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