
Step-by-step user instructions to the

hamlet-package

Teemu Daniel Laajala

May 26, 2018

Contents

1 Analysis workflow 2

2 Loading data into R 2
2.1 Excel format data . 4
2.2 CSV-files . 4

3 Distance and dissimilarity functions 5

4 Non-bipartite optimal matching of animals at baseline 6

5 Randomization based on matched individuals 7

6 Visualizations for pre-clinical data 9

7 Paired vs. non-paired testing 9

1

Hamlet is an R package intended for the statistical analysis of pre-clinical stud-
ies. This document is a basic introduction to the functionality of hamlet and a
general overview to the analysis workflow of preclinical studies.

This document is structured as follows: First, a general overview to inputting
and processing the raw data is presented. Second, functionality is presented for
the processing of pre-intervention data. Finally, functionality is presented for the
post-intervention period, along with brief discussion on the differences between
non-matched and matched statistical approaches. Each section comes with a
list of useful functions specific for the subtask.

Latest version of hamlet is available in the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org/). CRAN mirrors are by default avail-
able in the installation of R, and the hamlet package is installable using the
R terminal command: install.packages("hamlet"). This should prompt
the user to select a nearby CRAN mirror, after which the installation of ham-

let is automatically performed. After the install.packages-call, the ham-

let package can be loaded with either command library("hamlet") or re-

quire("hamlet").
The following notation is used in the document: R commands, package

names and function names are written in typewriter font. The notation of
format pckgName::funcName indicates that the function funcName is called from
the package pckgName. If only the function name is given, this indicates that it
is located in the base package in R and is thus always available.

1 Analysis workflow

Two different types of case-control setups for the analysis of pre-clinical are
presented in Fig. 1.

The type A experiment design in Fig. 1 is preferred, as matching is per-
formed before allocation to the experiment groups, and therefore improves the
balance and power of the experiment. The alternate experiment type B re-
quires the bipartite matching task, where suitable pairs of individuals are iden-
tified over two or more groups that existed prior to matching. This document
presents a dataset where experiment design type A was used.

2 Loading data into R

The hamlet package comes pre-installed with the VCaP dataset, which is used
here to illustrate the workflow. Two different formats of the data are provided.
First one is available in data(vcapwide), which includes the data in the so-
called wide format. In this data format the columns are indicators for different
variables available for the experimental unit (here animal). For example, the
two first rows of observations are extracted with:

> require(hamlet)

> data(vcapwide)

> vcapwide[1:2,]

CastrationDate CageAtAllocation Group TreatmentInitiationWeek

ID003 100413 13489 Vehicle Week10

2

Pre-interventionNperiod

ExperimentNtypeNB

Post-interventionNperiod

InformationNonNoptimalNmatches

InterventionNperiod

StatisticalNanalyses

ExperimentNtypeNA

AllocationNtoNgroups

RandomizationNandNbalancing

Non-bipartiteNmatching

BipartiteNmatching

Figure 1: Analysis workflow for pre-clinical experiments

ID007 170413 13810 MDV Week10

Submatch ID PSAWeek2 PSAWeek3 PSAWeek4 PSAWeek5 PSAWeek6 PSAWeek7

ID003 Submatch_1 ID003 7.67 14.76 24.78 2.03 5.97 8.16

ID007 Submatch_10 ID007 2.01 5.17 8.59 14.62 1.99 2.81

PSAWeek8 PSAWeek9 PSAWeek10 PSAWeek11 PSAWeek12 PSAWeek13 PSAWeek14

ID003 13.72 16.57 21.30 45.69 54.50 53.55 27.64

ID007 4.23 5.38 7.55 9.70 17.45 22.79 21.88

BWWeek0 BWWeek1 BWWeek2 BWWeek3 BWWeek4 BWWeek5 BWWeek6 BWWeek7 BWWeek8

ID003 30.5 31.7 32.6 33.8 33.9 32.2 32.6 32.6 33.2

ID007 28.8 30.0 30.6 31.6 32.9 32.4 32.0 31.1 30.3

BWWeek9 BWWeek10 BWWeek11 BWWeek12 BWWeek13 BWWeek14

ID003 34.2 35.0 36.1 37.9 37.5 39.7

ID007 30.5 31.6 31.7 32.4 33.5 33.3

An another format of the same dataset is provided in data(vcaplong). This
is the data from the same experiment in the so-called long format, where only
few column variables are available (here PSA or body weight), and the different
observations belonging to a single experimental unit (here animal) are distin-
guished using the measurement time (variable Week or DrugWeek). Again, first
few rows of the dataset:

> data(vcaplong)

> vcaplong[1:3,]

PSA log2PSA BW Submatch ID Week DrugWeek Group Vehicle ARN MDV

11 21.30 4.412782 35.0 Submatch_1 ID003 10 0 Vehicle 1 0 0

3

Figure 2: Example Excel-format data, where rows correspond to individuals
and columns to different characteristics at baseline. The single sheet data can
be easily exported in a text-based format such as CSV.

12 45.69 5.513807 36.1 Submatch_1 ID003 11 1 Vehicle 1 0 0

13 54.50 5.768184 37.9 Submatch_1 ID003 12 2 Vehicle 1 0 0

The former wide format is useful for summarizing multiple variables when
constructing distance matrices for the data. The latter long format is typically
used for longitudinal mixed-effects modeling where observations are correlated
through time.

2.1 Excel format data

An example view of a pre-clinical dataset is given in Fig. 2. Such a dataset can
be saved in an R-friendly format by selecting option File > Save As and CSV

(Comma delimited) as the save format in MS Excel.

2.2 CSV-files

CSV (Comma Delimited Values) is a suitable text-based format for the data to
be read into R using either the function read.table or read.csv. The above
presented example CSV file can be opened with the following command:

> ex <- read.table(file="example.csv", sep=";", dec=",", stringsAsFactors=F, header=T)

> ex

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g.

1 ID003 21.30 16.57 35.0

2 ID007 7.55 5.38 31.6

4

3 ID008 23.58 17.40 33.6

4 ID009 13.17 11.14 31.7

5 ID010 9.90 9.33 34.1

6 ID016 15.05 15.29 39.6

7 ID018 13.53 12.14 34.0

8 ID025 13.13 10.91 33.3

9 ID027 9.59 8.79 32.0

10 ID031 7.04 6.95 36.6

11 ID032 8.49 8.02 34.9

12 ID037 13.74 13.38 32.4

13 ID040 23.62 19.15 35.9

14 ID045 14.27 9.80 34.8

15 ID047 6.57 6.28 31.9

16 ID054 34.72 27.14 32.1

17 ID056 28.15 22.05 32.2

18 ID058 9.74 7.68 34.0

The above presented CSV file was read into R using read.table with the
following parameters: file="example.csv" is the first parameter and indicates
the input file from our current working directory. The working directory may be
changed using the command setwd or by including its path in the file parameter,
i.e. file="D://my//current//windows//working//directory//example.csv".
sep=";" indicates that the values on each line are separated with the symbol
’;’, as is the format defined for the CSV delimited files with ”,”-decimals. This
could also be a value such as \tab or " " (space). dec="," indicates that the
”,” symbol is used for decimals. The default value for indicating decimals is ”.”
otherwise. stringsAsFactors=F indicates that strings should not be handled
as factors. Factors are an R class, where a character string may only take in-
stances of a predetermined set of strings. As each of our animal IDs - which
are read as strings - are unique, it is generally more flexible to conserve them
as character strings. Lastly, header=T indicates that the text CSV file has a
header row as the first row, which includes names for each column. If this value
is set to header=F or header=FALSE, the first row of the text file is read as the
first observation and the columns are left unnamed.

Depending on the country of origin, the CSV files may use ”.” decimals and
”,” separator, or alternatively (as assumed here) ”,” decimals” and ”;” separators.

List of useful functions:

• read.table, read.csv

• data: data(vcaplong), data(vcapwide)

3 Distance and dissimilarity functions

A distance or dissimilarity function is used to describe the amount of (dis-
)similarity between two experimental units. Common choices for computing the
amount of similarity between two vectors x and y include:

• Euclidean distance: d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2 =√∑n
i=1(xi − yi)2.

5

• Standardized Euclidean distance:
√∑N

i=1
(xi−yi)2

s2
i

• Mahalanobis distance:
√

(x− y)TS−1(x− y)

Here, x and y are expected to be observation vectors of length N , where each
dimension describes the measured value for a particular covariate. S describes
the covariance-variance matrix between covariates, and therefore incorporates
inter-correlations between variables. The standard deviation s may be used to
standardize differences in variation over the dimensions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.00 18.05 2.80 10.32 13.53 7.87 9.00 10.08 14.38 17.28 15.40 8.61 3.58 9.76 18.23 17.33 9.21 14.62
2 18.05 0.00 20.14 8.05 5.23 14.78 9.34 8.04 3.99 5.27 4.33 10.15 21.60 8.66 1.36 34.81 26.51 3.98
3 2.80 20.14 0.00 12.29 15.89 10.64 11.35 12.30 16.50 19.79 17.82 10.70 2.89 12.08 20.39 14.87 6.67 16.92
4 10.32 8.05 12.29 0.00 4.44 9.12 2.53 1.62 4.29 8.90 6.47 2.42 13.82 3.55 8.20 26.84 18.54 5.39
5 13.53 5.23 15.89 4.44 0.00 9.61 4.59 3.68 2.19 4.48 2.08 5.83 16.97 4.45 5.02 30.61 22.33 1.66
6 7.87 14.78 10.64 9.12 9.61 0.00 6.60 7.91 11.39 11.95 10.86 7.56 10.10 7.33 14.57 24.16 16.49 10.84
7 9.00 9.34 11.35 2.53 4.59 6.60 0.00 1.47 5.54 8.71 6.57 2.04 12.43 2.58 9.34 26.03 17.75 5.85
8 10.08 8.04 12.30 1.62 3.68 7.91 1.47 0.00 4.33 7.98 5.70 2.70 13.59 2.19 8.15 27.04 18.73 4.73
9 14.38 3.99 16.50 4.29 2.19 11.39 5.54 4.33 0.00 5.57 3.20 6.20 17.87 5.55 3.93 31.12 22.81 2.29

10 17.28 5.27 19.79 8.90 4.48 11.95 8.71 7.98 5.57 0.00 2.48 10.19 20.60 7.98 4.77 34.56 26.32 3.82
11 15.40 4.33 17.82 6.47 2.08 10.86 6.57 5.70 3.20 2.48 0.00 7.91 18.81 6.05 3.96 32.58 24.30 1.58
12 8.61 10.15 10.70 2.42 5.83 7.56 2.04 2.70 6.20 10.19 7.91 0.00 11.96 4.34 10.10 25.09 16.82 7.14
13 3.58 21.60 2.89 13.82 16.97 10.10 12.43 13.59 17.87 20.60 18.81 11.96 0.00 13.27 21.73 14.19 6.53 18.11
14 9.76 8.66 12.08 3.55 4.45 7.33 2.58 2.19 5.55 7.98 6.05 4.34 13.27 0.00 8.95 26.95 18.69 5.07
15 18.23 1.36 20.39 8.20 5.02 14.57 9.34 8.15 3.93 4.77 3.96 10.10 21.73 8.95 0.00 35.04 26.73 4.05
16 17.33 34.81 14.87 26.84 30.61 24.16 26.03 27.04 31.12 34.56 32.58 25.09 14.19 26.95 35.04 0.00 8.31 31.72
17 9.21 26.51 6.67 18.54 22.33 16.49 17.75 18.73 22.81 26.32 24.30 16.82 6.53 18.69 26.73 8.31 0.00 23.42
18 14.62 3.98 16.92 5.39 1.66 10.84 5.85 4.73 2.29 3.82 1.58 7.14 18.11 5.07 4.05 31.72 23.42 0.00

Table 1: Euclidean distance matrix D for 18 animals

Table 1 shows the Euclidean distance matrix for the 18 animals presented in
Figure 2.

List of useful functions:

• dist includes many common distance and dissimilarity functions (Eu-
clidean by default, others: method="manhattan", method="maximum", method="minkowski"

• cluster::daisy, daisy includes Gower’s dissimilarity for mixed data (pa-
rameter metric="gower")

4 Non-bipartite optimal matching of animals at
baseline

The non-bipartite optimal matching problem may be solved using the provided
branch and bound algorithm:

> sol <- match.bb(d, g=3)

[1] "Performing initial sorting for a good initial guess"

[1] "Computing boundaries for minimum distances in possible combinations..."

[1] "Starting branch and bound"

[1] "Branches: 272"

[1] "Bounds: 7140"

[1] "Ends visited: 25"

6

[1] "Solution cost 169.62"

[1] "Solution: 5,3,5,6,4,5,6,4,3,2,2,6,1,4,3,1,1,2"

> submatches <- paste("Submatch_", LETTERS[1:6][sol$solution], sep="")

> names(submatches) <- names(sol$solution)

> submatches

1 2 3 4 5 6

"Submatch_E" "Submatch_C" "Submatch_E" "Submatch_F" "Submatch_D" "Submatch_E"

7 8 9 10 11 12

"Submatch_F" "Submatch_D" "Submatch_C" "Submatch_B" "Submatch_B" "Submatch_F"

13 14 15 16 17 18

"Submatch_A" "Submatch_D" "Submatch_C" "Submatch_A" "Submatch_A" "Submatch_B"

The match.bb function returns the solution to the optimal matching task. It
takes as input a distance matrix d, as is indicated in the function call match.bb(d,
g=3) (notice that d was defined before). Furthermore, the size of the submatches
is defined using the parameter g=3. This value indicates that the optimal match-
ing algorithm minimizes edges within triplets. Each observation has to belong
to a triplet called a submatch.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb

• Paired non-bipartite matching: hamlet::match.bb, nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

5 Randomization based on matched individuals

The submatches identified in the above section should not be mistaken for the
randomly allocated intervention groups. The final intervention groups are ob-
tained by dividing members of each submatch in the found solution to a separate
treatment arm. Since the within-submatch distances are minimized, this guar-
antees that comparable individuals are randomly divided to separate arms:

> ex[,"Submatch"] <- submatches

> set.seed(1) # for reproducibility

> ex[,"AllocatedGroups"] <- match.allocate(ex[,"Submatch"])

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb

• Paired non-bipartite matching: hamlet::match.bb, nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

7

> boxplot(PSA.week.10..ug.l. ~ AllocatedGroups, data = ex, range=0,

+ xlab="Group", ylab="PSA week 10 ul/g")

Group_A Group_B Group_C

10
15

20
25

30
35

Group

P
S

A
 w

ee
k

10
 u

l/g

Figure 3: Boxplots for the week 10 PSA in the example allocation

8

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g. Submatch AllocatedGroups
1 ID003 21.30 16.57 35.00 Submatch E Group A
2 ID007 7.55 5.38 31.60 Submatch C Group C
3 ID008 23.58 17.40 33.60 Submatch E Group C
4 ID009 13.17 11.14 31.70 Submatch F Group C
5 ID010 9.90 9.33 34.10 Submatch D Group A
6 ID016 15.05 15.29 39.60 Submatch E Group B
7 ID018 13.53 12.14 34.00 Submatch F Group B
8 ID025 13.13 10.91 33.30 Submatch D Group C
9 ID027 9.59 8.79 32.00 Submatch C Group A

10 ID031 7.04 6.95 36.60 Submatch B Group C
11 ID032 8.49 8.02 34.90 Submatch B Group A
12 ID037 13.74 13.38 32.40 Submatch F Group A
13 ID040 23.62 19.15 35.90 Submatch A Group B
14 ID045 14.27 9.80 34.80 Submatch D Group B
15 ID047 6.57 6.28 31.90 Submatch C Group B
16 ID054 34.72 27.14 32.10 Submatch A Group C
17 ID056 28.15 22.05 32.20 Submatch A Group A
18 ID058 9.74 7.68 34.00 Submatch B Group B

Table 2: The result table in variable ex after performing the optimal matching
and allocation.

6 Visualizations for pre-clinical data

Various visualization functions are available to illustrate baseline balance. For
example, the boxplots in respect to allocation groups can be plotted using a
command such as boxplot, which is illustrated in Figure 3.

Mixed variable scatterplots with annotations for the submatches or alloca-
tion groups are plotted using the function hamlet::mixplot, which can be seen
in Figures 4 or 5 respectively.

A common way to illustrate distance matrices is through heatmaps, along
with hierarchical clustering to connect similar individuals (Figure 6).

List of useful functions:

• Scatterplots etc: hamlet::mixplot, plot, boxplot

• Heatmaps: hamlet::hmap, heatmap, gplots::heatmap.2

7 Paired vs. non-paired testing

Pairing of samples aims to increase statistical power of tests through connecting
the same measurement over two conditions. In the pre-clinical context, we
incorporate the matching information from prior to interventions (Figure 1) in
order to find the connecting measurements. As the submatches were used to
couple measurements prior to interventions, it is natural to use this information
for pairing the observations in the post-intervention tests.

If pairing is not performed, the statistical power may not be sufficient in
the tests, as the populations are assumed to relatively homogeneous and no
prognostic information is incorporated to the testing procedure:

> veh <- vcapwide[vcapwide[,"Group"]=="Vehicle",

+ c("Submatch","PSAWeek10","BWWeek10","PSAWeek14")]

> mdv <- vcapwide[vcapwide[,"Group"]=="MDV",

9

> mixplot(ex[,2:5], pch=16)

PSA.week.10..ug.l.
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

5 10 15 20 25

5
10

20
30

PSA.week.9..ug.l.

P
S

A
.w

ee
k.

10
..u

g.
l.

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

32 34 36 38 40

5
10

20
30

Body.weight.week.10..g.

P
S

A
.w

ee
k.

10
..u

g.
l.

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

5
10

15
20

25

PSA.week.10..ug.l.

PSA.week.9..ug.l.
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

32 34 36 38 40

5
10

15
20

25

Body.weight.week.10..g.

P
S

A
.w

ee
k.

9.
.u

g.
l.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

5 10 15 20 25 30 35

32
34

36
38

40

PSA.week.10..ug.l.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

5 10 15 20 25

32
34

36
38

40

PSA.week.9..ug.l.

B
od

y.
w

ei
gh

t.w
ee

k.
10

..g
.

Body.weight.week.10..g.

● ● ● ● ● ●Submatch_E Submatch_C Submatch_F Submatch_D Submatch_B Submatch_A

Figure 4: Test mixplot with submatch labels

10

> mixplot(ex[,c(2:4,6)], pch=16)

PSA.week.10..ug.l.
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

5 10 15 20 25

5
10

20
30

PSA.week.9..ug.l.

P
S

A
.w

ee
k.

10
..u

g.
l.

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

32 34 36 38 40

5
10

20
30

Body.weight.week.10..g.

P
S

A
.w

ee
k.

10
..u

g.
l.

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

5
10

15
20

25

PSA.week.10..ug.l.

PSA.week.9..ug.l.
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

32 34 36 38 40

5
10

15
20

25

Body.weight.week.10..g.

P
S

A
.w

ee
k.

9.
.u

g.
l.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

5 10 15 20 25 30 35

32
34

36
38

40

PSA.week.10..ug.l.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

5 10 15 20 25

32
34

36
38

40

PSA.week.9..ug.l.

B
od

y.
w

ei
gh

t.w
ee

k.
10

..g
.

Body.weight.week.10..g.

● ● ●Group_A Group_C Group_B

Figure 5: Test mixplot with allocation group labels

11

> heatmap(d)

17 16 1 3 13 6 7 12 14 8 4 10 2 15 5 9 18 11

17

16

1

3

13

6

7

12

14

8

4

10

2

15

5

9

18

11

Figure 6: Heatmap for the 18x18 distance matrix

12

+ c("Submatch","PSAWeek10","BWWeek10","PSAWeek14")]

> t.test(veh[,"PSAWeek14"], mdv[,"PSAWeek14"])

Welch Two Sample t-test

data: veh[, "PSAWeek14"] and mdv[, "PSAWeek14"]

t = 1.7385, df = 26.796, p-value = 0.0936

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.18889 38.49813

sample estimates:

mean of x mean of y

53.39533 35.74071

However, the submatches are used to couple best comparable measurements.
For example, in the VCaP experiment the week 10 was baseline and its PSA
and body weight contain prognostic information necessary for weighting post-
intervention tests. During the experiment weeks 11 to 14 interventions took
place. The column ”Submatch” given in the datasets vcapwide and vcaplong

are the submatches that occurred in the actual matching and randomization
task when the experiment itself was performed. The week 10 information in
connection to the submatches were:

> veh <- veh[order(veh[,"Submatch"]),]

> mdv <- mdv[order(mdv[,"Submatch"]),]

Veh.PSAWeek10 MDV.PSAWeek10
Submatch 1 21.30 16.25

Submatch 10 8.13 7.55
Submatch 11 8.36 13.53
Submatch 12 15.05 9.96
Submatch 13 7.03 6.57
Submatch 14 34.72 27.16
Submatch 16 9.13 10.78
Submatch 2 13.17 13.13
Submatch 3 22.29 23.58
Submatch 4 14.27 9.74
Submatch 5 13.74 9.59
Submatch 6 8.49 9.89
Submatch 7 16.29 19.51
Submatch 8 20.99 16.39
Submatch 9 14.69 18.71

Table 3: Submatches in the real VCaP experiment, per PSA at week 10 in
tumors allocated to the Vehicle and MDV groups

Tables 3 and 4 show the prognostic baseline information in terms of PSA and
body weight that is connected to the submatches. These submatches are used
for pairing observations in comparing MDV intervention to the vehicle, which
results in a noticeable increase in statistical power in even conventional tests:

> t.test(veh[,"PSAWeek14"], mdv[,"PSAWeek14"], paired=TRUE)

13

Veh.BWWeek10 MDV.BWWeek10
Submatch 1 35.00 34.80

Submatch 10 26.70 31.60
Submatch 11 35.60 34.00
Submatch 12 39.60 33.40
Submatch 13 30.00 31.90
Submatch 14 32.10 28.30
Submatch 16 29.90 29.20
Submatch 2 31.70 33.30
Submatch 3 31.10 33.60
Submatch 4 34.80 34.00
Submatch 5 32.40 32.00
Submatch 6 34.90 38.30
Submatch 7 30.00 29.90
Submatch 8 28.40 30.10
Submatch 9 28.30 33.30

Table 4: Submatches in the real VCaP experiment, per body weight at week 10
in tumors allocated to the Vehicle and MDV groups

Paired t-test

data: veh[, "PSAWeek14"] and mdv[, "PSAWeek14"]

t = 2.393, df = 13, p-value = 0.03251

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.895046 37.097811

sample estimates:

mean of the differences

19.49643

For more refined statistical testing, the longitudinal profiles of a pre-clinical
experiment can be modeled using the lme4-package. Functions are provided in
the hamlet-package for this purpose.

List of useful functions:

• MEM-modeling packages: lme4, lmerTest, nlme

• MEM-modeling in hamlet: hamlet::mem.getcomp, hamlet::mem.plotran,
hamlet::mem.plotresid

14

