
Package ‘gps’
November 2, 2023

Version 1.2

Date 2023-11-02

Title General P-Splines

Author Zheyuan Li [aut, cre] (<https://orcid.org/0000-0002-7434-5947>)

Maintainer Zheyuan Li <zheyuan.li@bath.edu>

Depends R (>= 4.0.0)

Imports stats, splines, Matrix, methods, graphics, grDevices

Description General P-splines are non-uniform B-splines penalized by a general differ-
ence penalty, proposed by Li and Cao (2022) <arXiv:2201.06808>. Constructible on arbi-
trary knots, they extend the standard P-splines of Eil-
ers and Marx (1996) <doi:10.1214/ss/1038425655>. They are also related to the O-
splines of O'Sullivan (1986) <doi:10.1214/ss/1177013525> via a sandwich for-
mula that links a general difference penalty to a derivative penalty. The package includes rou-
tines for setting up and handling difference and derivative penalties. It also fits P-splines and O-
splines to (x, y) data (optionally weighted) for a grid of smoothing parameter values in the auto-
matic search intervals of Li and Cao (2023) <doi:10.1007/s11222-022-10178-z>. It aims to facil-
itate other packages to implement P-splines or O-splines as a smoothing tool in their model esti-
mation framework.

License GPL-3

NeedsCompilation yes

URL https://github.com/ZheyuanLi/gps

Repository CRAN

Date/Publication 2023-11-02 06:30:02 UTC

R topics documented:
DemoBS . 2
DemoKnots . 3
DemoNull . 3
DemoPBS . 4
DemoSpl . 5

1

https://orcid.org/0000-0002-7434-5947
https://arxiv.org/abs/2201.06808
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1214/ss/1177013525
https://doi.org/10.1007/s11222-022-10178-z
https://github.com/ZheyuanLi/gps

2 DemoBS

gps2GS . 6
GramBS . 8
MakeGrid . 10
penalty . 11
penutils . 13
periodic . 15
PlaceKnots . 16
rspl . 18

Index 20

DemoBS Demonstrate the construction of ordinary B-splines

Description

Demonstrate the construction of 4 ordinary cubic B-splines on 8 knots.

Usage

DemoBS(uniform = TRUE, clamped = FALSE)

Arguments

uniform if TRUE, place uniform knots; if FALSE, place non-uniform knots.

clamped if TRUE, place clamped boundary knots when uniform = FALSE. For aesthetic
reason, only boundary knots on the left end are clamped. This parameter is
ignored when uniform = TRUE.

Value

This function has no returned values.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

uniform B-splines
DemoBS(uniform = TRUE)

non-uniform B-splines
DemoBS(uniform = FALSE, clamped = FALSE)

non-uniform & clamped B-splines
DemoBS(uniform = FALSE, clamped = TRUE)

DemoKnots 3

DemoKnots Demonstrate ordinary cubic B-splines on three types of knots

Description

Demonstrate ordinary cubic B-splines on three types of knots: (a) uniform knots; (b) non-uniform
knots; (c) non-uniform knots with clamped boundary knots. The same interior knots are positioned
in cases (b) and (c).

Usage

DemoKnots(aligned = TRUE)

Arguments

aligned if TRUE, interior knots in cases (b) and (c) are aligned for a better display.

Value

This function has no returned values.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

DemoKnots(aligned = TRUE)

DemoNull Demonstrate the null space of P-splines

Description

Cubic P-splines set up with non-uniform B-splines and a 2nd order standard or general difference
penalty are fitted to observations simulated from y = x. Should the resulting standard or general
P-splines have the correct null space, the limiting fit at λ = +∞ will be a straight line regardless
of knot locations. In this demo, non-uniform knots from different distributions (primarily Beta
distributions with varying shape parameters) are attempted. Results show that standard P-splines
have an incorrect and unpredictable limiting behavior that is sensitive to knot locations, whereas
general P-splines have a correct and consistent limiting behavior.

Usage

DemoNull(n, k, gps = FALSE)

4 DemoPBS

Arguments

n number of simulated observations from y = x.

k number of interior knots to place.

gps if TRUE, fit general P-splines; if FALSE, fit standard P-splines.

Value

This function has no returned values.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

standard P-splines
DemoNull(n = 100, k = 10, gps = FALSE)

general P-splines
DemoNull(n = 100, k = 10, gps = TRUE)

DemoPBS Demonstrate the construction of periodic B-splines

Description

Demonstrate the construction of 6 periodic cubic B-splines on 7 domain knots.

Usage

DemoPBS(uniform = TRUE)

Arguments

uniform if TRUE, place uniform knots; if FALSE, place non-uniform knots.

Value

This function has no returned values.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

DemoSpl 5

Examples

require(gps)

uniform periodic cubic B-splines
DemoPBS(uniform = TRUE)

non-uniform periodic cubic B-splines
DemoPBS(uniform = FALSE)

DemoSpl Demonstrate a polynomial spline and its B-spline representation

Description

Demonstrate a cubic spline and its B-spline representation.

Usage

DemoSpl(uniform = TRUE)

Arguments

uniform if TRUE, place uniform knots; if FALSE, place non-uniform knots.

Value

A list giving the domain knots, B-spline coefficients and piecewise polynomial coefficients of the
illustrated cubic spline.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

a cubic spline with uniform knots
DemoSpl(uniform = TRUE)

a cubic spline with non-uniform knots
DemoSpl(uniform = FALSE)

6 gps2GS

gps2GS Penalized B-splines estimation with automatic grid search of their
smoothing parameter

Description

Fit penalized B-splines (including standard or general P-splines and O-splines) to (x, y, w) for a
grid of smoothing parameter values in the automatic search intervals of Li and Cao (2023). The
GCV score and effective degree of freedom of each fit are also returned.

Usage

gps2GS(x, y, w = NULL, xt, d = 4, m = 2, gps = TRUE, periodic = FALSE,
ng = 20, scalePen = TRUE)

DemoRhoLim(fit, plot = TRUE)

Arguments

x, y, w a vector of x-values, y-values and weights.

xt full knot sequence for ordinary B-splines (length(xt) >= 2 * d).

d B-spline order (d ≥ 2).

m penalty order (1 ≤ m ≤ d− 1).

gps if TRUE, use a difference penalty; if FALSE, use a derivative penalty.

periodic if TRUE, periodic boundary conditions are applied to B-splines and their penalty,
so that periodic P-splines are estimated.

ng number of grid points in the grid search of ρ; can be set to 0 to set up the grid
search only, without actual P-splines estimation.

scalePen if TRUE, scale the penalty matrix S (as mgcv does).

fit fitted P-splines returned by gps2GS.

plot if TRUE, produce summary plots.

Details

We smooth yi using f(xi) = Biβ, where Bi is i-th row of the B-spline design matrix B and β is
a vector of B-spline coefficients. These coefficients are estimated by minimizing:

‖y −Bβ‖2 + exp(ρ) · ‖Dβ‖2,

where the L2 penalty ‖Dβ‖2 is some wiggliness measure for f(x) and ρ ∈ (−∞,+∞) is a
smoothing parameter.

gps2GS 7

Value

gps2GS returns a large list with the following components:

• eqn

• eigen

• rho.lim

• E

• pwls

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

References

Zheyuan Li and Jiguo Cao (2023). Automatic search intervals for the smoothing parameter in
penalized splines, Statistics and Computing, doi:10.1007/s1122202210178z

Examples

require(gps)

x <- rnorm(100)
xt <- PlaceKnots(x, d = 4, k = 10)

set ng = 0 to set up grid search only
here the y-values does not matter; we simply use the x-values
setup <- gps2GS(x, x, xt = xt, d = 4, m = 2, ng = 0)

compute exact eigenvalues
DemoResult <- DemoRhoLim(setup)

simulate 100 (x, y) data from g(x) = sin(2 * pi * x) on [0, 1]
x-values are not equidistant but at quantiles of Beta(2, 2)
note that g(x) is a periodic function
x <- qbeta(seq.int(0, 1, length.out = 100), 2, 2)
gx <- sin(2 * pi * x)
y <- rnorm(length(x), gx, sd = 0.1)

place quantile knots with clamped boundary knots
xt <- PlaceKnots(x, d = 4, k = 10)

fit a general P-spline with different boundary constraints
ordinary <- gps2GS(x, y, xt = xt, d = 4, m = 2)
periodic <- gps2GS(x, y, xt = xt, d = 4, m = 2, periodic = TRUE)

identify the optimal fit minimizing GCV score
opt.ordinary <- which.min(ordinary$pwls$gcv)
opt.periodic <- which.min(periodic$pwls$gcv)

https://doi.org/10.1007/s11222-022-10178-z

8 GramBS

inspect grid search result
column 1: ordinary cubic spline
column 2: periodic cubic spline
op <- par(mfcol = c(2, 2), mar = c(2, 2, 1.5, 0.5))
ordinary spline
with(ordinary$pwls, plot(rho, edf, ann = FALSE))
title("edf v.s. log(lambda)")
with(ordinary$pwls, plot(rho, gcv, ann = FALSE))
with(ordinary$pwls, points(rho[opt.ordinary], gcv[opt.ordinary], pch = 19))
title("GCV v.s. log(lambda)")
periodic spline
with(periodic$pwls, plot(rho, edf, ann = FALSE))
title("edf v.s. log(lambda)")
with(periodic$pwls, plot(rho, gcv, ann = FALSE))
with(periodic$pwls, points(rho[opt.periodic], gcv[opt.periodic], pch = 19))
title("GCV v.s. log(lambda)")
par(op)

inspect fitted splines
yhat.ordinary <- with(ordinary, eqn$B %*% pwls$beta)
yhat.periodic <- with(periodic, eqn$B %*% pwls$beta)
op <- par(mfrow = c(1, 2), mar = c(2, 2, 1.5, 0.5))
ordinary spline
matplot(x, yhat.ordinary, type = "l", lty = 1, ann = FALSE)
title("ordinary")
periodic spline
matplot(x, yhat.periodic, type = "l", lty = 1, ann = FALSE)
title("periodic")
par(op)

pick and plot the optimal fit minimizing GCV score
best.ordinary <- yhat.ordinary[, opt.ordinary]
best.periodic <- yhat.periodic[, opt.periodic]
op <- par(mfrow = c(1, 2), mar = c(2, 2, 1.5, 0.5))
ordinary spline
plot(x, y, ann = FALSE)
lines(x, gx, lwd = 2, col = 2)
lines(x, best.ordinary, lwd = 2)
title("ordinary")
periodic spline
plot(x, y, ann = FALSE)
lines(x, gx, lwd = 2, col = 2)
lines(x, best.periodic, lwd = 2)
title("periodic")
par(op)

GramBS Gram matrix of B-splines

GramBS 9

Description

Compute the Gram matrixG, i.e., the matrix of inner products between B-splines b1(x), b2(x),
Precisely, its element is Guv =

∫
bu(x)bv(x)dx. Such matrix is useful for estimating functional

linear models.

The Gram matrix of differentiated B-splines gives the derivative penalty matrix S for O-splines.
Precisely, its element is Suv =

∫
b
(m)
u (x)b

(m)
v (x)dx. Such matrix is straightforward to compute

using the results of SparseD; see Examples.

Usage

GramBS(xt, d)

Arguments

xt full knot sequence for ordinary B-splines (length(xt) >= 2 * d).

d B-spline order (d ≥ 2).

Value

A sparse matrix of "dsCMatrix" class.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)
require(Matrix)

11 domain knots at equal quantiles of Beta(3, 3) distribution
xd <- qbeta(seq.int(0, 1, by = 0.1), 3, 3)
full knots (with clamped boundary knots) for constructing cubic B-splines
xt <- c(0, 0, 0, xd, 1, 1, 1)
compute Gram matrix of B-splines
G <- GramBS(xt, d = 4)
round(G, digits = 3)

Gram matrix of differentiated B-splines, i.e., a derivative penalty matrix
compute derivative penalty matrices of all orders (m = NULL in SparseD)
D <- SparseD(xt, d = 4, gps = FALSE)
S <- lapply(D, crossprod)
lapply(S, round, digits = 1)

10 MakeGrid

MakeGrid Make a grid of x-values between domain knots

Description

Place equidistant grid points on each knot span to produce a grid of x-values between domain knots,
suitable for evaluating B-splines.

Usage

MakeGrid(xd, n, rm.dup = FALSE)

Arguments

xd domain knot sequence.
n number of equidistant grid points on each knot span.
rm.dup if FALSE, interior knots will appear twice on the grid; if TRUE, they will appear

only once.

Details

Denote the domain knot sequence by s0, s1, s2, . . . , sk, sk+1, where (sj)
k
1 are interior knots and

s0 = a, sk+1 = b are domain endpoints. A knot span is the interval between two successive knots,
i.e., [sj , sj+1].

To make a suitable grid on [a, b] for evaluating B-splines, we can place n equidistant grid points on
each knot span, ending up with n(k + 1) grid points in total. Interior knots will show up twice in
this grid. To keep only one instance, set rm.dup = TRUE.

Value

A vector of grid points.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

4 domain knots: two interior knots 0.5 and 1.5 in domain [0, 3]
xd <- c(0, 0.5, 1.5, 3)

interior knots will appear twice
MakeGrid(xd, 5, rm.dup = FALSE)

interior knots only appear once
MakeGrid(xd, 5, rm.dup = TRUE)

penalty 11

penalty Wiggliness penalties for penalized B-splines

Description

For penalized B-splines (including standard or general P-splines and O-splines), (1) construct matrix
D in the wiggliness penalty ‖Dβ‖2; (2) sample B-spline coefficients from their prior distribution
N(0, (D′D)−); (3) compute the Moore-Penrose generalized inverse matrix (D′D)−.

Usage

SparseD(xt, d, m = NULL, gps = TRUE)

PriorCoef(n, D)

MPinv(D, only.diag = FALSE)

Arguments

xt full knot sequence for ordinary B-splines (length(xt) >= 2 * d).

d B-spline order (d ≥ 2).

m penalty order (1 ≤ m ≤ d−1). Can be a vector of multiple values for SparseD.

gps if TRUE, returnDgps; if FALSE, returnDos.

n number of samples to draw from the prior distribution.

D matrixDgps orDos.

only.diag if TURE, only diagonal elements are computed.

Details

General Difference Penalty for General P-Splines:
A general P-spline is characterized by an order-m general difference matrix Dgps, which can be
computed by SparseD(..., gps = TRUE). For interpretation, the differenced coefficients Dgpsβ
are in fact f (m)(x)’s B-spline coefficients, so the penalty is their squared L2 norm.

Derivative Penalty for O-Splines:
An O-spline is characterized byDos such that ‖Dosβ‖2 =

∫ b

a
f (m)(x)2dx. Since f (m)(x) has B-

spline coefficients Dgpsβ, the integral can be shown to be β′D′gpsS̄Dgpsβ, where S̄ is the Gram
matrix of those B-splines representing f (m)(x). Following the Cholesky factorization S̄ = U ′U ,
the quadratic form becomes ‖UDgpsβ‖2, so that Dos = UDgps. This matrix can be computed
by SparseD(..., gps = FALSE), with S̄ andDgps also returned in a "sandwich" attribute.

Penalty Matrix:
We can express the L2 penalty ‖Dβ‖2 as quadratic form β′Sβ, where S = D′D is called a
penalty matrix. It is trivial to compute S (using function crossprod) once D is available, so we
don’t feel the need to provide a function for this. Note that the link betweenDos andDgps implies
a sandwich formula Sos =D

′
gpsS̄Dgps, wherease Sgps =D

′
gpsDgps.

12 penalty

The Bayesian View:
In the Bayesian view, the penalty β′Sβ is a Gaussian prior for B-spline coefficients β. But it is
an improper one because S has a null space where an unpenalized order-m polynomial lies. Let’s
decompose β = ξ + θ, where ξ (the projection of β on this null space) is the coefficients of this
order-m polynomial, and θ (orthogonal to ξ) is the component that can be shrunk to zero by the
penalty. As a result, ξ ∝ 1 is not proper, but θ ∼ N(0, S−) is. Function PriorCoef samples this
distribution, and the resulting B-spline coefficients can be used to create random spline curves.
The algorithm behind PriorCoef bypasses the Moore-Penrose generalized inverse and is very
efficient. We don’t recommend forming this inverse matrix because it, being completely dense,
is expensive to compute and store. But if we need it anyway, it can be computed using function
MPinv.

Value

SparseD returns a list of sparse matrices (of "dgCMatrix" class), givingDgps orDos of order m[1],
m[2], ..., m[length(m)]. In the latter case, S̄ (sparse matrices of "dsCMatrix" or "ddiMatrix" class)
andDgps for computingDos are also returned in a "sandwich" attribute.

PriorCoef returns a list of two components:

• coef gives a vector of B-spline coefficients when n = 1, or a matrix of n columns when n > 1,
where each column is an independent sample;

• sigma is a vector, giving the marginal standard deviation for each B-spline coefficient.

MPinv returns the dense Moore-Penrose generalized inverse matrix (D′D)− if only.diag = FALSE,
and the diagonal entries of this matrix if only.diag = TRUE.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

References

Zheyuan Li and Jiguo Cao (2022). General P-splines for non-uniform splines, doi:10.48550/arXiv.2201.06808

Examples

require(Matrix)
require(gps)

11 domain knots at equal quantiles of Beta(3, 3) distribution
xd <- qbeta(seq.int(0, 1, by = 0.1), 3, 3)
full knots (with clamped boundary knots) for constructing cubic B-splines
xt <- c(0, 0, 0, xd, 1, 1, 1)

compute D matrices of order 1 to 3 for O-splines
D.os <- SparseD(xt, d = 4, gps = FALSE)
D1.os <- D.os[[1]]; D2.os <- D.os[[2]]; D3.os <- D.os[[3]]

get D matrices of order 1 to 3 for general P-splines
we can of course compute them with D.gps <- SparseD(xt, d = 4, gps = TRUE)
but they are readily stored in the "sandwich" attribute of 'D.os'

https://doi.org/10.48550/arXiv.2201.06808

penutils 13

D.gps <- attr(D.os, "sandwich")$D
D1.gps <- D.gps[[1]]; D2.gps <- D.gps[[2]]; D3.gps <- D.gps[[3]]

we can compute the penalty matrix S = D'D
S.gps <- lapply(D.gps, crossprod)
S1.gps <- S.gps[[1]]; S2.gps <- S.gps[[2]]; S3.gps <- S.gps[[3]]
S.os <- lapply(D.os, crossprod)
S1.os <- S.os[[1]]; S2.os <- S.os[[2]]; S3.os <- S.os[[3]]

if we want to verify the sandwich formula for O-splines
extract 'Sbar' matrices stored in the "sandwich" attribute
and compute the relative error between S and t(D) %*% Sbar %*% D
Sbar <- attr(D.os, "sandwich")$Sbar
Sbar1 <- Sbar[[1]]; Sbar2 <- Sbar[[2]]; Sbar3 <- Sbar[[3]]
range(S1.os - t(D1.gps) %*% Sbar1 %*% D1.gps) / max(abs(S1.os))
range(S2.os - t(D2.gps) %*% Sbar2 %*% D2.gps) / max(abs(S2.os))
range(S3.os - t(D3.gps) %*% Sbar3 %*% D3.gps) / max(abs(S3.os))

sample B-spline coefficients from their prior distribution
b.gps <- PriorCoef(n = 5, D2.gps)$coef
b.os <- PriorCoef(n = 5, D2.os)$coef
op <- par(mfrow = c(1, 2), mar = c(2, 2, 1.5, 0.5), oma = c(0, 0, 1, 0))
prior B-spline coefficients with a general difference penalty
matplot(b.gps, type = "l", lty = 1, ann = FALSE)
title("general difference penalty")
prior B-spline coefficients with a derivative penalty
matplot(b.os, type = "l", lty = 1, ann = FALSE)
title("derivative penalty")
title("random B-spline coefficients from their prior", outer = TRUE)
par(op)

plot the corresponding cubic splines with these B-spline coefficients
x <- MakeGrid(xd, n = 11)
B <- splines::splineDesign(xt, x, ord = 4, sparse = TRUE)
y.gps <- B %*% b.gps
y.os <- B %*% b.os
op <- par(mfrow = c(1, 2), mar = c(2, 2, 1.5, 0.5), oma = c(0, 0, 1, 0))
matplot(x, y.gps, type = "l", lty = 1, ann = FALSE)
title("general difference penalty")
matplot(x, y.os, type = "l", lty = 1, ann = FALSE)
title("derivative penalty")
title("random cubic splines with prior B-spline coefficients", outer = TRUE)
par(op)

penutils Utility functions for working with wiggliness penalties

Description

Evaluate ‖Dβ‖2 without usingD.

14 penutils

Usage

DiffCoef(b, xt, d, m)

btSb(b, xt, d, m)

Arguments

b a vector of B-spline coefficients (length(b) == length(xt) - d).

xt full knot sequence for ordinary B-splines (length(xt) >= 2 * d).

d B-spline order (d ≥ 2).

m penalty order (1 ≤ m ≤ d− 1).

Details

Implicit Evaluation of the Penalty:
Sometimes we want to evaluate the penalty ‖Dβ‖2 for some β. The obvious way is to do the
matrix-vector multiplicationDβ then compute its L2 norm, however, implicit evaluation without
using D is possible. For general P-splines, we can calculate Dgpsβ by taking order-m general
differences between elements ofβ, and function DiffCoef does this. For O-splines, the evaluation
can be more refined. Denote domain knots by s0, s1, s2, . . . , sk, sk+1, where (sj)k1 are interior
knots and s0 = a, sk+1 = b are domain endpoints. The derivative penalty adds up local wiggliness
measure on each interval:

∫ b

a
f (m)(x)2dx =

∑k
j=0

∫ sj+1

sj
f (m)(x)2dx. Function btSb calculates

each integral in the summation and returns those additive components in a vector.

Value

DiffCoef (for general P-splines only) returnsDgpsβ as a vector.

btSb (for O-splines only) returns a vector with element
∫ sj+1

sj
f (m)(x)2dx.

Examples

require(Matrix)
require(gps)

11 domain knots at equal quantiles of Beta(3, 3) distribution
xd <- qbeta(seq.int(0, 1, by = 0.1), 3, 3)
full knots (with clamped boundary knots) for constructing cubic B-splines
xt <- c(0, 0, 0, xd, 1, 1, 1)

compute 2nd order D matrix for O-splines
D.os <- SparseD(xt, d = 4, m = 2, gps = FALSE)
D2.os <- D.os$order.2

get 2nd order D matrix for general P-splines
we can of course compute it with D.gps <- SparseD(xt, d = 4, m = 2, gps = TRUE)
but it is readily stored in the "sandwich" attribute of 'D.os'
D.gps <- attr(D.os, "sandwich")$D
D2.gps <- D.gps$order.2

periodic 15

random B-spline coefficients
b <- rnorm(ncol(D2.gps))

two ways to evaluate a difference penalty
diff.b1 <- DiffCoef(b, xt, d = 4, m = 2) ## implicit
diff.b2 <- as.numeric(D2.gps %*% b) ## explicit
range(diff.b1 - diff.b2) / max(abs(diff.b1))

several ways to evaluate a derivative penalty
sum(btSb(b, xt, d = 4, m = 2)) ## recommended
sum(as.numeric(D2.os %*% b) ^ 2)
S2.os <- crossprod(D2.os); sum(b * as.numeric(S2.os %*% b))

periodic Design matrix and general difference matrices for periodic B-splines

Description

For order-d periodic B-splines, pbsDesign evaluates B-splines or their derivatives at given x-values,
and SparsePD computes general difference matrices of order 1 to d− 1.

Usage

pbsDesign(x, xd, d, nDeriv = 0, sparse = FALSE, wrap = TRUE)

SparsePD(xd, d, wrap = TRUE)

Arguments

x x-values where periodic B-splines are to be evaluated.

xd domain knot sequence for periodic B-splines (length(xd) >= d + 1).

d B-spline order (d ≥ 2).

nDeriv derivative order.

sparse if TRUE, create a sparse design matrix of "dgCMatrix" class.

wrap if TRUE, the knots wrapping strategy is used; if FALSE, the linear constraint
strategy is used.

Details

These functions perform type-2 construction, by transforming design matrix and general difference
matrices for ordinary B-splines to satisfy periodic boundary constraints (see Details). By contrast,
pbsDesign and SparsePD in gps perform type-1 construction by basis wrapping.

A spline f(x) on domain [a, b] can be constructed to satisfy periodic boundary constraints, that is,
f (q)(a) = f (q)(b), q = 0, 1, ..., degree - 1. These are actually linear equality constraints

Unlike ordinary B-splines, period B-splines do not require explicit auxiliary boundary knots for
their construction. The magic is that auxiliary boundary knots will be automatically positioned by
periodic extension of interior knots.

16 PlaceKnots

Denote the domain knot sequence by s0, s1, s2, . . . , sk, sk+1, where (sj)
k
1 are interior knots and

s0 = a, sk+1 = b are domain endpoints. For order-d B-splines, we replicate the first d− 1 interior
knots (after adding b − a) to the right of [a, b] for an augmented set of K = k + d + 1 knots,
which spawns p = K − d = k + 1 ordinary B-splines. It turns out that periodic B-splines can be
obtained by wrapping segments of those ordinary B-splines that stretch beyond [a, b] to the start of
the domain (a demo is offered by DemoPBS).

Note that we must have at least d− 1 interior knots to do such periodic extension. This means that
d+ 1 domain knots are required at a minimum for construction of periodic B-splines.

Value

pbsDesign returns a design matrix with length(x) rows and length(xd) - 1 columns. SparsePD
returns a list of sparse matrices (of "dgCMatrix" class), giving general difference matrices of order
1 to d− 1.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

5 domain knots: three interior knots 0.5, 1.5 and 1.8 in domain [0, 3]
xd <- c(0, 0.5, 1.5, 1.8, 3)

make a grid
x <- MakeGrid(xd, n = 10)

construct periodic cubic B-splines
PB1 <- pbsDesign(x, xd, d = 4, wrap = TRUE)
PB2 <- pbsDesign(x, xd, d = 4, wrap = FALSE)

construct general difference matrices of order 1 to 3
SparsePD(xd, d = 4, wrap = TRUE)
SparsePD(xd, d = 4, wrap = FALSE)

PlaceKnots Automatically place knots according to data

Description

Place knots for ordinary B-splines or periodic B-splines using automatic strategies.

Usage

PlaceKnots(x, d, k, domain = NULL, uniform = FALSE, periodic = FALSE)

PlaceKnots 17

Arguments

x observed x-values.

d B-spline order.

k number of interior knots.

domain a vector of two values giving domain interval [a, b]. Will use min(x) and max(x)
if not specified.

uniform if TRUE, place equidistant knots; if FALSE, place quantile knots with clamped
boundary knots.

periodic if TRUE, return the domain knot sequence that is sufficient for constructing
periodic B-splines (see pbsDesign); if FALSE, return the full knot sequence
that is required for constructing ordinary B-splines.

Value

A vector of K = k + 2d knots for ordinary B-splines, or k + 2 knots for periodic B-splines.

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

x <- rnorm(50)

uniform knots for uniform cubic B-splines
xt1 <- PlaceKnots(x, d = 4, k = 5, uniform = TRUE)
B1 <- splines::splineDesign(xt1, x, ord = 4)

clamped quantile knots for clamped non-uniform cubic B-splines
xt2 <- PlaceKnots(x, d = 4, k = 5, uniform = FALSE)
B2 <- splines::splineDesign(xt2, x, ord = 4)

uniform knots for uniform periodic cubic B-splines
xd1 <- PlaceKnots(x, d = 4, k = 5, uniform = TRUE, periodic = TRUE)
PB1 <- pbsDesign(x, xd1, d = 4)

quantile knots for non-uniform periodic cubic B-splines
xd2 <- PlaceKnots(x, d = 4, k = 5, uniform = FALSE, periodic = TRUE)
PB2 <- pbsDesign(x, xd2, d = 4)

18 rspl

rspl Simulate random cubic splines

Description

Simulate random cubic splines.

Usage

rspl(x, domain = NULL, n = 1)

Arguments

x x-values where simulated cubic splines are evaluated.

domain a vector of two values giving domain interval [a, b]. Will use min(x) and max(x)
if not specified.

n number of replicates to simulate.

Value

A list of four components:

• y is a vector of random cubic spline values evaluated at x when n = 1, or a matrix of n columns
when n > 1, where each column is an independent replicate of random cubic splines;

• b is a vector of random B-spline coefficients when n = 1, or a matrix of n columns when n >
1, where each column is an independent replicate of random B-spline coefficients;

• xt is the full knot sequence for B-splines;

• domain gives the domain of the simulated spline(s).

Author(s)

Zheyuan Li <zheyuan.li@bath.edu>

Examples

require(gps)

x <- seq.int(0, 1, 0.01)

a random cubic spline
y <- rspl(x, n = 1)$y
op <- par(mar = c(2, 2, 1.5, 0.5))
plot(x, y, type = "l", ann = FALSE)
title("a random cubic spline")
par(op)

5 random cubic splines

rspl 19

Y <- rspl(x, n = 5)$y
op <- par(mar = c(2, 2, 1.5, 0.5))
matplot(x, Y, type = "l", lty = 1, ylab = "y")
title("5 random cubic splines")
par(op)

Index

btSb (penutils), 13

DemoBS, 2
DemoKnots, 3
DemoNull, 3
DemoPBS, 4, 16
DemoRhoLim (gps2GS), 6
DemoSpl, 5
DiffCoef (penutils), 13

gps2GS, 6
GramBS, 8

MakeGrid, 10
MPinv (penalty), 11

pbsDesign, 17
pbsDesign (periodic), 15
penalties (penalty), 11
penalty, 11
penalty.utilities (penutils), 13
penalty.utils (penutils), 13
penutils, 13
periodic, 15
PlaceKnots, 16
PriorCoef (penalty), 11

random.splines (rspl), 18
rspl, 18

SparseD, 9
SparseD (penalty), 11
SparsePD (periodic), 15

20

	DemoBS
	DemoKnots
	DemoNull
	DemoPBS
	DemoSpl
	gps2GS
	GramBS
	MakeGrid
	penalty
	penutils
	periodic
	PlaceKnots
	rspl
	Index

