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apply_incidence_map Apply incidence map of a graph to an edge vector

Description

Apply incidence map of a graph to an edge vector. It uses the edgelist of the graph instead of the
incidence matrix.

Usage

apply_incidence_map(eG, v)

Arguments

eG Graph in edgelist representation, see as_edgelist.

v Edge vector to which the incidence map will be applied.

Details

The incidence map is the linear transformation from the edge vector space to the vertex vector
space of a graph associating to each edge its incident vertices. It is customarily represented by
the incidence matrix, which is a very large matrix for large graphs; for this reason it not efficient
to use directly the incidence matrix. This function uses the edgelist of the graph as returned by
the as_edgelist function to compute the result of the incidence map on an edge vector, which is
interpreted with respect to the same edgelist.

Value

A vertex vector, having the degree of each vertex in the subgraph specified by the edge vector.

Author(s)

Cesar Asensio

See Also

shave_cycle, for shaving hairy cycles, which makes use of this routine, and generate_fundamental_cycles,
using the former.

Examples

g <- make_graph("Dodecahedron")
eG <- as_edgelist(g)
set.seed(1)
v <- sample(0:1, gsize(g), replace = TRUE) # Random edge vector
apply_incidence_map(eG, v) # 1 1 0 1 2 0 1 1 3 2 0 1 1 1 1 1 0 0 1 2
## Plotting the associated subgraph
h <- make_graph(t(eG[v==1,]))
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z <- layout_with_gem(g)
plot(g, layout = z)
plot(h, layout = z, add = TRUE, edge.color = "red3", edge.width = 3)

bfs_tree Breadth-first search tree

Description

Computation of the breadth-first tree search in an undirected graph.

Usage

bfs_tree(g, r)

Arguments

g Graph

r Root: Starting vertex growing the tree.

Details

Starting from a root vertex, the tree is grown by adding neighbors of the first vertex added to the
tree until no more neighbors are left; then it passes to another vertex with neighbors outside the tree.
In this way, the tree has few levels and many branches and leaves.

Value

A directed spanning subgraph of g containing the edges of the BFS tree.

Author(s)

Cesar Asensio

Examples

g <- make_graph("Frucht")
T <- bfs_tree(g, 2) # Root at v = 2
z <- layout_with_gem(g)
plot(g, layout = z, main = "Breadth-first search tree")
plot(T, layout = z, add = TRUE, edge.color = "cyan4", edge.width = 2)
plot(T, layout = layout_as_tree(T))
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build_cover_approx 2-approximation algorithm for vertex cover

Description

Gavril’s 2-approximation algorithm to build a vertex cover.

Usage

build_cover_approx(G)

Arguments

G Graph

Details

This algorithm computes a maximal matching and takes the ends of the edges in the matching as a
vertex cover. No edge is uncovered by this vertex subset, or the matching would not be maximal;
therefore, the vertex set thus found is indeed a vertex cover.

Since no vertex can be incident to two edges of a matching M, at least |M| vertices are needed to
cover the edges of the matching; thus, any vertex cover X should satisfy |X| >= |M|. Moreover, the
vertices incident to the matching are always a vertex cover, which implies that, if X* is a vertex
cover of minimum sise, |X*| <= 2|M|.

Value

A list with two components: $set contains the cover, $size contains the number of vertices of the
cover.

Author(s)

Cesar Asensio

References

Korte, Vygen Combinatorial Optimization. Theory and Algorithms.

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a
greedy heuristic, improve_cover_flip improves a cover using local search, search_cover_random
looks for a random cover of fixed size, search_cover_ants looks for a random cover using a version
of the ant-colony optimization heuristic, find_cover_BB finds covers using a branch-and-bound
technique, plot_cover plots a cover.
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Examples

## Example with known vertex cover
K25 <- make_full_graph(25) # Cover of size 24
X0 <- build_cover_approx(K25)
X0$size # 24
plot_cover(X0, K25)

## Vertex-cover of a random graph
set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25)
X2 <- build_cover_approx(g)
X2$size # 20
plot_cover(X2, g)

build_cover_greedy Greedy algorithm for vertex cover in a graph

Description

This routine uses a greedy algorithm to build a cover selecting the highest degree vertex first and
removing its incident edges.

Usage

build_cover_greedy(G)

Arguments

G Graph

Details

This algorithm builds a vertex cover since no edge remains to be covered when it returns. However,
it is no guaranteed that the cover found by this algorithm has minimum cardinality.

Value

A list with two components: $set contains the cover, $size contains the number of vertices of the
cover.

Author(s)

Cesar Asensio

References

Korte, Vygen Combinatorial Optimization. Theory and Algorithms.
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See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_approx builds a cover using a 2-
approximation algorithm, improve_cover_flip improves a cover using local search, search_cover_random
looks for a random cover of fixed size, search_cover_ants looks for a random cover using a version
of the ant-colony optimization heuristic, find_cover_BB finds covers using a branch-and-bound
technique, plot_cover plots a cover.

Examples

## Example with known cover
K25 <- make_full_graph(25) # Cover of size 24
X0 <- build_cover_greedy(K25)
X0$size # 24
plot_cover(X0, K25)
plot_cover(list(set = c(1,2), size = 2), K25)

## Vertex-cover of a random graph
set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25)
X1 <- build_cover_greedy(g)
X1$size # 17
plot_cover(X1, g)

build_cover_random Random vertex covers

Description

Random algorithm for vertex-cover.

Usage

build_cover_random(G, N, p = 0.75)

Arguments

G Graph.
N Number of random vertex set to try.
p Probability of each element to be selected.

Details

It builds N random vertex sets by inserting elements with probability p, and it verifies if the subset
so chosen is a vertex cover by running is_cover on it. It is very difficult to find a good vertex cover
in this way, so this algorithm is very inefficient and it finds no specially good covers.

Currently, this function is not exported. The random sampling performed by search_cover_random
is faster and more efficient.
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Value

A list with four components: $set contains the subset of V(g) representing the cover and $size
contains the number of vertices of the cover; $found is the number of vertex covers found and
$failed is the number of generated subset that were not vertex covers.

Author(s)

Cesar Asensio

Examples

n <- 25
g <- sample_gnp(n, p=0.25) # Random graph
X5 <- build_cover_random(g,10000,p=0.65)
X5$size # 19
plot_cover(X5, g)
X6 <- improve_cover_flip(g, X5) # Improved : 17
plot_cover(X6, g)

build_cut_greedy Greedy algorithm aimed to build a large weight cut in a graph

Description

This routine uses a greedy algorithm to build a cut with large weight. This is a 2-approximation
algorithm, which means that the weight of the cut returned by this algorithm is larger than half the
maximum possible cut weight for a given graph.

Usage

build_cut_greedy(G, w = NA)

Arguments

G Graph

w Weight matrix (defaults to NA). It should be zero for those edges not in G

Details

The algorithm builds a vertex subset S a step a a time. It starts with S = c(v1), and with vertices v1
and v2 marked. Then it iterates from vertex v3 to vn checking if the weight of the edges joining
vi with marked vertices belonging to S is less than the weight of the edges joining vi with marked
vertices not belonging to S. If the former weight is less than the latter, then vi is adjoined to S. At
the end of each iteration, vertex vi is marked. When all vertices are marked the algorithm ends and
S is already built.
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Value

A list with four components: $set contains the subset of V(g) representing the cut, $size contains
the number of edges of the cut, $weight contains the weight of the cut (which coincides with $size
if w is NA) and $cut contains the edges of the cut, joining vertices inside $set with vertices outside
$set.

Author(s)

Cesar Asensio

References

Korte, Vygen Combinatorial Optimization. Theory and Algorithms.

See Also

build_cut_random builds a random cut, improve_cut_flip uses local search to improve a cut obtained
by other methods, compute_cut_weight computes cut size, weight and edges, plot_cut plots a cut.

Examples

## Example with known maximum cut
K10 <- make_full_graph(10) # Max cut of size 25
c0 <- build_cut_greedy(K10)
c0$size # 25
plot_cut(c0, K10)

## Max-cut of a random graph
set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25)
c2 <- build_cut_greedy(g)
c2$size # 59
plot_cut(c2, g)

build_cut_random Random cut generation on a graph

Description

Random cut generation on a graph. This function generates a hopefully large cut on a graph by
randomly selecting vertices; it does not attempt to maximize the cut size or weigth, so it is intended
to be used as part of some smarter strategy.

Usage

build_cut_random(G, w = NA)
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Arguments

G Graph

w Weight matrix (defaults to NA). It should be zero for those edges not in G

Details

It selects a random subset of the vertex set of the graph, computing the associated cut, its size and
its weigth, provided by the user as a weight matrix. If the weight argument w is NA, the weights
are taken as 1.

Value

A list with four components: $set contains the subset of V(g) representing the cut, $size contains
the number of edges of the cut, $weight contains the weight of the cut (which coincides with $size
if w is NA) and $cut contains the edges of the cut, joining vertices inside $set with vertices outside
$set.

Author(s)

Cesar Asensio

See Also

build_cut_greedy builds a cut using a greedy algorithm, compute_cut_weight computes cut size,
weight and edges, improve_cut_flip uses local search to improve a cut obtained by other methods,
plot_cut plots a cut.

Examples

## Example with known maximum cut
K10 <- make_full_graph(10) # Max cut of size 25
c0 <- build_cut_random(K10)
c0$size # Different results: 24, 21, ...
plot_cut(c0, K10)

## Max-cut of a random graph
set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25)
c1 <- build_cut_random(g) # Repeat as you like
c1$size # Different results: 43, 34, 39, 46, 44, 48...
plot_cut(c1, g)
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build_tour_2tree Double-tree heuristic for TSP

Description

Double-tree heuristic tour-building algorithm for the Traveling Salesperson Problem

Usage

build_tour_2tree(d, n, v0 = 1)

Arguments

d Distance matrix defining the TSP instance

n Number of cities to consider with respect to the distance matrix

v0 Initial vertex to find the eulerian walk; it defaults to 1.

Details

The double-tree heuristic is a 2-factor approximation algorithm which begins by forming a mini-
mum distance spanning tree, then it forms the double-tree by doubling each edge of the spanning
tree. The double tree is Eulerian, so an Eulerian walk can be computed, which gives a well-defined
order of visiting the cities of the problem, thereby yielding the tour.

In practice, this algorithm performs poorly when compared with another simple heuristics such as
nearest-neighbor or insertion methods.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, and $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio

See Also

build_tour_nn uses the nearest heighbor heuristic, build_tour_nn_best repeats the previous algo-
rithm with all possible starting points, compute_tour_distance computes tour distances, compute_distance_matrix
computes a distance matrix, plot_tour plots a tour, find_euler finds an Eulerian walk.
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Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 57.86
plot_tour(z,b)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 48.63
plot_tour(z,b)

build_tour_greedy Building a tour for a TSP using the greedy heuristic

Description

Greedy heuristic tour-building algorithm for the Traveling Salesperson Problem

Usage

build_tour_greedy(d, n)

Arguments

d Distance matrix of the TSP.

n Number of vertices of the TSP complete graph.

Details

The greedy heuristic begins by sorting the edges by increasing distance. The tour is constructed by
adding an edge under the condition that the final tour is a connected spanning cycle.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, and $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio
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See Also

build_tour_nn uses the nearest heighbor heuristic, build_tour_nn_best repeats the previous algo-
rithm with all possible starting points, compute_tour_distance computes tour distances, compute_distance_matrix
computes a distance matrix, plot_tour plots a tour, build_tour_2tree constructs a tour using the dou-
ble tree 2-factor approximation algorithm.

Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_greedy(d, n)
b$distance # Distance 50
plot_tour(z,b)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_greedy(d, n)
b$distance # Distance 36.075
plot_tour(z,b)

build_tour_nn Building a tour for a TSP using the nearest neighbor heuristic

Description

Nearest neighbor heuristic tour-building algorithm for the Traveling Salesperson Problem

Usage

build_tour_nn(d, n, v0)

Arguments

d Distance matrix of the TSP.

n Number of vertices of the TSP complete graph.

v0 Starting vertex. Valid values are integers between 1 and n.

Details

Starting from a vertex, the algorithm takes its nearest neighbor and incorporates it to the tour,
repeating until the tour is complete. The result is dependent of the initial vertex. This algorithm is
very efficient but its output can be very far from the minimum.
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Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, and $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio

See Also

build_tour_nn_best repeats this algorithm with all possible starting points, compute_tour_distance
computes tour distances, compute_distance_matrix computes a distance matrix, plot_tour plots a
tour, build_tour_greedy constructs a tour using the greedy heuristic.

Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_nn(d, n, 1)
b$distance # Distance 50
plot_tour(z,b)
b <- build_tour_nn(d, n, 5)
b$distance # Distance 52.38
plot_tour(z,b)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_nn(d, n, 1)
b$distance # Distance 46.4088
plot_tour(z,b)
b <- build_tour_nn(d, n, 9)
b$distance # Distance 36.7417
plot_tour(z,b)

build_tour_nn_best Build a tour for a TSP using the best nearest neighbor heuristic

Description

Nearest neighbor heuristic tour-building algorithm for the Traveling Salesperson Problem - Better
starting point
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Usage

build_tour_nn_best(d, n)

Arguments

d Distance matrix of the TSP.
n Number of vertices of the TSP complete graph.

Details

It applies the nearest neighbor heuristic with all possible starting vertices, retaining the best tour
returned by build_tour_nn.

Value

A list with four components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, $distance contains the value of the distance covered by the tour, $start
contains the better starting vertex found, and $Lall contains the distances found by starting from
each vertex.

Author(s)

Cesar Asensio

See Also

build_tour_nn nearest neighbor heuristic with a single starting point, compute_tour_distance com-
putes tour distances, compute_distance_matrix computes a distance matrix, plot_tour plots a tour.

Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_nn_best(d, n)
b$distance # Distance 48.6055
b$start # Vertex 12
plot_tour(z,b)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_nn_best(d, n)
b$distance # Distance 36.075
b$start # Vertex 13
plot_tour(z,b)
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color_graph_greedy Greedy coloring of a graph

Description

Greedy algorithm for coloring the vertices of a graph

Usage

color_graph_greedy(g, ord = NULL, ran = FALSE)

Arguments

g Graph to be colored

ord Specified vertex ordering or NULL if natural vertex ordering is preferred

ran Choose random vertex ordering; it defaults to FALSE. It is ignored if ord is
non-NULL

Details

"Colors" are integers from 1 to the order of the graph to be colored. The greedy strategy assigns to
each vertex v the least color not assigned to the neighbors of v.

Value

Vertex colors in a vector, with component i being the (integer) color of vertex i.

Author(s)

Cesar Asensio

Examples

library(igraph)
g <- make_graph("Petersen")
cg <- color_graph_greedy(g)
plot(g, vertex.color = rainbow(6)[cg])
max(cg) # = 3: Number of colors used by the algorithm
sum(g[cg == 1, cg == 1]) # = 0: Color classes are stable sets

g <- make_graph("Dodecahedron")
cg <- color_graph_greedy(g)
plot(g, vertex.color = rainbow(6)[cg])
max(cg) # = 4: Number of colors used by the algorithm
sum(g[cg == 1, cg == 1]) # = 0: Color classes are stable sets

## However, the dodecahedron has a 3-coloring:
cdod <- rep(1, 20)
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cdod[c(1,3,7,12,13,20)] <- 2
cdod[c(5,8,9,11,17,19)] <- 3
plot(g, vertex.color = rainbow(6)[cdod])
sum(g[cdod == 1, cdod == 1]) # = 0
sum(g[cdod == 2, cdod == 2]) # = 0
sum(g[cdod == 3, cdod == 3]) # = 0

## Some vertex orderings can use less colors:
cg <- color_graph_greedy(g, ord = 20:1)
plot(g, vertex.color = rainbow(6)[cg])
max(cg) # = 3: Number of colors used by the algorithm

compute_cut_weight Compute cut weight and size

Description

Compute cut weight and size from its associated vertex set. It can also return the edges in the cut.

Usage

compute_cut_weight(S, n, eG, w = NA, return.cut = FALSE)

Arguments

S Subset of the vertex set of the graph.

n Size of the graph.

eG Edgelist of the graph as returned by as_edgelist, that is, a matrix with q rows
and 2 columns. Note that this is the graph format used by the routine.

w Weight matrix or NA if all edge weights are 1. It should be zero for those edges
not in G

return.cut Boolean. Should the routine return the edges in the cut? It defaults to FALSE.
When TRUE, the routine also returns the input subset S, for easier cut plotting
with plot_cut.

Details

In a graph, a cut K is defined by means of a vertex subset S as the edges joining vertices inside S
with vertices outside S. This routine computes these edges and their associated weight.

Value

A list with two components: $size is the number of edges in the cut, $weight is the weight of the
cut, that is, the sum of the weights of the edges in the cut. If w=NA these two numbers coincide.
When return.cut is TRUE, there are two additional components of the list: $cut, which contains
the edges in the cut as rows of a two-column matrix, and $set, which contains the input set, as a
convenience for plotting with plot_cut.
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Author(s)

Cesar Asensio

See Also

build_cut_random builds a random cut, build_cut_greedy builds a cut using a greedy algorithm,
improve_cut_flip uses local search to improve a cut obtained by other methods, plot_cut plots a cut.

Examples

K10 <- make_full_graph(10)
S <- c(1,4,7)
compute_cut_weight(S, gorder(K10), as_edgelist(K10))
cS <- compute_cut_weight(S, gorder(K10), as_edgelist(K10),

return.cut = TRUE)
plot_cut(cS, K10)

compute_distance_matrix

p-distance matrix computation

Description

It computes the distance matrix of a set of n two-dimensional points given by a n× 2 matrix using
the distance-p with p = 2 by default.

Usage

compute_distance_matrix(z, p = 2)

Arguments

z A n× 2 matrix with the two-dimensional points

p The p parameter of the distance-p. It defaults to 2.

Details

Given a set of n points {zj}j=1,...,n, the distance matrix is a n × n symmetric matrix with matrix
elements

dij = d(zi, zj)

computed using the distance-p given by

dp(x, y) =

(∑
i

(xi − yi)
p

) 1
p

.
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Value

The distance-p of the points.

Author(s)

Cesar Asensio

See Also

compute_p_distance computes the distance-p, compute_tour_distance computes tour distances. A
distance matrix can also be computed using dist.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)

compute_gain_transp Distance gain when transposing two cities in a tour

Description

Distance gain when two cities in a TSP tour are interchanged, that is, the neighbors of the first
become the neighbors of the second and vice versa. It is used to detect favorable moves in a Lin-
Kernighan-based routine for the TSP.

Usage

compute_gain_transp(C, tr, d)

Arguments

C Tour represented as a non-repeated vertex sequence. Equivalently, a permutation
of the sequence from 1 to length(C).

tr Transposition, represented as a pair of indices between 1 and length(C).

d Distance matrix.

Details

It computes the gain in distance when interchanging two cities in a tour. The transformation is akin
to a 2-interchange; in fact, if the transposed vertices are neighbors in the tour or share a common
neighbor, the transposition is a 2-interchange. If the transposed vertices in the tour do not share any
neighbors, then the transposition is a pair of 2-interchanges.

This gain is used in improve_tour_LinKer, where the transposition neighborhood is used instead of
the variable k-opt neighborhood for simplicity.
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Value

The gain in distance after performing transposition tr in tour C with distance matrix d.

Author(s)

Cesar Asensio

See Also

improve_tour_LinKer, a where this function is used.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
compute_gain_transp(sample(n),c(4,23),d) # -6.661
compute_gain_transp(sample(n),c(17,3),d) # 4.698

compute_lower_bound_1tree

Computing the 1-tree lower bound for a TSP instance

Description

It computes the 1-tree lower bound for an optimum tour for a TSP instance.

Usage

compute_lower_bound_1tree(d, n, degree = FALSE)

Arguments

d Distance matrix.

n Number of vertices of the TSP complete graph.

degree Boolean: Should the routine return the degree seguence of the internal minimum
spanning tree? Defaults to FALSE.

Details

It computes the 1-tree lower bound for an optimum tour for a TSP instance from vertex 1. Internally,
it creates the graph Kn-v1 and invokes mst from package igraph to compute the minimum weight
spanning tree. If optional argument "degree" is TRUE, it returns the degree seguence of this internal
minimum spanning tree, which is very convenient when embedding this routine in the Held-Karp
lower bound estimation routine.
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Value

The 1-tree lower bound – A scalar if the optional argument "degree" is FALSE. Otherwise, a list
with the previous 1-tree lower bound in the $bound component and the degree sequence of the
internal minimum spanning tree in the $degree component.

Author(s)

Cesar Asensio

See Also

improve_tour_2opt tour improving using 2-opt, improve_tour_3opt tour improving using 3-opt,
compute_lower_bound_HK for Held-Karp lower bound estimates.

Examples

m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 57.868
bi <- improve_tour_2opt(d, n, b$tour)
bi$distance # Distance 48 (optimum)
compute_lower_bound_1tree(d,n) # 45

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
compute_lower_bound_1tree(d,n) # 31.4477
bn <- build_tour_nn_best(d,n)
b3 <- improve_tour_3opt(d,n,bn$tour)
b3$distance # 35.081

compute_lower_bound_HK

Held-Karp lower bound estimate

Description

Held-Karp lower bound estimate for the minimum distance of an optimum tour in the TSP

Usage

compute_lower_bound_HK(d, n, U, tsmall = 0.001, it = 0.2 * n, block = 100)
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Arguments

d Distance matrix of the TSP instance.

n Number of vertices of the TSP complete graph.

U Upper bound of the minimum distance.

tsmall Stop criterion: Is the step size decreases beyond this point the algorithm stops.
Defaults to 0.001.

it Iterates inside each block. Some experimentation is required to adjust this pa-
rameter: If it is large, the run time will be larger; if it is small, the accuracy will
decrease.

block Number of blocks of "it" iterations. In each block the size of the multiplier is
halved.

Details

An implementation of the Held-Karp iterative algorithm towards the minimum distance tour of a
TSP instance. As the algorithm converges slowly, only an estimate will be achieved. The accuracy
of the estimate depends on the stopping requirements through the number of iteration blocks "block"
and the number of iterations per block "it", as well as the smallest allowed multiplier size "tsmall":
When it is reached the algorithm stops. It is also crucial to a good estimate the quality of the upper
bound "U" obtained by other methods.

The Held-Karp bound has the following uses: (1) assessing the quality of solutions not known to be
optimal; (2) giving an optimality proof of a given solution; and (3) providing the "bound" part in a
branch-and-bound technique.

Please note that recommended computation of the Held-Karp bound uses Lagrangean relaxation on
an integer programming formulation of the TSP, whereas this routine uses the Cook algorithm to be
found in the reference below.

Value

An estimate of the Held-Karp lower bound – A scalar.

Author(s)

Cesar Asensio

References

Cook et al. Combinatorial Optimization (1998) sec. 7.3.

See Also

compute_distance_matrix computes distance matrix of a set of points, build_tour_nn_best builds
a tour using the best-nearest-neighbor heuristic, improve_tour_2opt improves a tour using 2-opt,
improve_tour_3opt improves a tour using 3-opt, compute_lower_bound_1tree computes the 1-tree
lower bound.
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Examples

m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_nn_best(d, n)
b$distance # Distance 48.6055
bi <- improve_tour_2opt(d, n, b$tour)
bi$distance # Distance 48 (optimum)
compute_lower_bound_HK(d,n,U=48.61) # 45.927
compute_lower_bound_HK(d,n,U=48.61,it=20,tsmall=1e-6) # 45.791

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
bn <- build_tour_nn_best(d,n)
b3 <- improve_tour_3opt(d,n,bn$tour)
b3$distance # 35.08155
compute_lower_bound_HK(d, n, U=35.1) # 34.80512
compute_lower_bound_HK(d, n, U=35.0816, it=20) # 35.02892
compute_lower_bound_HK(d, n, U=35.0816, tsmall = 1e-5) # 34.81119
compute_lower_bound_HK(d, n, U=35.0816, it=50, tsmall = 1e-9) # 35.06789

compute_path_distance Compute the distance of a TSP path

Description

It computes the distance covered by a path in a Traveling Salesman Problem

Usage

compute_path_distance(h, d)

Arguments

h A path specified by a vertex sequence

d Distance matrix to use

Details

This function simply add the distances in a distance matrix indicated by a vertex sequence defining
a path. It takes into account that, in a path, the last vertex is not joined to the first one by an edge,
unlike compute_tour_distance.
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Value

The path distance

d({v1, ..., vn}) =
n−1∑
j=1

d(vj , vj+1).

Author(s)

Cesar Asensio

See Also

build_tour_nn nearest neighbor heuristic with a single starting point, build_tour_nn_best repeats the
previous algorithm with all possible starting points, compute_distance_matrix computes a distance
matrix, compute_tour_distance computes tour distances, plot_tour plots a tour.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
h <- sample(1:n) # A random tour
compute_path_distance(h, d) # 107.246
compute_tour_distance(h, d) - compute_path_distance(h, d) - d[h[1], h[n]]

compute_p_distance Distance-p between two-dimensional points

Description

It computes the distance-p between two-dimensional points.

Usage

compute_p_distance(x, y, p = 2)

Arguments

x A two-dimensional point

y A two-dimensional point

p The p-parameter of the distance-p
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Details

The distance-p is defined by

dp(x, y) =

(∑
i

(xi − yi)
p

) 1
p

.

Value

The distance-p between points x and y.

Author(s)

Cesar Asensio

See Also

compute_distance_matrix computes the distance matrix of a set of two-dimensional points, com-
pute_tour_distance computes tour distances.

Examples

compute_p_distance(c(1,2),c(3,4)) # 2.8284
compute_p_distance(c(1,2),c(3,4),p=1) # 4

compute_tour_distance Compute the distance of a TSP tour

Description

It computes the distance covered by a tour in a Traveling Salesman Problem

Usage

compute_tour_distance(h, d)

Arguments

h A tour specified by a vertex sequence

d Distance matrix to use

Details

This function simply add the distances in a distance matrix indicated by a vertex sequence defining
a tour. It takes into account that, in a tour, the last vertex is joined to the first one by an edge, and
adds its distance to the result, unlike compute_path_distance.



26 crossover_sequences

Value

The tour distance

d({v1, ..., vn}) =
n∑

j=1

d(vj , v(jmodn)+1).

Author(s)

Cesar Asensio

See Also

build_tour_nn nearest neighbor heuristic with a single starting point, build_tour_nn_best repeats the
previous algorithm with all possible starting points, compute_distance_matrix computes a distance
matrix, compute_path_distance computes path distances, plot_tour plots a tour.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
h <- sample(1:n) # A random tour
compute_tour_distance(h, d) # 114.58

crossover_sequences Crossover of sequences

Description

Crossover sequence operation for use in the genetic cut-search algorithm.

Usage

crossover_sequences(s1, s2, cpoint = NA)

Arguments

s1 Sequence

s2 Sequence of the same lenght as s1

cpoint Crossover point, an integer between 1 and length(s1)-1. Defaults to NA, in
which case it will be randomly chosen
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Details

This operation takes two sequences of the same lenght "n" and splits them in two at a crossover
point between 1 and "n-1". Then it produces two "offsprings" by interchanging the pieces and
gluing them together.

The crossover point can be specified in argument cpoint. By providing NA (the default), cpoint is
chosen randomly.

Note that this crossover operation is the "classic" crossover included in the original genetic algo-
rithm, and it is adequate when applied to binary sequences. However, when applied to permutations,
the result of this function can have repeated elements; hence, it is not adequate for the TSP.

Value

A two-row matrix. Rows are the offsprings produced by the crossover

Author(s)

Cesar Asensio

See Also

search_cut_genetic genetic algorithm cut-search, mutate_binary_sequence binary sequence muta-
tion

Examples

set.seed(1)
s1 <- sample(0:1, 10, replace = TRUE)
s2 <- sample(0:1, 10, replace = TRUE)
crossover_sequences(s1, s2)

set.seed(1)
s1 <- sample(1:10, 10)
s2 <- sample(1:10, 10)
crossover_sequences(s1, s2, cpoint = 5)

crossover_tours Crossover operation used by the TSP genetic algorithm

Description

Crossover operation used by the TSP genetic algorithm. It takes two tours and it computes two
"offsprings" trying to exploit the structure of the cycles, see below.

Usage

crossover_tours(C1, C2, d, n)
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Arguments

C1 Vertex numeric vector of the first parent tour.

C2 Vertex numeric vector of the second parent tour.

d Distance matrix of the TSP instance. It is used in the computation of the low-
weight perfect matching.

n The number of vertices of the TSP complete graph.

Details

In the genetic algorithm, the crossover operation is a generalization of local search in which two
tours are combined somehow to produce two tours, hopefully different from their parents and with
better fitting function values. Crossover widens the search while trying to keep the good peculiar-
ities of the parents. However, in practice crossover almost never lowers the fitting function when
parents are near the optimum, but it helps to explore new routes. Therefore, it is always a good idea
to complement crossover with some deterministic local search procedure which can find another
local optima; crossover also helps in evading local minima.

In this routine, crossover is performed as follows. Firstly, the edges of the parents are combined in
a single graph, and the repeated edges are eliminated. Then, the odd degree vertices of the resulting
graph are matched looking for a low-weight perfect matching using a greedy algorithm. Adding
the matching to the previous graph yields an Eulerian graph, as in Christofides algorithm, whose
final step leads to the first offspring tour. The second tour is constructed by recording the second
visit of each vertex by the Eulerian walk, and completing the resulting partial tour with the nearest
neighbor heuristic.

Value

A two-row matrix containing the two offsprings as vertex numeric vectors.

Author(s)

Cesar Asensio

See Also

search_tour_genetic implements a version of the genetic algorithm for the TSP.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
c1 <- sample(1:n)
c2 <- sample(1:n)
c12 <- crossover_tours(c1, c2, d, n)
compute_tour_distance(c1, d) # 114.5848
compute_tour_distance(c2, d) # 112.8995
compute_tour_distance(c12[1,], d) # 116.3589
compute_tour_distance(c12[2,], d) # 111.5184
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dfs_tree Depth-first search tree

Description

Computation of the depth-first tree search in an undirected graph.

Usage

dfs_tree(g, r)

Arguments

g Graph

r Root: Starting vertex growing the tree.

Details

Starting from a root vertex, the tree is grown by adding neighbors of the last vertex added to the
tree. In this way, the tree has many levels and few branches and leaves. When the tree cannot grow
further, it backtracks to previously added vertices with neighbors outside the tree, adding them until
none is left.

Value

A directed spanning subgraph of g containing the edges of the DFS tree.

Author(s)

Cesar Asensio

See Also

bfs_tree breadth-first search tree; bfs and dfs in the igraph package.

Examples

g <- make_graph("Frucht")
T <- dfs_tree(g, 5) # Root at v = 5
z <- layout_with_gem(g)
plot(g, layout = z, main = "Depth-first search tree")
plot(T, layout = z, add = TRUE, edge.color = "cyan4", edge.width = 2)
plot(T, layout = layout_as_tree(T))
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dijk Dijkstra’ algorithm for shortest paths

Description

Dijkstra’s algorithm finding the sorthest paths from a root vertex to the remaining vertices of a graph
using a spanning tree

Usage

dijk(g, d, r = 1)

Arguments

g An igraph Graph

d Weights (lengths) of the edges of g

r Starting vertex — root of the output tree

Details

An implementation of Dijkstra’s algorithm.

Value

A list with components: $tree, which is a sequence of pairs of vertices parent-son; $distances, which
is a 2× n matrix with distances from the root vertex to the remaining vertices, and $parents, which
contains the parent of each vertex in the tree, except for the root which has no parent, so its entry is
NA.

Author(s)

Cesar Asensio

See Also

shortest_paths in the igraph package.

Examples

library(igraph)
g <- make_graph("Frucht")
n <- gorder(g)
set.seed(1);
d <- matrix(round(runif(n^2, min = 1, max = 10)), nrow = n) # Distances
d <- d + t(d); for (i in 1:n) { d[i,i] <- 0 } # Distance matrix
Td <- dijk(g, d, r = 1)
Td$distances
Td$parents
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gTd <- make_graph(Td$tree, n = gorder(g)) # igraph tree
Eg <- as_edgelist(g)
dl <- c() # We convert the matrix in a list:
for (e in 1:nrow(Eg)) { dl <- c(dl, d[Eg[e,1], Eg[e,2]]) }
z <- layout_with_kk(g)
plot(g, layout = z, edge.label = dl)
plot(gTd, layout = z, edge.color = "red3", add = TRUE)

find_cover_BB Branch-and-Bound algorithm for the Vertex-Cover problem

Description

This routine performs a version of the Branch-and-Bound algorithm for the VCP. It is an exact
algorithm with exponential worst-case running time; therefore, it can be run only with a small
number of vertices.

Usage

find_cover_BB(
g,
verb = TRUE,
save.best.result = FALSE,
filename.best.result = "best_result_find_cover_BB.Rdata",
nu = gorder(g),
X = c(),
Xmin = c(),
marks = rep("F", gorder(g)),
call = 0

)

Arguments

g Graph.

verb Boolean: Should echo each newly found cover to the console? Defaults to
TRUE.

save.best.result

Boolean: Should the algorithm save the result of the algorithm in a file? It
defaults to FALSE. When save.best.result = TRUE, a file is created with the
variable "Xbest" being the best result achieved by the algorithm before its ter-
mination.

filename.best.result

Name of the file created when save.best.result = TRUE. It defaults to "best_result_find_cover_BB.Rdata".

nu Size of the best cover currently found.

X Partial cover.
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Xmin Best cover found so far.

marks Mark sequence storing the current state of the algorithm, see details.

call Number of recursive calls performed by the algorithm.

Details

The algorithm traverses a binary tree in which each bifurcation represents if a vertex is included in or
excluded from a partial cover. The leaves of the tree represent vertex subsets; the algorithm checks
if at some point the partial cover cannot become a full cover because of too many uncovered edges
with too few remaining vertices to decide. In this way, the exponential complexity is somewhat
reduced. Furthermore, the vertices are considered in decreasing degree order, as in the greedy
algorithm, so that some cover is found in the early steps of the algorithm and thus a good upper
bound on the solution can be used to exclude more subsets from being explored. The full algorithm
has been extracted from the reference below.

In this routine, the binary tree search is implemented by recursive calls (that is, a dynamic program-
ming algorithm). Although the worst case time complexity is exponential (recall that the Minimum
Vertex Cover Problem is NP-hard), the approach is fairly efficient for a branch-and-bound tech-
nique.

The tree node in which the algorithm is when it is called (by the user or by itself) is encoded in
a sequence of vertex marks. Marks come in three flavors: "C" is assigned to "Covered" vertices,
that is, already included in the partial cover. "U" is asigned to "Uncovered" vertices, that is, those
excluded from the partial cover. Mark "F" is assigned to "Free" vertices, those not considered yet
by the algorithm; one of them is considered in the actual function call, and the subtree under this
vertex is explored before returning. This mark sequence starts and ends with all vertices marked
"F", and is used only by the algorithm, which modifies and passes it on to succesive calls to itself.

When the verb argument is TRUE, the routine echoes to the console the newly found cover only if
it is better than the last. This report includes the size, actual cover and number call of the routine.

The routine can drop the best cover found so far in a file so that the user can stop the run afterwards;
this technique might be useful when the full run takes too much time to complete.

Value

A list with five components: $set contains the subset of V(g) representing the cover and $size
contains the number of vertices of the cover. Component $call is the number of calls the algorithm
did on itself. The remaining components are used to transfer the state of the algorithm in the search
three from one call to the next; they are $partial, the partially constructed cover, and $marks, a
sequence encoding the tree node in which the algorithm is when this function is called, see details.

Author(s)

Cesar Asensio

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a greedy
heuristic, build_cover_approx builds a cover using a 2-approximation algorithm, improve_cover_flip
improves a cover using local search, search_cover_random looks for a random cover of fixed size,
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search_cover_ants looks for a random cover using a version of the ant-colony optimization heuristic,
plot_cover plots a cover.

Examples

set.seed(1)
g <- sample_gnp(25, p=0.25) # Random graph
X7 <- find_cover_BB(g)
X7$size # Exact result: 16
X7$call # 108 recursive calls!
plot_cover(X7, g)

## Saving best result in a file (useful if the algorithm takes too
## long and should be interrupted by the user)
## It uses tempdir() to store the file
## The variable is called "Xbest"
find_cover_BB(g, save.best.result = TRUE, filename.best.result = "BestResult_BB.Rdata")

find_euler Constructing an Eulerian Cycle

Description

It finds an Eulerian cycle using a O(q) algorithm where q is the number of edges of the graph.

Usage

find_euler(G, v)

Arguments

G Eulerian and connected graph
v Any vertex as starting point of the cycle

Details

Recursive algorithm for undirected graphs. The input graph should be Eulerian and connected.

Value

A two-element list: the $walk component is a q × 2 matrix edgelist, and the $graph component is
the input graph with no edges; it is used in intermediate steps, when the function calls itself.

Disclaimer

This function is part of the subject "Graphs and Network Optimization". It is designed for teaching
purposes only, and not for production.

• It is introduced in the "Connectivity" section.
• It is used as a subroutine in the "TSP" section.
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Author(s)

Cesar Asensio (2021)

References

Korte, Vygen: Combinatorial Optimization (Springer) sec 2.4.

See Also

build_tour_2tree double-tree algorithm.

Examples

library(igraph)
find_euler(make_full_graph(5), 1)$walk # Walk of length 10

find_tour_BB Branch-and-Bound algorithm for the TSP

Description

This routine performs a version of the Branch-and-Bound algorithm for the Traveling Salesperson
Problem (TSP). It is an exact algorithm with exponential worst-case running time; therefore, it can
be run only with a very small number of cities.

Usage

find_tour_BB(
d,
n,
verb = FALSE,
plot = TRUE,
z = NA,
tour = rep(0, n),
distance = 0,
upper = Inf,
col = c(1, rep(0, n - 1)),
last = 1,
partial = c(1, rep(NA, n - 1)),
covered = 0,
call = 0,
save.best.result = FALSE,
filename.best.result = "best_result_find_tour_BB.Rdata",
order = NA

)
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Arguments

d Distance matrix of the TSP instance

n Number of vertices of the TSP complete graph

verb If detailed operation of the algorithm should be echoed to the console. It defaults
to FALSE

plot If tours found by the algorithm should be plotted using plot_tour. It defaults to
TRUE

z Points to plot the tours found by the algorithm. It defaults to NA; it should be
set if plot is TRUE or else plot_tour will not plot the tours

tour Best tour found by the algorithm. If the algorithm has ended its complete run,
this is the optimum of the TSP instance. This variable is used to store the internal
state of the algorithm and it should not be set by the user

distance Distance covered by the best tour found. This variable is used to store the inter-
nal state of the algorithm and it should not be set by the user

upper Upper bound on the distance covered by the optimum tour. It can be provided by
the user or the routine will use the result found by the heuristic build_tour_nn_best

col Vectors of "colors" of vertices. This variable is used to store the internal state of
the algorithm and it should not be set by the user

last Last vertex added to the tour being built by the algorithm. This variable is used
to store the internal state of the algorithm and it should not be set by the user

partial Partial tour built by the algorithm. This variable is used to store the internal state
of the algorithm and it should not be set by the user

covered Partial distance covered by the partial tour built by the algorithm. This variable
is used to store the internal state of the algorithm and it should not be set by the
user

call Number of calls that the algorithm performs on itself. This variable is used to
store the internal state of the algorithm and it should not be set by the user

save.best.result

The time needed for a complete run of this algorithm may be exponentially
large. Since it only will return its results if it ends properly, we can save to a
file the best result found by the routine at a given time when save.best.result =
TRUE (default is FALSE). Then, the user will be allowed to stop the run of the
algorithm without losing the (possibly suboptimal) result.

filename.best.result

The name of the file used to store the best result found so far when save.best.result
= TRUE. It defaults to "best_result_find_tour_BB.Rdata". When loaded, this file
will define the best tour in variable "Cbest".

order Numeric vector giving the order in which vertices will be search by the algo-
rithm. It defaults to NA, in which case the algorithm will take the order of the
tour found by the heuristic build_tour_nn_best. If the user knows in advance
some good tour and he/she wishes to use the order of its vertices, it should be
taken into account that the third vertex used by the algorithm is the last vertex
of the tour!
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Details

The algorithm starts at city 1 (to avoid the cyclic permutation tour equivalence) and the "branch"
phase consists on the decision of which city follows next. In order to avoid the equivalence between
a tour and its reverse, it only considers those tours for which the second city has a smaller vertex id
that the last. With n cities, the total number of tours explored in this way is (n−1)!/2, which clearly
is infeasible unless n is small. Hence the "bound" phase estimates a lower bound on the distance
covered by the tours which already are partially constructed. When this lower bound grows larger
than an upper bound on the optimum supplied by the user or computed on the fly, the search stops
in this branch and the algorithm proceeds to the next. This complexity reduction does not help in
the worst case, though.

This routine represents the tree search by iterating over the sucessors of the present tree vertex
and calling itself when descending one level. The leaves of the three are the actual tours, and the
algorithm only reaches those tours whose cost is less than the upper bound provided. By default,
the algorithm will plot the tour found if the coordinates of the cities are supplied in the "z" input
argument.

When the routine takes too much time to complete, interrupting the run would result in losing the
best tour found. To prevent this, the routine can store the best tour found so far so that the user can
stop the run afterwards.

Value

A list with nine components: $tour contains a permutation of the 1:n sequence representing the best
tour constructed by the algorithm, $distance contains the value of the distance covered by the tour,
which if the algorithm has ended properly will be the optimum distance. Component $call is the
number of calls the algorithm did on itself. The remaining components are used to transfer the state
of the algorithm in the search three from one call to the next; they are $upper for the current upper
bound on the distance covered by the optimum tour, $col for the "vertex colors" used to mark the
vertices added to the partially constructed tour, which is stored in $partial. The distance covered by
this partial tour is stored in $covered, the last vertex added to the partial tour is stored in $last, and
the "save.best.result" and "filename.best.result" input arguments are stored in $save.best.result and
$filename.best.result.

Author(s)

Cesar Asensio

Examples

## Random points
set.seed(1)
n <- 10
z <- cbind(runif(n, min=1, max=10), runif(n, min=1, max=10))
d <- compute_distance_matrix(z)
bb <- find_tour_BB(d, n)
bb$distance # Optimum 26.05881
plot_tour(z,bb)
## Saving tour to a file (useful when the run takes too long):
## Can be stopped after tour is found
## File is stored in tempdir(), variable is called "Cbest"
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find_tour_BB(d, n, save.best.result = TRUE, z = z)

gauge_tour Gauging a tour

Description

Gauging a tour for easy comparison.

Usage

gauge_tour(To, n)

Arguments

To Tour to be gauged, a vector containing a permutation of the 1:n sequence

n Number of elements of the tour T

Details

A tour of n vertices is a permutation of the ordered sequence 1:n, and it is represented as a vector
containing the integers from 1 to n in the permuted sequence. As a subgraph of the complete graph
with n vertices, it is assumed that each vertex is adjacent with the anterior and posterior ones, with
the first and last being also adjacent.

With respect to the TSP, a tour is invariant under cyclic permutation and inversion, so that there
exists (n − 1)!/2 different tours in a complete graph of n vertices. When searching for tours it
is common to find the same tour under a different representation. Therefore, we need to establish
wheter two tours are equivalent or not. To this end, we can "gauge" the tour by permuting cyclically
its elements until the first vertex is at position 1, and fix the orientation so that the second vertex is
less than the last. Two equivalent tours will have the same "gauged" representation.

This function is used in search_tour_genetic to discard repeated tours which can be found during
the execution of the algorithm.

Value

The gauged tour.

Author(s)

Cesar Asensio

See Also

search_tour_genetic implements a version of the genetic algorithm for the TSP.
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Examples

set.seed(2)
T0 <- sample(1:9,9) # T0 = 2 6 5 9 7 4 1 8 3
gauge_tour(T0, 9) # gauged T0 = 1 4 7 9 5 6 2 3 8

generate_fundamental_cycles

Generate fundamental cycles in a connected graph

Description

Generation of a system of fundamental cycles in a connected graph with respect of a given spanning
tree.

Usage

generate_fundamental_cycles(eT, eG)

Arguments

eT Spanning tree of the graph in edgelist representation, see as_edgelist.

eG Graph in edgelist representation, see as_edgelist.

Details

The routine loops through the edges of the graph outside the spanning tree (there are |E| - |V| + 1
of them); in each step, it adds an edge to the tree, thus closing a cycle, which has some "hair" in it
in the form of dangling vertices. Then all those dangling vertices are removed from the cycle (the
"hair" is "shaven").

Value

A matrix with the fundamental cycles in its rows, in edge vector representation, that is, a binary
vector with 1 if the edge belongs to the cycle and 0 otherwise. This interpretation of the edge
vectors of each fundamental cycle refers to the edgelist of the graph given in eG.

Author(s)

Cesar Asensio

See Also

shave_cycle shaves hairy cycles, apply_incidence_map applies the incidence map of a graph to an
edge vector.
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Examples

g <- make_graph("Dodecahedron")
n <- gorder(g)
b <- bfs(g, 1, father = TRUE) # BFS tree
T <- make_graph(rbind(b$father[2:n], 2:n), n) # Tree as igraph graph
eT <- as_edgelist(T)
eG <- as_edgelist(g)
C <- generate_fundamental_cycles(eT, eG) # Fundamental cycles
mu <- gsize(g) - gorder(g) + 1 # Cyclomatic number
z <- layout_with_gem(g)
for (i in 1:mu) { # Cycle drawing

c1 <- make_graph(t(eG[which(C[i,] == 1),]) , dir = FALSE)
plot(g, layout = z)
plot(c1, layout = z, add = TRUE, edge.color = "cyan4",

edge.lty = "dashed", edge.width = 3)
title(paste0("Cycle ", i, " of ", mu))
#Sys.sleep(1) # Adjust time to see the cycles

}

gor Graphs and Network Optimization algorithms

Description

This is a hardly complete collection of algorithms from the subject "Graphs and Network Optimiza-
tion".

Details

Functions in this package have been written for teaching purposes. Therefore, no attempt at produc-
tion versions of the algorithms has been made. They are neither complete nor completely correct,
although a great effort has been invested in their construction and debugging. All of them pass
a series of tests given in the examples sections of the corresponding help pages. Comments and
suggestions are welcome, even if I cannot guarantee that they will be incorporated to the package.

This package makes extensive use of the igraph package functions, which should be loaded before
using "gor".

Some functions in this package perform tasks which can be found in other well-tested packages
such as igraph or TSP. As said before, these functions have been written with teaching in mind, and
I do not claim that gor functions are better than any other in any way whatsoever.

Author(s)

Cesar Asensio (2021-2023)
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improve_cover_flip Improving a cover with local search

Description

Local search to improve a cover by using "neighboring" vertex subsets differing in just one element
from the initial subset.

Usage

improve_cover_flip(G, X)

Arguments

G A graph

X A cover list with components $set, $size as returned by routines build_cover_greedy
or build_cover_approx. X represents the cover to be improved

Details

Given some cover specified by a vertex subset X in a graph, this routine scans the neighboring
subsets obtained from X by removing a vertex from X looking for a smaller cover. If such a cover
is found, it replaces the starting cover and the search starts again. This iterative procedure continues
until no smaller cover can be found. Of course, the resulting cover is only a local minimum.

Value

A list with two components: $set contains the subset of V(g) representing the cover and $size
contains the number of vertices of the cover.

Author(s)

Cesar Asensio

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a greedy
heuristic, build_cover_approx builds a cover using a 2-approximation algorithm, search_cover_random
looks for a random cover of fixed size, search_cover_ants looks for a random cover using a version
of the ant-colony optimization heuristic, find_cover_BB finds covers using a branch-and-bound
technique, plot_cover plots a cover.
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Examples

set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25) # Random graph

X1 <- build_cover_greedy(g)
X1$size # 17
plot_cover(X1, g)

X2 <- build_cover_approx(g)
X2$size # 20
plot_cover(X2, g)

X3 <- improve_cover_flip(g, X1)
X3$size # 17 : Not improved
plot_cover(X3,g)

X4 <- improve_cover_flip(g, X2)
X4$size # 19 : It is improved by a single vertex
plot_cover(X4,g)

# Vertex subsets or n-1 elements are always vertex covers:
for (i in 1:25) {

X3 <- improve_cover_flip(g, list(set = setdiff(1:25,i), size = 24))
print(X3$size)

} # 19 18 18 18 18 18 17 20 19 17 17 18 18 18 17 19 20 19 19 17 19 19 19 19 19

improve_cut_flip Improving a cut with local search

Description

Local search to improve a cut by using "neighboring" vertex subsets differing in just one element
from the initial subset.

Usage

improve_cut_flip(G, K, w = NA, return.cut = TRUE)

Arguments

G A graph
K A cut list with components $set, $size, $weight and $cut as returned by routines

build_cut_greedy, build_cut_random or compute_cut_weight. Only the $set and
$weight components are used. K represents the cut to be improved

w Weight matrix (defaults to NA). It should be zero for those edges not in G
return.cut Boolean. Should the routine return the cut? It is passed on to compute_cut_weight

on return. It defaults to TRUE
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Details

Given some cut specified by a vertex subset S in a graph, this routine scans the neighboring subsets
obtained from S by adding/removing a vertex from S looking for a larger cut. If such a cut is found,
it replaces the starting cut and the search starts again. This iterative procedure continues until no
larger cut can be found. Of course, the resulting cut is only a local maximum.

Value

A list with four components: $set contains the subset of V(g) representing the cut, $size contains
the number of edges of the cut, $weight contains the weight of the cut (which coincides with $size
if w is NA) and $cut contains the edges of the cut, joining vertices inside $set with vertices outside
$set. When return.cut is FALSE, components $set and $cut are omitted.

Author(s)

Cesar Asensio

See Also

build_cut_random builds a random cut, build_cut_greedy builds a cut using a greedy algorithm,
compute_cut_weight computes cut size, weight and edges, plot_cut plots a cut.

Examples

set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25) # Random graph

c1 <- build_cut_random(g)
c1$size # 44
plot_cut(c1, g)

c2 <- build_cut_greedy(g)
c2$size # 59
plot_cut(c2, g)

c3 <- improve_cut_flip(g, c1)
c3$size # 65
plot_cut(c3,g)

c4 <- improve_cut_flip(g, c2)
c4$size # 60
plot_cut(c4,g)
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improve_tour_2opt Tour improving for a TSP using the 2-opt heuristic

Description

2-opt heuristic tour-improving algorithm for the Traveling Salesperson Problem

Usage

improve_tour_2opt(d, n, C)

Arguments

d Distance matrix of the TSP.

n Number of vertices of the TSP complete graph.

C Starting tour to be improved.

Details

It applies the 2-opt algorithm to a starting tour of a TSP instance until no further improvement can
be found. The tour thus improved is a 2-opt local minimum.

The 2-opt algorithm consists of applying all possible 2-interchanges on the starting tour. Informally,
a 2-interchange is the operation of cutting the tour in two pieces (by removing two nonincident
edges) and gluing the pieces together to form a new tour by interchanging the endpoints.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio

See Also

improve_tour_3opt improves a tour using the 3-opt algorithm, build_tour_nn_best nearest neighbor
heuristic, build_tour_2tree double-tree heuristic, compute_tour_distance computes tour distances,
compute_distance_matrix computes a distance matrix, plot_tour plots a tour.

Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
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b$distance # Distance 57.868
bi <- improve_tour_2opt(d, n, b$tour)
bi$distance # Distance 48 (optimum)
plot_tour(z,b)
plot_tour(z,bi)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 48.639
bi <- improve_tour_2opt(d, n, b$tour)
bi$distance # Distance 37.351
plot_tour(z,b)
plot_tour(z,bi)

improve_tour_3opt Tour improving for a TSP using the 3-opt heuristic

Description

3-opt heuristic tour-improving algorithm for the Traveling Salesperson Problem

Usage

improve_tour_3opt(d, n, C)

Arguments

d Distance matrix of the TSP.

n Number of vertices of the TSP complete graph.

C Starting tour to be improved.

Details

It applies the 3-opt algorithm to a starting tour of a TSP instance until no further improvement can
be found. The tour thus improved is a 3-opt local minimum.

The 3-opt algorithm consists of applying all possible 3-interchanges on the starting tour. A 3-
interchange removes three non-indicent edges from the tour, leaving three pieces, and combine them
to form a new tour by interchanging the endpoints in all possible ways and gluing them together by
adding the missing edges.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, $distance contains the value of the distance covered by the tour.
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Author(s)

Cesar Asensio

See Also

improve_tour_2opt improves a tour using the 2-opt algorithm, build_tour_nn_best nearest neighbor
heuristic, build_tour_2tree double-tree heuristic, compute_tour_distance computes tour distances,
compute_distance_matrix computes a distance matrix, plot_tour plots a tour.

Examples

## Regular example with obvious solution (minimum distance 32)
m <- 6 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 38.43328
bi <- improve_tour_3opt(d, n, b$tour)
bi$distance # Distance 32 (optimum)
plot_tour(z,b)
plot_tour(z,bi)

## Random points
set.seed(1)
n <- 15
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 45.788
bi <- improve_tour_3opt(d, n, b$tour)
bi$distance # Distance 32.48669
plot_tour(z,b)
plot_tour(z,bi)

improve_tour_LinKer Tour improving for a TSP using a poor version of the Lin-Kernighan
heuristic

Description

Lin-Kernighan heuristic tour-improving algorithm for the Traveling Salesperson Problem using
fixed 2-opt instead of variable k-opt exchanges.

Usage

improve_tour_LinKer(d, n, C, try = 5)
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Arguments

d Distance matrix of the TSP.

n Number of vertices of the TSP complete graph.

C Starting tour to be improved.

try Number of tries before quitting.

Details

It applies a version of the core Lin-Kernighan algorithm to a starting tour of a TSP instance until no
further improvement can be found. The tour thus improved is a local minimum.

The Lin-Kernighan algorithm implemented here is based on the core routine described in the refer-
ence below. It is provided here as an example of a local search routine which can be embedded in
larger search strategies. However, instead of using variable k-opt moves to improve the tour, it uses
2-exhanges only, which is far easier to program. Tours improved with this technique are of course
2-opt.

The TSP library provides an interface to the Lin-Kernighan algorithm with all its available improve-
ments in the external program Concorde, which should be installed separately.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio

References

Hromkovic Algorithmics for Hard Problems (2004)

See Also

improve_tour_2opt improves a tour using the 2-opt algorithm, improve_tour_3opt improves a tour
using the 3-opt algorithm, build_tour_nn_best nearest neighbor heuristic, build_tour_2tree double-
tree heuristic, compute_tour_distance computes tour distances, compute_distance_matrix computes
a distance matrix, plot_tour plots a tour.

Examples

## Regular example with obvious solution (minimum distance 48)
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 57.868
bi <- improve_tour_LinKer(d, n, b$tour)
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bi$distance # Distance 48 (optimum)
plot_tour(z,b)
plot_tour(z,bi)

## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 48.639
bi <- improve_tour_LinKer(d, n, b$tour)
bi$distance # Distance 37.351 (2-opt)
plot_tour(z,b)
plot_tour(z,bi)

is_cover Check vertex cover

Description

Check if some vertex subset of a graph covers all its edges.

Usage

is_cover(X, eG)

Arguments

X Vertex subset to check.

eG Edgelist of the graph as returned by as_edgelist

Details

The routine simply goes through the edge list of the graph to see if both ends of each edge are inside
the vertex subset to be checked. When an edge with both ends ouside X is encountered, the routine
returns FALSE; otherwise, it returns TRUE.

Value

Boolean: TRUE if X is a vertex cover of the graph represented by eG, FALSE otherwise.

Author(s)

Cesar Asensio
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See Also

build_cover_greedy builds a cover using a greedy heuristic, build_cover_approx builds a cover us-
ing a 2-approximation algorithm, improve_cover_flip improves a cover using local search, search_cover_random
looks for a random cover of fixed size, search_cover_ants looks for a random cover using a version
of the ant-colony optimization heuristic, find_cover_BB finds covers using a branch-and-bound
technique, plot_cover plots a cover.

Examples

set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25) # Random graph
eg <- as_edgelist(g)

X1 <- build_cover_greedy(g)
is_cover(X1$set, eg) # TRUE
is_cover(c(1:10),eg) # FALSE
plot_cover(list(set = 1:10, size = 10), g) # See uncovered edges

mutate_binary_sequence

Binary sequence mutation

Description

Mutation of binary sequences for use in the genetic algorithm

Usage

mutate_binary_sequence(s, p = 0.1)

Arguments

s Sequence consisting of 0 and 1

p Mutation probability. Defaults to 0.1

Details

This routine takes a binary sequence and it flips ("mutates") each bit with a fixed probability. In the
genetic algorithm context, this operation randomly explores regions of configuration space which
are far away from the starting point, thus trying to avoid local optima. The fitting function values of
mutated individuals are generically very poor, and this behavior is to be expected. Thus, mutation
is not an optimization procedure per se.

Value

A mutated binary sequence
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Author(s)

Cesar Asensio

See Also

search_cut_genetic genetic cut-searching algorithm, crossover_sequences crossover operation

Examples

set.seed(1)
s <- sample(0:1, 10, replace = TRUE) # 0 0 1 1 0 1 1 1 1 0
mutate_binary_sequence(s, p = 0.5) # 1 1 1 0 0 0 1 1 0 0
mutate_binary_sequence(s, p = 1) # 1 1 0 0 1 0 0 0 0 1

neigh_index Previous, current, and next positions of a given index in a cycle.

Description

Previous, current, and next positions of a given index in a cycle.

Usage

neigh_index(i, n)

Arguments

i Position in a cycle

n Lenght of the cycle

Details

Given some position i in a n-lenght cycle, this function returns the triple c(i-1,i,i+1) taking into
account that the next position of i=n is 1 and the previous position of i=1 is n. It is used to perform
a 4-exchange in a cycle.

Value

A three component vector c(previous, current, next)

Author(s)

Cesar Asensio
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Examples

neigh_index(6, 9) # 5 6 7
neigh_index(9, 9) # 8 9 1
neigh_index(1, 9) # 9 1 2

next_index Next position to i in a cycle

Description

Next position to i in a cycle.

Usage

next_index(i, n)

Arguments

i Position in cycle

n Lenght of cycle

Details

In a cycle, the next slot to the i-th position is i+1 unless i=n. In this case, the next is 1.

Value

The next position in cycle

Author(s)

Cesar Asensio

Examples

next_index(5, 7) # 6
next_index(7, 7) # 1
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perturb_tour_4exc Random 4-exchange transformation

Description

It performs a random 4-exchange transformation to a cycle.

Usage

perturb_tour_4exc(C, V, n)

Arguments

C Cycle to be 4-exchanged

V 1:n list, positions to draw from

n Number of vertices of the cycle

Details

The transformation is carried out by randomly selecting four non-mutually incident edges from the
cycle. Upon eliminating these four edges, we obtain four pieces ci of the original cycle. The 4-
exchanged cycle is c1, c4, c3, c2. This is a typical 4-exchange which cannot be constructed using
2-exchanges and therefore it is used by local search routines as an escape from 2-opt local minima.

Value

The 4-exchanged cycle.

Author(s)

Cesar Asensio

Examples

set.seed(1)
perturb_tour_4exc(1:9, 1:9, 9) # 2 3 9 1 7 8 4 5 6
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plot_cover Vertex cover plotting

Description

Plot of a vertex cover in a graph.

Usage

plot_cover(X, G)

Arguments

X Cover to be plotted; an output list returned by some cover-building function, see
below.

G Graph on which to superimpose the cover.

Details

It plots a graph, then superimposes a vertex cover in a different color. It also draws the covered
edges, to help in detecting non-covers by inspection.

Value

This function is called for its side effect of plotting.

Author(s)

Cesar Asensio

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a greedy
heuristic, build_cover_approx builds a cover using a 2-approximation algorithm, improve_cover_flip
improves a cover using local search, search_cover_random looks for a random cover of fixed size,
search_cover_ants looks for a random cover using a version of the ant-colony optimization heuristic,
find_cover_BB finds covers using a branch-and-bound technique.

Examples

set.seed(1)
g <- sample_gnp(25, p=0.25) # Random graph
X1 <- build_cover_greedy(g)
plot_cover(X1, g)

st <- 1:5 # Not a vertex cover
plot_cover(list(set = st, size = length(st)), g) # See covered edges
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plot_cut Cut plotting

Description

Plot of a cut in a graph.

Usage

plot_cut(K, G)

Arguments

K Cut to be plotted; an output list returned by some cut-building function, see
below.

G Graph on which to superimpose the cut.

Details

It plots a graph, then superimposes a cut, drawing the associated vertex set in a different color.

Value

This function is called for its side effect of plotting.

Author(s)

Cesar Asensio

See Also

build_cut_random builds a random cut, build_cut_greedy builds a cut using a greedy algorithm, im-
prove_cut_flip uses local search to improve a cut obtained by other methods, compute_cut_weight
computes cut size, weight and edges.

Examples

K10 <- make_full_graph(10) # Max cut of size 25
c0 <- build_cut_random(K10)
plot_cut(c0, K10)
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plot_tour TSP tour simple plotting

Description

Plotting tours constructed by tour-building routines for TSP

Usage

plot_tour(z, h, ...)

Arguments

z Set of points of a TSP

h List with $tour and $distance components returned from a TSP tour building
algorithm

... Parameters to be passed to plot

Details

It plots the two-dimensional cities of a TSP and a tour among them for visualization purposes. No
aesthetically appealing effort has been invested in this function.

Value

This function is called by its side effect.

Author(s)

Cesar Asensio

See Also

build_tour_nn nearest neighbor heuristic with a single starting point, build_tour_nn_best repeats
the previous algorithm with all possible starting points, compute_distance_matrix computes the
distance matrix of a set of two-dimensional points.

Examples

set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- build_tour_nn_best(d, n)
plot_tour(z,b)
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search_cover_ants Ant colony optimization algorithm for Vertex-Cover

Description

Ant colony optimization (ACO) heuristic algorithm to search for a vertex cover of small size in a
graph. ACO is a random algorithm; as such, it yields better results when longer searches are run. To
guess the adequate parameter values resulting in better performance in particular instances requires
some experimentation, since no universal values of the parameters seem to be appropriate to all
examples.

Usage

search_cover_ants(g, K, N, alpha = 2, beta = 2, dt = 1, rho = 0.1, verb = TRUE)

Arguments

g Graph.

K Number of ants per iteration.

N Number of iterations.

alpha Exponent of the pheronome index, see details.

beta Exponent of the vertex degree, see details.

dt Pheromone increment.

rho Pheromone evaporation rate.

verb Boolean; if TRUE (default) it echoes to the console the routine progress .

Details

ACO is an optimization paradigm that tries to replicate the behavior of a colony of ants when
looking for food. Ants leave after them a soft pheromone trail to help others follow the path just in
case some food has been found. Pheromones evaporate, but following again the trail reinforces it,
making it easier to find and follow. Thus, a team of ants search a vertex cover in a graph, leaving
a pheromone trail on the chosen vertices. At each step, each ant decides the next vertex to add
based on the pheromone level and on the degree of the remaining vertices, according to the formula
P (v) phi(v)alpha∗exp(beta∗d(v)), where phi(v) is the pheromone level, d(v) is the degree of the
vertex v, and alpha, beta are two exponents to broad or sharpen the probability distribution. After
each vertex has been added to the subset, its incident adges are removed, following a randomized
version of the greedy heuristic. In a single iteration, each ant builds a vertex cover, and the best of
them is recorded. Then the pheromone level of the vertices of the best cover are enhanced, and the
remaining pheromones begin to evaporate.

Default parameter values have been chosen in order to find the optimum in the examples considered
below. However, it cannot be guarateed that this is the best choice for all cases. Keep in mind that
no polynomial time exact algorithm can exist for the VCP, and thus harder instances will require to
fine-tune the parameters. In any case, no guarantee of optimality of covers found by this method
can be given, so they might be improved further by other methods.
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Value

A list with three components: $set contains the subset of V(g) representing the cover and $size con-
tains the number of vertices of the cover; $found is the number of vertex covers found in subsequent
iterations (often they are repeated, that is, different explorations may find the same vertex cover).

Author(s)

Cesar Asensio

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a greedy
heuristic, build_cover_approx builds a cover using a 2-approximation algorithm, improve_cover_flip
improves a cover using local search, search_cover_random looks for a random cover of fixed size,
find_cover_BB finds covers using a branch-and-bound technique, plot_cover plots covers.

Examples

set.seed(1)
g <- sample_gnp(25, p=0.25) # Random graph

X6 <- search_cover_ants(g, K = 20, N = 10)
plot_cover(X6, g)
X6$found

search_cover_random Random vertex covers

Description

Random algorithm for vertex-cover.

Usage

search_cover_random(G, N, k, alpha = 1)

Arguments

G Graph.

N Number of random vertex set to try.

k Cardinality of the random vertex sets generated by the algorithm.

alpha Exponent of the probability distribution from which vertices are drawn: P(v) ~
d(v)^alpha.
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Details

This routine performs N iterations of the simple procedure of selecting a random sample of size k
on the vertex set of a graph and check if it is a vertex cover, counting successes and failures. The
last cover found is returned, or an empty set if none is found.

Value

A list with four components: $set contains the subset of V(g) representing the cover and $size
contains the number of vertices of the cover (it coincides with k). $found is the number of vertex
covers found and $failed is the number of generated subset that were not vertex covers.

Author(s)

Cesar Asensio

See Also

is_cover checks if a vertex subset is a vertex cover, build_cover_greedy builds a cover using a greedy
heuristic, build_cover_approx builds a cover using a 2-approximation algorithm, improve_cover_flip
improves a cover using local search, search_cover_ants looks for a random cover using a version
of the ant-colony optimization heuristic, find_cover_BB finds covers using a branch-and-bound
technique, plot_cover plots a cover.

Examples

set.seed(1)
n <- 25
g <- sample_gnp(n, p=0.25) # Random graph
X7 <- search_cover_random(g, 10000, 17, alpha = 3)
plot_cover(X7, g)
X7$found # 21 (of 10000) covers of size 17

## Looking for a cover of size 16...
X8 <- search_cover_random(g, 10000, 16, alpha = 3) # ...we don't find any!
plot_cover(X8, g) # All edges uncovered
X8$found # 0

search_cut_genetic Genetic Algorithm for Max-Cut

Description

Genetic algorithm for Max-Cut. In addition to crossover and mutation, which are described below,
the algorithm performs also local search on offsprings and mutants.
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Usage

search_cut_genetic(
G,
w = NA,
Npop = 5,
Ngen = 20,
pmut = 0.1,
beta = 1,
elite = 2,
Pini = NA,
verb = TRUE,
log = FALSE

)

Arguments

G Graph.

w Weight matrix.

Npop Population size.

Ngen Number of generations (iterations of the algorithm).

pmut Mutation probability. It defaults to 0.1.

beta Control parameter of the crossing and selection probabilities. It defaults to 1.

elite Number of better fitted individuals to pass on to the next generation. It defaults
to 2.

Pini Initial population. If it is NA, a random initial population of Npop individuals is
generated. Otherwise, it should be a matrix; each row should be an individual (a
permutation of the 1:n sequence) and then Npop is set to the number of rows of
Pini. This option allows to chain several runs of the genetic algorithms, which
could be needed in the hardest cases.

verb Boolean to activate console echo. It defaults to TRUE.

log Boolean to activate the recording of the weights of all cuts found by the algo-
rithm. It defaults to FALSE.

Details

This algorithm manipulates cuts by means of its associated binary sequences defined as follows.
Each cut K is defined by its associated vertex subset S of V(G): K contains all edges joining ver-
tices inside S with vertices outside S. If |V(G)|=n, we can construct a n-bit binary sequence b =
(b1,b2,...,bn) with bi = 1 if vertex vi belongs to S, and 0 otherwise.

The genetic algorithm consists of starting with a cut population, where each cut is represented by
its corresponding binary sequence defined above, and thus the population is simply a binary matrix.
This initial cut population can be provided by the user or can be random. The initial population can
be the output of a previous run of the genetic algorithm, thus allowing a chained execution. Then the
routine sequentially perform over the cuts of the population the crossover, mutation, local search
and selection operations.



search_cut_genetic 59

The crossover operation takes two cuts as "parents" and forms two "offsprings" by cutting and
interchanging the binary sequences of the parents; see crossover_sequences for more information.

The mutation operation performs a "small" perturbation of each cut trying to escape from local
optima. It uses a random flip on each bit of the binary sequence associated with the cut, see mu-
tate_binary_sequence for more information.

The local search operation takes the cuts found by the crossover and mutation operations and
improves them using some local search heuristic, in this case improve_cut_flip. This allows this
algorithm to approach local maxima faster.

The selection operation is used when selecting pairs of parents for crossover and when selecting
individuals to form the population for the next generation. In both cases, it uses a probability
exponential in the weight with rate parameter "beta", favouring the better fitted to be selected. Lower
values of beta favours the inclusion of cuts with worse fitting function values. When selecting the
next population, the selection uses elitism, which is to save the best fitted individuals to the next
generation; this is controlled with parameter "elite".

The usefulness of the crossover and mutation operations stems from its abitily to escape from the
local maxima. Of course, more iterations (Ngen) and larger populations (Npop) might improve the
result, but recall that no random algorithm can guarantee to find the optimum of a given Max-Cut
instance.

This algorithm calls many times the routines compute_cut_weight, crossover_sequences, mutate_binary_sequence
and improve_cut_flip; therefore, it is not especially efficient when called on large problems or with
high populations or many generations. Please consider chaining the algorithm: perform short runs,
using the output of a run as the input of the next.

Value

A list with several components: $set contains the subset of V(g) representing the cut, $size contains
the number of edges of the cut, $weight contains the weight of the cut (which coincides with $size
if w is NA) and $cut contains the edges of the cut, joining vertices inside $set with vertices outside
$set; $generation contains the generation when the maximum was found and $population contains
the final cut population. When log=TRUE, the output includes several lists of weights of cuts found
by the algorithm, separated by initial cuts, offsprings, mutants, local maxima and selected cuts.

Author(s)

Cesar Asensio

References

Hromkovic Algorithms for hard problems (2004), Hartmann, Weigt, Phase transitions in combina-
torial optimization problems (2005).

See Also

crossover_sequences performs crossover operation, mutate_binary_sequence performs mutation
operation, build_cut_random builds a random cut, build_cut_greedy builds a cut using a greedy
algorithm, improve_cut_flip improves a cut by local search, compute_cut_weight computes cut
size, weight and edges, plot_cut plots a cut.



60 search_tour_ants

Examples

set.seed(1)
n <- 10
g <- sample_gnp(n, p=0.5) # Random graph
c5 <- search_cut_genetic(g)
plot_cut(c5, g)
improve_cut_flip(g, c5) # It does not improve
for (i in 1:5) { # Weights of final population

s5 <- which(c5$population[i,] == 1)
cs5 <- compute_cut_weight(s5, gorder(g), as_edgelist(g))
print(cs5$weight)

}

## Longer examples
c5 <- search_cut_genetic(g, Npop=10, Ngen=50, log = TRUE)
boxplot(c5$Wini, c5$Woff, c5$Wmut, c5$Wvec, c5$Wsel,

names=c("Ini", "Off", "Mut", "Neigh", "Sel"))

set.seed(1)
n <- 20
g <- sample_gnp(n, p=0.25)
Wg <- matrix(sample(1:3, n^2, replace=TRUE), nrow=n)
Wg <- Wg + t(Wg)
A <- as_adjacency_matrix(g)
Wg <- Wg * A
c6 <- search_cut_genetic(g, Wg, Ngen = 9) # Size 38, weigth 147
plot_cut(c6, g)

search_tour_ants Ant colony optimization algorithm for the TSP

Description

Ant colony optimization (ACO) heuristic algorithm to search for a low-distance tour of a TSP
instance. ACO is a random algorithm; as such, it yields better results when longer searches are
run. To guess the adequate parameter values resulting in better performance in particular instances
requires some experimentation, since no universal values of the parameters seem to be appropriate
to all examples.

Usage

search_tour_ants(
d,
n,
K = 200,
N = 50,
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beta = 3,
alpha = 5,
dt = 1,
rho = 0.05,
log = FALSE

)

Arguments

d Distance matrix of the TSP instance.

n Number of vertices of the complete TSP graph. It can be less than the number
of rows of the distance matrix d.

K Number of tour-searching ants. Defaults to 200.

N Number of iterations. Defaults to 50.

beta Inverse temperature which determines the thermal probability in selecting the
next vertex in tour. High beta (low temperature) rewards lower distances (and
thus it gets stuck sooner in local minima), while low beta (high temperature)
rewards longer tours, thus escaping from local minima. Defaults to 3.

alpha Exponent enhancing the pheromone trail. High alpha means a clearer trail, low
alpha means more options. It defaults to 5.

dt Basic pheromone enhancement at each iteration. It defaults to 1.

rho Parameter in the (0,1) interval controlling pheromone evaporation rate. Pheromones
of the chosen tour increase in dt*rho, while excluded pheromones diminish in
1-rho. A rho value near 1 means select just one tour, while lower values of rho
spread the probability and more tours can be explored. It defaults to 0.05.

log Boolean. When TRUE, it also outputs two vectos recording the performance of
the algorithm. It defaults to FALSE.

Details

ACO is an optimization paradigm that tries to replicate the behavior of a colony of ants when
looking for food. Ants leave after them a soft pheromone trail to help others follow the path just in
case some food has been found. Pheromones evaporate, but following again the trail reinforces it,
making it easier to find and follow. Thus, a team of ants search a tour in a TSP instance, leaving
a pheromone trail on the edges of the tour. At each step, each ant decides the next step based on
the pheromone level and on the distance of each neighboring edge. In a single iteration, each ant
completes a tour, and the best tour is recorded. Then the pheromone level of the edges of the best
tour are enhanced, and the remaining pheromones evaporate.

Default parameter values have been chosen in order to find the optimum in the examples considered
below. However, it cannot be guarateed that this is the best choice for all cases. Keep in mind that
no polynomial time exact algorithm can exist for the TSP, and thus harder instances will require to
fine-tune the parameters. In any case, no guarantee of optimality of tours found by this method can
be given, so they might be improved further by other methods.
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Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the
tour constructed by the algorithm, $distance contains the value of the distance covered by the tour.
When log=TRUE, the output list contains also the component $Lant, best tour distance found in the
current iteration, and component $Lopt, best tour distance found before and including the current
iteration.

Author(s)

Cesar Asensio

See Also

compute_distance_matrix computes matrix distances using 2d points, improve_tour_2opt improves
a tour using 2-exchanges, plot_tour draws a tour

Examples

## Regular example with obvious solution (minimum distance 32)
m <- 6 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
set.seed(2)
b <- search_tour_ants(d, n, K = 70, N = 20)
b$distance # Distance 32 (optimum)
plot_tour(z,b)

## Random points
set.seed(1)
n <- 15
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
b <- search_tour_ants(d, n, K = 50, N = 20)
b$distance # Distance 32.48669
plot_tour(z,b)

search_tour_chain2opt Chained 2-opt search with multiple, random starting tours

Description

Random heuristic algorithm for TSP which performs chained 2-opt local search with multiple,
random starting tours.

Usage

search_tour_chain2opt(d, n, Nit, Nper, log = FALSE)
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Arguments

d Distance matrix of the TSP instance.

n Number of vertices of the TSP complete graph.

Nit Number of iterations of the algorithm, see details.

Nper Number of chained perturbations of 2-opt minima, see details.

log Boolean: Whether the algorithm should record the distances of the tours it finds
during execution. It defaults to FALSE.

Details

Chained local search consists of starting with a random tour, improving it using 2-opt, and then
perturb it using a random 4-exchange. The result is 2-optimized again, and then 4-exchanged...
This sequence of chained 2-optimizations/perturbations is repeated Nper times for each random
starting tour. The entire process is repeated Nit times, drawing a fresh random tour each iteration.

The purpose of supplement the deterministic 2-opt algorithm with random additions (random start-
ing point and random 4-exchange) is escaping from the 2-opt local minima. Of course, more it-
erations and more perturbations might lower the result, but recall that no random algorithm can
guarantee to find the optimum in a reasonable amount of time.

This technique is most often applied in conjunction with the Lin-Kernighan local search heuristic.

It should be warned that this algorithm calls Nper*Nit times the routine improve_tour_2opt, and
thus it is not especially efficient.

Value

A list with two components: $tour contains a permutation of the 1:n sequence representing the tour
constructed by the algorithm, $distance contains the value of the distance covered by the tour.

Author(s)

Cesar Asensio

References

Cook et al. Combinatorial Optimization (1998)

See Also

perturb_tour_4exc transforms a tour using a random 4-exchange, improve_tour_2opt improves a
tour using the 2-opt algorithm, improve_tour_3opt improves a tour using the 3-opt algorithm,
build_tour_nn_best nearest neighbor heuristic, build_tour_2tree double-tree heuristic, compute_tour_distance
computes tour distances, compute_distance_matrix computes a distance matrix, plot_tour plots a
tour.
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Examples

## Regular example with obvious solution (minimum distance 32)
m <- 6 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
bc <- search_tour_chain2opt(d, n, 5, 3)
bc # Distance 48
plot_tour(z,bc)

## Random points
set.seed(1)
n <- 15
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
bc <- search_tour_chain2opt(d, n, 5, 3)
bc # Distance 32.48669
plot_tour(z,bc)

search_tour_genetic Genetic Algorithm for the TSP

Description

Genetic algorithm for TSP. In addition to crossover and mutation, which are described below, the
algorithm performs also 2-opt local search on offsprings and mutants. In this way, this algorithm is
at least as good as chained 2-opt search.

Usage

search_tour_genetic(
d,
n,
Npop = 20,
Ngen = 50,
beta = 1,
elite = 2,
Pini = NA,
local = 1,
verb = TRUE,
log = FALSE

)

Arguments

d Distance matrix of the TSP instance.

n Number of vertices of the TSP complete graph.
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Npop Population size.
Ngen Number of generations (iterations of the algorithm).
beta Control parameter of the crossing and selection probabilities. It defaults to 1.
elite Number of better fitted individuals to pass on to the next generation. It defaults

to 2.
Pini Initial population. If it is NA, a random initial population of Npop individuals

is generated. Otherwise, it should be a matrix; each row should be an individual
(a permutation of the 1:n sequence) and then Npop is set to the number of rows
of Pini. This option allows to chain several runs of the genetic algorithm, which
could be needed in the hardest cases.

local Average fraction of parents + offsprings + mutants that will be taken as starting
tours by the local search algorithm improve_tour_2opt. It should be a number
between 0 and 1. It defauls to 1.

verb Boolean to activate console echo. It defaults to TRUE.
log Boolean to activate the recording of the distances of all tours found by the algo-

rithm. It defaults to FALSE.

Details

The genetic algorithm consists of starting with a tour population, which can be provided by the
user or can be random. The initial population can be the output of a previous run of the genetic
algorithm, thus allowing a chained execution. Then the routine sequentially perform over the tours
of the population the crossover, mutation, local search and selection operations.

The crossover operation takes two tours and forms two offsprings trying to exploit the good struc-
ture of the parents; see crossover_tours for more information.

The mutation operation performs a "small" perturbation of each tour trying to escape from local
optima. It uses a random 4-exchange, see perturb_tour_4exc and search_tour_chain2opt for more
information.

The local search operation takes the tours found by the crossover and mutation operations and
improves them using the 2-opt local search heuristic, see improve_tour_2opt. This makes this
algorithm at least as good as chained local search, see search_tour_chain2opt.

The selection operation is used when selecting pairs of parents for crossover and when selecting
individuals to form the population for the next generation. In both cases, it uses a probability expo-
nential in the distance with rate parameter "beta", favouring the better fitted to be selected. Lower
values of beta favours the inclusion of tours with worse fitting function values. When selecting the
next population, the selection uses elitism, which is to save the best fitted individuals to the next
generation; this is controlled with parameter "elite".

The usefulness of the crossover and mutation operations stems from its abitily to escape from the 2-
opt local minima in a way akin to the perturbation used in chained local search search_tour_chain2opt.
Of course, more iterations (Ngen) and larger populations (Npop) might lower the result, but recall
that no random algorithm can guarantee to find the optimum of a given TSP instance.

This algorithm calls many times the routines crossover_tours, improve_tour_2opt and perturb_tour_4exc;
therefore, it is not especially efficient when called on large problems or with high populations of
many generations. Input parameter "local" can be used to randomly select which tours will start lo-
cal search, thus diminishing the run time of the algorithm. Please consider chaining the algorithm:
perform short runs, using the output of a run as the input of the next.
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Value

A list with four components: $tour contains a permutation of the 1:n sequence representing the
tour constructed by the algorithm, $distance contains the value of the distance covered by the tour,
$generation contains the generation is which the minimum was found and $population contains the
final tour population. When log=TRUE, the output includes several lists of distances of tours found
by the algorithm, separated by initial tours, offsprings, mutants, local minima and selected tours.

Author(s)

Cesar Asensio

References

Hromkovic Algorithms for hard problems (2004), Hartmann, Weigt, Phase transitions in combina-
torial optimization problems (2005).

See Also

crossover_tours performs the crosover of two tours, gauge_tour transforms a tour into a canonical
sequence for comparison, search_tour_chain2opt performs a chained 2-opt search, perturb_tour_4exc
transforms a tour using a random 4-exchange, improve_tour_2opt improves a tour using the 2-opt al-
gorithm, improve_tour_3opt improves a tour using the 3-opt algorithm, build_tour_nn_best nearest
neighbor heuristic, build_tour_2tree double-tree heuristic, compute_tour_distance computes tour
distances, compute_distance_matrix computes a distance matrix, plot_tour plots a tour.

Examples

## Regular example with obvious solution (minimum distance 32)
m <- 6 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
bc <- search_tour_genetic(d, n, Npop = 5, Ngen = 3, local = 0.2)
bc # Distance 32
plot_tour(z,bc)

## Random points
set.seed(1)
n <- 15
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
bg <- search_tour_genetic(d, n, 5, 3, local = 0.25)
bg # Distance 32.48669
plot_tour(z,bg)
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shave_cycle Shaving a hairy cycle

Description

Removing dangling vertices of a cycle obtained by adding a single edge to a spanning tree.

Usage

shave_cycle(v, eG)

Arguments

v Edge vector of the hairy cycle

eG Graph given as edgelist, see as_edgelist

Details

When generating a fundamental cycle in a graph, addition of a single edge to a spanning tree gives a
"hairy" cycle, that is, a single cycle with some dangling branches of the tree. This routine removes
iteratively all leaves from this "hairy" tree until only a 2-regular, connected cycle remains, which is
a fundamental cycle of the graph with respect the given spanning tree.

Value

Edge vector of the shaven cycle, to be interpreted with respect to the edgelist eG.

Author(s)

Cesar Asensio

See Also

generate_fundamental_cycles generates the edge vectors of a system of fundamental cycles of a
graph, apply_incidence_map applies the incidence map of a graph to an edge vector.

Examples

## It is used as a subroutine in [generate_fundamental_cycles].
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sum_g Sum of the higher terms of a list

Description

Sum of the higher terms of a list

Usage

sum_g(L, m)

Arguments

L A numeric sequence

m A scalar

Details

It sorts the list L in decreasing order and returns the sum of the first m components of the ordered
list.

Value

The sum of the m higher terms of the list L

Author(s)

Cesar Asensio

Examples

sum_g(1:10, 3) # 8 + 9 + 10 = 27
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