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hSDM-package hierarchical Bayesian species distribution models

Description

hSDM is an R package for estimating parameters of hierarchical Bayesian species distribution mod-
els. Such models allow interpreting the observations (occurrence and abundance of a species) as
a result of several hierarchical processes including ecological processes (habitat suitability, spatial
dependence and anthropogenic disturbance) and observation processes (species detectability). Hi-
erarchical species distribution models are essential for accurately characterizing the environmental
response of species, predicting their probability of occurrence, and assessing uncertainty in the
model results.

Details

Package: hSDM

Type: Package

Version: 1.4.2

Date: 2019-05-13

License: GPL-3

LazylLoad: yes
Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
Matthieu Autier <matthieu.authier @univ-Ir.fr>
Alan E. Gelfand <alan @stat.duke.edu>
Jérome Guélat <jerome.guelat@vogelwarte.ch>
Marc Kéry <marc.kery @vogelwarte.ch>
Andrew M. Latimer <amlatimer @ucdavis.edu>
Cory Merow <cory.merow @ gmail.com>
Frédéric Mortier <frederic.mortier @cirad.fr>
John A. Silander Jr. <john.silander @uconn.edu>
Adam M. Wilson <adamw @buffalo.edu>
Shanshan Wu <wu_shanshan @hotmail.com>
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altitude Virtual altitudinal data

Description
Data frame with virtual altitudinal data. The data frame is used in the examples of the hSDM
package vignette to derive an altitude raster determining species habitat suitability.

Format
altitude is a data frame with 2500 observations (50 x 50 cells) and 3 variables:

x coordinates of the center of the cell on the x axis
y coordinates of the center of the cell on the y axis
altitude altitude (m)

cfr.env Environmental data for South Africa’s Cap Floristic Region

Description

Data include environmental variables for 36909 one minute by one minute grid cells on the whole
South Africa’s Cap Floristic Region.

Format

cfr.env is a data frame with 36909 observations (cells) on the following six environmental vari-
ables.

lon longitude

lat latitude

min@7 minimum temperature of the coldest month (July)

smdwin winter soil moisture days

fert3 moderately high fertility (percent of grid cell)

ph1 acidic soil (percent of grid cell)

text1 fine soil texture (percent of grid cell)

text2 moderately fine soil texture (percent of grid cell)

Source

Cory Merow’s personal data

References

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.
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data.Kery2010 Count data for the Willow tit (from Kéry and Royle 2010)

Description

Repeated count data for the Willow tit (Poecile montanus, a pesserine bird) in Switzerland on the
period 1999-2003. Data come from the Swiss national breeding bird survey MHB (Monitoring
Haiifige Brutvogel).

Format

data.Kery2010 is a data frame with 264 observations (1 km"2 quadrats) and the following 10
variables.

coordx quadrat x coordinate

coordy quadrat y coordinate
elevation mean quadrat elevation (m)
forest quadrat forest cover (in %)
count1 count for survey 1

count2 count for survey 2

count3 count for survey 3

juldatel Julian date of survey 1
juldate2 Julian date of survey 2

juldate3 Julian date of survey 3

Source

Kéry and Royle, 2010, Journal of Animal Ecology, 79, 453-461.

References

Kéry, M. and Andrew Royle, J. 2010. Hierarchical modelling and estimation of abundance and
population trends in metapopulation designs. Journal of Animal Ecology, 79, 453-461.
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datacells.Latimer2006 Data of presence-absence (from Latimer et al. 2006)

Description

Data come from a small region including 476 one minute by one minute grid cells. This region is a
small corner of South Africa’s Cape Floristic Region, and includes very high plant species diversity
and a World Biosphere Reserve. The data frame can be used as an example for several functions in
the hSDM package.

Format

datacells.Latimer2006 is a data frame with 476 observations (cells) on the following 9 variables.

y the number of times the species was observed to be present in each cell
n the number of visits or sample locations in each cell (which can be zero)
rough elevational range or "roughness"

julmint July minimum temperature

pptcv interannual variation in precipitation

smdsum summer soil moisture days

evi enhanced vegetation or "greenness" index

ph1 percent acidic soil

num number of neighbors of each cell, this is a sparse representation of the adjacency matrix for the
subregion.

Source

Latimer et al. (2006) Ecological Applications, Appendix B

References

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.
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frogs Counts of the number of frogs in a water body

Description

Counts of the number of frogs in ponds of the Canton Aargau, Switzerland.

Format
A data frame with 481 observations on the following 10 variables.

count1 number of counted frogs during the first visit

count2 number of counted frogs uring the second visit

elevation elevation, meters above sea level

year year

fish presence of fish (1 = present, 0 = absent)

waterarea area of the water body in square meters

vegetation indicator of vegetation (1 = vegetation present, 0 = no vegetation present)
pondid name of the pond, corresponds to observation id

X X coordinate

y y coordinate

Details

The amphibian monitoring program started in 1999 and is mainly aimed at surveying population
trends of endangered amphibian species. Every year, about 30 water bodies in two or three ran-
domly selected priority areas (out of ten priority areas of high amphibian diversity) are surveyed.
Additionally, a random selection of water bodies that potentially are suitable for one of the endan-
gered amphibian species but that do not belong to the priority areas were surveyed. Each water body
is surveyed by single trained volunteer during two nocturnal visits per year. Volunteers recorded
anurans by walking along the water’s edge with precise rules for the duration of a survey taking
account of the size of the surveyed water body and noting visual encounters and calls. As fare as
possible, encountered individuals of the Pelophylax-complex were identified as Marsh Frog (Pelo-
phylax ridibundus), Pool Frog (P. lessonaea) or hybrids (P. esculentus) based on morphological
characteristics or based on their calls. In the given data set, however, these three taxa are lumped
together.

Source

The data is provided by Isabelle Floess, Landschaft und Gewaesser, Kanton Aargau.

References
Schmidt, B. R., 2005: Monitoring the distribution of pond-breeding amphibians, when species are
detected imperfectly. - Aquatic conservation: marine and freshwater ecosystems 15: 681-692.

Tanadini, L. G.; Schmidt, B. R., 2011: Population size influences amphibian detection probability:
implications for biodiversity monitoring programs. - Plos One 6: ¢28244.
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Examples

data(frogs)

hSDM.binomial Binomial logistic regression model

Description

The hSDM.binomial function performs a Binomial logistic regression in a Bayesian framework.
The function calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of model’s parameters.

Usage

hSDM.binomial (presences, trials, suitability, data,
suitability.pred = NULL, burnin = 5000, mcmc = 10000, thin = 10,
1,

beta.start, mubeta = @, Vbeta = 1e+06, seed = 1234, verbose = save.p
= 0)
Arguments

presences A vector indicating the number of successes (or presences) for each observation.

trials A vector indicating the number of trials for each observation. ¢,, should be
superior or equal to y,,, the number of successes for observation n. If ¢,, = 0,
then y,, = 0.

suitability A one-sided formula of the form ’~x1+...+xp” with p terms specifying the ex-
plicative variables for the suitability process of the model.

data A data frame containing the model’s explicative variables.

suitability.pred
An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

burnin The number of burnin iterations for the sampler.

mcme The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

beta.start Starting values for beta parameters of the suitability process. If beta.start
takes a scalar value, then that value will serve for all of the betas.

mubeta Means of the priors for the 3 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.
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Vbeta Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

seed The seed for the random number generator. Default to 1234.

verbose A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

save.p A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the theta.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

Details
We model an ecological process where the presence or absence of the species is explained by habitat
suitability.
Ecological process:
y; ~ Binomial(0;,t;)
logit(0;) = X3

Value

mcme An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(v:|8,:)), is also provided.

theta.pred If save.pis set to 0 (default), theta.pred is the predictive posterior mean of the
probability associated to the suitability process for each prediction. If save.p is
set to 1, theta.pred is an mecmc object with sampled values of the probability
associated to the suitability process for each prediction.

theta.latent Predictive posterior mean of the probability associated to the suitability process
for each observation.
Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,
1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

See Also

plot.mcmc, summary . mcmc
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Examples

## Not run:

3

# hSDM.binomial ()
# Example with simulated data

3

#

#== Load libraries
library(hSDM)

3

#== Data simulation

#= Number of sites
nsite <- 200

#= Set seed for repeatability
seed <- 1234

#= Number of visits associated to each site
set.seed(seed)

visits<- rpois(nsite,3)

visits[visits==0] <- 1

#= Ecological process (suitability)
set.seed(seed)

x1 <- rnorm(nsite,0,1)
set.seed(2xseed)

x2 <- rnorm(nsite,@,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
logit.theta <- X %*% beta.target
theta <- inv.logit(logit.theta)
set.seed(seed)

Y <- rbinom(nsite,visits,theta)

#= Data-sets
data.obs <- data.frame(Y,visits,x1,x2)

== Site-occupancy model

mod.hSDM.binomial <- hSDM.binomial(presences=data.obs$Y,
trials=data.obs$visits,
suitability=~x1+x2,
data=data.obs,
suitability.pred=NULL,
burnin=1000, mcmc=1000, thin=1,
beta.start=0,
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mubeta=0, Vbeta=1.0E6,
seed=1234, verbose=1,
save.p=0)

#== Outputs

#= Parameter estimates

summary (mod.hSDM.binomial$mcmc)

pdf (file="Posteriors_hSDM.binomial.pdf")
plot(mod.hSDM.binomial$memc)

dev.off()

#== glm resolution to compare
mod.glm <- glm(cbind(Y,visits-Y)~x1+x2,family="binomial”,6 data=data.obs)
summary (mod. glm)

#= Predictions

summary (mod.hSDM.binomial$theta.latent)
summary (mod.hSDM.binomial$theta.pred)
pdf (file="Pred-Init.pdf")
plot(theta,mod.hSDM.binomial$theta.pred)
abline(a=0,b=1,col="red")

dev.off()

## End(Not run)

hSDM.binomial.iCAR Binomial logistic regression model with CAR process

Description

The hSDM. binomial. iCAR function performs a Binomial logistic regression model in a hierarchical
Bayesian framework. The suitability process includes a spatial correlation process. The spatial
correlation is modelled using an intrinsic CAR model. The hSDM.binomial.iCAR function calls
a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model’s parameters.

Usage

hSDM.binomial.iCAR(presences, trials, suitability,

spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL,
spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10,
beta.start, Vrho.start, mubeta = @, Vbeta = 1e+06, priorVrho =
"1/Gamma”, shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234,
verbose = 1, save.rho = @, save.p = 0)
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Arguments

presences

trials

suitability

spatial.entity

data

n.neighbors

neighbors

hSDM.binomial.iCAR

A vector indicating the number of successes (or presences) for each observation.

A vector indicating the number of trials for each observation. ¢; should be supe-
rior to zero and superior or equal to y;, the number of successes for observation
i.

A one-sided formula of the form ~ x1 + ... + x,, with p terms specifying the
explicative variables for the suitability process.

A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.

A data frame containing the model’s variables.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

thin

beta.start

Vrho.start

mubeta

Vbeta

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the S parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.
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priorVrho

shape

rate

Vrho.max

seed

verbose

save.rho

save.p

Details

13

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0.5 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is O: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save. rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the theta.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

‘We model an ecological process where the presence or absence of the species is explained by habitat
suitability. The ecological process includes an intrinsic conditional autoregressive (iICAR) model
for spatial autocorrelation between observations, assuming that the probability of presence of the
species at one site depends on the probability of presence of the species on neighboring sites.

Ecological process:

y; ~ Binomial(0;,t;)

logit(0;) = XiB + pjci)

p;: spatial random effect

j(@): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;, Vo /n;)

f4;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.
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Value

mcmc

rho.pred

theta.pred

theta.latent

Author(s)

hSDM.binomial.iCAR

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log(] [, P(:|...)), is also provided.

If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

If save.pissetto O (default), theta. pred is the predictive posterior mean of the
probability associated to the suitability process for each prediction. If save.p is
set to 1, theta.pred is an mcmc object with sampled values of the probability
associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad. fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,

1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and
autoregressive models in ecology Ecological Monographs, 72, 445-463.

Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance
across environmental gradients Ecology, 88, 3144-3152.

See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

#:

# hSDM.binomial.iCAR()
# Example with simulated data

m

H#
#

#== Load libraries

library(hSDM)
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library(raster)
library(sp)

m

#== Multivariate normal distribution
rmvn <- function(n, mu = @, V = matrix(1), seed=1234) {
p <- length(mu)
if (any(is.na(match(dim(V), p)))) {
stop(”"Dimension problem!")
3
D <- chol(V)
set.seed(seed)
t(matrix(rnorm(nxp),ncol=p)%x%D+rep(mu,rep(n,p)))

H.
H#

#== Data simulation

#= Set seed for repeatability
seed <- 1234

#= Landscape

xLand <- 30

yLand <- 30

Landscape <- raster(ncol=xLand,nrow=yLand,crs="'+proj=utm +zone=1")
Landscape[] <- @

extent(Landscape) <- c¢(@,xLand,@,ylLand)

coords <- coordinates(Landscape)

ncells <- ncell(Landscape)

#= Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]

adj <- neighbors.mat[,2]

#= Generate symmetric adjacency matrix, A

A <- matrix(@,ncells,ncells)

index.start <- 1

for (i in 1:ncells) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

#= Spatial effects

Vrho.target <- 5

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvn(1,mu=rep(@,ncells),V=covrho,seed=seed)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero
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#= Raster and plot spatial effects
r.rho <- rasterFromXYZ(cbind(coords,rho))
plot(r.rho)

#= Sample the observation sites in the landscape

nsite <- 250

set.seed(seed)

x.coord <- runif(nsite,@,xLand)

set.seed(2xseed)

y.coord <- runif(nsite,@,yLand)

sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord))
cells <- extract(Landscape,sites.sp,cell=TRUE)[,1]

#= Number of visits associated to each observation point
set.seed(seed)

visits <- rpois(nsite,3)

visits[visits==0] <- 1

#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2xseed)

x2 <- rnorm(nsite,0,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
logit.theta <- X %*% beta.target + rho[cells]
theta <- inv.logit(logit.theta)
set.seed(seed)

Y <- rbinom(nsite,visits,theta)

#= Relative importance of spatial random effects
RImp <- mean(abs(rho[cells])/abs(X %*% beta.target))
RImp

#= Data-sets
data.obs <- data.frame(Y,visits,x1,x2,cell=cells)

#

#== Site-occupancy model

Start <- Sys.time() # Start the clock

mod.hSDM.binomial.iCAR <- hSDM.binomial.iCAR(presences=data.obs$Y,
trials=data.obs$visits,
suitability=~x1+x2,
spatial.entity=data.obs$cell,
data=data.obs,
n.neighbors=n.neighbors,
neighbors=adj,
suitability.pred=NULL,
spatial.entity.pred=NULL,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
Vrho.start=1,
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mubeta=0, Vbeta=1.0E6,
priorVrho="1/Gamma",
shape=0.5, rate=0.0005,
seed=1234, verbose=1,
save.rho=1, save.p=0)
Time.hSDM <- difftime(Sys.time(),Start,units="sec”) # Time difference

#= Computation time

Time.hSDM
H#==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM.binomial. iCAR$mcmc)

pdf ("Posteriors_hSDM.binomial.iCAR.pdf")
plot(mod.hSDM.binomial.iCAR$mcmc)
dev.off()

#= Predictions
summary(mod.hSDM.binomial.iCAR$theta.latent)
summary (mod.hSDM.binomial.iCAR$theta.pred)
pdf(file="Pred-Init.pdf")
plot(theta,mod.hSDM.binomial.iCAR$theta.pred)
abline(a=0,b=1,col="red")

dev.off()

#= Summary plots for spatial random effects

# rho.pred
rho.pred <- apply(mod.hSDM.binomial.iCAR$rho.pred,2,mean)
r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred))

# plot
pdf (file="Summary_hSDM.binomial.iCAR.pdf")
par(mfrow=c(2,2))
# rho target
plot(r.rho, main="rho target")
plot(sites.sp,add=TRUE)
# rho estimated
plot(r.rho.pred, main="rho estimated”)
# correlation and "shrinkage"
Levels.cells <- sort(unique(cells))
plot(rho[-Levels.cells],rho.pred[-Levels.cells],
xlim=range(rho),
ylim=range(rho),
xlab="rho target”,
ylab="rho estimated”)
points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue")
legend(x=-3,y=4,legend="Visited cells”,col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
dev.off()
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## End(Not run)

hSDM.Nmixture

hSDM.Nmixture

N-mixture model

Description

The hSDM.Nmixture function can be used to model species distribution including different pro-
cesses in a hierarchical Bayesian framework: a Poisson suitability process (refering to environ-
mental suitability explaining abundance) and a Binomial observability process (refering to various
ecological and methodological issues explaining species detection). The hSDM.Nmixture function
calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to estimate
the conditional posterior distribution of hierarchical model’s parameters.

Usage

hSDM.Nmixture(# Observations

Arguments

counts

observability

site

data.observability
A data frame containing the model’s variables for the observability process.

counts, observability, site, data.observability,
# Habitat

suitability, data.suitability,

# Predictions

suitability.pred = NULL,

# Chains

burnin = 5000, mcmc
# Starting values
beta.start,
gamma.start,

# Priors

mubeta = @, Vbeta = 1.0E6,
mugamma = @, Vgamma = 1.0E6,
# Various

seed = 1234, verbose = 1,
save.p = 0, save.N = 0)

10000, thin = 10,

A vector indicating the count (or abundance) for each observation.

A one-sided formula of the form ~ w; + ... + w, with g terms specifying the
explicative variables for the observability process.

A vector indicating the site identifier (from one to the total number of sites) for
each observation. Several observations can occur at one site. A site can be a
raster cell for example.
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A one-sided formula of the form ~ x; + ... + x,, with p terms specifying the
explicative variables for the suitability process.

data.suitability

A data frame containing the model’s variables for the suitability process.

suitability.pred

burnin

mcmc

thin

beta.start

gamma.start

mubeta

Vbeta

mugamma

Vgamma

seed

verbose

save.p

save.N

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 5 parameters of the observability process. This can either be
a scalar or a g-length vector.

Means of the priors for the S parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the 3 parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the y parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

A switch (0,1) which determines whether or not the sampled values for the latent
count variable N for each observed cells are saved. Default is 0: the mean
(rounded to the closest integer) is computed and returned in the N.pred vector.
Be careful, setting save.N to 1 might require a large amount of memory.
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Details

hSDM.Nmixture

The model integrates two processes, an ecological process associated to the abundance of the
species due to habitat suitability and an observation process that takes into account the fact that
the probability of detection of the species is inferior to one.

Ecological process:

N; ~ Poisson(A;)
log(Ai) = Xif8

Observation process:

Value

mcmc

lambda. pred

N.pred

lambda.latent

delta.latent

Author(s)

Yir ~ Binomial(N;, §;1)
logit(6;t) = Wiry

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log([[,; P(vit, Ni|...)), is also provided.

If save.p is set to O (default), lambda.pred is the predictive posterior mean
of the abundance associated to the suitability process for each prediction. If
save.pis set to 1, lambda.pred is an mcmc object with sampled values of the
abundance associated to the suitability process for each prediction.

If save.N is set to O (default), N.pred is the posterior mean (rounded to the
closest integer) of the latent count variable N for each observed cell. If save.N
is set to 1, N.pred is an mcmc object with sampled values of the latent count
variable N for each observed cell.

Predictive posterior mean of the abundance associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,

1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60, 108-115.

See Also

plot.mcmc, summary . mcmc
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Examples

## Not run:

£

# hSDM.Nmixture()
# Example with simulated data

#

#== Load libraries
library(hSDM)

H
H

#== Data simulation

# Number of observation sites
nsite <- 200

#= Set seed for repeatability
seed <- 4321

#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2*seed)

x2 <- rnorm(nsite,0,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1) # Target parameters
log.lambda <- X %% beta.target
lambda <- exp(log.lambda)
set.seed(seed)

N <- rpois(nsite,lambda)

#= Number of visits associated to each observation point
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
# Vector of observation points
sites <- vector()
for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[i]))

}

#= Observation process (detectability)

nobs <- sum(visits)

set.seed(seed)

wl <- rnorm(nobs,0,1)

set.seed(2xseed)

w2 <- rnorm(nobs,0,1)

W <- cbind(rep(1,nobs),wl,w2)

gamma. target <- c(-1,1,-1) # Target parameters

21
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logit.delta <- W %*% gamma.target
delta <- inv.logit(logit.delta)
set.seed(seed)

Y <- rbinom(nobs,N[sites],delta)

#= Data-sets
data.obs <- data.frame(Y,wl,w2,site=sites)
data.suit <- data.frame(x1,x2)

H.
H#

#== Parameter inference with hSDM

Start <- Sys.time() # Start the clock
mod.hSDM.Nmixture <- hSDM.Nmixture(# Observations
counts=data.obs$Y,
observability=~w1+w2,
site=data.obs$site,
data.observability=data.obs,
# Habitat
suitability=~x1+x2,
data.suitability=data.suit,
# Predictions
suitability.pred=NULL,
# Chains
burnin=5000, mcmc=5000, thin=5,
# Starting values
beta.start=0,
gamma.start=0,
# Priors
mubeta=0, Vbeta=1.0QE6,
mugamma=0, Vgamma=1.0E6,
# Various
seed=1234, verbose=1,
save.p=0, save.N=1)
Time.hSDM <- difftime(Sys.time(),Start,units="sec"”) # Time difference

#= Computation time

Time.hSDM
H==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM.Nmixture$mcmc)

pdf (file="Posteriors_hSDM.Nmixture.pdf")
plot(mod.hSDM.Nmixture$memc)

dev.off()

#= Predictions

summary (mod.hSDM.Nmixture$lambda.latent)
summary(mod.hSDM.Nmixture$delta.latent)
summary (mod.hSDM.Nmixture$lambda.pred)
pdf(file="Pred-Init.pdf")

hSDM.Nmixture
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plot(lambda,mod.hSDM.Nmixture$lambda.pred)
abline(a=0,b=1,col="red")
dev.off()

#= MCMC for latent variable N
pdf (file="MCMC_N.pdf")
plot(mod.hSDM.Nmixture$N.pred)
dev.off()

#= Check that Ns are correctly estimated

M <- as.matrix(mod.hSDM.Nmixture$N.pred)

N.est <- apply(M,2,mean)

Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site
pdf (file="Check_N.pdf",width=10,height=5)

par(mfrow=c(1,2))

plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process
abline(a=0,b=1,col="red")

plot(N, N.est) ## N are well estimated

abline(a=0,b=1,col="red")

cor(N, N.est) ## Very close to 1

dev.off()

## End(Not run)

hSDM.Nmixture.iCAR N-mixture model with CAR process

Description

The hSDM.Nmixture.iCAR function can be used to model species distribution including different
processes in a hierarchical Bayesian framework: a Poisson suitability process (refering to envi-
ronmental suitability explaining abundance) which takes into account the spatial dependence of the
observations, and a Binomial observability process (refering to various ecological and method-
ological issues explaining the species detection). The hSDM.Nmixture. iCAR function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm to estimate the conditional
posterior distribution of hierarchical model’s parameters.

Usage

hSDM.Nmixture.iCAR(# Observations
counts, observability, site, data.observability,
# Habitat
suitability, data.suitability,
# Spatial structure
spatial.entity,
n.neighbors, neighbors,
# Predictions
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Arguments

counts

observability

site

hSDM.Nmixture.iCAR

suitability.pred = NULL, spatial.entity.pred = NULL,
# Chains

burnin = 5000, mcmc = 10000, thin = 10,

# Starting values

beta.start,

gamma.start,

Vrho.start,

# Priors

mubeta = @, Vbeta = 1.0QE6,

mugamma = @, Vgamma = 1.0E6,

priorVrho = "1/Gamma”,
shape = 0.5, rate = 0.0005,

Vrho.max = 1000,

# Various

seed = 1234, verbose =1,

save.rho = @, save.p = @, save.N = Q)

A vector indicating the count (or abundance) for each observation.
A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the observability process.

A vector indicating the site identifier (from one to the total number of sites) for
each observation. Several observations can occur at one site. A site can be a
raster cell for example.

data.observability

suitability

A data frame containing the model’s variables for the observability process.

A one-sided formula of the form ~ x; + ... + x, with p terms specifying the
explicative variables for the suitability process.

data.suitability

spatial.entity

n.neighbors

neighbors

A data frame containing the model’s variables for the suitability process. The
number of rows of the data frame should be equal to the total number of spatial
entities.

A vector (of length ’nsite’) indicating the spatial entity identifier for each site.
Values must be between 1 and the total number of spatial entities. Several sites
can be found in one spatial entity. A spatial entity can be a raster cell for exam-
ple.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the data frame data.suitability for observations is used.
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spatial.entity.pred
An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

burnin The number of burnin iterations for the sampler.

mcme The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

beta.start Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

gamma.start Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Vrho.start Positive scalar indicating the starting value for the variance of the spatial random
effects.

mubeta Means of the priors for the S parameters of the suitability process. mubeta must

be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Vbeta Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

mugamma Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Vgamma Variances of the Normal priors for the v parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

priorVrho Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

shape The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. 05 for uninformative prior.

rate The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Vrho.max Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

seed The seed for the random number generator. Default set to 1234.
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verbose

save.rho

save.p

save.N

Details

hSDM.Nmixture.iCAR

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is O: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

A switch (0,1) which determines whether or not the sampled values for the latent
count variable N for each observed cells are saved. Default is 0: the mean
(rounded to the closest integer) is computed and returned in the N.pred vector.
Be careful, setting save.N to 1 might require a large amount of memory.

The model integrates two processes, an ecological process associated to the abundance of the
species due to habitat suitability and an observation process that takes into account the fact that
the probability of detection of the species is inferior to one. The ecological process includes an
intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between obser-
vations, assuming that the abundance of the species at one site depends on the abundance of the
species on neighboring sites.

Ecological process:

N; ~ Poisson(A;)
log(\i) = X+ pi

pi: spatial random effect

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pi ~ Normal(pi, V, /n;)

;2 mean of p;s in the neighborhood of <.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity .

Observation process:

Value

mcmc

Yir ~ Binomial(N;, §;1)
lOgZ't((Sit) = W,‘,t’}/

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log([[,; P(yit, Ni|...)), is also provided.
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rho.pred If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

lambda.pred If save.p is set to O (default), lambda.pred is the predictive posterior mean
of the abundance associated to the suitability process for each prediction. If
save.p is set to 1, lambda.pred is an mcmc object with sampled values of the
abundance associated to the suitability process for each prediction.

N.pred If save.N is set to O (default), N.pred is the posterior mean (rounded to the
closest integer) of the latent count variable N for each observed cell. If save.N
is set to 1, N.pred is an mcmc object with sampled values of the latent count
variable N for each observed cell.

lambda.latent Predictive posterior mean of the abundance associated to the suitability process
for each observation.

delta.latent Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,
1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60, 108-115.

See Also

plot.mcmc, summary.mcmc

Examples
## Not run:
# hSDM.Nmixture.iCAR()
# Example with simulated data

#== Load libraries
library(hSDM)

library(raster)
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hSDM.Nmixture.iCAR

library(sp)

#== Multivariate normal distribution
rmvn <- function(n, mu = @, V = matrix(1), seed=1234) {
p <- length(mu)
if (any(is.na(match(dim(V), p)))) {
stop(”"Dimension problem!")
3
D <- chol(V)
set.seed(seed)
t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p)))

H.
H#

#== Data simulation

#= Set seed for repeatability
seed <- 4321

#= Landscape

xLand <- 20

yLand <- 20

Landscape <- raster(ncol=xLand,nrow=yLand,crs="'+proj=utm +zone=1")
Landscape[] <- @

extent(Landscape) <- c¢(@,xLand,@,ylLand)

coords <- coordinates(Landscape)

ncells <- ncell(Landscape)

#= Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]

adj <- neighbors.mat[,2]

#= Generate symmetric adjacency matrix, A

A <- matrix(@,ncells,ncells)

index.start <- 1

for (i in 1:ncells) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

#= Spatial effects

Vrho.target <- 5

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvn(1,mu=rep(@,ncells),V=covrho,seed=seed)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero
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#= Raster and plot spatial effects
r.rho <- rasterFromXYZ(cbind(coords,rho))
plot(r.rho)

#= Sample the observation sites in the landscape

nsite <- 150

set.seed(seed)

x.coord <- runif(nsite,@,xLand)

set.seed(2xseed)

y.coord <- runif(nsite,@,yLand)

sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord))
cells <- extract(Landscape,sites.sp,cell=TRUE)[,1]

#= Ecological process (suitability)
set.seed(seed)

x1 <- rnorm(nsite,@,1)
set.seed(2xseed)

x2 <- rnorm(nsite,@,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
log.lambda <- X %*% beta.target + rho[cells]
lambda <- exp(log.lambda)
set.seed(seed)

N <- rpois(nsite,lambda)

#= Relative importance of spatial random effects
RImp <- mean(abs(rholcells])/abs(X %x% beta.target))
RImp

#= Number of visits associated to each observation point
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
# Vector of observation points
sites <- vector()
for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[il]))

}

#= Observation process (detectability)
nobs <- sum(visits)
set.seed(seed)

wl <- rnorm(nobs,0,1)
set.seed(2xseed)

w2 <- rnorm(nobs,@,1)

W <- cbind(rep(1,nobs),wl,w2)
gamma. target <- c(-1,1,-1)
logit.delta <- W %*% gamma.target
delta <- inv.logit(logit.delta)
set.seed(seed)

Y <~ rbinom(nobs,N[sites],delta)

#= Data-sets
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data.obs <- data.frame(Y,wl,w2,site=sites)
data.suit <- data.frame(x1,x2,cell=cells)

m
H#

#== Parameter inference with hSDM

Start <- Sys.time() # Start the clock
mod.hSDM.Nmixture.iCAR <- hSDM.Nmixture.iCAR(# Observations
counts=data.obs$Y,
observability=~w1+w2,
site=data.obs$site,
data.observability=data.obs,
# Habitat
suitability=~x1+x2, data.suitability=data.suit,
# Spatial structure
spatial.entity=data.suit$cell,
n.neighbors=n.neighbors, neighbors=adj,
# Predictions
suitability.pred=NULL,
spatial.entity.pred=NULL,
# Chains
burnin=5000, mcmc=5000, thin=5,
# Starting values
beta.start=0,
gamma.start=0,
Vrho.start=1,
# Priors
mubeta=0, Vbeta=1.0QE6,
mugamma=0, Vgamma=1.0E6,
priorVrho="1/Gamma",
shape=0.5, rate=0.005,
Vrho.max=10,
# Various
seed=1234, verbose=1,
save.rho=1, save.p=0, save.N=1)
Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

#= Computation time

Time.hSDM
H#==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM.Nmixture.iCAR$mcmc)

pdf (file="Posteriors_hSDM.Nmixture.iCAR.pdf")
plot(mod.hSDM.Nmixture.iCAR$mcmc)

dev.off ()

#= Predictions

summary (mod.hSDM.Nmixture.iCAR$lambda.latent)
summary (mod.hSDM.Nmixture.iCAR$delta.latent)
summary (mod.hSDM.Nmixture.iCAR$1lambda.pred)
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pdf (file="Pred-Init.pdf")
plot(lambda,mod.hSDM.Nmixture.iCAR$1lambda.pred)
abline(a=0,b=1,col="red")

dev.off()

#= MCMC for latent variable N

pdf (file="MCMC_N.pdf")
plot(mod.hSDM.Nmixture.iCAR$N.pred)
dev.off()

#= Check that Ns are corretly estimated

M <- as.matrix(mod.hSDM.Nmixture.iCAR$N.pred)

N.est <- apply(M,2,mean)

Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site
pdf (file="Check_N.pdf",width=10,height=5)

par(mfrow=c(1,2))

plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process
abline(a=0,b=1,col="red")

plot(N, N.est) ## N are well estimated

abline(a=0,b=1,col="red")

cor(N, N.est) ## Very close to 1

dev.off()

#= Summary plots for spatial random effects

# rho.pred
rho.pred <- apply(mod.hSDM.Nmixture.iCAR$rho.pred,2,mean)
r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred))

# plot
pdf (file="Summary_hSDM.Nmixture.iCAR.pdf")
par(mfrow=c(2,2))
# rho target
plot(r.rho, main="rho target")
plot(sites.sp,add=TRUE)
# rho estimated
plot(r.rho.pred, main="rho estimated”)
# correlation and "shrinkage"
Levels.cells <- sort(unique(cells))
plot(rho[-Levels.cells],rho.pred[-Levels.cells],
xlim=range(rho),
ylim=range(rho),
xlab="rho target”,
ylab="rho estimated”)
points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue")
legend(x=-3,y=4,legend="Visited cells"”,col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
dev.off()

## End(Not run)
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hSDM.Nmixture.K N-mixture model with K, the maximal theoretical abundance

Description

The hSDM.Nmixture.K function can be used to model species distribution including different pro-
cesses in a hierarchical Bayesian framework: a Poisson suitability process (refering to environ-
mental suitability explaining abundance) and a Binomial observability process (refering to var-
ious ecological and methodological issues explaining species detection). The hSDM.Nmixture.K
function calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to
estimate the conditional posterior distribution of hierarchical model’s parameters. K is the maximal
theoretical abundance sensus Royle 2004.

Usage

hSDM.Nmixture.K(# Observations
counts, observability, site, data.observability,
# Habitat
suitability, data.suitability,
# Predictions
suitability.pred = NULL,
# Chains
burnin = 5000, mcmc = 10000, thin = 10,
# Starting values
beta.start,
gamma.start,
# Priors
mubeta = @, Vbeta = 1.0E6,
mugamma = @, Vgamma 1.0QE6,
# Various
K,
seed = 1234, verbose = 1,
save.p = 0)

Arguments

counts A vector indicating the count (or abundance) for each observation.

observability A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the observability process.

site A vector indicating the site identifier (from one to the total number of sites) for
each observation. Several observations can occur at one site. A site can be a
raster cell for example.

data.observability
A data frame containing the model’s variables for the observability process.

suitability A one-sided formula of the form ~ x; + ... + x,, with p terms specifying the
explicative variables for the suitability process.
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data.suitability
A data frame containing the model’s variables for the suitability process.
suitability.pred
An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

burnin The number of burnin iterations for the sampler.

mcme The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

beta.start Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

gamma.start Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

mubeta Means of the priors for the 5 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Vbeta Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

mugamma Means of the Normal priors for the « parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Vgamma Variances of the Normal priors for the « parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

K Maximal theoretical abundance sensus Royle 2004. It corresponds to the integer
upper index of integration for N-mixture. This should be set high enough so
that it does not affect the parameter estimates. Note that computation time will
increase with K.

seed The seed for the random number generator. Default set to 1234.

verbose A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

save.p A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.
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Details

The model integrates two processes, an ecological process associated to the abundance of the
species due to habitat suitability and an observation process that takes into account the fact that
the probability of detection of the species is inferior to one.

Ecological process:
N; ~ Poisson(A;)

Observation process:
yir ~ Binomial(N;, §;¢)

logit(d;) = Wiy

Value
mcme An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log([[;; P(yit, Ni|...)), is also provided.
lambda.pred If save.p is set to O (default), lambda.pred is the predictive posterior mean

of the abundance associated to the suitability process for each prediction. If
save.p is set to 1, lambda.pred is an mecmc object with sampled values of the
abundance associated to the suitability process for each prediction.

lambda.latent Predictive posterior mean of the abundance associated to the suitability process
for each observation.

delta.latent  Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad. fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,
1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60, 108-115.

See Also

plot.mcmc, summary . mcmc
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Examples

## Not run:

£

# hSDM.Nmixture.K()
# Example with simulated data

#

#== Load libraries
library(hSDM)

H
H

#== Data simulation

# Number of observation sites
nsite <- 200

#= Set seed for repeatability
seed <- 4321

#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2*seed)

x2 <- rnorm(nsite,0,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1) # Target parameters
log.lambda <- X %% beta.target
lambda <- exp(log.lambda)
set.seed(seed)

N <- rpois(nsite,lambda)

#= Number of visits associated to each observation point
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
# Vector of observation points
sites <- vector()
for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[i]))

}

#= Observation process (detectability)

nobs <- sum(visits)

set.seed(seed)

wl <- rnorm(nobs,0,1)

set.seed(2xseed)

w2 <- rnorm(nobs,0,1)

W <- cbind(rep(1,nobs),wl,w2)

gamma. target <- c(-1,1,-1) # Target parameters

35
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logit.delta <- W %*% gamma.target
delta <- inv.logit(logit.delta)
set.seed(seed)

Y <- rbinom(nobs,N[sites],delta)

#= Data-sets
data.obs <- data.frame(Y,wl,w2,site=sites)
data.suit <- data.frame(x1,x2)

H.
H#

#== Parameter inference with hSDM

Start <- Sys.time() # Start the clock

mod.hSDM.Nmixture.K <- hSDM.Nmixture.K(# Observations
counts=data.obs$Y,
observability=~w1+w2,
site=data.obs$site,
data.observability=data.obs,
# Habitat
suitability=~x1+x2,
data.suitability=data.suit,
# Predictions
suitability.pred=NULL,
# Chains
burnin=5000, mcmc=5000, thin=5,
# Starting values
beta.start=0,
gamma.start=0,
# Priors
mubeta=0, Vbeta=1.0QE6,
mugamma=0, Vgamma=1.0E6,
# Various
K=max (data.obs$Y)*2,
seed=1234, verbose=1,
save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

#= Computation time

Time.hSDM
H#==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM.Nmixture.K$mcmc)

pdf (file="Posteriors_hSDM.Nmixture.K.pdf")
plot(mod.hSDM.Nmixture.K$mecmc)

dev.off ()

#= Predictions

summary (mod.hSDM.Nmixture.K$lambda.latent)
summary (mod.hSDM.Nmixture.K$delta.latent)
summary (mod.hSDM.Nmixture.K$lambda.pred)

hSDM.Nmixture.K
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pdf (file="Pred-Init.K.pdf")
plot(lambda,mod.hSDM.Nmixture.K$lambda.pred)
abline(a=0,b=1,col="red")

dev.off()

## End(Not run)

hSDM. poisson Poisson log regression model

Description

The hSDM. poisson function performs a Poisson log regression in a Bayesian framework. The
function calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to
estimate the conditional posterior distribution of model’s parameters.

Usage

hSDM.poisson(counts, suitability, data, suitability.pred = NULL,
burnin = 5000, mcmc = 10000, thin = 10, beta.start, mubeta = @, Vbeta =
1e+06, seed = 1234, verbose = 1, save.p = 0)

Arguments
counts A vector indicating the count (or abundance) for each observation.
suitability A one-sided formula of the form ’~x1+...+xp’ with p terms specifying the ex-
plicative covariates for the suitability process of the model.
data A data frame containing the model’s explicative variables.

suitability.pred
An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

burnin The number of burnin iterations for the sampler.

mcme The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

beta.start Starting values for beta parameters of the suitability process. If beta.start
takes a scalar value, then that value will serve for all of the betas.

mubeta Means of the priors for the 3 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.
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Vbeta

seed

verbose

save.p

Details

hSDM.poisson

Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

The seed for the random number generator. Default to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

We model the abundance of the species as a function of environmental variables.

Ecological process:

Value

mcmc

lambda. pred

lambda.latent

Author(s)

y; ~ Poisson(A;)
log(Ai) = Xif3

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi,ni|B)), is also provided.

If save.p is set to O (default), lambda.pred is the predictive posterior mean
of the abundance associated to the suitability process for each prediction. If
save.pis set to 1, lambda.pred is an mcmc object with sampled values of the
abundance associated to the suitability process for each prediction.

Predictive posterior mean of the abundance associated to the suitability process
for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,

1-20.

See Also

plot.mcmc, summary . mcmc
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Examples

## Not run:

£

hSDM. poisson()
Example with simulated data

H H H

#

#== Load libraries
library(hSDM)

H
H

#== Data simulation

#= Number of sites
nsite <- 200

#= Set seed for repeatability
seed <- 1234

#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2*seed)

x2 <- rnorm(nsite,0,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
log.lambda <- X %% beta.target
lambda <- exp(log.lambda)
set.seed(seed)

Y <- rpois(nsite,lambda)

#= Data-sets
data.obs <- data.frame(Y,x1,x2)

.
H

#== Site-occupancy model

mod. hSDM. poisson <- hSDM.poisson(counts=data.obs$Y,
suitability=~x1+x2,
data=data.obs,
suitability.pred=NULL,
burnin=1000, mcmc=1000, thin=1,
beta.start=0,
mubeta=0, Vbeta=1.0QE6,
seed=1234, verbose=1,
save.p=0)

#== Outputs
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#= Parameter estimates

summary (mod.hSDM. poisson$memc)

pdf (file="Posteriors_hSDM.poisson.pdf")
plot(mod.hSDM. poisson$mcmc)

dev.off()

#== glm resolution to compare
mod.glm <- glm(Y~x1+x2,family="poisson”,data=data.obs)
summary (mod.glm)

#= Predictions

summary (mod.hSDM. poisson$lambda.latent)
summary (mod.hSDM. poisson$lambda.pred)
pdf(file="Pred-Init.pdf")
plot(lambda,mod.hSDM.poisson$lambda.pred)
abline(a=0,b=1,col="red")

dev.off()

## End(Not run)

hSDM. poisson.iCAR Poisson log regression model with CAR process

Description

The hSDM.poisson.iCAR function performs a Poisson log regression in a hierarchical Bayesian
framework. The suitability process includes a spatial correlation process. The spatial correlation is
modelled using an intrinsic CAR model. The hSDM. poisson. iCAR function calls a Gibbs sampler
written in C code which uses an adaptive Metropolis algorithm to estimate the conditional posterior
distribution of hierarchical model’s parameters.

Usage

hSDM.poisson.iCAR(counts, suitability, spatial.entity, data,
n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL,
burnin = 5000, mcmc = 10000, thin = 10, beta.start, Vrho.start, mubeta =
@, Vbeta = 1e+06, priorVrho = "1/Gamma”, shape = 0.5, rate = 0.0005,
Vrho.max=1000, seed = 1234, verbose = 1, save.rho = @, save.p = 0)

Arguments
counts A vector indicating the count (or abundance) for each observation.
suitability A one-sided formula of the form ~ x; + ... + x, with p terms specifying the

explicative variables for the suitability process.
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spatial.entity

data

n.neighbors

neighbors

41

A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.

A data frame containing the model’s variables.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

thin

beta.start

Vrho.start

mubeta

Vbeta

priorVrho

shape

rate

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 8 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. @5 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.
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Vrho.max

seed

verbose

save.rho

save.p

Details

hSDM.poisson.iCAR

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is O: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

We model an ecological process where the abundance of the species is explained by habitat suitabil-
ity. The ecological process includes an intrinsic conditional autoregressive (iCAR) model for spatial
autocorrelation between observations, assuming that the probability of presence of the species at one
site depends on the probability of presence of the species on neighboring sites.

Ecological process:

y; ~ Poisson(A;, t;)
log(A\;) = X+ Pj(i)

p;: spatial random effect

j(@): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;, Vp/n;)

+j: mean of p;, in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.

Value

mcmc

rho.pred

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log([ [, P(:|...)), is also provided.

If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.
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lambda.pred If save.p is set to O (default), lambda.pred is the predictive posterior mean
of the abundance associated to the suitability process for each prediction. If
save.pis set to 1, lambda.pred is an mcmc object with sampled values of the
abundance associated to the suitability process for each prediction.

lambda.latent Predictive posterior mean of the abundance associated to the suitability process
for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,
1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and
autoregressive models in ecology Ecological Monographs, 72, 445-463.

Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance
across environmental gradients Ecology, 88, 3144-3152.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:

+*

hSDM. poisson.iCAR()
Example with simulated data

H H R

m
H#
#

#== Load libraries
library(hSDM)
library(raster)
library(sp)

m
H#
#

#== Multivariate normal distribution
rmvn <- function(n, mu = @, V = matrix(1), seed=1234) {
p <- length(mu)
if (any(is.na(match(dim(V), p)))) {
stop(”"Dimension problem!")

3
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hSDM .poisson.iCAR

D <- chol(V)
set.seed(seed)
t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p)))

H#
#

#== Data simulation

#= Set seed for repeatability
seed <- 1234

#= Landscape

xLand <- 30

yLand <- 30

Landscape <- raster(ncol=xLand,nrow=yLand,crs="'+proj=utm +zone=1")
Landscape[] <- 0

extent(Landscape) <- c¢(@,xLand,0,yLand)

coords <- coordinates(Landscape)

ncells <- ncell(Landscape)

#= Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]

adj <- neighbors.mat[,2]

#= Generate symmetric adjacency matrix, A

A <- matrix(@,ncells,ncells)

index.start <- 1

for (i in 1:ncells) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

3

#= Spatial effects

Vrho.target <- 5

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvn(1,mu=rep(@,ncells),V=covrho,seed=seed)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero

#= Raster and plot spatial effects
r.rho <- rasterFromXYZ(cbind(coords,rho))
plot(r.rho)

#= Sample the observation sites in the landscape
nsite <- 250

set.seed(seed)

x.coord <- runif(nsite,®,xLand)

set.seed(2xseed)

y.coord <- runif(nsite,@,ylLand)
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sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord))
cells <- extract(Landscape,sites.sp,cell=TRUE)[,1]

#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2*xseed)

x2 <- rnorm(nsite,0,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
log.lambda <- X %*% beta.target + rho[cells]
lambda <- exp(log.lambda)
set.seed(seed)

Y <- rpois(nsite,lambda)

#= Relative importance of spatial random effects
RImp <- mean(abs(rho[cells])/abs(X %*% beta.target))
RImp

#= Data-sets
data.obs <- data.frame(Y,x1,x2,cell=cells)

#:

#== Site-occupancy model

Start <- Sys.time() # Start the clock

mod.hSDM.poisson.iCAR <- hSDM.poisson.iCAR(counts=data.obs$Y,
suitability=~x1+x2,
spatial.entity=data.obs$cell,
data=data.obs,
n.neighbors=n.neighbors,
neighbors=adj,
suitability.pred=NULL,
spatial.entity.pred=NULL,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
Vrho.start=1,
mubeta=0, Vbeta=1.0QE6,
priorVrho="1/Gamma",
shape=0.5, rate=0.0005,
seed=1234, verbose=1,
save.rho=1, save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

#= Computation time

Time.hSDM
H==========
#== OQutputs

#= Parameter estimates
summary (mod.hSDM. poisson.iCAR$mcmc)
pdf ("Posteriors_hSDM.poisson.iCAR.pdf")

45
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plot(mod.hSDM.poisson.iCAR$mcmc)
dev.off()

#= Predictions

summary (mod.hSDM. poisson.iCAR$1lambda. latent)
summary (mod.hSDM. poisson.iCAR$1lambda.pred)
pdf(file="Pred-Init.pdf")
plot(lambda,mod.hSDM.poisson.iCAR$1lambda.pred)
abline(a=0,b=1,col="red")

dev.off()

#= Summary plots for spatial random effects

# rho.pred
rho.pred <- apply(mod.hSDM.poisson.iCAR$rho.pred,2,mean)
r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred))

# plot
pdf (file="Summary_hSDM.poisson.iCAR.pdf")
par(mfrow=c(2,2))
# rho target
plot(r.rho, main="rho target")
plot(sites.sp,add=TRUE)
# rho estimated
plot(r.rho.pred, main="rho estimated")
# correlation and "shrinkage"
Levels.cells <- sort(unique(cells))
plot(rho[-Levels.cells],rho.pred[-Levels.cells],
xlim=range(rho),
ylim=range(rho),
xlab="rho target”,
ylab="rho estimated”)
points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue")
legend(x=-3,y=4,legend="Visited cells"”,col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
dev.off()

## End(Not run)

hSDM. siteocc Site occupancy model

Description

The hSDM. siteocc function can be used to model species distribution including different processes
in a hierarchical Bayesian framework: a Bernoulli suitability process (refering to environmental
suitability) and a Bernoulli observability process (refering to various ecological and methodolog-
ical issues explaining the species detection). The hSDM. siteocc function calls a Gibbs sampler
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written in C code which uses a Metropolis algorithm to estimate the conditional posterior distribu-
tion of hierarchical model’s parameters.

Usage

hSDM. siteocc(# Observations

Arguments

presence

observability

site

presence, observability, site, data.observability,
# Habitat

suitability, data.suitability,

# Predictions

suitability.pred = NULL,

# Chains

burnin = 1000, mcmc
# Starting values
beta.start,
gamma.start,

# Priors

mubeta = @, Vbeta = 1.0QE6,
mugamma = @, Vgamma = 1.0E6,
# Various

seed = 1234, verbose = 1,
save.p = 0)

1000, thin = 1,

A vector indicating the presence/absence for each observation.

A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the observability process.

A vector indicating the site identifier (from one to the total number of sites) for
each observation. Several observations can occur at one site. A site can be a
raster cell for example.

data.observability

suitability

A data frame containing the model’s variables for the observability process.

A one-sided formula of the form ~ x1 + ... + x,, with p terms specifying the
explicative variables for the suitability process.

data.suitability

A data frame containing the model’s variables for the suitability process.

suitability.pred

burnin

mcmc

thin

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.
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beta.start

gamma.start

mubeta

Vbeta

mugamma

Vgamma

seed

verbose

save.p

Details

hSDM.siteocc

Starting values for 5 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 5 parameters of the observability process. This can either be
a scalar or a g-length vector.

Means of the priors for the 3 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the « parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the 1lambda.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to the presence or absence of
the species due to habitat suitability and an observation process that takes into account the fact that
the probability of detection of the species is inferior to one.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = X;f3

Observation process:

Yir ~ Bernoulli(z; x 0;1)

lOg’it((Sit) = Wit’Y
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Value

mcme An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log(][;; P(yit, Ni|...)), is also provided.

theta.pred If save.pis set to 0 (default), theta.pred is the predictive posterior mean of the
probability associated to the suitability process for each prediction. If save.p is
set to 1, theta.pred is an mcmc object with sampled values of the probability
associated to the suitability process for each prediction.

theta.latent Predictive posterior mean of the probability associated to the suitability process
for each site.

delta.latent  Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

MacKenzie, D. L.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C.
A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology,
83, 2248-2255.

See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

+*

hSDM. siteocc()
Example with simulated data

H H R

m
H#
#

#== Load libraries
library(hSDM)

m
H#
H

#== Data simulation

#= Number of observation sites
nsite <- 200

#= Set seed for repeatability
seed <- 4321
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#= Ecological process (suitability)
set.seed(seed)

x1 <= rnorm(nsite,@,1)
set.seed(2*xseed)

x2 <- rnorm(nsite,@,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1) # Target parameters
logit.theta <- X %*% beta.target
theta <- inv.logit(logit.theta)
set.seed(seed)

Z <- rbinom(nsite,1,theta)

#= Number of visits associated to each observation point
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
# Vector of observation points
sites <- vector()
for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[i]))

#= Observation process (detectability)
nobs <- sum(visits)

set.seed(seed)

wl <- rnorm(nobs,0,1)

set.seed(2*seed)

w2 <- rnorm(nobs,0,1)

W <- cbind(rep(1,nobs),wl,w2)
gamma.target <- c(-1,1,-1) # Target parameters
logit.delta <- W %x% gamma.target
delta <- inv.logit(logit.delta)
set.seed(seed)

Y <- rbinom(nobs,1,delta*Z[sites])

#= Data-sets
data.obs <- data.frame(Y,wl,w2,site=sites)
data.suit <- data.frame(x1,x2)

#.
#
H

#== Parameter inference with hSDM

£

Start <- Sys.time() # Start the clock

mod.hSDM. siteocc <- hSDM.siteocc(# Observations
presence=data.obs$Y,
observability=~wl+w2,
site=data.obs$site,
data.observability=data.obs,
# Habitat
suitability=~x1+x2,
data.suitability=data.suit,
# Predictions
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suitability.pred=NULL,

# Chains

burnin=2000, mcmc=2000, thin=2,
# Starting values

beta.start=0,

gamma.start=0,

# Priors

mubeta=0, Vbeta=1.0QE6,
mugamma=0, Vgamma=1.0E6,

# Various

seed=1234, verbose=1, save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec”) # Time difference

#= Computation time

Time.hSDM
H==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM. siteocc$memc)

pdf (file="Posteriors_hSDM.siteocc.pdf")
plot(mod.hSDM. siteocc$mecmc)

dev.off()

#= Predictions
summary(mod.hSDM.siteocc$theta.latent)
summary (mod.hSDM. siteocc$delta.latent)
summary (mod.hSDM. siteocc$theta.pred)
pdf (file="Pred-Init.pdf")
plot(theta,mod.hSDM.siteocc$theta.pred)
abline(a=0,b=1,col="red")

dev.off()

## End(Not run)

hSDM. siteocc.iCAR Site-occupancy model with CAR process

Description

The hSDM.siteocc.iCAR function can be used to model species distribution including different
processes in a hierarchical Bayesian framework: a Bernoulli suitability process (refering to envi-
ronmental suitability) which takes into account the spatial dependence of the observations, and a
Bernoulli observability process (refering to various ecological and methodological issues explain-
ing the species detection). The hSDM. siteocc.iCAR function calls a Gibbs sampler written in C
code which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution

of hierarchical model’s parameters.
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Usage

hSDM.siteocc.iCAR

hSDM. siteocc.iCAR(# Observations

Arguments

presence

observability

site

presence, observability, site, data.observability,

# Habitat

suitability, data.suitability,

# Spatial structure

spatial.entity,

n.neighbors, neighbors,

# Predictions

suitability.pred = NULL, spatial.entity.pred = NULL,
# Chains

burnin = 1000, mcmc
# Starting values
beta.start,
gamma.start,
Vrho.start,

# Priors

mubeta = @, Vbeta = 1.0ES6,
mugamma = @, Vgamma = 1.0QE6,
priorVrho = "1/Gamma",

shape = 0.5, rate = 0.0005,
Vrho.max = 1000,

# Various

seed = 1234, verbose =1,
save.rho = 0, save.p

1000, thin =1,

1
S
~

A vector indicating the presence/absence for each observation.

A one-sided formula of the form ~ w; + ... + wy with g terms specifying the
explicative variables for the observability process.

A vector indicating the site identifier (from one to the total number of sites) for
each observation. Several observations can occur at one site. A site can be a
raster cell for example.

data.observability

suitability

A data frame containing the model’s variables for the observability process.

A one-sided formula of the form ~ x; + ... + x,, with p terms specifying the
explicative variables for the suitability process.

data.suitability

spatial.entity

n.neighbors

A data frame containing the model’s variables for the suitability process.

A vector (of length ’nsite’) indicating the spatial entity identifier for each site.
Values must be between 1 and the total number of spatial entities. Several sites
can be found in one spatial entity. A spatial entity can be a raster cell for exam-
ple

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.
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A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

thin

beta.start

gamma.start

Vrho.start

mubeta

Vbeta

mugamma

Vgamma

priorVrho

shape

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 5 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the « parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the v parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. 05 for uninformative prior.
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rate

Vrho.max

seed

verbose

save.rho

save.p

Details

hSDM.siteocc.iCAR

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is 0: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the theta.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to the presence or absence
of the species due to habitat suitability and an observation process that takes into account the fact
that the probability of detection of the species is inferior to one. The ecological process includes
an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between
observations, assuming that the probability of presence of the species at one site depends on the
probability of presence of the species on neighboring sites.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = XiB + pj(i)

p;: spatial random effect

j(7): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;, Vy,/n;)

4;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.

Observation process:

Yir ~ Bernoulli(z; x 0;1)

lOgit((Sit) = Wit’Y
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Value

mcme An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, #il.-.)), is also provided.

rho.pred If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

theta.pred If save.pis set to 0 (default), theta.pred is the predictive posterior mean of the
probability associated to the suitability process for each prediction. If save.p is
set to 1, theta.pred is an mecmc object with sampled values of the probability
associated to the suitability process for each prediction.

theta.latent Predictive posterior mean of the probability associated to the suitability process
for each site.

delta.latent  Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References
Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance
across environmental gradients Ecology, 88, 3144-3152.

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005)
Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54,
1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.

Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and
autoregressive models in ecology Ecological Monographs, 72, 445-463.

MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C.
A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology,
83, 2248-2255.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:

#:

# hSDM.siteocc.iCAR()
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# Example with simulated data

#:

m

#== Load libraries
library(hSDM)
library(raster)
library(sp)

H.
H#

#== Multivariate normal distribution
rmvn <- function(n, mu = @, V = matrix(1), seed=1234) {
p <- length(mu)
if (any(is.na(match(dim(V), p)))) {
stop(”"Dimension problem!")
3
D <- chol(V)
set.seed(seed)
t(matrix(rnorm(nxp),ncol=p)%x%D+rep(mu,rep(n,p)))

.
#

#== Data simulation

#= Set seed for repeatability
seed <- 1234

#= Landscape

xLand <- 30

yLand <- 30

Landscape <- raster(ncol=xLand,nrow=yLand,crs="'+proj=utm +zone=1")
Landscape[] <- @

extent(Landscape) <- c¢(@,xLand,@,ylLand)

coords <- coordinates(Landscape)

ncells <- ncell(Landscape)

#= Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]

adj <- neighbors.mat[,2]

#= Generate symmetric adjacency matrix, A

A <- matrix(@,ncells,ncells)

index.start <- 1

for (i in 1:ncells) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

#= Spatial effects
Vrho.target <- 5
d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR
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Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvn(1,mu=rep(@,ncells),V=covrho,seed=seed)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero

#= Raster and plot spatial effects
r.rho <- rasterFromXYZ(cbind(coords,rho))
plot(r.rho)

#= Sample the observation sites in the landscape

nsite <- 250

set.seed(seed)

x.coord <- runif(nsite,@,xLand)

set.seed(2*seed)

y.coord <- runif(nsite,@,yLand)

sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord))
cells <- extract(Landscape,sites.sp,cell=TRUE)[,1]

#= Ecological process (suitability)
set.seed(seed)

x1 <- rnorm(nsite,@,1)
set.seed(2xseed)

x2 <- rnorm(nsite,@,1)

X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
logit.theta <- X %*% beta.target + rho[cells]
theta <- inv.logit(logit.theta)
set.seed(seed)

Z <- rbinom(nsite,1,theta)

#= Relative importance of spatial random effects
RImp <- mean(abs(rholcells])/abs(X %x% beta.target))
RImp

#= Number of visits associated to each observation point
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1
# Vector of observation points
sites <- vector()
for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[il]))

}

#= Observation process (detectability)
nobs <- sum(visits)

set.seed(seed)

wl <- rnorm(nobs,0,1)

set.seed(2xseed)

w2 <- rnorm(nobs,@,1)

W <- cbind(rep(1,nobs),wl,w2)

gamma. target <- c(-1,1,-1)
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logit.delta <- W %*% gamma.target
delta <- inv.logit(logit.delta)
set.seed(seed)

Y <- rbinom(nobs,1,deltaxZ[sites])

#= Data-sets
data.obs <- data.frame(Y,wl,w2,site=sites)
data.suit <- data.frame(x1,x2,cell=cells)

H.
H#

#== Parameter inference with hSDM

Start <- Sys.time() # Start the clock

mod.hSDM.siteocc.iCAR <- hSDM.siteocc.iCAR(# Observations
presence=data.obs$Y,
observability=~w1+w2,
site=data.obs$site,
data.observability=data.obs,
# Habitat

suitability=~x1+x2, data.suitability=data.suit,

# Spatial structure
spatial.entity=data.suit$cell,
n.neighbors=n.neighbors, neighbors=adj,
# Predictions
suitability.pred=NULL,
spatial.entity.pred=NULL,
# Chains
burnin=10000, mcmc=5000, thin=5,
# Starting values
beta.start=0,
gamma.start=0,
Vrho.start=1,
# Priors
mubeta=0, Vbeta=1.0QE6,
mugamma=0, Vgamma=1.0E6,
priorVrho="Uniform",
Vrho.max=10,
# Various
seed=1234, verbose=1,
save.rho=1, save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec"”) # Time difference

#= Computation time

Time.hSDM
H==========
#== Outputs

#= Parameter estimates

summary (mod.hSDM. siteocc.iCAR$mcmc)

pdf ("Posteriors_hSDM.siteocc.iCAR.pdf")
plot(mod.hSDM. siteocc.iCAR$mcmc)
dev.off()
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#= Predictions

summary (mod.hSDM. siteocc.iCAR$theta.latent)
summary (mod.hSDM. siteocc.iCAR$delta.latent)
summary (mod.hSDM. siteocc.iCAR$theta.pred)
pdf(file="Pred-Init.pdf")
plot(theta,mod.hSDM.siteocc.iCAR$theta.pred)
abline(a=0,b=1,col="red")

dev.off()

#= Summary plots for spatial random effects

# rho.pred
rho.pred <- apply(mod.hSDM.siteocc.iCAR$rho.pred,2,mean)
r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred))

# plot
pdf (file="Summary_hSDM.siteocc.iCAR.pdf")
par(mfrow=c(2,2))
# rho target
plot(r.rho, main="rho target")
plot(sites.sp,add=TRUE)
# rho estimated
plot(r.rho.pred, main="rho estimated”)
# correlation and "shrinkage"
Levels.cells <- sort(unique(cells))
plot(rho[-Levels.cells],rho.pred[-Levels.cells],
xlim=range(rho),
ylim=range(rho),
xlab="rho target”,
ylab="rho estimated")
points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue")
legend(x=-3,y=4,legend="Visited cells”,col="blue"”,pch=16,bty="n")
abline(a=0,b=1,col="red")
dev.off()

## End(Not run)

hSDM. Z1B ZIB (Zero-Inflated Binomial) model

Description

The hSDM. ZIB function can be used to model species distribution including different processes in a
hierarchical Bayesian framework: a Bernoulli suitability process (refering to environmental suit-
ability) and a Binomial observability process (refering to various ecological and methodological
issues explaining the species detection). The hSDM. ZIB function calls a Gibbs sampler written in C
code which uses a Metropolis algorithm to estimate the conditional posterior distribution of hierar-
chical model’s parameters.
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Usage

hSDM.ZIB

hSDM.ZIB(presences, trials, suitability,

observability, data, suitability.pred=NULL, burnin = 5000, mcmc = 10000,
thin = 10, beta.start, gamma.start, mubeta = @, Vbeta = 1e+06, mugamma =
@, Vgamma = 1e+06, seed = 1234, verbose = 1, save.p = 0)

Arguments

presences

trials

suitability

observability

data

A vector indicating the number of successes (or presences) for each observation.

A vector indicating the number of trials for each observation. ¢; should be supe-
rior to zero and superior or equal to y;, the number of successes for observation
i.

A one-sided formula of the form ~ x1 + ... + x,, with p terms specifying the
explicative variables for the suitability process.

A one-sided formula of the form ~ w; + ... + wy with g terms specifying the
explicative variables for the observability process.

A data frame containing the model’s variables.

suitability.pred

burnin

mcmc

thin

beta.start

gamma.start

mubeta

Vbeta

mugamma

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Means of the priors for the 5 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the 3 parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.
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Vgamma

seed

verbose

save.p

Details
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Variances of the Normal priors for the « parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to the presence or absence of
the species due to habitat suitability and an observation process that takes into account the fact that
the probability of detection of the species is inferior to one.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = Xif3

Observation process:

Value

mcmc

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)

yi ~ Binomial(z; * 6;,t;)

logit(6;) = W;

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, zi|...)), is also provided.

If save.p is set to O (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.pis setto 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

hSDM. ZIB()
Example with simulated data

ETRE Y

#== Preambule
library(hSDM)

m
#
H

#== Data simulation

# Set seed for repeatability
seed <- 1234

# Number of observations
nobs <- 1000

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma.target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

# Covariates for "suitability” process
set.seed(seed)

X1 <- rnorm(n=nobs,0,1)
set.seed(2xseed)

X2 <- rnorm(n=nobs,0,1)

X <- cbind(rep(1,nobs),X1,X2)

# Covariates for "observability” process
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W <~ cbind(rep(1,nobs))

## Uncomment if you want covariates on the observability process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)

#== Simulating latent variables

# Suitability

logit.theta.1 <- X %x% beta.target
theta.1 <- inv.logit(logit.theta.1)
set.seed(seed)

y.1 <= rbinom(nobs,1,theta.1)

# Observability

set.seed(seed)

trials <- rpois(nobs,5) # Number of trial associated to each observation
trials[trials==0] <- 1

logit.theta.2 <- W %x% gamma.target

theta.2 <- inv.logit(logit.theta.2)

set.seed(seed)

y.2 <- rbinom(nobs,trials,theta.2)

#== Simulating response variable
Y <- y.2%y.1

#== Data-set

Data <- data.frame(Y,trials,X1,X2)

## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,trials,X1,X2,W1,W2)

.
#
H

#== ZIB model

mod.hSDM.ZIB <- hSDM.ZIB(presences=Data$y,
trials=Data$trials,
suitability=~X1+X2,
observability=~1, #=~1+W1+W2 if covariates
data=Data,
suitability.pred=NULL,
burnin=1000, mcmc=1000, thin=5,
beta.start=0,
gamma.start=0,
mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0QEG6,
seed=1234, verbose=1,
save.p=0)

#== OQutputs
pdf(file="Posteriors_hSDM.ZIB.pdf")
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plot(mod.hSDM.ZIB$mcmc)

dev.off()

summary (mod.hSDM.ZIB$prob.p.latent)
summary (mod.hSDM. ZIB$prob.q.latent)
summary (mod.hSDM. ZIB$prob.p.pred)

## End(Not run)

hSDM. ZIB.iCAR ZIB (Zero-Inflated Binomial) model with CAR process

Description

The hSDM.ZIB.iCAR function can be used to model species distribution including different pro-
cesses in a hierarchical Bayesian framework: a Bernoulli suitability process (refering to envi-
ronmental suitability) which takes into account the spatial dependence of the observations, and a
Binomial observability process (refering to various ecological and methodological issues explain-
ing the species detection). The hSDM. ZIB. iCAR function calls a Gibbs sampler written in C code
which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of
hierarchical model’s parameters.

Usage

hSDM.ZIB.iCAR(presences, trials, suitability,

observability, spatial.entity, data, n.neighbors, neighbors,
suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc =
10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = @, Vbeta
= 1e+06, mugamma = @, Vgamma = l1e+06, priorVrho = "1/Gamma”, shape =
0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho =
@, save.p = 0)

Arguments
presences A vector indicating the number of successes (or presences) for each observation.
trials A vector indicating the number of trials for each observation. ¢; should be supe-
rior to zero and superior or equal to y;, the number of successes for observation
i.
suitability A one-sided formula of the form ~ x; + ... + x,, with p terms specifying the

explicative variables for the suitability process.

observability A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the observability process.

spatial.entity A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.
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data

n.neighbors

neighbors
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A data frame containing the model’s variables.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

thin

beta.start

gamma.start

Vrho.start

mubeta

Vbeta

mugamma

Vgamma

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 3 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the $ parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the « parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.
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priorVrho

shape

rate

Vrho.max

seed

verbose

save.rho

save.p

Details

hSDM.ZIB.iCAR

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. @5 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is 0: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to the presence or absence
of the species due to habitat suitability and an observation process that takes into account the fact
that the probability of detection of the species is inferior to one. The ecological process includes
an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between
observations, assuming that the probability of presence of the species at one site depends on the
probability of presence of the species on neighboring sites.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = X + pj(s)

p;: spatial random effect

j(7): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;,V,/n;)

;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.
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Observation process:

Value

mcmc

rho.pred

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)

yi ~ Binomial(z; * 6;,t;)

logit(6;) = W;

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, #i|...)), is also provided.

If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

If save.p is set to 0 (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.p is set to 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

#:

# hSDM.ZIB.iCAR()
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# Example with simulated data

#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)

#:

#== Data simulation

# Set seed for repeatability
seed <- 1234

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma.target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

Vrho.target <- 1 # Spatial Variance

# Landscape
Landscape <- raster(ncol=20,nrow=20,crs="'+proj=utm +zone=1")
ncell <- ncell(Landscape)

# Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]

adj <- neighbors.mat[,2]

# Generate symmetric adjacency matrix, A

A <- matrix(@,ncell,ncell)

index.start <- 1

for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

# Spatial effects

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero

# Visited cells

n.visited <- 150 # Compare with 400, 350 and 100 for example

set.seed(seed)

visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random
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notvisited.cells <- c(1:ncell)[-visited.cells]

# Number of observations
nobs <- 300

# Cell vector

set.seed(seed)

cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates

# Covariates for "suitability"” process
set.seed(seed)

X1.cell <- rnorm(n=ncell,0,1)
set.seed(2xseed)

X2.cell <- rnorm(n=ncell,0,1)

X1 <- X1.cell[cells]

X2 <- X2.cell[cells]

X <- cbind(rep(1,nobs),X1,X2)

# Covariates for "observability” process

W <- cbind(rep(1,nobs))

## Uncomment if you want covariates on the observability process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)

#== Simulating latent variables

# Suitability
logit.theta.1 <- vector()
for (n in 1:nobs) {
logit.theta.1[n] <- X[n, ]J%*%beta.target+rho[cells[n]]
3
theta.1 <- inv.logit(logit.theta.1)
set.seed(seed)
y.1 <= rbinom(nobs,1,theta.1)

# Observability

set.seed(seed)

trials <- rpois(nobs,5) # Number of trial associated to each observation
trials[trials==0] <- 1

logit.theta.2 <- Wk*%gamma.target

theta.2 <- inv.logit(logit.theta.2)

set.seed(seed)

y.2 <- rbinom(nobs,trials,theta.2)

#== Simulating response variable
Y <- y.2*xy.1

#== Data-set
Data <- data.frame(Y,trials,cells,X1,X2)
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## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2)
Data <- SpatialPointsDataFrame(coords=coords,data=Data)

plot(Data)

#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell, X2=X2.cell,cells=c(1:ncell))

#== Site-occupancy model

mod.hSDM.ZIB.iCAR <- hSDM.ZIB.iCAR(presences=Data$Y,

#== Outputs

#= Parameter estimates
summary (mod.hSDM. ZIB. iCAR$mcmc)

#= MCMC and posteriors

trials=Data$trials,
suitability=~X1+X2,
observability=~1,
spatial.entity=Data$cells,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,

## suitability.pred=NULL,

## spatial.entity.pred=NULL,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,

gamma.start=0,
Vrho.start=10,
priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,

mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0E6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,

seed=1234, verbose=1,
save.rho=1, save.p=0)

pdf (file="Posteriors_hSDM.ZIB.iCAR.pdf")

plot(mod.hSDM.ZIB. iCAR$mcmc)

dev.off()

pdf (file="Posteriors.rho_hSDM.ZIB.iCAR.pdf")

plot(mod.hSDM.ZIB.iCAR$rho.pred)

dev.off()

#= Summary plots

hSDM.ZIB.iCAR
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# rho

r.rho <- r.rho.pred <- r.visited <- Landscape
r.rho[] <- rho

rho.pred <- apply(mod.hSDM.ZIB.iCAR$rho.pred,2,mean)
r.rho.pred[] <- rho.pred

r.visited[] <- @

r.visited[visited.cells] <- 1

# prob.p

r.prob.p <- Landscape

r.prob.p[] <- mod.hSDM.ZIB.iCAR$prob.p.pred

pdf (file="Summary_hSDM.ZIB.iCAR.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and presences")
plot(DatalY>@,],add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated”)
plot(rho[visited.cells],rho.pred[visited.cells],

xlab="rho target"”,

ylab="rho estimated”)
points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,1legend="Unvisited cells"”,col="blue"”,pch=16,bty="n")
abline(a=0,b=1,col="red")
plot(r.prob.p,main="Proba of presence")
plot(DatalY>@,],add=TRUE,pch=16,cex=0.5)
dev.off()

## End(Not run)

hSDM.ZIB.iCAR.alteration
ZIB (Zero-Inflated Binomial) model with CAR process taking into ac-
count site alteration

Description

The hSDM. ZIB. iCAR. alteration function can be used to model species distribution including dif-
ferent processes in a hierarchical Bayesian framework: (i) a Bernoulli suitability process (refering
to environmental suitability) which takes into account the spatial dependence of the observations,
(ii) an alteration process (refering to anthropogenic disturbances), and (iii) a Binomial observ-
ability process (refering to various ecological and methodological issues explaining the species
detection). The hSDM.ZIB.iCAR.alteration function calls a Gibbs sampler written in C code
which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of
hierarchical model’s parameters.
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Usage

hSDM.ZIB.iCAR.alteration

hSDM.ZIB.iCAR.alteration(presences, trials, suitability,

observability, spatial.entity, alteration, data, n.neighbors, neighbors,
suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc =
10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = @, Vbeta
= 1e+06, mugamma = @, Vgamma = l1e+@6, priorVrho = "1/Gamma”, shape =
0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho =

@, save.p = 0)

Arguments

presences

trials

suitability

observability

spatial.entity

alteration

data

n.neighbors

neighbors

A vector indicating the number of successes (or presences) for each observation.

A vector indicating the number of trials for each observation. ¢; should be supe-
rior to zero and superior or equal to y;, the number of successes for observation
i.

A one-sided formula of the form ~ z; + ... + x,, with p terms specifying the
explicative variables for the suitability process.

A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the observability process.

A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.

A vector indicating the proportion of area in the spatial cell which is transformed
(by anthropogenic activities for example) for each observation. Must be between
Oand 1.

A data frame containing the model’s variables.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+mcmc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.
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thin

beta.start

gamma.start

Vrho.start

mubeta

Vbeta

mugamma

Vgamma

priorVrho

shape

rate

Vrho.max

seed
verbose

save.rho

save.p

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 5 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the « parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the v parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. @5 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is O: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to I might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.
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Details

hSDM.ZIB.iCAR.alteration

The model integrates two processes, an ecological process associated to the presence or absence
of the species due to habitat suitability and an observation process that takes into account the fact
that the probability of detection of the species is inferior to one. The ecological process includes
an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between
observations, assuming that the probability of presence of the species at one site depends on the
probability of presence of the species on neighboring sites.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = Xif + pjci

p;: spatial random effect

j(7): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;, V/n;)

ft;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.

Observation process:

Value

mcmc

rho.pred

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)

yi ~ Binomial(z; * 6;, ;)

lOgiﬁ((Si) = Wi

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, #il...)), is also provided.

If save.rho is set to 0 (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

If save.p is set to O (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.p is set to 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

m
#
#

# hSDM.ZIB.iCAR.alteration()
# Example with simulated data

#

#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)

#.
#
H

#== Data simulation

# Set seed for repeatability
seed <- 1234

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma.target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

Vrho.target <- 1 # Spatial Variance

# Landscape
Landscape <- raster(ncol=20,nrow=20,crs="'+proj=utm +zone=1")
ncell <- ncell(Landscape)

# Neighbors
neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,11)))[,2]
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adj <- neighbors.mat[,2]

# Generate symmetric adjacency matrix, A

A <- matrix(@,ncell,ncell)

index.start <- 1

for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

# Spatial effects

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero

# Visited cells
n.visited <- 150 # Compare with 400, 350 and 100 for example
set.seed(seed)

visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random

notvisited.cells <- c(1:ncell)[-visited.cells]

# Number of observations
nobs <- 300

# Cell vector

set.seed(seed)

cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates

# Covariates for "suitability"” process
set.seed(seed)

X1.cell <- rnorm(n=ncell,0,1)
set.seed(2xseed)

X2.cell <- rnorm(n=ncell,0,1)

X1 <= X1.cell[cells]

X2 <- X2.cell[cells]

X <- cbind(rep(1,nobs),X1,X2)

# Alteration
U <- runif(n=nobs,min=0,max=1)

# Covariates for "observability" process

W <- cbind(rep(1,nobs))

## Uncomment if you want covariates on the observability process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)
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#== Simulating latent variables

# Suitability
logit.theta.1 <- vector()
for (n in 1:nobs) {
logit.theta.1[n] <- X[n, ]J%*%beta.target+rho[cells[n]]
3
theta.1 <- inv.logit(logit.theta.1)
set.seed(seed)
y.1 <= rbinom(nobs,1,theta.1)

# Alteration
u <- rbinom(nobs,1,U)

# Observability

set.seed(seed)

trials <- rpois(nobs,5) # Number of trial associated to each observation
trials[trials==0] <- 1

logit.theta.2 <- Wk*%gamma.target

theta.2 <- inv.logit(logit.theta.2)

set.seed(seed)

y.2 <- rbinom(nobs,trials,theta.2)

#== Simulating response variable
Y <= y.2%(1-u)*y.1

#== Data-set

Data <- data.frame(Y,trials,cells,X1,X2,U)

## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2,U)

Data <- SpatialPointsDataFrame(coords=coords,data=Data)
plot(Data)

#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell, X2=X2.cell,cells=c(1:ncell))

#

#== Site-occupancy model

mod.hSDM.ZIB.iCAR.alteration <- hSDM.ZIB.iCAR.alteration(presences=Datas$y,
trials=Data$trials,
suitability=~X1+X2,
observability=~1,
spatial.entity=Data$cells,
alteration=Data$u,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,
## suitability.pred=NULL,
## spatial.entity.pred=NULL,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
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burnin=5000, mcmc=5000, thin=5,
beta.start=0,
gamma.start=0,
Vrho.start=10,
priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,

mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0QEG6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,
seed=1234, verbose=1,
save.rho=1, save.p=0)

#== Outputs

#= Parameter estimates
summary (mod.hSDM.ZIB.iCAR.alteration$mcmc)

#= MCMC and posteriors

pdf (file="Posteriors_hSDM.ZIB.iCAR.alteration.pdf")
plot(mod.hSDM.ZIB.iCAR.alteration$mcmc)

dev.off()

pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.alteration.pdf")
plot(mod.hSDM.ZIB.iCAR.alteration$rho.pred)
dev.off()

#= Summary plots

# rho

r.rho <- r.rho.pred <- r.visited <- Landscape

r.rho[] <- rho

rho.pred <- apply(mod.hSDM.ZIB.iCAR.alteration$rho.pred,2,mean)
.rho.pred[] <- rho.pred

.visited[] <- @

.visited[visited.cells] <- 1

prob.p

.prob.p <- Landscape

.prob.p[] <- mod.hSDM.ZIB.iCAR.alteration$prob.p.pred

SO O H YOS

pdf (file="Summary_hSDM.ZIB.iCAR.alteration.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and presences")
plot(Datal[Y>@,],add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated”)
plot(rho[visited.cells],rho.pred[visited.cells],

xlab="rho target”,

ylab="rho estimated”)
points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,1legend="Unvisited cells”,col="blue"”,pch=16,bty="n")
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abline(a=0,b=1,col="red")
plot(r.prob.p,main="Proba of presence")
plot(DatalY>@,],add=TRUE,pch=16,cex=0.5)

dev.off()

## End(Not run)

hSDM. ZIP

ZIP (Zero-Inflated Poisson) model

Description

The hSDM. ZIP function can be used to model species distribution including different processes in
a hierarchical Bayesian framework: a Bernoulli suitability process (refering to various ecological
variables explaining environmental suitability or not) and a Poisson abundance process (refering
to various ecological variables explaining the species abundance when the habitat is suitable). The
hSDM. ZIP function calls a Gibbs sampler written in C code which uses a Metropolis algorithm to
estimate the conditional posterior distribution of hierarchical model’s parameters.

Usage

hSDM.ZIP(counts, suitability, abundance, data,

suitability.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10,
beta.start, gamma.start, mubeta = @, Vbeta = 1e+06, mugamma = @, Vgamma
= 1e+06, seed = 1234, verbose = 1, save.p = 0)

Arguments

counts

suitability

abundance

data

A vector indicating the count for each observation.

A one-sided formula of the form ~ x; + ... + x, with p terms specifying the
explicative variables for the suitability process.

A one-sided formula of the form ~ w; + ... + w, with ¢ terms specifying the
explicative variables for the abundance process.

A data frame containing the model’s variables.

suitability.pred

burnin

mcmc

thin

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.
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beta.start

gamma.start

mubeta

Vbeta

mugamma

Vgamma

seed

verbose

save.p

Details

hSDM.ZIP

Starting values for 5 parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the abundance process. This can either be a
scalar or a g-length vector.

Means of the priors for the 3 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the abundance process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the v parameters of the abundance process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is 0: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to habitat suitability (habitat is
suitable or not for the species) and an abundance process that takes into account ecological variables
explaining the species abundance when the habitat is suitable.

Suitability process:

z; ~ Bernoulli(6;)

logit(0;) = X;f3

Abundance process:

yi ~ Poisson(z; * \;)

log(X\;) = W;
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Value

mcmc

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)
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An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, #il.-.)), is also provided.

If save.p is set to O (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.pis setto 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the abundance process
for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

m
H#

#

# hSDM.ZIP()

# Example with simulated data

#

H============
#== Preambule
library(hSDM)

m
H#

#

#== Data simulation

# Set seed for repeatability
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seed <- 1234

# Number of observations
nobs <- 1000

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma. target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the abundance process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

# Covariates for "suitability"” process
set.seed(seed)

X1 <= rnorm(n=nobs,0,1)
set.seed(2*seed)

X2 <- rnorm(n=nobs,0,1)

X <- cbind(rep(1,nobs),X1,X2)

# Covariates for "abundance” process

W <- cbind(rep(1,nobs))

## Uncomment if you want covariates on the abundance process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)

#== Simulating latent variables

# Suitability

logit.theta <- X %*% beta.target
theta <- inv.logit(logit.theta)
set.seed(seed)

y.1 <= rbinom(nobs, 1, theta)

# Abundance

set.seed(seed)

log.lambda <- W %*% gamma.target
lambda <- exp(log.lambda)
set.seed(seed)

y.2 <- rpois(nobs, lambda)

#== Simulating response variable
Y <- y.2*xy.1

#== Data-set

Data <- data.frame(Y,X1,X2)

## Uncomment if you want covariates on the abundance process
## Data <- data.frame(Y,X1,X2,W1,W2)

m
H

#== ZIP model
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mod.hSDM.ZIP <- hSDM.ZIP(counts=Data$y,
suitability=~X1+X2,
abundance=~1, #=~1+W1+W2 if covariates
data=Data,
suitability.pred=NULL,
burnin=1000, mcmc=1000, thin=5,
beta.start=0,
gamma.start=0,
mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0QE6,
seed=1234, verbose=1,
save.p=0)

#== Outputs

pdf (file="Posteriors_hSDM.ZIP.pdf")
plot(mod.hSDM.ZIP$mcmc)

dev.off()

summary (mod.hSDM. ZIP$prob.p.latent)
summary (mod.hSDM.ZIP$prob.q.latent)
summary (mod.hSDM. ZIP$prob.p.pred)

## End(Not run)
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hSDM. ZIP.iCAR ZIP (Zero-Inflated Poisson) model with CAR process

Description

The hSDM.ZIP.iCAR function can be used to model species distribution including different pro-
cesses in a hierarchical Bayesian framework: a Bernoulli suitability process (refering to various
ecological variables explaining environmental suitability or not) which takes into account the spatial
dependence of the observations, and a Poisson abundance process (refering to various ecological
variables explaining the species abundance when the habitat is suitable). The hSDM.ZIP. iCAR func-
tion calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to estimate

the conditional posterior distribution of hierarchical model’s parameters.

Usage

hSDM.ZIP.iCAR(counts, suitability, abundance, spatial.entity,
data, n.neighbors, neighbors, suitability.pred=NULL,
spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10,

beta.start, gamma.start, Vrho.start, mubeta = @, Vbeta = 1e+06, mugamma
= @, Vgamma = 1e+@6, priorVrho = "1/Gamma"”, shape = 0.5, rate = 0.0005,

Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0@, save.p = 0)
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Arguments

counts

suitability

abundance

spatial.entity

data

n.neighbors

neighbors

hSDM.ZIPiCAR

A vector indicating the count for each observation.

A one-sided formula of the form ~ x; + ... + x,, with p terms specifying the
explicative variables for the suitability process.

A one-sided formula of the form ~ wy + ... + w, with ¢ terms specifying the
explicative variables for the abundance process.

A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.

A data frame containing the model’s variables.

A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

A vector of integers indicating the neighbors (adjacent entities) of each spatial
entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred

An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred

burnin

mcmc

thin

beta.start

gamma.start

Vrho.start

mubeta

Vbeta

An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

The number of burnin iterations for the sampler.

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

Starting values for  parameters of the suitability process. This can either be a
scalar or a p-length vector.

Starting values for 3 parameters of the observability process. This can either be
a scalar or a g-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 5 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the § parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.
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mugamma

Vgamma

priorVrho

shape

rate

Vrho.max

seed

verbose

save.rho

save.p

Details
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Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the « parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. 05 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is 0: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.

The model integrates two processes, an ecological process associated to habitat suitability (habitat is
suitable or not for the species) and an abundance process that takes into account ecological variables
explaining the species abundance when the habitat is suitable. The suitability process includes
an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between
observations, assuming that the suitability at one site depends on the suitability on neighboring

sites.

Suitability process:

z;i ~ Bernoulli(6;)

logit(0;) = X + pj()

pj: spatial random effect

j(7): index of the spatial entity for observation i.
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Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(u;, Vy/n;)

f4;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.

Abundance process:

Value

mcmc

rho.pred

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)

yi ~ Poisson(z; * \;)

log(A\i) = W;

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —21log([ [, P(yi, #i|...)), is also provided.

If save.rho is set to O (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

If save.p is set to O (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.pis setto 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc
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Examples

## Not run:

£

# hSDM.ZIP.iCAR()
# Example with simulated data

#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)

H
H

#== Data simulation

# Set seed for repeatability
seed <- 1234

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma. target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

Vrho.target <- 1 # Spatial Variance

# Landscape
Landscape <- raster(ncol=20,nrow=20,crs="'+proj=utm +zone=1")
ncell <- ncell(Landscape)

# Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1]1)))[,2]

adj <- neighbors.mat[,2]

# Generate symmetric adjacency matrix, A

A <- matrix(@,ncell,ncell)

index.start <- 1

for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

# Spatial effects

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)
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rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects
rho <- rho-mean(rho) # Centering rhos on zero

# Visited cells

n.visited <- 150 # Compare with 400, 350 and 100 for example

set.seed(seed)

visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random
notvisited.cells <- c(1:ncell)[-visited.cells]

# Number of observations
nobs <- 300

# Cell vector

set.seed(seed)

cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates

# Covariates for "suitability” process
set.seed(seed)

X1.cell <- rnorm(n=ncell,0,1)
set.seed(2*seed)

X2.cell <- rnorm(n=ncell,0,1)

X1 <- X1.cell[cells]

X2 <- X2.cell[cells]

X <- cbind(rep(1,nobs),X1,X2)

# Covariates for "abundance” process

W <- cbind(rep(1,nobs))

## Uncomment if you want covariates on the observability process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)

#== Simulating latent variables

# Suitability
logit.theta <- vector()
for (n in 1:nobs) {
logit.thetal[n] <- X[n,]%*%beta.target+rho[cells[n]]
3
theta <- inv.logit(logit.theta)
set.seed(seed)
y.1 <= rbinom(nobs, 1, theta)

# Abundance

set.seed(seed)

log.lambda <- W %*% gamma.target
lambda <- exp(log.lambda)
set.seed(seed)

y.2 <- rpois(nobs,lambda)
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#== Simulating response variable
Y <- y.2%y.1

#== Data-set

Data <- data.frame(Y,cells,X1,X2)

## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,cells,X1,X2,W1,W2)

Data <- SpatialPointsDataFrame(coords=coords,data=Data)
plot(Data)

#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell, X2=X2.cell,cells=c(1:ncell))

#:

#== ZIP model with CAR

mod.hSDM. ZIP.iCAR <- hSDM.ZIP.iCAR(counts=Data$y,
suitability=~X1+X2,
abundance=~1,
spatial.entity=Data$cells,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
gamma.start=0,
Vrho.start=10,
priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,
mubeta=0, Vbeta=1.0QE6,
mugamma=@, Vgamma=1.0QE6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,
seed=1234, verbose=1,
save.rho=1, save.p=0)

#== Outputs

#= Parameter estimates
summary (mod.hSDM. ZIP. iCAR$mcmc)

#= MCMC and posteriors
pdf(file="Posteriors_hSDM.ZIP.iCAR.pdf")
plot(mod.hSDM.ZIP.iCAR$mcmc)

dev.off()

pdf (file="Posteriors.rho_hSDM.ZIP.iCAR.pdf")
plot(mod.hSDM.ZIP.iCAR$rho.pred)
dev.off()

89
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#= Summary plots

# rho

r.rho <- r.rho.pred <- r.visited <- Landscape

r.rho[] <- rho

rho.pred <- apply(mod.hSDM.ZIP.iCAR$rho.pred,2,mean)
.rho.pred[] <- rho.pred

.visited[] <- @

.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean)
prob.p

.prob.p <- Landscape

.prob.p[] <- mod.hSDM.ZIP.iCAR$prob.p.pred

SO H: SO

pdf (file="Summary_hSDM.ZIP.iCAR.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and counts")
plot(Data,add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated”)
plot(rho[visited.cells],rho.pred[visited.cells],
xlab="rho target”,
ylab="rho estimated”)

hSDM.ZIP.iCAR .alteration

points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,legend="Unvisited cells"”,col="blue",pch=16,bty="n")

abline(a=0,b=1,col="red")
plot(r.prob.p,main="Predicted counts”)
plot(Data,add=TRUE, pch=16,cex=0.5)
dev.off()

## End(Not run)

hSDM.ZIP.iCAR.alteration

ZIP (Zero-Inflated Poisson) model with CAR process taking into ac-

count site alteration

Description

The hSDM. ZIP.iCAR. alteration function can be used to model species distribution including dif-
ferent processes in a hierarchical Bayesian framework: (i) a Bernoulli suitability process (refering
to various ecological variables explaining environmental suitability or not) which takes into account
the spatial dependence of the observations, (ii) an alteration process (refering to anthropogenic dis-
turbances), and (iii) a Poisson abundance process (refering to various ecological variables explain-
ing the species abundance when the habitat is suitable). The hSDM.ZIP.iCAR.alteration function
calls a Gibbs sampler written in C code which uses an adaptive Metropolis algorithm to estimate
the conditional posterior distribution of hierarchical model’s parameters.
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Usage

hSDM.ZIP.iCAR.alteration(counts, suitability, abundance,

spatial.entity, alteration, data, n.neighbors, neighbors,
suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc =
10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = @, Vbeta
= le+06, mugamma = @, Vgamma = 1e+06, priorVrho = "1/Gamma”, shape =
0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho =
@, save.p = 0)

Arguments
counts A vector indicating the count for each observation.
suitability A one-sided formula of the form ~ x; + ... + x, with p terms specifying the
explicative variables for the suitability process.
abundance A one-sided formula of the form ~ wy + ... + w, with ¢ terms specifying the

explicative variables for the abundance process.

spatial.entity A vector indicating the spatial entity identifier (from one to the total number
of entities) for each observation. Several observations can occur in one spatial
entity. A spatial entity can be a raster cell for example.

alteration A vector indicating the proportion of area in the spatial cell which is transformed
(by anthropogenic activities for example) for each observation. Must be between
Oand 1.

data A data frame containing the model’s variables.

n.neighbors A vector of integers that indicates the number of neighbors (adjacent entities) of
each spatial entity. length(n.neighbors) indicates the total number of spatial
entities.

neighbors A vector of integers indicating the neighbors (adjacent entities) of each spatial

entity. Must be of the form c(neighbors of entity 1, neighbors of entity 2, ... ,
neighbors of the last entity). Length of the neighbors vector should be equal to
sum(n.neighbors).

suitability.pred
An optional data frame in which to look for variables with which to predict. If
NULL, the observations are used.

spatial.entity.pred
An optional vector indicating the spatial entity identifier (from one to the total
number of entities) for predictions. If NULL, the vector spatial.entity for
observations is used.

burnin The number of burnin iterations for the sampler.

mcme The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+memc. burnin+memc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

beta.start Starting values for 3 parameters of the suitability process. This can either be a
scalar or a p-length vector.
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gamma.start

Vrho.start

mubeta

Vbeta

mugamma

Vgamma

priorVrho

shape

rate

Vrho.max

seed

verbose

save.rho

save.p

hSDM.ZIP.iCAR .alteration

Starting values for 5 parameters of the observability process. This can either be
a scalar or a g-length vector.

Positive scalar indicating the starting value for the variance of the spatial random
effects.

Means of the priors for the 8 parameters of the suitability process. mubeta must
be either a scalar or a p-length vector. If mubeta takes a scalar value, then that
value will serve as the prior mean for all of the betas. The default value is set to
0 for an uninformative prior.

Variances of the Normal priors for the S parameters of the suitability process.
Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value,
then that value will serve as the prior variance for all of the betas. The default
variance is large and set to 1.0E6 for an uninformative flat prior.

Means of the Normal priors for the v parameters of the observability process.
mugamma must be either a scalar or a p-length vector. If mugamma takes a scalar
value, then that value will serve as the prior mean for all of the gammas. The
default value is set to O for an uninformative prior.

Variances of the Normal priors for the v parameters of the observability process.
Vgamma must be either a scalar or a p-length vector. If Vgamma takes a scalar
value, then that value will serve as the prior variance for all of the gammas. The
default variance is large and set to 1.0E6 for an uninformative flat prior.

Type of prior for the variance of the spatial random effects. Can be set to a fixed
positive scalar, or to an inverse-gamma distribution ("1/Gamma") with param-
eters shape and rate, or to a uniform distribution ("Uniform") on the interval
[0,Vrho.max]. Default set to "1/Gamma".

The shape parameter for the Gamma prior on the precision of the spatial random
effects. Default value is shape=0. 05 for uninformative prior.

The rate (1/scale) parameter for the Gamma prior on the precision of the spatial
random effects. Default value is rate=0.0005 for uninformative prior.

Upper bound for the uniform prior of the spatial random effect variance. Default
set to 1000.

The seed for the random number generator. Default set to 1234.

A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

A switch (0,1) which determines whether or not the sampled values for rhos
are saved. Default is 0: the posterior mean is computed and returned in the
rho.pred vector. Be careful, setting save.rho to 1 might require a large amount
of memory.

A switch (0,1) which determines whether or not the sampled values for predic-
tions are saved. Default is O: the posterior mean is computed and returned in
the prob.p.pred vector. Be careful, setting save.p to 1 might require a large
amount of memory.
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Details

The model integrates two processes, an ecological process associated to the presence or absence
of the species due to habitat suitability and an observation process that takes into account the fact
that the probability of detection of the species is inferior to one. The ecological process includes
an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between
observations, assuming that the probability of presence of the species at one site depends on the
probability of presence of the species on neighboring sites.

Ecological process:

z; ~ Bernoulli(6;)

logit(0;) = Xif + pjci

p;: spatial random effect

j(7): index of the spatial entity for observation i.

Spatial autocorrelation:

An intrinsic conditional autoregressive model (iCAR) is assumed:

pj ~ Normal(p;, V/n;)

ft;: mean of p; in the neighborhood of j.

V,: variance of the spatial random effects.

n;: number of neighbors for spatial entity j.

Observation process:

Value

mcmc

rho.pred

prob.p.pred

prob.p.latent

prob.q.latent

Author(s)

yi ~ Binomial(z; * 6;, ;)

lOgiﬁ((Si) = Wi

An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = —2log([ [, P(yi, #il...)), is also provided.

If save.rho is set to 0 (default), rho.pred is the predictive posterior mean of
the spatial random effect associated to each spatial entity. If save.rho is set
to 1, rho.pred is an mcmc object with sampled values for each spatial random
effect associated to each spatial entity.

If save.p is set to O (default), prob.p.pred is the predictive posterior mean
of the probability associated to the suitability process for each prediction. If
save.p is set to 1, prob.p.pred is an mcmc object with sampled values of the
probability associated to the suitability process for each prediction.

Predictive posterior mean of the probability associated to the suitability process
for each observation.

Predictive posterior mean of the probability associated to the observability pro-
cess for each observation.

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
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See Also

plot.mcmc, summary . mcmc

Examples

## Not run:

H+

# hSDM.ZIP.iCAR.alteration()
# Example with simulated data

#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)

m
H

#== Data simulation

# Set seed for repeatability
seed <- 1234

# Target parameters

beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)

gamma. target <- matrix(c(1),ncol=1)

## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)

Vrho.target <- 1 # Spatial Variance

# Landscape
Landscape <- raster(ncol=20,nrow=20,crs="'+proj=utm +zone=1")
ncell <- ncell(Landscape)

# Neighbors

neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1]1)))[, 2]

adj <- neighbors.mat[,2]
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# Generate symmetric adjacency matrix, A

A <- matrix(@,ncell,ncell)

index.start <- 1

for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
Ali,adjlc(index.start:index.end)]] <- 1
index.start <- index.end+1

}

# Spatial effects

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.targetxsolve(Q) # Covariance of rhos

set.seed(seed)

rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero

# Visited cells

n.visited <- 150 # Compare with 400, 350 and 100 for example

set.seed(seed)

visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random
notvisited.cells <- c(1:ncell)[-visited.cells]

# Number of observations
nobs <- 300

# Cell vector

set.seed(seed)

cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates

# Covariates for "suitability” process
set.seed(seed)

X1.cell <- rnorm(n=ncell,0,1)
set.seed(2*seed)

X2.cell <- rnorm(n=ncell,0,1)

X1 <- X1.cell[cells]

X2 <- X2.cell[cells]

X <- cbind(rep(1,nobs),X1,X2)

# Alteration
U <- runif(n=nobs,min=0,max=1)

# Covariates for "abundance” process

W <- cbind(rep(1,nobs))

## Uncomment if you want covariates on the observability process
## set.seed(3*seed)

## W1 <- rnorm(n=nobs,0,1)

## set.seed(4*seed)

## W2 <- rnorm(n=nobs,0,1)

## W <- cbind(rep(1,nobs),W1,W2)
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#== Simulating latent variables

# Suitability
logit.theta <- vector()
for (n in 1:nobs) {
logit.thetal[n] <- X[n, ]J%*%beta.target+rho[cells[n]]
}
theta <- inv.logit(logit.theta)
set.seed(seed)
y.1 <= rbinom(nobs, 1, theta)

# Alteration
u <- rbinom(nobs,1,U)

# Abundance

set.seed(seed)

log.lambda <- W %*% gamma.target
lambda <- exp(log.lambda)
set.seed(seed)

y.2 <- rpois(nobs,lambda)

#== Simulating response variable
Y <= y.2%(1-u)*y.1

#== Data-set

Data <- data.frame(Y,cells,X1,X2,U)

## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,cells,X1,X2,W1,W2,U)

Data <- SpatialPointsDataFrame(coords=coords,data=Data)
plot(Data)

#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell, X2=X2.cell,cells=c(1:ncell))

#

#== Site-occupancy model

mod.hSDM.ZIP.iCAR.alteration <- hSDM.ZIP.iCAR.alteration(counts=Data$y,
suitability=~X1+X2,
abundance=~1,
spatial.entity=Data$cells,
alteration=Data$u,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,
## suitability.pred=NULL,
## spatial.entity.pred=NULL,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
gamma.start=0,
Vrho.start=10,
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priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,

mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0QE6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,
seed=1234, verbose=1,
save.rho=1, save.p=0)

#== Outputs

#= Parameter estimates
summary(mod.hSDM.ZIP.iCAR.alteration$memc)

#= MCMC and posteriors

pdf (file="Posteriors_hSDM.ZIP.iCAR.alteration.pdf")
plot(mod.hSDM.ZIP.iCAR.alteration$mcmc)

dev.off()

pdf (file="Posteriors.rho_hSDM.ZIP.iCAR.alteration.pdf")
plot(mod.hSDM.ZIP.iCAR.alteration$rho.pred)
dev.off()

#= Summary plots

# rho

r.rho <- r.rho.pred <- r.visited <- Landscape

r.rhol] <- rho

rho.pred <- apply(mod.hSDM.ZIP.iCAR.alteration$rho.pred,2,mean)
.rho.pred[] <- rho.pred

.visited[] <- @

.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean)
prob.p

.prob.p <- Landscape

.prob.p[] <- mod.hSDM.ZIP.iCAR.alteration$prob.p.pred

SO O H: SO

pdf (file="Summary_hSDM.ZIP.iCAR.alteration.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and counts”)
plot(Data,add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated”)
plot(rho[visited.cells],rho.pred[visited.cells],

xlab="rho target”,

ylab="rho estimated”)
points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,legend="Unvisited cells"”,col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
plot(r.prob.p,main="Predicted counts”)
plot(Data,add=TRUE,pch=16,cex=0.5)
dev.off()
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## End(Not run)

logit Generalized logit and inverse logit function

Description

Compute generalized logit and generalized inverse logit functions.

Usage

logit(x, min = @, max = 1)
inv.logit(x, min = @, max = 1)

Arguments
X value(s) to be transformed
min Lower end of logit interval
max Upper end of logit interval
Details

The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it
is defined as:

p
=lo
y g((1 _p))
where

_ (x — min)

(max — min)
The generized inverse logit function provides the inverse transformation:
x = p' (max — min) + min

where

,_ eaply)
(L + eap(y))

Value

Transformed value(s).
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Author(s)

Gregory R. Warnes <greg @warnes.net>

Examples

## Not run:
x <- seq(9,10, by=0.25)
xt <- logit(x, min=0, max=10)
cbind(x,xt)

y <- inv.logit(xt, min=0, max=10)
cbind(x,xt,y)

## End(Not run)

neighbors.Latimer2006 Neighborhood data (from Latimer et al. 2006)

Description

Data come from a small region including 476 one minute by one minute grid cells. This region
is is a small corner of South Africa’s Cape Floristic Region, and includes very high plant species
diversity and a World Biosphere Reserve. The data frame can be used as an example for several
functions in the hSDM package.

Format

neighbors.Latimer2006 is a vector of 3542 integers indicating the neighbors (adjacent cells) of
each spatial cell. The vector is of the form c(neighbors of cell 1, neighbors of cell 2, ... , neighbors
of the last cell).

Source

Latimer et al. (2006) Ecological Applications, Appendix B

References

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.
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predict.hSDM Predict method for models fitted with hSDM

Description

Predicted values for models fitted with hSDM

Usage

## S3 method for class 'hSDM'
predict(object,newdata=NULL, type="mean",probs=c(0.025,0.975),...)

Arguments
object An object of class "hSDM".
newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.
type Type of prediction. Can be "mean” for predictive posterior mean, "quantile”
for producing sample quantiles from the predictive posterior corresponding to
the given probabilities (see probs argument) or "posterior” for the full pre-
dictive posterior for each prediction. Using "quantile” or "posterior” might
lead to memory problem depending on the number of predictions and the num-
ber of samples for the hSDM model’s parameters.
probs Numeric vector of probabilities with values in [0,1] and used when type="quantile".
Further arguments passed to or from other methods.
Value

Return a vector for the predictive posterior mean when type="mean", a data-frame with the mean
and quantiles when type="quantile"” or an mcmc object (see coda package) with posterior distri-
bution for each prediction when type="posterior”.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad. fr>

See Also

hSDM
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punc10@ Occurrence data for Protea punctata Meisn. in the Cap Floristic Re-
gion

Description
The species data were collected by the Protea Atlas Project of South Africa’s National Botanical
Institute.

Format
cfr.env is a data frame with 2934 presence-absence observation points.

Occurrence presence (1) or absence (0) of the species
lon longitude
lat latitude

Source

Cory Merow’s personal data

References

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to
analyze species distributions. Ecological Applications, 16, 33-50.
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