Package 'gpbStat'

October 12, 2024

Type Package

Title Comprehensive Statistical Analysis of Plant Breeding Experiments

Version 0.4.4

Maintainer Nandan Patil <tryanother609@gmail.com>

Note Department of Genetics and Plant Breeding, University of Agricultural Sciecnes, Dharwad.

Description Performs statistical data analysis of various Plant Breeding experiments. Contains functions for Line by Tester analysis as per Arunachalam, V.(1974) http://repository.ias.ac.in/89299/> and Diallel analysis as per Griff-

ing, B. (1956) <https://www.publish.csiro.au/bi/pdf/BI9560463>.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Date 2024-10-12

URL https://github.com/nandp1/gpbStat/

BugReports https://github.com/nandp1/gpbStat/issues

RoxygenNote 7.3.2

Imports tidyr, purrr, tibble, magrittr, dplyr

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Nandan Patil [aut, cre] (<https://orcid.org/0000-0003-0100-9931>), Lakshmi Gangavati [aut, ctb]

Repository CRAN

Date/Publication 2024-10-12 07:50:02 UTC

Contents

1 1 1	~
alphaltc	2
alphaltcchk	3
alphaltcmt	4
alphaltcs	4
datdti	5
datrdti	6
	Ŭ
dm2	7
dm2alpha	8
dm2rcbd	9
dti	10
ltc	11
ltcchk	13
ltcmt	
ltcs	17
rcbdltc	18
	19
	20
rcbdltcs	20
2	22

Index

alphaltc

Line x Tester data (only Crosses) in Alpha Lattice design.

Description

The Line x Tester data of containing only crosses laid out in Alpha Lattice design.

Usage

data(alphaltc)

Format

A data frame of five variables of 15 crosses derived from five lines and three testers.

replication four replications

block five blocks

line five inbred genotype

tester three inbred genotype

yield trait of intrest

See Also

rcbdltc ,alphaltcchk ,rcbdltcchk

alphaltcchk

Examples

result = ltc(alphaltc, replication, line, tester, yield, block)

alphaltcchk

Line x Tester data (Crosses and Checks) in Alpha Lattice

Description

The sample Line x Tester data of containing crosses and checks laid out in Alpha Lattice design. The data is composed of five lines, three testers and three checks.

Usage

data(alphaltcchk)

Format

A dataframe of six variables.

replication three replications

block six blocks

line five lines

tester three testers

check three check

yield trait of intrest

See Also

rcbdltc ,alphaltc ,rcbdltcchk

Examples

result = ltcchk(alphaltcchk, replication, line, tester, check, yield, block)

alphaltcmt

Description

The Line x Tester data of containing only crosses laid out in Alpha Lattice design.

Usage

data(alphaltcmt)

Format

A data frame of 15 crosses derived from five lines and three testers.

replication four replications

block five blocks

line five inbred genotype

tester three inbred genotype

hsw hundred seed weight

sh shelling per cent

gy grain yield

See Also

rcbdltc ,alphaltcchk ,rcbdltcchk ,rcbdltcmt

Examples

result = ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)

alphaltcs	Line x Tester data (only Crosses) with single plant observations laid
	in Alpha Lattice design.

Description

The Line x Tester data containing single plant observations of only crosses laid out in Alpha Lattice design.

Usage

data(alphaltcs)

datdti

Format

A data frame of 15 crosses derived from five lines and three testers.

replication four replicationsblock five blocksline five inbred genotypetester three inbred genotypeobs four single plant observationsyield yield as a dependent trait

See Also

rcbdltcs,alphaltcchk,rcbdltcchk,rcbdltcmt

Examples

result = ltcs(alphaltcs, replication, line, tester, obs, yield, block)

datdti

Data of estimating drought tolerance indices without replication

Description

The sample data containing 15 genotypes evaluated under non-stress and stress conditions without replications

Usage

data(datdti)

Format

A dataframe of eight variables.

ENV two environment

GEN fifteen genotypes

CL trait cob length

CG trait cob girth

NKR trait number of kernel rows

NKPR trait number of kernels per row

HSW trait hundred seed weight

GY trait grain yield

6

See Also

datrdti ,alphaltc ,rcbdltc

Examples

```
result = dti(datdti, environment = ENV, genotype = GEN, datdti[,3:8], ns = 'NS-DWR', st = 'ST-DWR')
```

datrdti

Data of estimating drought tolerance indices with replication

Description

The sample data containing 15 genotypes evaluated under non-stress and stress conditions with replications

Usage

data(datrdti)

Format

A dataframe of nine variables.

ENV two environment

GEN fifteen genotypes

REP two replications

CL trait cob length

CG trait cob girth

NKR trait number of kernel rows

NKPR trait number of kernels per row

HSW trait hundred seed weight

GY trait grain yield

See Also

datdti ,alphaltc ,rcbdltc

Examples

dm2

Analysis of Diallel Method 2 data containing only Crosses laid out in RCBD or Alpha Lattice design.

Description

Analysis of Diallel Method 2 data containing only Crosses laid out in RCBD or Alpha Lattice design.

Usage

dm2(data, rep, parent1, parent2, var, block)

Arguments

dataframe containing following variables
replication
parent 1
parent 2
trait of interest
block (for alpha lattice only)

Details

Analyzing the Diallel Method 2 data containing only crosses which are evaluated in RCBD & Alpha lattice design. All the factors are considered as fixed.

Value

Means	Two way mean table.	
ANOVA	ANOVA for the given variable.	
Coefficient of Variation		
	Coefficient of Variation of the variable.	
Diallel ANOVA	Diallel ANVOA for the given trait.	
Genetic Variance		
	GCA & SCA varaince.	
Combining ability effects		
	Two way table containing Combining ability effects of parents and crosses	
Standard Error	Standard Errror for comining ability effects.	
Critical Difference		
	Critical Differences at 5 meant for combining ability offerts	

Critical Difference at 5 pecent for combining ability effects.

Note

The blocks are mentioned at end of the function if the experimental design is Alpha Lattice. For RCBD no need mention the blocks.

Author(s)

Nandan Patil <tryanother609@gmail.com>

References

Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463-493.

Dabholkar, A. R. (1999). Elements of Bio Metrical Genetics. Concept Publishing Company, New Delhi.

Singh, R. K. and Chaudhary, B. D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.

See Also

ltcchk, ltc

Examples

```
## Not run: #Diallel Method 2 analysis containing only crosses in RCBD.
library(gpbStat)
data(dm2rcbd)
result1 = dm2(dm2rcbd, rep, parent1, parent2, DTP)
result1
#Diallel Method 2 analysis containing only crosses in Alpha Lattice
library(gpbStat)
data(dm2alpha)
result2 = dm2(dm2alpha, replication, parent1, parent2, TW, block)
result2
# Save results to csv file
lapply(result2, function(x) write.table(data.frame(x), 'result2.csv' , append= T, sep=','))
## Ead(Mat ava)
```

End(Not run)

dm2alpha

Diallel Method 2 data in Alpha Lattice.

Description

The Diallel Method 2 data laid out in Alpha Lattice Design.

Usage

data(dm2alpha)

dm2rcbd

Format

A data frame for Diallel analysis Method 2 containing 105 crosses and 15 parents.

replication two replicationsblock twelve blocksparent1 fifteen inbred genotypeparent2 fifteen inbred genotypeTW data for test weight

See Also

alphaltcchk,alphaltc,rcbdltcchk,dm2rcbd

Examples

result2 = dm2(dm2alpha, replication, parent1, parent2, TW, block)

dm2rcbd

Diallel Method 2 data in RCBD

Description

The Diallel Method 2 data laid out in Randomized Complete Block Design (RCBD).

Usage

data(rcbdltc)

Format

A data frame for Diallel analysis Method 2 containing four variables of 105 crosses and 15 parents.

rep four replications

parent1 five inbred genotype

parent2 three inbred genotype

DTP data for days to pollen shed

See Also

alphaltcchk,alphaltc,rcbdltcchk,dm2alpha

Examples

result2 = dm2(dm2rcbd, rep, parent1, parent2, DTP)

Description

Estimation of Drought Tolerance Indices.

Usage

dti(data, environment, genotype, traits, ns, st)

Arguments

data	dataframe containing following variables
environment	column with two levels i.e., non-stress and stress conditions
genotype	genotypes evaluated
traits	trait of interest
ns	name of level indicating evaluation under non-stress (irrigated) conditions
st	name of level indicating evaluation under stress conditions

Details

Estimation various Drought Tolerance Indices of genotypes evaluated under stress and non-stress conditions of both replicated and non-replicated data.

Value

TOL	Stress tolerance.
STI	Stress tolerance index.
SSPI	Stress susceptibility percentage index.
YI	Yield index.
YSI	Yield stability index.
RSI	Relative stress index.
MP	Mean productivity.
GMP	Geometric mean productivity
HM	Harmonic mean.
MRP	Mean relative performance.
PYR	Percent yield Reduction.
PYR	Drought Susceptibility Index.
SSP	Stress Susceptibility Index.

dti

Note

The function can handle both replicated and non-replicated data refer the examples.

Author(s)

Nandan Patil <tryanother609@gmail.com>

References

Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Moghaddam Vahed, M., Poczai, P., & Amp; Siddique, K. H. (2019). ipastic: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences, 7(7). https://doi.org/10.1002/aps3.11278 Sabouri, A., Dadras, A.R., Singh V., Azar, M., Kouchesfahani, A. S., Taslimi, M. and Jalalifar, R. (2022). Screening of rice drought-tolerantlines by introducing a new composite selection index and competitive with multivariate methods. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-06123-9 Fischer, R. and Maurer, R. (1978) Drought Resistance in Spring Wheat Cultivars. I. Grain Yield Responses. Australian Journal of Agricultural Research, 29, 897-912. https://doi.org/10.1071/AR9780897

See Also

ltc, ltcchk, ltcmt

Examples

ltc

Analysis of Line x Tester data containing only Crosses laid out in RCBD or Alpha Lattice design.

Description

Analysis of Line x Tester data containing only Crosses laid out in RCBD or Alpha Lattice design.

Usage

ltc(data, replication, line, tester, y, block)

Arguments

data	dataframe containing following variables
replication	replication
line	line
tester	tester
У	trait of interest
block	block (for alpha lattice design only)

Details

Analyzing the line by tester data only using the data from crosses which are evaluated in alpha lattice design. All the factors are considered as fixed.

Value

Overall ANOVA	ANOVA with all the factors.		
Coefficient of V	Variation		
	ANOVA with all the factors.		
Genetic Varianc	Genetic Variance		
	Phenotypic and Genotypic variance for the given trait.		
Genetic Variabi	lity		
	Phenotypic coefficient of variability and Genotypic coefficient of variability and Environmental coefficient of Variation.		
Proportional Co	ntribution		
	Propotional contribution of Lines, Tester and Line x Tester interaction.		
GCA lines	Combining ability effects of lines.		
GCA testers	Combining ability effects of testers.		
SCA crosses	Combining ability effects of crosses		
Line x Tester ANOVA			
	ANOVA with all the factors.		
GV Singh & Chaudhary			
	Genetic component of Variance as per Singh and Chaudhary, 1977.		
Standard Errors			
	Standard error for combining ability effects.		
Critical Difference			
	Critical Difference at 5 pecent for combining ability effects.		

Note

The block variable is inserted at the last if the experimental design is Alpha Lattice. For RCBD no need to have block factor.

ltcchk

Author(s)

Nandan Patil <tryanother609@gmail.com>

References

Kempthorne, O. (1957), Introduction to Genetic Statistics. John Wiley and Sons, New York. , 468-472. Singh, R. K. and Chaudhary, B. D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.

See Also

ltcchk, dm2, ltcmt

Examples

```
## Not run: #Line Tester analysis data with only crosses in RCBD
library(gpbStat)
data(rcbdltc)
result1 = ltc(rcbdltc, replication, line, tester, yield)
result1
#Line Tester analysis data with only crosses in Alpha Lattice
library(gpbStat)
data(alphaltc)
result2 = ltc(alphaltc, replication, line, tester, yield, block)
result2
```

End(Not run)

ltcchk	Analysis of Line x Tester data containing crosses and checks laid out
	in RCBD or Alpha Lattice experimental design.

Description

Analysis of Line x Tester data containing crosses and checks laid out in RCBD or Alpha Lattice experimental design.

Usage

ltcchk(data, replication, line, tester, check, y, block)

Arguments

data	dataframe containing following variables
replication	replication variable
line	line variable

ltcchk

tester	tester variable
check	check variable
У	trait of interest
block	block variable (for alpha lattice design only)

Details

Analyzing the line by tester data only using the data from crosses which are evaluated in alpha lattice design. All the factors are considered as fixed.

Analyzing the line by tester data only using the data from crosses which are evaluated in alpha lattice design. All the factors are considered as fixed.

Value

Overall ANOVA	ANOVA with all the factors.	
Coefficient of Variation		
	ANOVA with all the factors.	
Genetic Variance	e	
	Phenotypic and Genotypic variance for the given trait.	
Genetic Variabi	lity	
	Phenotypic coefficient of variability and Genotypic coefficient of variability and Environmental coefficient of Variation.	
Proportional Con	ntribution	
	Propotional contribution of Lines, Tester and Line x Tester interaction.	
GCA lines	Combining ability effects of lines.	
GCA testers	Combining ability effects of testers.	
SCA crosses	Combining ability effects of crosses	
Line x Tester ANOVA		
	ANOVA with all the factors.	
GV Singh & Chaudhary		
	Genetic component of Variance as per Singh and Chaudhary, 1977.	
Standard Errors		
	Standard error for combining ability effects.	
Critical Difference		
	Critical Difference at 5 percent for combining ability effects.	

Note

The block variable is inserted at the last if the experimental design is Alpha Lattice. For RCBD no need to have block factor.

Author(s)

Nandan Patil Nandan Patil <tryanother609@gmail.com>

ltcmt

References

Kempthorne, O. (1957), Introduction to Genetic Statistics. John Wiley and Sons, New York. , 468-472. Singh, R. K. and Chaudhary, B. D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.

See Also

ltc, dm2, ltcmt

Examples

```
## Not run: #Line x Tester analysis with crosses and checks in RCBD
library(gpbStat)
data(rcbdltcchk)
results = ltcchk(rcbdltcchk, replication, line, tester, check, yield)
results
#Line X Tester analysis with crosses and checks in Alpha Lattice
library(gpbStat)
data(alphaltcchk)
results1 = ltcchk(alphaltcchk, replication, line, tester, check, yield, block)
results1
## End(Not run)
```

ltcmt	Analysis	of .	Line	x Teste	r data	for	multiple	traits	containing	only
	Crosses l	laid	out in	RCBD	or Alp	ha L	attice des	sign.		

Description

Analysis of Line x Tester data for multiple traits containing only Crosses laid out in RCBD or Alpha Lattice design.

Usage

```
ltcmt(data, replication, line, tester, traits, block)
```

Arguments

data	dataframe containing following variables
replication	replication
line	line
tester	tester
traits	multiple traits of interest
block	block (for alpha lattice design only)

Details

Analyzing the line by tester data of multiple trais only using the data from crosses which are evaluated in RCBD and Alpha lattice design. All the factors are considered as fixed.

Value

Mean	Table of means.
ANOVA	ANOVA with all the factors.
GCA.Line	GCA effects of lines.
GCA.Tester	GCA effects of testers.
SCA	SCA effects of crosses.
CV	Coefficent of Variation.
Genetic.Varia	nce.Covariance
	Genetic component Variance and covariance.
Std.Error	Standard error for combining ability effects.
C.D.	Critical Difference at 5 pecent for combining ability effects.
Add.Dom.Var	Additive and Dominance component of Variance.
Contribution.	of.Line.Tester
	Contribution of Lines. Testers and Line x Tester towards total variation.

Note

The block variable is inserted at the last if the experimental design is Alpha Lattice. For RCBD no need to have block factor.

Author(s)

Nandan Patil <tryanother609@gmail.com>

References

Kempthorne, O. (1957), Introduction to Genetic Statistics. John Wiley and Sons, New York. , 468-472. Singh, R. K. and Chaudhary, B. D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.

See Also

ltcchk

Examples

```
## Not run: #Line Tester analysis data with only crosses in RCBD
library(gpbStat)
data(rcbdltcmt)
result1 = ltcmt(rcbdltcmt, replication, line, tester, rcbdltcmt[,4:5])
result1
```

```
#Line Tester analysis data with only crosses in Alpha Lattice
library(gpbStat)
data(alphaltcmt)
result2 = ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)
result2
## End(Not run)
```

ltcs	Analysis of Line x Tester data on single plant basis containing only
	Crosses laid out in RCBD or Alpha Lattice design.

Description

Analysis of Line x Tester data on single plant basis containing only Crosses laid out in RCBD or Alpha Lattice design.

Usage

ltcs(data, replication, line, tester, obs, y, block)

Arguments

data	dataframe containing following variables
replication	replication
line	line
tester	tester
obs	single plant observations
У	dependent variable
block	block (for alpha lattice design only)

Details

Analyzing the line by tester data single plant observations evaluated in RCBD and Alpha lattice design. All the factors are considered as fixed.

Value

Mean	Table of means.
ANOVA	ANOVA with all the factors.
GCA.Line	GCA effects of lines.
GCA.Tester	GCA effects of testers.
SCA	SCA effects of crosses.
CV	Coefficent of Variation.

Std.Error	Standard error for combining ability effects.		
C.D.	Critical Difference at 5 pecent for combining ability effects.		
Contribution.of.Line.Tester			
	Contribution of Lines, Testers and Line x Tester towards total variation.		

Note

The block variable is inserted at the last if the experimental design is Alpha Lattice. For RCBD no need to have block factor.

Author(s)

Nandan L Patil <tryanother609@gmail.com>

References

Kempthorne, O. (1957), Introduction to Genetic Statistics. John Wiley and Sons, New York. , 468-472. Singh, R. K. and Chaudhary, B. D. (1977). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi. Arunachalam, V. (1974), The fallacy behind use of modified line x tester design. The Indian Journal of Genetics and Plant Breeding, 34: 280-287.

See Also

ltc, ltcmt

Examples

```
## Not run: #Line Tester analysis data with only crosses in RCBD
library(gpbStat)
data(rcbdltcs)
result1 = ltcs(rcbdltcs, replication, line, tester, obs, yield)
result1
#Line Tester analysis data with only crosses in Alpha Lattice
library(gpbStat)
data(alphaltcs)
result2 = ltcs(alphaltcs, replication, line, tester, obs, yield, block)
result2
## End(Not run)
```

rcbdltc

Line x Tester data in RCBD

Description

The sample Line x Tester data containing only crosses laid out in Randomized Complete Block Design (RCBD).

rcbdltcchk

Usage

data(rcbdltc)

Format

A data frame of four variables of 15 crosses derived from five lines and three testers.

replication four replications line five inbred genotype tester three inbred genotype yield trait of intrest

See Also

alphaltcchk ,alphaltc ,rcbdltcchk

Examples

result = ltc(rcbdltc, replication, line, tester, yield)

rcbdltcchk

Line x Tester data (Crosses and Checks) in RCBD

Description

The sample Line x Tester data of containing crosses and checks laid out in Randomized Complete Block Design (RCBD). The data is composed of five lines, three testers and three checks.

Usage

data(rcbdltcchk)

Format

A dataframe of six variables.

replication four replications line five lines tester three testers yield trait of intrest

See Also

rcbdltc,alphaltc,alphaltcchk

Examples

result = ltcchk(rcbdltcchk, replication, line, tester, check, yield)

rcbdltcmt

Description

The Line x Tester data of containing only crosses laid out in Randomized Complete Block design.

Usage

data(rcbdltcmt)

Format

A data frame of 15 crosses derived from five lines and three testers.

replication four replications

line five inbred genotype

tester three inbred genotype

ph plant height

eh ear height

See Also

rcbdltc ,alphaltcchk ,rcbdltcchk ,alphaltcmt

Examples

result = ltcmt(rcbdltcmt, replication, line, tester, rcbdltcmt[,4:5])

rcbdltcs	Line x Tester data (only Crosses) with single plant observations laid
	in RCBD design.

Description

The Line x Tester data containing single plant observations of only crosses laid out in RCBD design.

Usage

data(rcbdltcs)

rcbdltcs

Format

A data frame of 15 crosses derived from five lines and three testers.

replication four replicationsline five inbred genotypetester three inbred genotypeobs four single plant observationsyield yield as a dependent trait

See Also

rcbdltcs,alphaltcchk,rcbdltcchk,rcbdltcmt

Examples

result = ltcs(rcbdltcs, replication, line, tester, obs, yield)

Index

* datasets alphaltc, 2 alphaltcchk, 3 alphaltcmt, 4 alphaltcs, 4 datdti,5 datrdti,6 dm2alpha, 8 dm2rcbd,9 rcbdltc, 18 rcbdltcchk, 19 rcbdltcmt, 20 rcbdltcs, 20alphaltc, 2, 3, 6, 9, 19 alphaltcchk, 2, 3, 4, 5, 9, 19–21 alphaltcmt, 4, 20 alphaltcs, 4 datdti, 5,6 datrdti, 6,6 dm2, 7, 13, 15 dm2alpha, 8, 9 dm2rcbd, 9, 9 dti, 10 ltc, 8, 11, 11, 15, 18 ltcchk, 8, 11, 13, 13, 16 ltcmt, 11, 13, 15, 15, 18 ltcs, 17 rcbdltc, 2-4, 6, 18, 19, 20 rcbdltcchk, 2-5, 9, 19, 19, 20, 21 rcbdltcmt, 4, 5, 20, 21 rcbdltcs, 5, 20, 21