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All you really need to know for the moment is that the universe is a lot more complicated than

you might think, even if you start from a position of thinking it’s pretty damn complicated in the

first place. – Douglas Adams

Introduction

A important concern regarding SSE models (State Speciation and Extinction; Maddison et al 2007) was
recently raised by Rabosky and Goldberg (2015). They demonstrated that if a tree evolved under a
heterogeneous branching process that is completely independent from the evolution of the focal character,
SSE models will almost always return high support for a model of trait-dependent diversification. From
an interpretational stand point, this is troubling. However, a common misconception is that SSE models
are typical models of trait evolution like those in, say Pagel (1994) or O’Meara et al. (2006), which simply
maximize the probability of the observing trait information at the tips, given the tree and model – the tree
certainly affects the likelihood of observing the configuration of trait data at the tips, but that is the only
way it enters the calculation. An SSE model, on the other hand, actually jointly maximizes the probability
of the observed states at the tips and the observed tree, given the model. This is an important distinction
because if a tree violates a single regime birth–death model due to mass extinction events, trait-dependent
speciation or extinction, maximum carrying capacity, or whatever, then even if the tip data are perfectly
consistent with a simple transition model, the tip data plus the tree are not. In such cases BiSSE is very
wrong in assigning rate differences to a neutral trait, but a simple equal rates diversification model is not
correct either. This leaves practitioners in quite the bind because the “right” model isn’t something that can
be tested in BiSSE. This is elaborated on in the discussion of Beaulieu and O’Meara (2016).

Nevertheless, these results have created concerns among empiricists with respect to SSE models. There are

reasons to be concerned, but a deeper issue is misinterpretation of hypothesis testing. First, rejecting the null
model does not imply that the alternative model is the true model. It simply means that the alternative
model fits less badly. Second, in biological examples, including many of those used for testing Type I error,
it isn’t Type I error at all. It is simply rejecting model A, for model B, when model C is true. There is a
mnemonic for remembering Type I versus Type II error that was recently making the rounds on social media
– the story of the boy that cried wolf. When he first cried wolf, but there was no wolf, he was making a Type
I error – that is, falsely rejecting the null of a wolf-free meadow. When the townspeople later ignored him
when there was actually a wolf, they were making a Type II error. If the sheep were instead perishing in a
snowstorm, and the only options for the boy are to yell “no wolf!” or “wolf!” it is not clear what the best
behavior is – “no wolf” implies no change in sheep mortality rates from when they happily gambol in a sunny
meadow, even though they have begun to perish, while “wolf” communicates the mortality increase but has
the wrong mechanism. It is the same here when looking at a tree coming from an unknown but complex
empirical branching model and trying to compare a constant rate model (“no wolf”) with a trait-dependent
(“wolf”), age-dependent (“bear”), or density-dependent model (“piranha”).

The major problem in our view is that ever since SSE models became standard practice, we have relied a bit
too heavily on rather trivial “null” models (i.e., equal rates diversification) to compare against models of trait
dependent diversification. Given the rich complexity of processes affecting diversification (mass extinctions,
local extinctions, competition, biogeographic changes, etc.) and trait evolution (varying population size,
selection pressure, available variation, etc.), a comparison of “one rate for all time for all traits” vs “something
a bit more complex” will usually return the latter. A fairer comparison would involve some sort of
“null” model that contains the same degree of complexity in terms of numbers of parameters
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for diversification, but is also independent of the evolution of the focal character, to allow for
comparisons among any complex, trait-dependent models of interest.

In Beaulieu and O’Meara (2016), we proposed two such models. These character-independent (CID)
models explicitly assume that the evolution of a binary character is independent of the diversification process
without forcing the diversification process to be constant across the entire tree. The first model, which we
refer to as “CID-2”, contains four diversification process parameters (two speciation and two extinction
rates) that account for trait-dependent diversification solely on the two states of an unobserved, hidden trait
(which could be, in reality, a set of traits, environmental conditions, etc. – just something that leads to two
different rates). In this way, CID-2 contains the same amount of complexity in terms of diversification as a
BiSSE model. The second model, which we refer to as “CID-4” contains the same number of diversification
parameters as in the general HiSSE model that are linked across four hidden states. Practical details on how
to set them up in hisse can be found in the Running HiSSE vignette.

In our HiSSE paper, we conducted a series of simulations to assess the behavior of including these character-
independent models. Specifically, we generated species tree evolved under complex, and sometimes unknown,
diversification processes, and focal traits being evolved on them independent of the diversification process. In
all cases, when the generating model was consistent with character-independent diversification, we found our
CID models substantially reduced the evidence favoring the trait-dependent models (i.e., BiSSE and HiSSE).
In fact, we even tested what we referred to as a “worst-case” scenario, which involved simulating trees where
the speciation rate evolved in a heterogeneous manner, and again simulating a neutral binary character onto
them. Without our CID models being included in the set of models under evaluation, BiSSE had substantial
support nearly 80% of the time. However, when we added just the CID-2 model, only 1% of those same data
sets showed substantial support for BiSSE. When we tested the full set, which included both HiSSE and
CID-4, in addition to BiSSE and CID-2, roughly 16% of the time either the BiSSE or HiSSE model had
substantial support (though this is still above the 5% nominal eror rate). Comparing the parameter estimates
from those data sets indicated that the differences in the parameter estimates among the different observed
states were minimal. Thus, even if a trait-dependent model were to be chosen, the parameter estimates would
suggest any rates differences are likely biologically insignificant.

HiSSE vs. FiSSE

Recently, Rabosky and Goldberg (2017) proposed a simple nonparametric test for determining the effect of a
binary character on rates of diversification. The performance of FiSSE is encouraging from the standpoint
of model rejection – under a range of very difficult, and often extreme scenarios, FiSSE can differentiate
between scenarios of trait-dependent and trait-independent diversification fairly well (see their Fig. 6). For
good measure, they also compared the performance of our parametric, process-based HiSSE under these same
scenarios, and found that while the inclusion of our CID-2 model reduced the overall “false positive” rate of
BiSSE, the use of BiSSE + CID-2 + HiSSE resulted in nine of 34 trait-independent diversification scenarios
(referred to as SDD in Rabosky and Goldberg 2017) having “false-positive” rates in excess of 25%.

While we do not dispute the results as they are presented in Rabosky and Goldberg (2017), we do feel that
the HiSSE model comparisons were not conducted quite in the manner in which we intended. If even experts
in this area missed this, it suggests we need to do a better job explaining CID models. As stated above,
the CID-2 model was derived to contain the same amount of complexity in terms of diversification as a
BiSSE model. That is, our CID-2 has two speciation rates (λ0A = λ1A, λ0B = λ1B) and two extinction rates
(µ0A = µ1A, µ0B = µ1B), as does BiSSE (λ0, λ1, µ0, µ1). However, when HiSSE is included, it is much more
complex than either BiSSE or CID-2. So, again, if the complexity of the process that generated the tree
exceeds that of the CID-2 model in any of the non-SDD scenarios, then we should expect the more complex
HiSSE model to fit better for precisely same reasons as described above. In other words, the model in the set
that best matches the complexity of the scenario is in fact a trait-dependent model of diversification. This is
precisely why we also derived the CID-4 model, which equals the same complexity as HiSSE. Like HiSSE,
which has four speciation rates (λ0A, λ1A, λ0B , λ1B) and extinction rates (µ0A, µ1A, µ0B , µ1B), the CID-4
also has four speciation rates (λ0A = λ1A, λ0B = λ1B, λ0C = λ1C , λ0D = λ1D) and four extinction rates
(µ0A = µ1A, µ0B = µ1B , µ0C = µ1C , µ0D = µ1D). Importantly, while these two models are equally complex
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with respect to diversification “rate classes”, they also have entirely different interpretations with respect to
whether or not they are associated with changes in a focal character state.

Reanalysis of Rabosky and Goldberg (2017) with CID-4 in the set

First, a brief note about the trait-independent scenarios (i.e., no SDD) presented in Rabosky and Goldberg
(2017). Usefully, these represent some of the most extreme cases we have encountered when testing the
performance of HiSSE. For example, out of the 34 trait-independent scenarios, 27 were trees either simulated
(19 of the 27 scenarios) to have a total height of 1, or were empirical trees (8 of the 27) that were rescaled so
that their total height is 1. In most uses of *SSE models, tree height is usually in units of millions of years
and so usual tree heights are dozens to even hundreds of years. While the only effect of this should be a
linear scaling of rates on the height 1 trees compared to chronograms, with no real effect other than difficulty
interpreting units of the rates, in practice given numerical integration this can lead to issues. Analogously:

a <- 1e-100

a == 2 * a

## [1] FALSE

b <- 1e-1000

b == 2 * b

## [1] TRUE

The tests of equality are the same, and in each case the number on the left is half that on the right, but the
second one shows TRUE due to numerical underflow. Of course, this is a numerical issue with a solution.
Starting with version 1.8.3 the optimization defaults to a bounded subplex routine where we set the upper
bounds to be reasonable with respect what we think is biologically realistic. For example, the upper bound on
turnover (i.e., λi + µi) is set to 10,000, which assumes, on average, one event every 100 years on a chronogram
in units of millions of years. For extinction fraction, (i.e., µi/λi), the upper limit is set to 3, which, in our
view, far exceeds the extinction fraction of any observable extant clade. We also now include a new setting,
ode.eps, that sets the tolerance for the integration at the end of a branch. Essentially, if the sum of the
probability of Di is less than this tolerance, then it assumes the results are unstable and discards them. For
the present purposes, however, the ode.eps was set to zero.

Using code helpfully provided by Rabosky and Goldberg (2017), we refit and summarized the same BiSSE
+ CID-2 + HiSSE model set as described in the paper. When evaluating these models using our updated
optimization routine we found that with the trait-independent scenarios we actually do slightly worse than
described in the original study. Of the 34 non-SDD, 13 had “false positive” rates that exceeded 25%, which
we suggest is due to optimization failures in the previous version of HiSSE. But, generally, our results hew
rather closely to Rabosky and Goldberg (2017). The BiSSE + CID-2 + HiSSE model set still shows improved
power over FiSSE with scenarios of trait-dependent diversification, and with trait-independent diversification
the same data sets that performed poorly in their analysis remain poor performers in our reanalysis (Fig. 1).

We then fit a fourth model, CID-4, and reevaluated the “false positive” rate for a model set that now includes
BiSSE + CID-2 + HiSSE+ CID-4. Again, the use of CID-4 is to provide a model that has the same complexity
in terms of diversification as HiSSE, but allows for an entirely different interpretation with respect to whether
or not they are associated with changes in a focal character state. It is something we suggest anyone use
when running HiSSE, especially if the question is about model rejection. The HiSSE model used by Rabosky
and Goldberg (2017) included three transition rates, rather than the full eight transition rates that HiSSE
allows. We therefore used the trans.type="three.rate" when running the hisse.null4() function, so the
two models have exactly the same number of parameters.

When CID-4 is included in the model set, the power to detect trait-dependent diversification remains
completely unchanged, and exhibits greater statistical power compared to FiSSE (Fig. 2A). For the trait-
independent diversification scenarios (Fig. 2B), the inclusion of CID-4 in the model set almost always results
in a reduction in the “false positive” rate for each scenario. In several instances the drop in spurious support
for a trait-dependent diversification model was substantial. For example, scenario 50, which involves a
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Figure 1: Reanalysis of the Rabosky and Goldberg (2017) using a bounded subplex optimization routine.
Overall, the results from the updated optimization routine closely follow those presented in the original study.

density-dependent tree and fast evolving neutral trait (i.e., q=10), went from 84% of the data sets supporting
a trait-dependent model of diversification, to only 8% support when CID-4 is included in the set.
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Figure 2: Reanalysis of the Rabosky and Goldberg (2017) when our 4-state character independent model,
CID-4, is included in the model set (dark blue boxes). When compared against the fit of BiSSE, CID-2,
and HiSSE, the (A) power to detect the trait-dependent diversification remains unchanged. For the trait-
independent scenarios (B), there is almost always a reduction in the ‘false positive’ rate (as indicated by
the difference in the position of the light blue and dark blue boxes), and in many cases the reduction is
substantial.

There are, however, three scenarios that remain problematic for HiSSE (scenarios 37, 41, and 42; Fig. 2B).
Interestingly, all three were generated from the same empirical tree, which is a large supertree of corals.
Branch lengths in this empirical tree were rescaled from their original units so that the total height was
1. Furthermore, with scenario 37, we are conflicted as to whether this truly represents a trait-independent
model of diversification. As described by Rabosky and Goldberg (2017), this data set is a “neutral trait
simulated on an empirical tree, with a rapidly diversifying clade then fixed (manually) to a single value of the
trait.” In other words, a clade at, or at least near, a major shift in diversification was fixed to a particular
state regardless of the the process the character was simulated under. At best, we would agree that this
scenario represents a special case more in line with the “Darwin scenario”” discussed in detail by Maddison
and FitzJohn (2015). These special cases reflect either a single pseudoreplicated event or ascertainment bias
of a much larger clade, and thus should not statistically have enough power to be properly be defined as a
trait-dependent diversification. In any case, clearly scenarios 41 and 42 remain problematic for HiSSE.

We also closely examined each of the data sets from the trait-independent scenarios and found nothing
obvious about them that may be useful predictors of the “false positive” rate. For example, the parsimony
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Figure 3: Relationship between parsimony score of the simulated character and the proportion of data set
that returned spurious support for trait-dependent diversification. (A) Across all trait-independent scenarios,
there was no trend, but when examining only the scenarios that modified empirical trees (B), there was
a postive trend between parsimony score and the ‘false positive’ rate. (C) We also found no relationship
between Colless’ Index (Ic), which we standardized by the Ic of completely pectinate tree with the same
number of tips, and the ‘false positive’ rate, and the empirical trees (orange boxes) do not stand out as being
overly balanced or imbalanced relative to the simulated trees (blue boxes).

score, which provides a coarse indication of the minimum number of changes in the discrete character, did
not predict the percentage of the spurious support for a trait-dependent model of diversification. We do note
that when we separated the scenarios by whether or not the tree was generated through simulation or by
modifying existing empirical trees (Fig. 3B), there was a clear positive trend, though with only six data
points it is difficult to conclude whether such a pattern is real or simply coincident. We also examined the
relationship between a standardized measure of tree balance and the false positive rate (Fig. 3C), and again
we found no obvious trend, with the empirical trees neither being overly balanced, nor imbalanced, relative
to the simulated trees.

Taken together, HiSSE actually performs reasonably well for hypothesis rejection when a model set including
appropriate nulls is evaluated. These results also demonstrate how important it is, when the goal of a study is
simply model rejection, that null models are included with at least a fighting chance. We also encouraged by
the performance of HiSSE considering that the simulation scenarios put together by Rabosky and Goldberg
(2017) are rather extreme and unlikely to ever occur in an empirical setting. Of course, the failure of several
scenarios involving a particular empirical tree (i.e., coral supertree) does suggest that there may be other
empirical data sets prone to spuriously providing strong evidence for trait-dependence diversification.

Suggestions

In Beaulieu and O’Meara (2016), which describes the details of our HiSSE approach, we call for focusing
more on parameter estimation over model rejection. However, at the urging of a reviewer, we did include
analyses of model rejection. Much of the discussion of SSE models has centered on Type I error (or related
things incorrectly called Type I error). Skepticism towards models is of tremendous importance, but as a
field we now focus too much on rejecting trivial nulls. This feels scientific because it is how many of us were
taught statistics. Meanwhile, in the field of statistics, our colleagues are looking on in horror. A useful guide
is summary of the American Statistical Association’s Statement on Statistical Significance and P-Values; also
see the actual publication (Wasserstein & Lazar, 2016). It has six principles:

1. P-values can indicate how incompatible the data are with a specified statistical model.
2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the

data were produced by random chance alone.
3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value

passes a specific threshold.
4. Proper inference requires full reporting and transparency.
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5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

In certain areas of biology, we seem to stop after rejecting a null model that we already knew was false,
though to be fair it is useful to get information about whether or not an effect might be present. However, we
suggest scientists go beyond this to actually look at parameter estimates. Suppose we find the diversification
rate in state 1 is higher than state 0. Is it 0.0001% higher, or is it 300% higher? The answer could have
biologically very different implications. Rather than just rejecting nulls, we suggest using HiSSE to do
multimodel inference – compare a variety of models, look at weight for each, and make biological conclusions
based on these models and their parameter estimates. The plotting functions in HiSSE were implemented
specifically to promote this approach even when one cannot compare states directly (the diversication rate
in 0D in a CID4 model does not easily map to a 0A or 0B rate in a HiSSE model), averaged rates at tips
and nodes can be used to find estimates of rates, incorporating model uncertainty. See the Running HiSSE

vignette for more details on how to do this.
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Figure 4: Model-averaged parameter estimates of turnover and speciation from two scenarios, a true SSD
scenario (A,B) where our HiSSE model set showed high ‘false negative’ rates (i.e., failed to reject a trait-
independent scenario), and a non-SSD scenario (C,D) which exhibited a 54% false-positive rate. In the
case of the non-SSD scenario, it clearly shows that despite the poor performance of from a model rejection
perspective, examining the the model parameters would indicate that on average, there are no differences
in diversification rates among observed states. The dashed orange line represents the expected ratio to be
compared against a ratio of difference in diversification rates between state 0 and 1 denoted by the dotted
black line.

We can demonstrate the importance of examining model parameters over model rejection by summarizing the
ratios in diversification between observed states 0 and 1 for two scenarios in which HiSSE performed poorly
from a model rejection perspective. We have now added two new functions, GetModelAveTipRates() and
GetModelAveNodeRates(), which provide model-averaged rates while also accounting for uncertainty in both
states for tips and nodes when provided a list of reconstructions (identical to set up plot.hisse.states() –
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see Running HiSSE vignette). Take, for instance, the true-SSD scenario 6, where 30% of the data sets failed
to “reject” the null of a non-SSD interpretation (i.e, a “false negative” rate). The ratio of the turnover rate
of state 0 to state 1 (which is average across the hidden state), however, was correctly estimated to be less
than 1 (simulation had speciation for state 0 50% that of state 1) in all but four data sets (median tip ratio
turnover was 0.67; Fig. 4A). In the four cases in which the state 0 had a higher turnover rate than state 1,
and hence a tip ratio >1, was due to highly inaccurate estimates of extinction for state 0, which inflated the
turnover rate. Indeed, when examining the speciation rate alone, all data sets returned a model-averaged
ratio that was less than 1 (median tip ratio for speciation was 0.63; Fig. 4B).

An even more striking example comes from the non-SSD scenarios. Scenario 42, which exhibited one of the
worst “false positive” rates even after accounting for CID-4 in the model set had model-average tip ratio
distribution that was centered on 1 (the median tip ratio for turnover and speciation was 1.01 and 1.00,
respectively), as it should, indicating no rate differences among the observed states. Of course, when we
examined the limits of these results by determining the number of data sets that exceeded 10% on either side
of 1, only 70% of all data sets fall within this range. So, it is possible that spuriously significant rate differences
may still be returned. However, the important point is that when we examine the model parameters, clearly
the situation is not as dire as it would seem had we only relied on which model fit best.
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