Package ‘ggfx’

October 13, 2022
Title Pixel Filters for 'ggplot2' and 'grid'

Version 1.0.1

Description Provides a range of filters that can be applied to layers from the
'ggplot2’ package and its extensions, along with other graphic elements such
as guides and theme elements. The filters are applied at render time and
thus uses the exact pixel dimensions needed.

License MIT + file LICENSE
Encoding UTF-8

Imports magick (>=2.7.1), ragg, grid, ggplot2, grDevices, gtable,
rlang

RoxygenNote 7.2.1
URL https://ggfx.data-imaginist.com, https://github.com/thomasp85/ggfx

BugReports https://github.com/thomasp85/ggfx/issues
Suggests covr, knitr, rmarkdown, farver (>= 2.1.0)
VignetteBuilder knitr

NeedsCompilation no

Author Thomas Lin Pedersen [aut, cre]
(<https://orcid.org/0000-0002-5147-4711>),
RStudio [cph, fnd]

Maintainer Thomas Lin Pedersen <thomasp85@gmail . com>
Repository CRAN
Date/Publication 2022-08-22 08:00:06 UTC

R topics documented:

as_colourspace e e e
AS_GIOUP « « + o v v e e e e e e e e e e e e
as_TeferenCe e s
Channels e
ObJect_SUPPOIt. o e e

https://ggfx.data-imaginist.com
https://github.com/thomasp85/ggfx
https://github.com/thomasp85/ggfx/issues
https://orcid.org/0000-0002-5147-4711

2 as_colourspace
raster_placement e e e e 9
render_CONteXt e e e e e 11
with_blend e 13
with_blend_custom e e e 16
with_bloom e 17
with_blur e 18
with_circle_dither e 19
with_custom e 21
with_displacement L 22
with_dither e 23
with_inner_glow 24
with_interpolate L. 25
with_kernel e 26
with_mask e 27
with_motion_blur e 28
with_outer_glow 29
with_raster e e e e e e 31
with_shade e 31
with_shadow e 33
with_variable blur e 34

Index 36

as_colourspace Collect channels into a single layer of a specific colourspace

Description

If you need to work on single channels one by one you can use the different ch_*() selectors. If
the result needs to be combined again into a colour layer you can use as_colourspace and pass in
the required channels to make up the colourspace. By default the alpha channel will be created as
the combination of the alpha channels from the provided channel layers. Alternatively you can set
auto_opacity = FALSE and provide one additional channel which will then be used as alpha.

Usage

as_colourspace(

colourspace = "sRGB",
auto_opacity = TRUE,
id = NULL,

include = is.null(id)

as_group

Arguments

colourspace

auto_opacity

id

include

Value

A range of layers to combine. If there are no channel spec set the luminosity
will be used

Which colourspace should the provided colour channels be interpreted as com-
ing from.

Should the opacity be derived from the input layers or taken from a provided
alpha channel

A string identifying this layer for later use

Should the layer itself be included in the graphic

A list of Layer objects

See Also

Other layer references: as_group(), as_reference()

Examples

library(ggplot2)

segments <- data.frame(

runif(300),
runif(300),

X
y

xend = runif(300),

yend
)

runif(300)

We use 'white' as that is the maximum value in all channels
ggplot(mapping = aes(x, y, xend = xend, yend = yend)) +

as_colourspace(

geom_segment (data = segments[1:100,], colour = 'white'),
geom_segment (data = segments[101:200,], colour = 'white'),
geom_segment (data = segments[201:300,], colour = 'white'),

colourspace =

"CMY!

as_group

Collect layers into a group that can be treated as a single layer

Description

While you often want to apply filters to layers one by one, there are times when one filter should be
applied to a collection of layers as if they were one. This can be achieved by first combining all the
layers into a group with as_group() and applying the filter to the resulting group. This can only be
done to ggplot2 layers and grobs as the other supported objects are not part of a graphic stack.

Usage
as_group(..., id = NULL, include = is.null(id))
Arguments
A range of layers to combine
id A string identifying this layer for later use
include Should the layer itself be included in the graphic
Value

A list of Layer objects or a gTree depending on the input

See Also

Other layer references: as_colourspace(), as_reference()

Examples

library(ggplot2)

With no grouping the filters on layers are applied one by one
ggplot(mtcars, aes(mpg, disp)) +
with_shadow(geom_smooth(alpha = 1), sigma = 4) +
with_shadow(geom_point(), sigma = 4)

Grouping the layers allows you to apply a filter on the combined result
ggplot(mtcars, aes(mpg, disp)) +
as_group(
geom_smooth(alpha = 1),
geom_point(),
id = 'group_1'
) +
with_shadow('group_1', sigma = 4)

as_reference

as_reference Create a reference to a layer for use in other filters

Description

This function is basically synonymous with with_raster () but exist to make the intend of marking

a layer with a specific id clear.

Usage

as_reference(x, id = NULL, include = is.null(id))

Channels 5

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
id A string identifying this layer for later use
include Should the layer itself be included in the graphic

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other layer references: as_colourspace(), as_group()

Examples

library(ggplot2)

ggplot() +

as_reference(
geom_point(aes(20, 300), size = 100, colour = 'white'),
id = 'mask_layer'

) +

with_mask(
geom_point(aes(mpg, disp), mtcars, size = 5),
mask = 'mask_layer'

)

Channels Set a channel of interest from a layer

Description

Some effects uses a particular channel for specific parameters, such as with_displacement(),
which grabs the relative x and y displacements from different channels in some other layer. To
facilitate specifying which channel to use from a layer (which is always multichannel), you can
wrap the specification in a channel specifier given below. If a filter requires a specific channel and
none is specified it will default to luminance (based on the hcl colour space)

Usage

ch_red(x, colourspace = "sRGB"”, invert = FALSE)

ch_green(x, colourspace = "sRGB"”, invert = FALSE)

6 Channels

ch_blue(x, colourspace = "sRGB", invert = FALSE)
ch_alpha(x, colourspace = "sRGB", invert = FALSE)

ch_hue(x, colourspace = "HCL", invert = FALSE)

ch_chroma(x, colourspace = "HCL", invert = FALSE)
ch_luminance(x, colourspace = "HCL", invert = FALSE)
ch_saturation(x, colourspace = "HSL", invert = FALSE)

ch_lightness(x, colourspace = "HSL", invert = FALSE)
ch_cyan(x, colourspace = "CMYK", invert = FALSE)
ch_magenta(x, colourspace = "CMYK", invert = FALSE)
ch_yellow(x, colourspace = "CMYK", invert = FALSE)
ch_black(x, colourspace = "CMYK"”, invert = FALSE)
ch_key(x, colourspace = "CMYK"”, invert = FALSE)

ch_custom(x, channel, colourspace, invert = FALSE)

Arguments
X Any object interpretable as a layer
colourspace The colourspace the channel should be extracted from.
invert Should the channel values be inverted before use
channel The name of a channel in the given colourspace

Value

x with a channel spec attached

Examples

library(ggplot2)

volcano_long <- data.frame(
x = as.vector(col(volcano)),
y = as.vector(row(volcano)),
z = as.vector(volcano)

)

invert the green channel
ggplot(volcano_long, aes(y, x)) +
as_reference(

object_support

geom_contour_filled(aes(z = z, fill = after_stat(level))),
id = 'contours'
) +
as_colourspace(
ch_red('contours"'),
ch_green('contours', invert = TRUE),
ch_blue('contours")

)

object_support Supported object types

Description

The different filters provided by ggfx are applicable to a wide range of object types. Rather than
documenting how to use them with each type in every documentation entry, the information is
collected here. While the examples will use with_blur() they are general and applicable to all

filters in ggfx.

Value

All filters will generally return a new version of the same object, the only exception being filtering

of rasters, functions, and references which returns a Layer object

Method specific arguments

* id: A string that identifies the result of this filter, to be referenced by other filters in the same

graphic.

* include: A logical flag that indicates whether the filtered image should be displayed. By
default, the result will not be displayed if it is given an id (as it is assumed that it is meant for
later use), but this can be overewritten by setting include = TRUE.

* ignore_background: Should the background of the plot be removed before applying the filter

and re-added afterwards?

* background: A grob to draw below the result of the filter. Mainly for internal use for support-

ing ignore_background.

Filtering layers

This is perhaps the most common and obvious use of ggfx, and the one show-cased in the respec-
tive docs of each filter. In order to apply a filter to a ggplot2 layer you wrap it around the layer
constructor (usually a geom_x () function) and pass in additional parameters after it:

ggplot(mtcars) +
with_blur(
geom_point(aes(x = mpg, y = disp)),
sigma = 4

)

8 object_support

Apart from the arguments specific to the filter, layer filters also take an id, and include argument.
Providing an id (as a string) will make this filter be referable by other filters. By default this turns of
rendering of the result, but setting include = TRUE will turn rendering back on (while still making
it referable). Referable layers should always come before whatever other layer ends up referring to
them, since ggfx does not have control over the rendering order. Not following this rule will have
undefined consequences (either an error or a weird plot - or maybe the correct result)

Filtering layer references

While the first argument to a filter is mostly some sort of graphic generating object, it can also
be a text string referring to another filter. This allows you to string together filters, should you
so choose. The big caveat is that filtering a reference will always result in a layer - i.e. it is not
compatible outside of ggplot2.

ggplot(mtcars) +

with_blur(
geom_point(aes(x = mpg, y = disp)),
sigma = 4,
id = 'blurred_points'

) +

with_shadow(
"blurred_points'

)

Filtering guides

ggplot2 does not only consist of layers - there are all sort of other graphic elements around them.
Guides are one such type of element and these can be filtered by wrapping the filter around the
guide constructor:

ggplot(mtcars) +
geom_point(aes(x = mpg, y = disp, colour = gear)) +
guides(colour = with_blur(guide_colourbar(), sigma = 4))

There is a caveat here in that it is not possible to use this with the string shorthand (i.e. with_blur('colourbar")
won’t work) — you have to use the functional form.

Filtering theme elements

Theme elements, like guides, is another non-layer graphic that is amenable to filtering. It can be
done by wrapping the element_*() constructor with a filter:

ggplot(mtcars) +
geom_point(aes(x = mpg, y = disp)) +
ggtitle("A blurry title") +
theme(plot.title = with_blur(element_text(), sigma = 4))

There is a caveat here as well. The filtering doesn’t get carried through inheritance so you cannot
set filtering at a top-level element and expect all child elements to be filtered.

raster_placement 9

Filtering ggplots

While you normally only want to add a filter to a part of the plot, it is also possible to add it to
everthing, simply by wrapping the filter function around the plot. You can elect to remove the back-
ground element while applying the filter and add it back on afterwards by setting ignore_background
= TRUE on the filter

p <- ggplot(mtcars) +
geom_point(aes(x = mpg, y = disp))

with_blur(p, sigma = 4)

An alternative is to put the filter around the ggplot () call, which will have the same effect and may
fit better with your plot construction code

with_blur(ggplot(mtcars), sigma = 4) +
geom_point(aes(x = mpg, y = disp))

Filtering grobs

At the lowest level, it is possible to apply a filter to a grob. This is what powers all of the above at
some level and that power is also available to you. It is done in the same manner as all of the above,
by wrapping the grob in a filter:

blurred_circle <- with_blur(circleGrob(), sigma = 4)

grid.newpage()
grid.draw(blurred_circle)

As with layers, filters applied to grobs also take an id and include argument and they have the
same effect. It should be noted that it can be difficult to grasp the rendering order of elements in a
manually created grid graphics, so take care when using filters that refer to each other as the rule
about the rendering order still applies.

There are not a lot of people who use grid directly, but if you develop ggplot2 extensions the ability
to apply filters to grobs means that you can create geoms with filters build right into them!

raster_placement Control placements of raster in the plot

Description

When using raster objects directly you need to somehow define how it should be located in resized
in the plot. These function can be used to inform the filter on how it should be used. They only
work on raster type object, so cannot be used around functions or layer id’s.

10 raster_placement

Usage
ras_fill(raster, align_to = "canvas")
ras_fit(raster, align_to = "canvas")
ras_stretch(raster, align_to = "canvas")
ras_place(raster, align_to = "canvas"”, anchor = "topleft"”, offset = c(@, 0))
ras_tile(
raster,
align_to = "canvas”,

anchor = "topleft”,
offset = c(0, 0),

flip = FALSE
)
Arguments
raster A raster or nativeRaster object or an object coercible to a raster object
align_to Should the raster be positioned according to the canvas or the current viewport
anchor Where should the raster be placed relative to the alignment area
offset A unit or numeric vector giving an additional offset relative to the anchor. Posi-
tive values moves right/down and negative values move left/up
flip Should every other repetition be flipped
Value

The input with additional information attached

Examples

library(ggplot2)
logo <- as.raster(magick::image_read(

system.file('help', 'figures', 'logo.png', package = 'ggfx')
))

Default is to fill the viewport area, preserving the aspect ratio of the
raster
ggplot(mtcars) +
with_blend(
geom_point(aes(mpg, disp)),
logo
)

But you can change that with these functions:
ggplot(mtcars) +
with_blend(
geom_point(aes(mpg, disp)),

render_context 11

1

ras_place(logo, 'vp', 'bottomright')

)

Here we tile it with flipping, centering on the middle of the canvas
ggplot(mtcars) +
with_blend(
geom_point(aes(mpg, disp)),
ras_tile(logo, anchor = 'center', flip = TRUE)
)

render_context Rendering information

Description

These utility functions can help when creating custom filters (using with_custom()) as they can
provide information about the current rendering context.

Usage
viewport_location()
index_raster(raster, cols, rows)
get_raster_area(raster, xmin, ymin, xmax, ymax)
set_raster_area(raster, value, xmin, ymin)
get_viewport_area(raster)
set_viewport_area(raster, value)
viewport_is_clipping()
current_resolution()
to_pixels(x, y_axis = FALSE, location = FALSE)

from_pixels(x)

Arguments
raster A raster or nativeRaster object
cols, rows Column and row indices

xmin, ymin, xmax, ymax
Boundaries of the area in pixels. 0,0 is the top-left corner

12

render_context

value An object of the same type as raster

X A numeric or unit object

y_axis is the unit pertaining to the y-axis? Defaults to FALSE (i.e. it is measured on the
X-axis)

location is the unit encoding a location? Defaults to FALSE (i.e. it is encoding a dimen-

Details

Value

sion). Pixel locations are encoded based on a top-left starting point, as opposed
to grid’s bottom-left coordinate system. This means that y-axis locations will
flip around when converted to pixels.

viewport_location(): Returns the bounding box defining the current viewport in pixels in
the order xmin, ymin, xmax, ymax

index_raster(): Is a version of the classic [,] indexing that is aware of the row-major order
of rasters

get_raster_area(): Extracts an area of a raster based on a bounding box
set_raster_area(): Sets an area of a raster to a new raster value

get_viewport_area(): A version of get_raster_area() that specifically extract the area
defined by the current viewport

set_viewport_area(): A version of set_raster_area() that specifically sets the area de-
fined by the current viewport

viewport_is_clipping(): Returns TRUE if the current viewport has clipping turned on
current_resolution(): Returns the resolution of the active device in ppi (pixels-per-inch)

to_pixels(x): Converts x to pixels if x is given as a unit object. It is assumed that x encodes
a dimension and not a location. If x is a numeric it is assumed to already be in pixels

from_pixels: Converts a numeric giving some pixel dimension to a unit object.

Depends on the function - see details.

Examples

These functions are intended to be used inside filter functions, e.g.
library(ggplot2)

flip_raster <- function(raster, horizontal = TRUE) {
Get the viewport area of the raster
vp <- get_viewport_area(raster)

Get the columns and rows of the raster - reverse order depending on
the value of horizontal

dims <- dim(vp)

rows <- seq_len(dims[1])

cols <- seqg_len(dims[2])

if (horizontal) {

cols <- rev(cols)

with_blend 13

} else {
rows <- rev(rows)

3

change the order of columns or rows in the viewport raster
vp <- index_raster(vp, cols, rows)

Assign the modified viewport back
set_viewport_area(raster, vp)

}

ggplot() +
with_custom(
geom_text(aes(0.5, 0.75, label = 'Flippediflop!'), size = 10),
filter = flip_raster,
horizontal = TRUE

with_blend Blend a layer with a reference

Description

This filter blends the layer with a reference according to one of many rules as laid out in the Details

section.
Usage
with_blend(
X ’
bg_layer,
blend_type = "over”,
flip_order = FALSE,
alpha = NA,
)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
bg_layer The background layer to use. Can either be a string identifying a registered filter,
or a raster object. The map will be resized to match the dimensions of x.
blend_type The type of blending to perform. See Details
flip_order Should the order of the background and the overlay be flipped so that bg_layer

is treated as being on top and x being below.

14

alpha

Details

with_blend

For non-Duff-Porter blends the alpha channel may become modified. This argu-
ment can be used to set the resulting alpha channel to that of the source ("src”)
or destination ("dst")

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Two images can be blended in a variety of ways as described below. In the following source will
refer to the top-most image, and destination to the bottom-most image. Note that which is which
can be controlled with the flip_order argument.

Duff-Porter alpha blend modes:

This

is a set of well-defined blend types for composing two images, taking their opacity into

account:

"source": Completely disregards the destination, leaving only the source
"destination”: Completely disregards the source, leaving only the destination
"clear": Disregards both destination and source

"xor": Composes source on top of destination, setting shared areas to transparent
"over": Composes source on top of destination

"in": Shows source, but only where the destination is opaque

"out”: Shows source but only where the destination is transparent

"atop": Composes source on top of destination, keeping the transparency of destination

"copy": Like source, but will only affect the area occupied by the source image

Mathmathical blend modes:

These blend modes perform often complex channel operations based on the different channel
values in the source and destination:

"multiply”: Multiplies the channel values of source and destination together (after scaling
them to 0-1) to obtain new channel values

"screen”: As multiply except that the channels are scaled to 1-0 before multiplication, and
the result is reversed again before being used

"bumpmap”: Like multiple, except source is converted to greyscale first

"divide": Divide the channel values in source by the channel values in destination
"plus”: Add the channel values together including the alpha channel

"minus”: Subtracts the destination channels from the source channels
"modulus_plus”: As plus, but overflow will wrap around instead of being capped

"modulus_minus"”: As minus but overflow (underflow) will wrap around instead of being
capped

"difference”: Takes the absolute difference in channel values between source and destina-
tion

"exclusion”: source + destination - 2*sourcexdestination. A sort of averaged dif-
ference

"lighten”: Will pick the lightest pixel at each pixel

"darken": Will pick the darkest pixel at each pixel

with_blend 15

e "lighten_intensity": Will pick the most intense colour at each pixel
* "darken_intensity"”: Will pick the least intense colour at each pixel

Lighting blend modes:
These blend modes are designed to provide different lighting effects:
* "overlay”: Simultaneously multiplies and screens at the same time based on the colour
values of the destination. Will colorize midtones in the destination with the source
e "hard_light": The inverse of overlay (i.e. the source acts as the destination and vice versa)
* "soft_light": Like overlay but will extent the range of colorization past the midtones
* "pegtop_light": Like soft-light, but without any discontinuity in the blend

e "linear_light”: Combines dodging and burning so that the destination will be dodged
(lightened) when the source is light and burned (darkened) when the source is dark

e "vivid_light": A refinement of linear-light that better avoids shading intense colours

e "pin_light": Preserves midtones of the destination and only shades lighter and darker parts,
resulting in harsh, contrasty lightning.

e "linear_dodge": Lighten the destination if the source is light

e "linear_burn": Darked the destination if the source is dark

* "color_dodge": Like linear-dodge, but preserves blacks in the destination image
e "color_burn”: Like linear-burn but preserve whites in the destination image

Channel copying blends:
These blend modes copies a single channel from the source to the destination
* "copy_opacity”: Will set the opacity of destination to the grayscale version of source. To
copy the opacity of source into destination use blend_type = "in" with flip_order = TRUE.
* "copy_red": Copies the red channel in source into the red channel in destination
e "copy_green": Copies the green channel in source into the green channel in destination
* "copy_blue": Copies the blue channel in source into the blue channel in destination
* "hue": Replaces the hue of the destination with the hue of the source
* "saturate"”: Replaces the saturation of the destination with the saturation of the source
e "luminize": Replaces the luminance of the destination with the luminance of the source
e "colorize": Combines hue and saturate

Special blends:
* "unique”: Only keep pixels in the source that differ from the destination.

The above is obviously a very quick overview. More information can be found in https://
legacy.imagemagick.org/Usage/compose/
Value
Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.
See Also

Other blend filters: with_blend_custom(), with_interpolate(), with_mask()

https://legacy.imagemagick.org/Usage/compose/
https://legacy.imagemagick.org/Usage/compose/

16 with_blend_custom

Examples

library(ggplot2)
ggplot() +
as_reference(
geom_text(aes(0.5, 0.5, label = 'Blend Modes!'), size = 10, fontface = 'bold'),
id = "text"
) +
with_blend(
geom_polygon(aes(c(@, 1, 1), c(@, @, 1)), colour = NA, fill = 'magenta'),
bg_layer = "text"”,
blend_type = 'xor'

)

with_blend_custom Create a custom blend type

Description

Many of the blend types available in with_blend() are variations over the formula: axsrc*dst +
b*src + cxdst + d, where src stands for the channel value in the source image and dst stands for
the destination image (the background). Multiply is e.g. defined as a:1, b:@, c:0, d:@. This
filter gives you free reign over setting the coefficient of the blend calculation.

Usage
with_blend_custom(
X ’
bg_layer,
a=o0,
b =20,
c =20,
d=0,
flip_order = FALSE,
alpha = NA,
)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
bg_layer The background layer to use. Can either be a string identifying a registered filter,
or a raster object. The map will be resized to match the dimensions of x.
a,b,c,d The coefficients defining the blend operation
flip_order Should the order of the background and the overlay be flipped so that bg_layer

is treated as being on top and x being below.

with_bloom

alpha

Value

17

For non-Duff-Porter blends the alpha channel may become modified. This argu-
ment can be used to set the resulting alpha channel to that of the source ("src”)
or destination ("dst")

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other blend filters: with_blend(), with_interpolate(), with_mask()

Examples
library(ggplot2)
ggplot(mpg, aes(class, hwy)) +
as_reference(geom_boxplot(fill = 'green'), 'box') +
with_blend_custom(geom_point(colour = 'red'),

bg_layer = 'box', a =-0.5, b=1, c=1)

with_bloom

Apply bloom to your layer

Description

Bloom is the effect of strong light sources spilling over into neighbouring dark areas. It is used a lot
in video games and movies to give the effect of strong light, even though the monitor is not itself
capable of showing light at that strength.

Usage

with_bloom(
X,

threshold_lower
threshold_upper

sigma = 5,

strength = 1,

keep_alpha

80,
100,

TRUE,

18

Arguments

X

with_blur

A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter

threshold_lower, threshold_upper

sigma

strength
keep_alpha

Value

The lowest channel value to consider emitting light and the highest channel
value that should be considered maximum light strength, given in percent

The standard deviation of the gaussian kernel used for the bloom. Will affect the
size of the halo around light objects

A value between 0 and 1 to use for changing the strength of the effect.

Should the alpha channel of the layer be kept, effectively limiting the bloom
effect to the filtered layer. Setting this to false will allow the bloom to spill out to
the background, but since it is not being blended correctly with the background
the effect looks off.

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)

points <- data.frame(
X = runif(1000),
y = runif(1000),
col = runif(1000)

)

ggplot(points, aes(x, y, colour = col)) +

with_bloom(

geom_point(size = 10),

) +
scale_colour_continuous(type = 'viridis')
with_blur Apply a gaussian blur to your layer
Description

This filter adds a blur to the provided ggplot layer. The amount of blur can be controlled and the
result can optionally be put underneath the original layer.

Usage

with_blur(x, sigma = 0.5, stack = FALSE, ...)

with_circle_dither 19

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
sigma The standard deviation of the gaussian kernel. Increase it to apply more blurring.
If a numeric it will be interpreted as given in pixels. If a unit object it will
automatically be converted to pixels at rendering time
stack Should the original layer be placed on top?
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.
See Also

Other blur filters: with_motion_blur(), with_variable_blur()

Examples

library(ggplot2)
ggplot(mtcars, aes(mpg, disp)) +
with_blur(geom_point(data = mtcars, size = 3), sigma = 3)

with_circle_dither Dither image using a threshold dithering map

Description

These filters reduces the number of colours in your layer and uses various threshold maps along
with a dithering algorithm to disperse colour error.

Usage

with_circle_dither(
X,
map_size = 7,
levels = NULL,
black = TRUE,
colourspace = "sRGB",
offset = NULL,

)

with_custom_dither(

20 with_circle_dither

X,

map = "checks"”,
levels = NULL,
colourspace = "sRGB",
offset = NULL,

)

with_halftone_dither(
X,
map_size = 8,
levels = NULL,
angled = TRUE,
colourspace = "sRGB",
offset = NULL,

)

with_ordered_dither(x, map_size = 8, levels = NULL, colourspace = "sRGB", ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
map_size One of 2, 3, 4, or 8. Sets the threshold map used for dithering. The larger, the
better approximation of the input colours
levels The number of threshold levels in each channel. Either a single integer to set the
same number of levels in each channel, or 3 values to set the levels individually
for each colour channel
black Should the map consist of dark circles expanding into the light, or the reverse
colourspace In which colourspace should the dithering be calculated
offset The angle offset between the colour channels
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
map The name of the threshold map to use as understood by magick: : image_ordered_dither ()
angled Should the halftone pattern be at an angle or orthogonal
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other dithering filters: with_dither()

with_custom 21

Examples

library(ggplot2)

Ordered dither
ggplot(faithfuld, aes(waiting, eruptions)) +
with_ordered_dither(
geom_raster(aes(fill = density), interpolate = TRUE)
) +

scale_fill_continuous(type = 'viridis')

Halftone dither
ggplot(faithfuld, aes(waiting, eruptions)) +
with_halftone_dither(
geom_raster(aes(fill = density), interpolate = TRUE)
) +

scale_fill_continuous(type = 'viridis')

Circle dither with offset
ggplot(faithfuld, aes(waiting, eruptions)) +
with_circle_dither(
geom_raster(aes(fill = density), interpolate = TRUE),

offset = 29,
colourspace = 'cmyk'
) +
scale_fill_continuous(type = 'viridis')
with_custom Apply a custom filter
Description

This function allows you to apply a custom filtering function to a layer. The function must take
a nativeRaster object as the first argument along with any other arguments passed to Be
aware that the raster spans the full device size and not just the viewport currently rendered to. This
is because graphics may extend outside of the viewport depending on the clipping settings. You
can use get_viewport_area() along with all the other raster helpers provided by ggfx to facilitate
working with the input raster. See the example below for some inspiration.

Usage
with_custom(x, filter, ...)

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
filter A function taking a nativeRaster object as the first argument along with what-

ever you passinto ...
Additional arguments to filter

22 with_displacement

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)

flip_raster <- function(raster, horizontal = TRUE) {
Get the viewport area of the raster
vp <- get_viewport_area(raster)

Get the columns and rows of the raster - reverse order depending on
the value of horizontal
dims <- dim(vp)
rows <- seq_len(dims[1])
cols <- seq_len(dims[2])
if (horizontal) {
cols <- rev(cols)
} else {
rows <- rev(rows)

}

change the order of columns or rows in the viewport raster
vp <- index_raster(vp, cols, rows)

Assign the modified viewport back
set_viewport_area(raster, vp)

}

ggplot() +
with_custom(
geom_text(aes(0.5, 0.75, label = 'Flippediflop!'), size = 10),
filter = flip_raster,
horizontal = TRUE
)

ggplot() +
with_custom(
geom_text(aes(0.5, 0.75, label = 'Flippediflop!'), size = 10),
filter = flip_raster,
horizontal = FALSE

with_displacement Apply a displacement map to a layer

Description

This filter displaces the pixels based on the colour values of another layer or raster object. As such
it can be used to distort the content of the layer.

with_dither 23

Usage
with_displacement(x, x_map, y_map = x_map, x_scale = 1, y_scale = x_scale, ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
X_map, y_map The displacement maps to use. Can either be a string identifying a registered

filter, or a raster object. The maps will be resized to match the dimensions of x.
Only one channel will be used - see the docs on channels for info on how to set
them.

x_scale, y_scale
How much displacement should a maximal channel value correspond to? If a
numeric it will be interpreted as pixel dimensions. If a unit object it will be
converted to pixel dimension when rendered.

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)
ggplot() +
as_reference(
geom_polygon(aes(c(@, 1, 1), c(@, @, 1)), colour = NA, fill = 'magenta'),
id = "displace_map”
) +
with_displacement(
geom_text(aes(0.5, 0.5, label = 'Displacements!'), size = 10),
x_map = ch_red("displace_map"),
y_map = ch_blue("displace_map"),
x_scale = unit(@.025, 'npc'),
y_scale = unit(0.025, 'npc')

with_dither Dither image using Floyd-Steinberg error correction dithering

Description

This filter reduces the number of colours in your layer and uses the Floyd-Steinberg algorithm to
even out the error introduced by the colour reduction.

24 with_inner_glow

Usage
with_dither(x, max_colours = 256, colourspace = "sRGB", ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
max_colours The maximum number of colours to use. The result may contain fewer colours
but never more.
colourspace In which colourspace should the dithering be calculated
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other dithering filters: with_circle_dither()

Examples

library(ggplot2)
ggplot(faithfuld, aes(waiting, eruptions)) +
with_dither(

geom_raster(aes(fill = density), interpolate = TRUE),
max_colours = 10

) +
scale_fill_continuous(type = 'viridis')
with_inner_glow Apply an inner glow to your layer
Description

This filter adds an inner glow to your layer with a specific colour and size. The best effect is often
had by drawing the stroke separately so the glow is only applied to the fill.

Usage

with_inner_glow(x, colour = "black”, sigma = 3, expand = 0, ...)

with_interpolate 25

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
colour The colour of the glow
sigma The standard deviation of the gaussian kernel. Increase it to apply more blurring.
If a numeric it will be interpreted as given in pixels. If a unit object it will
automatically be converted to pixels at rendering time
expand An added dilation to the glow mask before blurring it
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other glow filters: with_outer_glow()

Examples

library(ggplot2)

ggplot(mtcars, aes(as.factor(gear), disp)) +
with_inner_glow(
geom_boxplot(),
colour = 'red',
sigma = 10

)

This gives a red tone to the lines as well which may not be desirable
This can be fixed by drawing fill and stroke separately
ggplot(mtcars, aes(as.factor(gear), disp)) +
with_inner_glow(
geom_boxplot(colour = NA),
colour = 'red',
sigma = 10
) +
geom_boxplot(fill = NA)

with_interpolate Blend two layerrs together by averaging them out

Description

Two layers can be blended together in the literal sense (not like with_blend()) so that the result is
the average of the two. This is the purpose of with_interpolate().

26 with_kernel

Usage
with_interpolate(x, bg_layer, src_percent, bg_percent = 100 - src_percent, ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
bg_layer The layer to blend with

src_percent, bg_percent
The contribution of this layer and the background layer to the result. Should be
between 0 and 100

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value
Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.
See Also
Other blend filters: with_blend_custom(), with_blend(), with_mask()

Examples

library(ggplot2)

ggplot(mpg, aes(class, hwy)) +
as_reference(geom_boxplot(), 'box') +
with_interpolate(geom_point(), bg_layer = 'box', src_percent = 70)

with_kernel Apply a gaussian blur to your layer

Description

This filter allows you to apply a custom kernel to your layer, thus giving you more control than e.g.
with_blur() which is also applying a kernel.

Usage

with_kernel(
X,
kernel = "Gaussian:0x2",
iterations = 1,
scaling = NULL,
bias = NULL,
stack = FALSE,

with_mask 27

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
kernel either a square matrix or a string. The string can either be a parameterized ker-
neltype such as: "DoG:@,0,2" or "Diamond” or it can contain a custom matrix
(see examples)
iterations number of iterations
scaling string with kernel scaling. The special flag ! " automatically scales to full dy-
namic range, for example: "50%!"
bias output bias string, for example "50%"
stack Should the original layer be placed on top?
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)

Add directional blur using the comet kernel

ggplot(mtcars, aes(mpg, disp)) +
with_kernel(geom_point(size = 3), 'Comet:0,10')

with_mask Apply a mask to a layer

Description

This filter applies a mask to the given layer, i.e. sets the opacity of the layer based on another layer

Usage
with_mask(x, mask, invert = FALSE, ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
mask The layer to use as mask. Can either be a string identifying a registered filter, or
a raster object. Will by default extract the luminosity of the layer and use that as
mask. To pick another channel use one of the channel specification function.
invert Should the mask be inverted before applying it

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

28 with_motion_blur

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other blend filters: with_blend_custom(), with_blend(),with_interpolate()

Examples

library(ggplot2)
volcano_raster <- as.raster((volcano - min(volcano))/diff(range(volcano)))
circle <- data.frame(
x = cos(seq(@, 2xpi, length.out = 360)),
y = sin(seq(@, 2*pi, length.out = 360))
)

ggplot() +
as_reference(
geom_polygon(aes(x = x, y = y), circle),

id = 'circle'’
)+
with_mask(

annotation_raster(volcano_raster, -1, 1, -1, 1, TRUE),
mask = ch_alpha('circle")

)

use invert = TRUE to flip the mask
ggplot() +
as_reference(
geom_polygon(aes(x = x, y = y), circle),

id = 'circle'
) +
with_mask(

annotation_raster(volcano_raster, -1, 1, -1, 1, TRUE),
mask = ch_alpha('circle'),
invert = TRUE

with_motion_blur Apply a motion blur to your layer

Description

This filter adds a directional blur to the provided ggplot layer. The amount of blur, as well as the
angle, can be controlled.

with_outer_glow 29

Usage
with_motion_blur(x, sigma = 0.5, angle = 0, ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
sigma The standard deviation of the gaussian kernel. Increase it to apply more blurring.
If a numeric it will be interpreted as given in pixels. If a unit object it will
automatically be converted to pixels at rendering time
angle Direction of the movement in degrees (O corresponds to a left-to-right motion
and the angles move in clockwise direction)
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also
Other blur filters: with_blur(), with_variable_blur()

Examples

library(ggplot2)
ggplot(mtcars, aes(mpg, disp)) +
with_motion_blur(
geom_point(size = 3),

sigma = 6,
angle = -45
)
with_outer_glow Apply an outer glow to your layer
Description

This filter adds an outer glow to your layer with a specific colour and size. For very thin objects
such as text it may be beneficial to add some expansion. See the examples for this.

Usage

with_outer_glow(x, colour = "black”, sigma = 3, expand = 0, ...)

30 with_outer_glow

Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
colour The colour of the glow
sigma The standard deviation of the gaussian kernel. Increase it to apply more blurring.
If a numeric it will be interpreted as given in pixels. If a unit object it will
automatically be converted to pixels at rendering time
expand An added dilation to the glow mask before blurring it
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other glow filters: with_inner_glow()

Examples
library(ggplot2)

ggplot(mtcars, aes(as.factor(gear), disp)) +
with_outer_glow(
geom_boxplot(),
colour = 'red',
sigma = 10

)

For thin objects (as the whiskers above) you may need to add a bit of
expansion to make the glow visible:

ggplot(mtcars, aes(mpg, disp)) +
geom_point() +
with_outer_glow(
geom_text(aes(label = rownames(mtcars))),

colour = 'white',
sigma = 10,
expand = 10

with_raster 31

with_raster Convert a layer to a raster

Description

This filter simply converts the given layer, grob, or ggplot to a raster and inserts it back again. It is
useful for vector graphics devices such as svglite if a layer contains a huge amount of primitives that
would make the file slow to render. as_reference(x, id) is a shorthand for with_raster(x, id
=id, include = FALSE) that makes the intent of using this grob or layer as only a filter reference

clear.
Usage
with_raster(x, ...)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.
Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)
ggplot(mtcars, aes(mpg, disp)) +
with_raster(geom_point(data = mtcars, size = 3))

with_shade Apply a gaussian blur to your layer

Description

This filter adds a blur to the provided ggplot layer. The amount of blur can be controlled and the
result can optionally be put underneath the original layer.

32

Usage

with_shade(
X,
height_map,
azimuth = 30,

with_shade

elevation = 30,
strength = 10,

sigma = 0,
blend_type =

Arguments

X

height_map

"overlay”,

A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter

The layer to use as a height_map. Can either be a string identifying a registered
filter, or a raster object. Will by default extract the luminosity of the layer and
use that as mask. To pick another channel use one of the channel specification
function.

azimuth, elevation

strength

sigma

blend_type

Value

The location of the light source.
The strength of the shading. A numeric larger or equal to 1

The sigma used for blurring the shading before applying it. Setting it to @ turns
off blurring. Using a high strength may reveal artefacts in the calculated shad-
ing, especially if the height_map is low-detail. Adding a slight blur may remove
some of those artefacts.

A blend type as used in with_blend() for adding the calculated shading to the
layer. Should generally be left as-is

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples

library(ggplot2)

volcano_long <- data.frame(
x = as.vector(col(volcano)),
y = as.vector(row(volcano)),
z = as.vector(volcano)

)

ggplot(volcano_long, aes(y, x)) +

as_reference(

geom_raster(aes(alpha = z), fill = 'black', interpolate = TRUE, show.legend = FALSE),
id = 'height_map'

with_shadow 33

) +
with_shade(
geom_contour_filled(aes(z = z, fill = after_stat(level))),
height_map = ch_alpha('height_map'),
azimuth = 150,
height = 5,
sigma = 10
) +
coord_fixed() +
guides(fill = guide_coloursteps(barheight = 10))

with_shadow Apply a drop shadow to a layer

Description

This filter applies the familiar drop-shadow effect on elements in a layer. It takes the outline of each
shape, offsets it from its origin and applies a blur to it.

Usage

with_shadow(
X,
colour = "black”,
x_offset = 10,
y_offset = 10,

sigma = 1,
stack = TRUE,
)
Arguments
X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter
colour The colour of the shadow

x_offset, y_offset
The offset of the shadow from the origin as numerics

sigma The standard deviation of the gaussian kernel. Increase it to apply more blurring.
If a numeric it will be interpreted as given in pixels. If a unit object it will
automatically be converted to pixels at rendering time

stack Should the original layer be placed on top?

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

34 with_variable_blur

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

Examples
library(ggplot2)
ggplot(mtcars, aes(mpg, disp)) +
with_shadow(geom_point(colour = 'red', size = 3), sigma = 3)
with_variable_blur Apply a variable blur to a layer
Description

This filter will blur a layer, but in contrast to with_blur() the amount and nature of the blur need
not be constant across the layer. The blurring is based on a weighted ellipsoid, with width and
height based on the values in the corresponding x_sigma and y_sigma layers. The angle of the
ellipsoid can also be controlled and further varied based on another layer.

Usage

with_variable_blur(
X,
X_sigma,
y_sigma = x_sigma,
angle = NULL,
Xx_scale = 1,
y_scale = x_scale,
angle_range = 0,

Arguments

X A ggplot2 layer object, a ggplot, a grob, or a character string naming a filter

Xx_sigma, y_sigma, angle
The layers to use for looking up the sigma values and angledefining the blur
ellipse at every point. Can either be a string identifying a registered filter, or a
raster object. The maps will be resized to match the dimensions of x. Only one
channel will be used - see the docs on channels for info on how to set them.
x_scale, y_scale
Which sigma should a maximal channel value correspond to? If a numeric it
will be interpreted as pixel dimensions. If a unit object it will be converted to
pixel dimension when rendered.

with_variable_blur 35

angle_range The minimum and maximum angle that min and max in the angle layer should
correspond to. If angle == NULL or only a single value is provided to angle_range
the rotation will be constant across the whole layer

Arguments to be passed on to methods. See the documentation of supported
object for a description of object specific arguments.

Value

Depending on the input, either a grob, Layer, list of Layers, guide, or element object. Assume
the output can be used in the same context as the input.

See Also

Other blur filters: with_blur (), with_motion_blur()

Examples

library(ggplot2)
cos_wave <- function(width, height) {
x <- matrix(@, ncol = width, nrow = height)
x <- cos(col(x)/100)
as.raster((x + 1) / 2)
3
ggplot() +
as_reference(
cos_wave,
id = "wave”
) +
with_variable_blur(
geom_point(aes(disp, mpg), mtcars, size = 4),
x_sigma = ch_red("wave"),
y_sigma = ch_alpha("wave"),
angle = ch_red("wave"),
x_scale = 15,
y_scale = 15,
angle_range = c(-45, 45)

Index

+ blend filters
with_blend, 13
with_blend_custom, 16
with_interpolate, 25
with_mask, 27

« blur filters
with_blur, 18
with_motion_blur, 28
with_variable_blur, 34

x dithering filters
with_circle_dither, 19
with_dither, 23

x glow filters
with_inner_glow, 24
with_outer_glow, 29

* layer references
as_colourspace, 2
as_group, 3
as_reference, 4

as_colourspace, 2,4, 5
as_group, 3, 3,5
as_reference, 3, 4,4

ch_*(), 2

ch_alpha (Channels), 5
ch_black (Channels), 5
ch_blue (Channels), 5
ch_chroma (Channels), 5
ch_custom (Channels), 5
ch_cyan (Channels), 5
ch_green (Channels), 5
ch_hue (Channels), 5
ch_key (Channels), 5
ch_lightness (Channels), 5
ch_luminance (Channels), 5
ch_magenta (Channels), 5
ch_red (Channels), 5
ch_saturation (Channels), 5
ch_yellow (Channels), 5

36

channel specification, 27, 32
Channels, 5
current_resolution (render_context), 11

from_pixels (render_context), 11

get_raster_area (render_context), 11
get_viewport_area (render_context), 11
get_viewport_area(), 21

ggplot(), 9
gTree, 4

index_raster (render_context), 11
kerneltype, 27

magick: :image_ordered_dither(), 20
object_support, 7

ras_fill (raster_placement), 9
ras_fit (raster_placement), 9
ras_place (raster_placement), 9
ras_stretch (raster_placement), 9
ras_tile (raster_placement), 9
raster_placement, 9
render_context, 11

set_raster_area (render_context), 11
set_viewport_area (render_context), 11

the docs on channels, 23, 34

the documentation of supported object,
14, 17-20, 23-27, 29-33, 35

to_pixels (render_context), 11

viewport_is_clipping (render_context),
11
viewport_location (render_context), 11

with_blend, 13, 17, 26, 28
with_blend(), 16, 25, 32

INDEX

with_blend_custom, /5, 16, 26, 28
with_bloom, 17
with_blur, 18, 29, 35
with_blur(), 7, 26, 34
with_circle_dither, 19, 24
with_custom, 21
with_custom(), /1
with_custom_dither
(with_circle_dither), 19
with_displacement, 22
with_displacement(), 5
with_dither, 20, 23
with_halftone_dither
(with_circle_dither), 19
with_inner_glow, 24, 30
with_interpolate, 15, 17,25, 28
with_kernel, 26
with_mask, 15, 17, 26,27
with_motion_blur, 19,28, 35
with_ordered_dither
(with_circle_dither), 19
with_outer_glow, 25, 29
with_raster, 31
with_shade, 31
with_shadow, 33
with_variable_blur, 19, 29, 34

37

	as_colourspace
	as_group
	as_reference
	Channels
	object_support
	raster_placement
	render_context
	with_blend
	with_blend_custom
	with_bloom
	with_blur
	with_circle_dither
	with_custom
	with_displacement
	with_dither
	with_inner_glow
	with_interpolate
	with_kernel
	with_mask
	with_motion_blur
	with_outer_glow
	with_raster
	with_shade
	with_shadow
	with_variable_blur
	Index

