
Package ‘ggforce’
June 18, 2025

Type Package

Title Accelerating 'ggplot2'

Version 0.5.0

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description The aim of 'ggplot2' is to aid in visual data investigations. This
focus has led to a lack of facilities for composing specialised plots.
'ggforce' aims to be a collection of mainly new stats and geoms that fills
this gap. All additional functionality is aimed to come through the official
extension system so using 'ggforce' should be a stable experience.

URL https://ggforce.data-imaginist.com,

https://github.com/thomasp85/ggforce

BugReports https://github.com/thomasp85/ggforce/issues

License MIT + file LICENSE

Encoding UTF-8

Depends ggplot2 (>= 3.5.0), R (>= 3.3.0)

Imports grid, scales, MASS, tweenr (>= 0.1.5), gtable, rlang,
polyclip, stats, grDevices, tidyselect, withr, utils,
lifecycle, cli, vctrs, systemfonts

RoxygenNote 7.3.2

LinkingTo cpp11

Suggests sessioninfo, deldir, latex2exp, reshape2, units (>= 0.8.0),
covr

Collate 'aaa.R' 'shape.R' 'arc_bar.R' 'arc.R' 'autodensity.R'
'autohistogram.R' 'autopoint.R' 'bezier.R' 'bspline.R'
'bspline_closed.R' 'circle.R' 'concaveman.R' 'cpp11.R'
'diagonal.R' 'diagonal_wide.R' 'ellipse.R' 'errorbar.R'
'facet_grid_paginate.R' 'facet_matrix.R' 'facet_row.R'
'facet_stereo.R' 'facet_wrap_paginate.R' 'facet_zoom.R'
'ggforce-package.R' 'ggproto-classes.R' 'interpolate.R'
'labeller.R' 'link.R' 'mark_circle.R' 'mark_ellipse.R'
'mark_hull.R' 'mark_label.R' 'mark_rect.R' 'parallel_sets.R'

1

https://ggforce.data-imaginist.com
https://github.com/thomasp85/ggforce
https://github.com/thomasp85/ggforce/issues


2 Contents

'position-jitternormal.R' 'position_auto.R'
'position_floatstack.R' 'regon.R' 'scale-depth.R'
'scale-unit.R' 'sina.R' 'spiro.R' 'themes.R' 'trans.R'
'trans_linear.R' 'utilities.R' 'voronoi.R' 'zzz.R'

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),

RStudio [cph]

Repository CRAN

Date/Publication 2025-06-18 12:40:02 UTC

Contents
facet_grid_paginate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
facet_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
facet_row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
facet_stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
facet_wrap_paginate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
facet_zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
gather_set_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
GeomShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
geom_arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
geom_arc_bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
geom_autodensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
geom_autopoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
geom_bezier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
geom_bspline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
geom_bspline_closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
geom_circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
geom_diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
geom_diagonal_wide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
geom_ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
geom_link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
geom_mark_circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
geom_mark_ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
geom_mark_hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
geom_mark_rect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
geom_parallel_sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
geom_regon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
geom_shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
geom_sina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
geom_spiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
geom_voronoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
label_tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
linear_trans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
n_pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

https://orcid.org/0000-0002-5147-4711


facet_grid_paginate 3

position_auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
position_jitternormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
power_trans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
radial_trans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
scale_depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
stat_err . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
theme_no_axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
trans_reverser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Index 123

facet_grid_paginate Split facet_grid over multiple plots

Description

This extension to ggplot2::facet_grid() will allow you to split a facetted plot over multiple
pages. You define a number of rows and columns per page as well as the page number to plot, and
the function will automatically only plot the correct panels. Usually this will be put in a loop to
render all pages one by one.

Usage

facet_grid_paginate(
facets,
margins = FALSE,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = NULL,
drop = TRUE,
ncol = NULL,
nrow = NULL,
page = 1,
byrow = TRUE

)

Arguments

facets [Deprecated] Please use rows and cols instead.

margins Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.



4 facet_grid_paginate

scales Are scales shared across all facets (the default, "fixed"), or do they vary across
rows ("free_x"), columns ("free_y"), or both rows and columns ("free")?

space If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free" both height and width will
vary. This setting has no effect unless the appropriate scales also vary.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

ncol Number of columns per page

nrow Number of rows per page

page The page to draw

byrow Should the pages be created row-wise or column wise

Note

If either ncol or nrow is NULL this function will fall back to the standard facet_grid functionality.

See Also

n_pages() to compute the total number of pages in a paginated faceted plot

Other ggforce facets: facet_stereo(), facet_wrap_paginate(), facet_zoom()

Examples

# Draw a small section of the grid
ggplot(diamonds) +

geom_point(aes(carat, price), alpha = 0.1) +
facet_grid_paginate(color ~ cut:clarity, ncol = 3, nrow = 3, page = 4)



facet_matrix 5

facet_matrix Facet by different data columns

Description

The facet_matrix() facet allows you to put different data columns into different rows and columns
in a grid of panels. If the same data columns are present in both the rows and the columns of the
grid, and used together with ggplot2::geom_point() it is also known as a scatterplot matrix, and
if other geoms are used it is sometimes referred to as a pairs plot. facet_matrix is so flexible
that these types are simply a subset of its capabilities, as any combination of data columns can be
plotted against each other using any type of geom. Layers should use the .panel_x and .panel_y
placeholders to map aesthetics to, in order to access the row and column data.

Usage

facet_matrix(
rows,
cols = rows,
shrink = TRUE,
switch = NULL,
labeller = "label_value",
flip.rows = FALSE,
alternate.axes = FALSE,
layer.lower = NULL,
layer.diag = NULL,
layer.upper = NULL,
layer.continuous = NULL,
layer.discrete = NULL,
layer.mixed = NULL,
grid.y.diag = TRUE

)

Arguments

rows, cols A specification of the data columns to put in the rows and columns of the facet
grid. They are specified using the ggplot2::vars() function wherein you can
use standard tidyselect syntax as known from e.g. dplyr::select(). These
data values will be made available to the different layers through the .panel_x
and .panel_y variables.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there



6 facet_matrix

will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

flip.rows Should the order of the rows be reversed so that, if the rows and columns are
equal, the diagonal goes from bottom-left to top-right instead of top-left to
bottom-right.

alternate.axes Should axes be drawn at alternating positions.
layer.lower, layer.diag, layer.upper

Specification for where each layer should appear. The default (NULL) will allow
any layer that has not been specified directly to appear at that position. Putting
e.g. layer.diag = 2 will make the second layer appear on the diagonal as well
as remove that layer from any position that has NULL. Using TRUE will put all
layers at that position, and using FALSE will conversely remove all layers. These
settings will only have an effect if the grid is symmetric.

layer.continuous, layer.discrete, layer.mixed
As above, but instead of referencing panel positions it references the combina-
tion of position scales in the panel. Continuous panels have both a continuous x
and y axis, discrete panels have both a discrete x and y axis, and mixed panels
have one of each. Unlike the position based specifications above these also have
an effect in non-symmetric grids.

grid.y.diag Should the y grid be removed from the diagonal? In certain situations the diag-
onal are used to plot the distribution of the column data and will thus not use the
y-scale. Removing the y gridlines can indicate this.

Note

Due to the special nature of this faceting it slightly breaks the ggplot2 API, in that any positional
scale settings are ignored. This is because each row and column in the grid will potentially have very
different scale types and it is not currently possible to have multiple different scale specifications in
the same plot object.

See Also

geom_autopoint, geom_autohistogram, geom_autodensity, and position_auto for geoms and posi-
tions that adapts to different positional scale types

Examples

# Standard use:
ggplot(mpg) +

geom_point(aes(x = .panel_x, y = .panel_y)) +
facet_matrix(vars(displ, cty, hwy))

# Switch the diagonal, alternate the axes and style strips as axis labels
ggplot(mpg) +



facet_row 7

geom_point(aes(x = .panel_x, y = .panel_y)) +
facet_matrix(vars(displ, cty, hwy), flip.rows = TRUE,

alternate.axes = TRUE, switch = 'both') +
theme(strip.background = element_blank(),

strip.placement = 'outside',
strip.text = element_text(size = 12))

# Mix discrete and continuous columns. Use geom_autopoint for scale-based jitter
ggplot(mpg) +

geom_autopoint() +
facet_matrix(vars(drv:fl))

# Have a special diagonal layer
ggplot(mpg) +

geom_autopoint() +
geom_autodensity() +
facet_matrix(vars(drv:fl), layer.diag = 2)

# Show continuous panels in upper triangle as contours and rest as binned
ggplot(mpg) +

geom_autopoint() +
geom_autodensity() +
geom_density2d(aes(x = .panel_x, y = .panel_y)) +
geom_bin2d(aes(x = .panel_x, y = .panel_y)) +
facet_matrix(vars(drv:fl), layer.lower = 1, layer.diag = 2,

layer.continuous = -4, layer.discrete = -3, layer.mixed = -3)

# Make asymmetric grid
ggplot(mpg) +

geom_boxplot(aes(x = .panel_x, y = .panel_y, group = .panel_x)) +
facet_matrix(rows = vars(cty, hwy), cols = vars(drv, fl))

facet_row One-dimensional facets

Description

These facets are one-dimensional versions of ggplot2::facet_wrap(), arranging the panels in ei-
ther a single row or a single column. This restriction makes it possible to support a space argument
as seen in ggplot2::facet_grid() which, if set to "free" will allow the panels to be sized based
on the relative range of their scales. Another way of thinking about them are one-dimensional ver-
sions of ggplot2::facet_grid() (ie. . ~ {var} or {var} ~ .), but with the ability to position the
strip at either side of the panel. However you look at it it is the best of both world if you just need
one dimension.



8 facet_row

Usage

facet_row(
facets,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
drop = TRUE,
strip.position = "top"

)

facet_col(
facets,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
drop = TRUE,
strip.position = "top"

)

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

space Should the size of the panels be fixed or relative to the range of the respective
position scales

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.



facet_stereo 9

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

Examples

# Standard use
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
facet_col(~gear)

# It retains the ability to have unique scales for each panel
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
facet_col(~gear, scales = 'free')

# But can have free sizing along the stacking dimension
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
facet_col(~gear, scales = 'free', space = 'free')

# And you can position the strip where-ever you like
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
facet_col(~gear, scales = 'free', space = 'free', strip.position = 'bottom')

facet_stereo Create a stereogram plot

Description

This, arguably pretty useless function, lets you create plots with a sense of depth by creating two
slightly different versions of the plot that corresponds to how the eyes would see it if the plot was
3 dimensional. To experience the effect look at the plots through 3D hardware such as Google
Cardboard or by relaxing the eyes and focusing into the distance. The depth of a point is calcu-
lated for layers having a depth aesthetic supplied. The scaling of the depth can be controlled with
scale_depth() as you would control any aesthetic. Negative values will result in features placed
behind the paper plane, while positive values will result in features hovering in front of the paper.
While features within each layer is sorted so those closest to you are plotted on top of those more
distant, this cannot be done between layers. Thus, layers are always plotted on top of each others,
even if the features in one layer lies behind features in a layer behind it. The depth experience is
inaccurate and should not be used for conveying important data. Regard this more as a party-trick...

Usage

facet_stereo(IPD = 63.5, panel.size = 200, shrink = TRUE)



10 facet_wrap_paginate

Arguments

IPD The interpupillary distance (in mm) used for calculating point displacement.
The default value is an average of both genders

panel.size The final plot size in mm. As IPD this is used to calculate point displacement.
Don’t take this value too literal but experiment until you get a nice effect. Lower
values gives higher displacement and thus require the plots to be observed from
a closer distance

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

See Also

Other ggforce facets: facet_grid_paginate(), facet_wrap_paginate(), facet_zoom()

Examples

# You'll have to accept a warning about depth being an unknown aesthetic
ggplot(mtcars) +

geom_point(aes(mpg, disp, depth = cyl)) +
facet_stereo()

facet_wrap_paginate Split facet_wrap over multiple plots

Description

This extension to ggplot2::facet_wrap() will allow you to split a facetted plot over multiple
pages. You define a number of rows and columns per page as well as the page number to plot, and
the function will automatically only plot the correct panels. Usually this will be put in a loop to
render all pages one by one.

Usage

facet_wrap_paginate(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = deprecated(),
drop = TRUE,
dir = "h",
strip.position = "top",
page = 1

)



facet_wrap_paginate 11

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

nrow, ncol Number of rows and columns

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

page The page to draw

Note

If either ncol or nrow is NULL this function will fall back to the standard facet_wrap functionality.

See Also

n_pages() to compute the total number of pages in a paginated faceted plot

Other ggforce facets: facet_grid_paginate(), facet_stereo(), facet_zoom()



12 facet_zoom

Examples

ggplot(diamonds) +
geom_point(aes(carat, price), alpha = 0.1) +
facet_wrap_paginate(~ cut:clarity, ncol = 3, nrow = 3, page = 4)

facet_zoom Facet data for zoom with context

Description

This facetting provides the means to zoom in on a subset of the data, while keeping the view of the
full dataset as a separate panel. The zoomed-in area will be indicated on the full dataset panel for
reference. It is possible to zoom in on both the x and y axis at the same time. If this is done it is
possible to both get each zoom separately and combined or just combined.

Usage

facet_zoom(
x,
y,
xy,
zoom.data,
xlim = NULL,
ylim = NULL,
split = FALSE,
horizontal = TRUE,
zoom.size = 2,
show.area = TRUE,
shrink = TRUE

)

Arguments

x, y, xy An expression evaluating to a logical vector that determines the subset of data
to zoom in on

zoom.data An expression evaluating to a logical vector. If TRUE the data only shows in the
zoom panels. If FALSE the data only show in the context panel. If NA the data
will show in all panels.

xlim, ylim Specific zoom ranges for each axis. If present they will override x, y, and/or xy.

split If both x and y is given, should each axis zoom be shown separately as well?
Defaults to FALSE

horizontal If both x and y is given and split = FALSE How should the zoom panel be
positioned relative to the full data panel? Defaults to TRUE

zoom.size Sets the relative size of the zoom panel to the full data panel. The default (2)
makes the zoom panel twice the size of the full data panel.



gather_set_data 13

show.area Should the zoom area be drawn below the data points on the full data panel?
Defaults to TRUE.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

See Also

Other ggforce facets: facet_grid_paginate(), facet_stereo(), facet_wrap_paginate()

Examples

# Zoom in on the versicolor species on the x-axis
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(x = Species == 'versicolor')

# Zoom in on versicolor on both axes
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(xy = Species == 'versicolor')

# Use different zoom criteria on each axis
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(x = Species != 'setosa', y = Species == 'versicolor')

# Get each axis zoom separately as well
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(xy = Species == 'versicolor', split = TRUE)

# Define the zoom area directly
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(xlim = c(2, 4))

# Selectively show data in the zoom panel
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +

geom_point() +
facet_zoom(x = Species == 'versicolor', zoom.data = Species == 'versicolor')

gather_set_data Tidy data for use with geom_parallel_sets

Description

This helper function makes it easy to change tidy data into a tidy(er) format that can be used by
geom_parallel_sets.



14 geom_arc

Usage

gather_set_data(data, x, id_name = "id")

Arguments

data A tidy dataframe with some categorical columns

x The columns to use for axes in the parallel sets diagram

id_name The name of the column that will contain the original index of the row.

Value

A data.frame

Examples

data <- reshape2::melt(Titanic)
head(gather_set_data(data, 1:4))
head(gather_set_data(data, c("Class","Sex","Age","Survived")))

GeomShape ggforce extensions to ggplot2

Description

ggforce makes heavy use of the ggproto class system to extend the functionality of ggplot2. In
general the actual classes should be of little interest to users as the standard ggplot2 api of using
geom_* and stat_* functions for building up the plot is encouraged.

geom_arc Arcs based on radius and radians

Description

This set of stats and geoms makes it possible to draw circle segments based on a center point, a ra-
dius and a start and end angle (in radians). These functions are intended for cartesian coordinate sys-
tems and makes it possible to create circular plot types without using the ggplot2::coord_polar()
coordinate system.



geom_arc 15

Usage

stat_arc(
mapping = NULL,
data = NULL,
geom = "arc",
position = "identity",
na.rm = FALSE,
show.legend = NA,
n = 360,
inherit.aes = TRUE,
...

)

geom_arc(
mapping = NULL,
data = NULL,
stat = "arc",
position = "identity",
n = 360,
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_arc2(
mapping = NULL,
data = NULL,
geom = "path_interpolate",
position = "identity",
na.rm = FALSE,
show.legend = NA,
n = 360,
inherit.aes = TRUE,
...

)

geom_arc2(
mapping = NULL,
data = NULL,
stat = "arc2",
position = "identity",
n = 360,
arrow = NULL,
lineend = "butt",
na.rm = FALSE,



16 geom_arc

show.legend = NA,
inherit.aes = TRUE,
...

)

stat_arc0(
mapping = NULL,
data = NULL,
geom = "arc0",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_arc0(
mapping = NULL,
data = NULL,
stat = "arc0",
position = "identity",
ncp = 5,
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:



geom_arc 17

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

n the smoothness of the arc. Sets the number of points to use if the arc would
cover a full circle

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.



18 geom_arc

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().

lineend Line end style (round, butt, square).

ncp the number of control points used to draw the arc with curveGrob. Determines
how well the arc approximates a circle section

Details

An arc is a segment of a line describing a circle. It is the fundamental visual element in donut charts
where the length of the segment (and conversely the angular span of the segment) describes the
proportion of an entety.

Aesthetics

geom_arc understand the following aesthetics (required aesthetics are in bold):

• x0
• y0
• r
• start
• end
• color

• linewidth

• linetype

• alpha

• lineend

Computed variables

x, y The start coordinates for the segment

xend, yend The end coordinates for the segment

curvature The curvature of the curveGrob to match a circle



geom_arc_bar 19

See Also

geom_arc_bar() for drawing arcs with fill

Examples

# Lets make some data
arcs <- data.frame(

start = seq(0, 2 * pi, length.out = 11)[-11],
end = seq(0, 2 * pi, length.out = 11)[-1],
r = rep(1:2, 5)

)

# Behold the arcs
ggplot(arcs) +

geom_arc(aes(x0 = 0, y0 = 0, r = r, start = start, end = end,
linetype = factor(r)))

# Use the calculated index to map values to position on the arc
ggplot(arcs) +

geom_arc(aes(x0 = 0, y0 = 0, r = r, start = start, end = end,
size = after_stat(index)), lineend = 'round')

# The 0 version maps directly to curveGrob instead of calculating the points
# itself
ggplot(arcs) +

geom_arc0(aes(x0 = 0, y0 = 0, r = r, start = start, end = end,
linetype = factor(r)))

# The 2 version allows interpolation of aesthetics between the start and end
# points
arcs2 <- data.frame(

angle = c(arcs$start, arcs$end),
r = rep(arcs$r, 2),
group = rep(1:10, 2),
colour = sample(letters[1:5], 20, TRUE)

)

ggplot(arcs2) +
geom_arc2(aes(x0 = 0, y0 = 0, r = r, end = angle, group = group,

colour = colour), size = 2)

geom_arc_bar Arcs and wedges as polygons

Description

This set of stats and geoms makes it possible to draw arcs and wedges as known from pie and donut
charts as well as more specialized plottypes such as sunburst plots.



20 geom_arc_bar

Usage

stat_arc_bar(
mapping = NULL,
data = NULL,
geom = "arc_bar",
position = "identity",
n = 360,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_pie(
mapping = NULL,
data = NULL,
geom = "arc_bar",
position = "identity",
n = 360,
sep = 0,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_arc_bar(
mapping = NULL,
data = NULL,
stat = "arc_bar",
position = "identity",
n = 360,
expand = 0,
radius = 0,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().



geom_arc_bar 21

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points used to draw a full circle. The number of points on each
arc will then be calculated as n / span-of-arc

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is



22 geom_arc_bar

technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

sep The separation between arcs in pie/donut charts

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

Details

An arc bar is the thick version of an arc; that is, a circle segment drawn as a polygon in the same
way as a rectangle is a thick version of a line. A wedge is a special case of an arc where the inner
radius is 0. As opposed to applying coord_polar to a stacked bar chart, these layers are drawn in
cartesian space, which allows for transformations not possible with the native ggplot2 approach.
Most notable of these are the option to explode arcs and wedgets away from their center point, thus
detaching it from the main pie/donut.

Aesthetics

geom_arc_bar understand the following aesthetics (required aesthetics are in bold):

• x0
• y0
• r0
• r



geom_arc_bar 23

• start - when using stat_arc_bar

• end - when using stat_arc_bar

• amount - when using stat_pie

• explode

• color

• fill

• linewidth

• linetype

• alpha

Computed variables

x, y x and y coordinates for the polygon

x, y The start coordinates for the segment

See Also

geom_arc() for drawing arcs as lines

Examples

# If you know the angle spans to plot it is easy
arcs <- data.frame(

start = seq(0, 2 * pi, length.out = 11)[-11],
end = seq(0, 2 * pi, length.out = 11)[-1],
r = rep(1:2, 5)

)

# Behold the arcs
ggplot(arcs) +

geom_arc_bar(aes(x0 = 0, y0 = 0, r0 = r - 1, r = r, start = start,
end = end, fill = r))

# geom_arc_bar uses geom_shape to draw the arcs, so you have all the
# possibilities of that as well, e.g. rounding of corners
ggplot(arcs) +

geom_arc_bar(aes(x0 = 0, y0 = 0, r0 = r - 1, r = r, start = start,
end = end, fill = r), radius = unit(4, 'mm'))

# If you got values for a pie chart, use stat_pie
states <- c(

'eaten', "eaten but said you didn\'t", 'cat took it', 'for tonight',
'will decompose slowly'

)
pie <- data.frame(

state = factor(rep(states, 2), levels = states),
type = rep(c('Pie', 'Donut'), each = 5),
r0 = rep(c(0, 0.8), each = 5),



24 geom_autodensity

focus = rep(c(0.2, 0, 0, 0, 0), 2),
amount = c(4, 3, 1, 1.5, 6, 6, 1, 2, 3, 2)

)

# Look at the cakes
ggplot() + geom_arc_bar(aes(

x0 = 0, y0 = 0, r0 = r0, r = 1, amount = amount,
fill = state, explode = focus

),
data = pie, stat = 'pie'
) +

facet_wrap(~type, ncol = 1) +
coord_fixed() +
theme_no_axes() +
scale_fill_brewer('', type = 'qual')

geom_autodensity A distribution geoms that fills the panel and works with discrete and
continuous data

Description

These versions of the histogram and density geoms have been designed specifically for diagonal
plotting with facet_matrix(). They differ from ggplot2::geom_histogram() and ggplot2::geom_density()
in that they defaults to mapping x and y to .panel_x and .panel_y respectively, they ignore the y
scale of the panel and fills it out, and they work for both continuous and discrete x scales.

Usage

geom_autodensity(
mapping = NULL,
data = NULL,
stat = "autodensity",
position = "floatstack",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"

)

geom_autohistogram(



geom_autodensity 25

mapping = NULL,
data = NULL,
stat = "autobin",
position = "floatstack",
...,
bins = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



26 geom_autodensity

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_autopoint 27

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.

bins Number of bins. Overridden by binwidth. Defaults to 30.

See Also

facet_matrix for creating matrix grids

Examples

# A matrix plot with a mix of discrete and continuous variables
p <- ggplot(mpg) +

geom_autopoint() +
facet_matrix(vars(drv:fl), layer.diag = 2, grid.y.diag = FALSE)

p

# Diagonal histograms
p + geom_autohistogram()

# Diagonal density distributions
p + geom_autodensity()

# You can use them like regular layers with groupings etc
p + geom_autodensity(aes(colour = drv, fill = drv),

alpha = 0.4)

geom_autopoint A point geom specialised for scatterplot matrices

Description

This geom is a specialisation of ggplot2::geom_point() with two changes. It defaults to mapping
x and y to .panel_x and .panel_y respectively, and it defaults to using position_auto() to jitter
the points based on the combination of position scale types.

Usage

geom_autopoint(
mapping = NULL,
data = NULL,
stat = "identity",
position = "auto",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)



28 geom_autopoint

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.



geom_bezier 29

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

See Also

facet_matrix for how to lay out scatterplot matrices and position_auto for information about the
position adjustments

Examples

# Continuous vs continuous: No jitter
ggplot(mpg) + geom_autopoint(aes(cty, hwy))

# Continuous vs discrete: sina jitter
ggplot(mpg) + geom_autopoint(aes(cty, drv))

# Discrete vs discrete: disc-jitter
ggplot(mpg) + geom_autopoint(aes(fl, drv))

# Used with facet_matrix (x and y are automatically mapped)
ggplot(mpg) +

geom_autopoint() +
facet_matrix(vars(drv:fl))

geom_bezier Create quadratic or cubic bezier curves



30 geom_bezier

Description

This set of geoms makes it possible to connect points creating either quadratic or cubic beziers.
bezier and bezier2 both work by calculating points along the bezier and connecting these to draw
the curve. bezier0 directly draws the bezier using bezierGrob. In line with the geom_link() and
geom_link2() differences geom_bezier creates the points, assign an index to each interpolated
point and repeat the aesthetics for the start point, while geom_bezier2 interpolates the aesthetics
between the start and end points.

Usage

stat_bezier(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
na.rm = FALSE,
show.legend = NA,
n = 100,
inherit.aes = TRUE,
...

)

geom_bezier(
mapping = NULL,
data = NULL,
stat = "bezier",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
n = 100,
...

)

stat_bezier2(
mapping = NULL,
data = NULL,
geom = "path_interpolate",
position = "identity",
na.rm = FALSE,
show.legend = NA,
n = 100,
inherit.aes = TRUE,
...

)



geom_bezier 31

geom_bezier2(
mapping = NULL,
data = NULL,
stat = "bezier2",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
n = 100,
...

)

stat_bezier0(
mapping = NULL,
data = NULL,
geom = "bezier0",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_bezier0(
mapping = NULL,
data = NULL,
stat = "bezier0",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be



32 geom_bezier

created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

n The number of points to create for each segment

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.



geom_bezier 33

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().

lineend Line end style (round, butt, square).

Details

Input data is understood as a sequence of data points the first being the start point, then followed by
one or two control points and then the end point. More than 4 and less than 3 points per group will
throw an error. grid::bezierGrob() only takes cubic beziers so if three points are supplied the
middle one as duplicated. This, along with the fact that grid::bezierGrob() estimates the curve
using an x-spline means that the curves produced by geom_bezier and geom_bezier2 deviates from
those produced by geom_bezier0. If you want true bezier paths use geom_bezier or geom_bezier2.

Aesthetics

geom_bezier, geom_bezier2 and geom_bezier0 understand the following aesthetics (required aes-
thetics are in bold):

• x

• y

• color

• linewidth

• linetype

• alpha

• lineend



34 geom_bspline

Computed variables

x, y The interpolated point coordinates

index The progression along the interpolation mapped between 0 and 1

Examples

beziers <- data.frame(
x = c(1, 2, 3, 4, 4, 6, 6),
y = c(0, 2, 0, 0, 2, 2, 0),
type = rep(c('cubic', 'quadratic'), c(3, 4)),
point = c('end', 'control', 'end', 'end', 'control', 'control', 'end'),
colour = letters[1:7]

)
help_lines <- data.frame(

x = c(1, 3, 4, 6),
xend = c(2, 2, 4, 6),
y = 0,
yend = 2

)

# See how control points affect the bezier
ggplot() +

geom_segment(aes(x = x, xend = xend, y = y, yend = yend),
data = help_lines,
arrow = arrow(length = unit(c(0, 0, 0.5, 0.5), 'cm')),
colour = 'grey') +

geom_bezier(aes(x = x, y = y, group = type, linetype = type),
data = beziers) +

geom_point(aes(x = x, y = y, colour = point),
data = beziers)

# geom_bezier0 is less exact
ggplot() +

geom_segment(aes(x = x, xend = xend, y = y, yend = yend),
data = help_lines,
arrow = arrow(length = unit(c(0, 0, 0.5, 0.5), 'cm')),
colour = 'grey') +

geom_bezier0(aes(x = x, y = y, group = type, linetype = type),
data = beziers) +

geom_point(aes(x = x, y = y, colour = point),
data = beziers)

# Use geom_bezier2 to interpolate between endpoint aesthetics
ggplot(beziers) +

geom_bezier2(aes(x = x, y = y, group = type, colour = colour))

geom_bspline B-splines based on control points



geom_bspline 35

Description

This set of stats and geoms makes it possible to draw b-splines based on a set of control points.
As with geom_bezier() there exists several versions each having there own strengths. The base
version calculates the b-spline as a number of points along the spline and connects these with a
path. The *2 version does the same but in addition interpolates aesthetics between each control
point. This makes the *2 version considerably slower so it shouldn’t be used unless needed. The *0
version uses grid::xsplineGrob() with shape = 1 to approximate a b-spline.

Usage

stat_bspline(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
na.rm = FALSE,
n = 100,
type = "clamped",
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_bspline(
mapping = NULL,
data = NULL,
stat = "bspline",
position = "identity",
arrow = NULL,
n = 100,
type = "clamped",
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_bspline2(
mapping = NULL,
data = NULL,
geom = "path_interpolate",
position = "identity",
na.rm = FALSE,
n = 100,
type = "clamped",
show.legend = NA,
inherit.aes = TRUE,



36 geom_bspline

...
)

geom_bspline2(
mapping = NULL,
data = NULL,
stat = "bspline2",
position = "identity",
arrow = NULL,
n = 100,
type = "clamped",
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_bspline0(
mapping = NULL,
data = NULL,
geom = "bspline0",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
type = "clamped",
...

)

geom_bspline0(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
type = "clamped",
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.



geom_bspline 37

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

n The number of points generated for each spline

type Either 'clamped' (default) or 'open'. The former creates a knot sequence that
ensures the splines starts and ends at the terminal control points.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.



38 geom_bspline

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().
lineend Line end style (round, butt, square).

Aesthetics

geom_bspline understand the following aesthetics (required aesthetics are in bold):

• x
• y
• color
• linewidth
• linetype
• alpha
• lineend

Computed variables

x, y The coordinates for the path describing the spline
index The progression along the interpolation mapped between 0 and 1



geom_bspline_closed 39

Author(s)

Thomas Lin Pedersen. The C++ code for De Boor’s algorithm has been adapted from Jason Yu-Tseh
Chi implementation

Examples

# Define some control points
cp <- data.frame(

x = c(
0, -5, -5, 5, 5, 2.5, 5, 7.5, 5, 2.5, 5, 7.5, 5, -2.5, -5, -7.5, -5,
-2.5, -5, -7.5, -5

),
y = c(

0, -5, 5, -5, 5, 5, 7.5, 5, 2.5, -5, -7.5, -5, -2.5, 5, 7.5, 5, 2.5,
-5, -7.5, -5, -2.5

),
class = sample(letters[1:3], 21, replace = TRUE)

)

# Now create some paths between them
paths <- data.frame(

ind = c(
7, 5, 8, 8, 5, 9, 9, 5, 6, 6, 5, 7, 7, 5, 1, 3, 15, 8, 5, 1, 3, 17, 9, 5,
1, 2, 19, 6, 5, 1, 4, 12, 7, 5, 1, 4, 10, 6, 5, 1, 2, 20

),
group = c(

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7,
7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10

)
)
paths$x <- cp$x[paths$ind]
paths$y <- cp$y[paths$ind]
paths$class <- cp$class[paths$ind]

ggplot(paths) +
geom_bspline(aes(x = x, y = y, group = group, colour = after_stat(index))) +
geom_point(aes(x = x, y = y), data = cp, color = 'steelblue')

ggplot(paths) +
geom_bspline2(aes(x = x, y = y, group = group, colour = class)) +
geom_point(aes(x = x, y = y), data = cp, color = 'steelblue')

ggplot(paths) +
geom_bspline0(aes(x = x, y = y, group = group)) +
geom_point(aes(x = x, y = y), data = cp, color = 'steelblue')

geom_bspline_closed Create closed b-spline shapes

https://chi3x10.wordpress.com/2009/10/18/de-boor-algorithm-in-c/
https://chi3x10.wordpress.com/2009/10/18/de-boor-algorithm-in-c/


40 geom_bspline_closed

Description

This geom creates closed b-spline curves and draws them as shapes. The closed b-spline is achieved
by wrapping the control points rather than the knots. The *0 version uses the grid::xsplineGrob()
function with open = FALSE and can thus not be manipulated as a shape geom in the same way as
the base version (expand, contract, etc).

Usage

stat_bspline_closed(
mapping = NULL,
data = NULL,
geom = "shape",
position = "identity",
na.rm = FALSE,
n = 100,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_bspline_closed(
mapping = NULL,
data = NULL,
stat = "bspline",
position = "identity",
n = 100,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_bspline_closed0(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.



geom_bspline_closed 41

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

n The number of points generated for each spline

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth



42 geom_bspline_closed

= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

Aesthetics

geom_bspline_closed understand the following aesthetics (required aesthetics are in bold):

• x

• y

• color

• fill

• linewidth

• linetype

• alpha

Computed variables

x, y The coordinates for the path describing the spline

index The progression along the interpolation mapped between 0 and 1



geom_circle 43

Author(s)

Thomas Lin Pedersen. The C++ code for De Boor’s algorithm has been adapted from Jason Yu-Tseh
Chi implementation

Examples

# Create 6 random control points
controls <- data.frame(

x = runif(6),
y = runif(6)

)

ggplot(controls, aes(x, y)) +
geom_polygon(fill = NA, colour = 'grey') +
geom_point(colour = 'red') +
geom_bspline_closed(alpha = 0.5)

# The 0 version approximates the correct shape
ggplot(controls, aes(x, y)) +

geom_polygon(fill = NA, colour = 'grey') +
geom_point(colour = 'red') +
geom_bspline_closed0(alpha = 0.5)

# But only the standard version supports geom_shape operations
# Be aware of self-intersections though
ggplot(controls, aes(x, y)) +

geom_polygon(fill = NA, colour = 'grey') +
geom_point(colour = 'red') +
geom_bspline_closed(alpha = 0.5, expand = unit(2, 'cm'))

geom_circle Circles based on center and radius

Description

This set of stats and geoms makes it possible to draw circles based on a center point and a radius.
In contrast to using ggplot2::geom_point(), the size of the circles are related to the coordinate
system and not to a separate scale. These functions are intended for cartesian coordinate systems
and will only produce a true circle if ggplot2::coord_fixed() is used.

Usage

stat_circle(
mapping = NULL,
data = NULL,
geom = "circle",
position = "identity",
n = 360,
na.rm = FALSE,

https://chi3x10.wordpress.com/2009/10/18/de-boor-algorithm-in-c/
https://chi3x10.wordpress.com/2009/10/18/de-boor-algorithm-in-c/


44 geom_circle

show.legend = NA,
inherit.aes = TRUE,
...

)

geom_circle(
mapping = NULL,
data = NULL,
stat = "circle",
position = "identity",
n = 360,
expand = 0,
radius = 0,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:



geom_circle 45

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points on the generated path per full circle.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".



46 geom_circle

• For more information and other ways to specify the stat, see the layer stat
documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

Aesthetics

geom_circle understand the following aesthetics (required aesthetics are in bold):

• x0
• y0
• r
• color

• fill

• linewidth

• linetype

• alpha

• lineend

Computed variables

x, y The start coordinates for the segment

Note

If the intend is to draw a bubble chart then use ggplot2::geom_point() and map a variable to the
size scale

See Also

geom_arc_bar() for drawing arcs with fill

Examples

# Lets make some data
circles <- data.frame(

x0 = rep(1:3, 3),
y0 = rep(1:3, each = 3),
r = seq(0.1, 1, length.out = 9)

)

# Behold some circles
ggplot() +

geom_circle(aes(x0 = x0, y0 = y0, r = r, fill = r), data = circles)

# Use coord_fixed to ensure true circularity



geom_diagonal 47

ggplot() +
geom_circle(aes(x0 = x0, y0 = y0, r = r, fill = r), data = circles) +
coord_fixed()

geom_diagonal Draw horizontal diagonals

Description

A diagonal is a bezier curve where the control points are moved perpendicularly towards the center
in either the x or y direction a fixed amount. The versions provided here calculates horizontal diag-
onals meaning that the x coordinate is moved to achieve the control point. The geom_diagonal()
and stat_diagonal() functions are simply helpers that takes care of calculating the position of the
control points and then forwards the actual bezier calculations to geom_bezier().

Usage

stat_diagonal(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
n = 100,
strength = 0.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_diagonal(
mapping = NULL,
data = NULL,
stat = "diagonal",
position = "identity",
n = 100,
na.rm = FALSE,
orientation = NA,
strength = 0.5,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_diagonal2(



48 geom_diagonal

mapping = NULL,
data = NULL,
geom = "path_interpolate",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
n = 100,
strength = 0.5,
inherit.aes = TRUE,
...

)

geom_diagonal2(
mapping = NULL,
data = NULL,
stat = "diagonal2",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
n = 100,
strength = 0.5,
...

)

stat_diagonal0(
mapping = NULL,
data = NULL,
geom = "bezier0",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
strength = 0.5,
...

)

geom_diagonal0(
mapping = NULL,
data = NULL,
stat = "diagonal0",
position = "identity",
arrow = NULL,



geom_diagonal 49

lineend = "butt",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
strength = 0.5,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points to create for each segment

strength The proportion to move the control point along the x-axis towards the other end
of the bezier curve



50 geom_diagonal

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().
lineend Line end style (round, butt, square).



geom_diagonal 51

Aesthetics

geom_diagonal and geom_diagonal0 understand the following aesthetics (required aesthetics are in
bold):

• x

• y

• xend

• yend

• color

• linewidth

• linetype

• alpha

• lineend

geom_diagonal2 understand the following aesthetics (required aesthetics are in bold):

• x

• y

• group

• color

• linewidth

• linetype

• alpha

• lineend

Computed variables

x, y The interpolated point coordinates

index The progression along the interpolation mapped between 0 and 1

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.



52 geom_diagonal_wide

Examples

data <- data.frame(
x = rep(0, 10),
y = 1:10,
xend = 1:10,
yend = 2:11

)

ggplot(data) +
geom_diagonal(aes(x, y, xend = xend, yend = yend))

# The standard version provides an index to create gradients
ggplot(data) +

geom_diagonal(aes(x, y, xend = xend, yend = yend, alpha = after_stat(index)))

# The 0 version uses bezierGrob under the hood for an approximation
ggplot(data) +

geom_diagonal0(aes(x, y, xend = xend, yend = yend))

# The 2 version allows you to interpolate between endpoint aesthetics
data2 <- data.frame(

x = c(data$x, data$xend),
y = c(data$y, data$yend),
group = rep(1:10, 2),
colour = sample(letters[1:5], 20, TRUE)

)
ggplot(data2) +

geom_diagonal2(aes(x, y, group = group, colour = colour))

# Use strength to control the steepness of the central region
ggplot(data, aes(x, y, xend = xend, yend = yend)) +

geom_diagonal(strength = 0.75, colour = 'red') +
geom_diagonal(strength = 0.25, colour = 'blue')

geom_diagonal_wide Draw an area defined by an upper and lower diagonal

Description

The geom_diagonal_wide() function draws a thick diagonal, that is, a polygon confined between
a lower and upper diagonal. This geom is bidirectional and the direction can be controlled with the
orientation argument.

Usage

stat_diagonal_wide(
mapping = NULL,
data = NULL,



geom_diagonal_wide 53

geom = "shape",
position = "identity",
n = 100,
strength = 0.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_diagonal_wide(
mapping = NULL,
data = NULL,
stat = "diagonal_wide",
position = "identity",
n = 100,
na.rm = FALSE,
orientation = NA,
strength = 0.5,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".



54 geom_diagonal_wide

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points to create for each of the bounding diagonals
strength The proportion to move the control point along the x-axis towards the other end

of the bezier curve
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
orientation The orientation of the layer. The default (NA) automatically determines the ori-

entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.



geom_diagonal_wide 55

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

Aesthetics

geom_diagonal_wide understand the following aesthetics (required aesthetics are in bold):

• x
• y
• group
• color

• linewidth

• linetype

• alpha

• lineend

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Examples

data <- data.frame(
x = c(1, 2, 2, 1, 2, 3, 3, 2),
y = c(1, 2, 3, 2, 3, 1, 2, 5),
group = c(1, 1, 1, 1, 2, 2, 2, 2)

)

ggplot(data) +
geom_diagonal_wide(aes(x, y, group = group))



56 geom_ellipse

# The strength control the steepness
ggplot(data, aes(x, y, group = group)) +

geom_diagonal_wide(strength = 0.75, alpha = 0.5, fill = 'red') +
geom_diagonal_wide(strength = 0.25, alpha = 0.5, fill = 'blue')

# The diagonal_wide geom uses geom_shape under the hood, so corner rounding
# etc are all there
ggplot(data) +

geom_diagonal_wide(aes(x, y, group = group), radius = unit(5, 'mm'))

geom_ellipse Draw (super)ellipses based on the coordinate system scale

Description

This is a generalisation of geom_circle() that allows you to draw ellipses at a specified angle
and center relative to the coordinate system. Apart from letting you draw regular ellipsis, the stat
is using the generalised formula for superellipses which can be utilised by setting the m1 and m2
aesthetics. If you only set the m1 the m2 value will follow that to ensure a symmetric appearance.

Usage

stat_ellip(
mapping = NULL,
data = NULL,
geom = "circle",
position = "identity",
n = 360,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_ellipse(
mapping = NULL,
data = NULL,
stat = "ellip",
position = "identity",
n = 360,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)



geom_ellipse 57

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points to sample along the ellipse.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the



58 geom_ellipse

position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

Aesthetics

geom_arc understand the following aesthetics (required aesthetics are in bold):

• x0
• y0
• a
• b
• angle
• m1

• m2

• color

• fill

• linewidth



geom_link 59

• linetype

• alpha

• lineend

Computed variables

x, y The coordinates for the points along the ellipse

Examples

# Basic usage
ggplot() +

geom_ellipse(aes(x0 = 0, y0 = 0, a = 10, b = 3, angle = 0)) +
coord_fixed()

# Rotation
# Note that it expects radians and rotates the ellipse counter-clockwise
ggplot() +

geom_ellipse(aes(x0 = 0, y0 = 0, a = 10, b = 3, angle = pi / 4)) +
coord_fixed()

# Draw a super ellipse
ggplot() +

geom_ellipse(aes(x0 = 0, y0 = 0, a = 6, b = 3, angle = -pi / 3, m1 = 3)) +
coord_fixed()

geom_link Link points with paths

Description

This set of geoms makes it possible to connect points using straight lines. Before you think
ggplot2::geom_segment() and ggplot2::geom_path(), these functions have some additional
tricks up their sleeves. geom_link connects two points in the same way as ggplot2::geom_segment()
but does so by interpolating multiple points between the two. An additional column called index
is added to the data with a sequential progression of the interpolated points. This can be used to map
color or size to the direction of the link. geom_link2 uses the same syntax as ggplot2::geom_path()
but interpolates between the aesthetics given by each row in the data.

Usage

stat_link(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
na.rm = FALSE,
show.legend = NA,



60 geom_link

n = 100,
inherit.aes = TRUE,
...

)

stat_link2(
mapping = NULL,
data = NULL,
geom = "path_interpolate",
position = "identity",
na.rm = FALSE,
show.legend = NA,
n = 100,
inherit.aes = TRUE,
...

)

geom_link(
mapping = NULL,
data = NULL,
stat = "link",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
n = 100,
...

)

geom_link2(
mapping = NULL,
data = NULL,
stat = "link2",
position = "identity",
arrow = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
n = 100,
...

)

geom_link0(
mapping = NULL,
data = NULL,



geom_link 61

stat = "identity",
position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



62 geom_link

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

n The number of points to create for each segment
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().
lineend Line end style (round, butt, square).
arrow.fill fill colour to use for the arrow head (if closed). NULL means use colour aes-

thetic.
linejoin Line join style (round, mitre, bevel).



geom_link 63

Aesthetics

geom_link understand the following aesthetics (required aesthetics are in bold):

• x
• y
• xend
• yend
• color

• size

• linetype

• alpha

• lineend

geom_link2 understand the following aesthetics (required aesthetics are in bold):

• x
• y
• color

• size

• linetype

• alpha

• lineend

Computed variables

x, y The interpolated point coordinates

index The progression along the interpolation mapped between 0 and 1

Examples

# Lets make some data
lines <- data.frame(

x = c(5, 12, 15, 9, 6),
y = c(17, 20, 4, 15, 5),
xend = c(19, 17, 2, 9, 5),
yend = c(10, 18, 7, 12, 1),
width = c(1, 10, 6, 2, 3),
colour = letters[1:5]

)

ggplot(lines) +
geom_link(aes(x = x, y = y, xend = xend, yend = yend, colour = colour,

alpha = stat(index), size = after_stat(index)))

ggplot(lines) +
geom_link2(aes(x = x, y = y, colour = colour, size = width, group = 1),



64 geom_mark_circle

lineend = 'round', n = 500)

# geom_link0 is simply an alias for geom_segment to put the link geoms in
# line with the other line geoms with multiple versions. `index` is not
# available here
ggplot(lines) +

geom_link0(aes(x = x, y = y, xend = xend, yend = yend, colour = colour))

geom_mark_circle Annotate areas with circles

Description

This geom lets you annotate sets of points via circles. The enclosing circles are calculated at draw
time and the most optimal enclosure at the given aspect ratio is thus guaranteed. As with the
other geom_mark_* geoms the enclosure inherits from geom_shape() and defaults to be expanded
slightly to better enclose the points.

Usage

geom_mark_circle(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
expand = unit(5, "mm"),
radius = expand,
n = 100,
label.margin = margin(2, 2, 2, 2, "mm"),
label.width = NULL,
label.minwidth = unit(50, "mm"),
label.hjust = 0,
label.fontsize = 12,
label.family = "",
label.lineheight = 1,
label.fontface = c("bold", "plain"),
label.fill = "white",
label.colour = "black",
label.buffer = unit(10, "mm"),
con.colour = "black",
con.size = 0.5,
con.type = "elbow",
con.linetype = 1,
con.border = "one",
con.cap = unit(3, "mm"),
con.arrow = NULL,
...,



geom_mark_circle 65

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

n The number of points used to draw each circle. Defaults to 100.

label.margin The margin around the annotation boxes, given by a call to ggplot2::margin().



66 geom_mark_circle

label.width A fixed width for the label. Set to NULL to let the text or label.minwidth decide.

label.minwidth The minimum width to provide for the description. If the size of the label ex-
ceeds this, the description is allowed to fill as much as the label.

label.hjust The horizontal justification for the annotation. If it contains two elements the
first will be used for the label and the second for the description.

label.fontsize The size of the text for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.family The font family used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.lineheight

The height of a line as a multipler of the fontsize. If it contains two elements the
first will be used for the label and the second for the description.

label.fontface The font face used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.fill The fill colour for the annotation box. Use "inherit" to use the fill from the
enclosure or "inherit_col" to use the border colour of the enclosure.

label.colour The text colour for the annotation. If it contains two elements the first will be
used for the label and the second for the description. Use "inherit" to use the
border colour of the enclosure or "inherit_fill" to use the fill colour from
the enclosure.

label.buffer The size of the region around the mark where labels cannot be placed.

con.colour The colour for the line connecting the annotation to the mark. Use "inherit" to
use the border colour of the enclosure or "inherit_fill" to use the fill colour
from the enclosure.

con.size The width of the connector. Use "inherit" to use the border width of the
enclosure.

con.type The type of the connector. Either "elbow", "straight", or "none".

con.linetype The linetype of the connector. Use "inherit" to use the border linetype of the
enclosure.

con.border The bordertype of the connector. Either "one" (to draw a line on the horizontal
side closest to the mark), "all" (to draw a border on all sides), or "none" (not
going to explain that one).

con.cap The distance before the mark that the line should stop at.

con.arrow An arrow specification for the connection using grid::arrow() for the end
pointing towards the mark.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the



geom_mark_circle 67

params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Annotation

All geom_mark_* allow you to put descriptive textboxes connected to the mark on the plot, using
the label and description aesthetics. The textboxes are automatically placed close to the mark,
but without obscuring any of the datapoints in the layer. The placement is dynamic so if you resize
the plot you’ll see that the annotation might move around as areas become big enough or too small
to fit the annotation. If there’s not enough space for the annotation without overlapping data it will
not get drawn. In these cases try resizing the plot, change the size of the annotation, or decrease the
buffer region around the marks.

Filtering

Often marks are used to draw attention to, or annotate specific features of the plot and it is thus not
desirable to have marks around everything. While it is possible to simply pre-filter the data used for
the mark layer, the geom_mark_* geoms also comes with a dedicated filter aesthetic that, if set,
will remove all rows where it evalutates to FALSE. There are multiple benefits of using this instead
of prefiltering. First, you don’t have to change your data source, making your code more adaptable
for exploration. Second, the data removed by the filter aesthetic is remembered by the geom, and
any annotation will take care not to overlap with the removed data.

Aesthetics

geom_mark_circle understand the following aesthetics (required aesthetics are in bold):

• x



68 geom_mark_circle

• y
• x0 (used to anchor the label)

• y0 (used to anchor the label)

• filter

• label

• description

• color

• fill

• group

• size

• linetype

• alpha

See Also

Other mark geoms: geom_mark_ellipse(), geom_mark_hull(), geom_mark_rect()

Examples

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_circle(aes(fill = Species, filter = Species != 'versicolor')) +
geom_point()

# Add annotation
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_circle(aes(fill = Species, label = Species)) +
geom_point()

# Long descriptions are automatically wrapped to fit into the width
iris$desc <- c(

'A super Iris - and it knows it',
'Pretty mediocre Iris, but give it a couple of years and it might surprise you',
"You'll never guess what this Iris does every Sunday"

)[iris$Species]

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_circle(aes(fill = Species, label = Species, description = desc,

filter = Species == 'setosa')) +
geom_point()

# Change the buffer size to move labels farther away (or closer) from the
# marks
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_circle(aes(fill = Species, label = Species),
label.buffer = unit(30, 'mm')) +

geom_point()

# The connector is capped a bit before it reaches the mark, but this can be



geom_mark_ellipse 69

# controlled
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_circle(aes(fill = Species, label = Species),
con.cap = 0) +

geom_point()

# If you want to use the scaled colours for the labels or connectors you can
# use the "inherit" keyword instead
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_circle(aes(fill = Species, label = Species),
label.fill = "inherit") +

geom_point()

geom_mark_ellipse Annotate areas with ellipses

Description

This geom lets you annotate sets of points via ellipses. The enclosing ellipses are estimated using
the Khachiyan algorithm which guarantees an optimal solution within the given tolerance level. As
this geom is often expanded it is of lesser concern that some points are slightly outside the ellipsis.
The Khachiyan algorithm has polynomial complexity and can thus suffer from scaling issues. Still,
it is only calculated on the convex hull of the groups, so performance issues should be rare (it can
easily handle a hull consisting of 1000 points).

Usage

geom_mark_ellipse(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
expand = unit(5, "mm"),
radius = expand,
n = 100,
tol = 0.01,
label.margin = margin(2, 2, 2, 2, "mm"),
label.width = NULL,
label.minwidth = unit(50, "mm"),
label.hjust = 0,
label.fontsize = 12,
label.family = "",
label.lineheight = 1,
label.fontface = c("bold", "plain"),
label.fill = "white",
label.colour = "black",
label.buffer = unit(10, "mm"),



70 geom_mark_ellipse

con.colour = "black",
con.size = 0.5,
con.type = "elbow",
con.linetype = 1,
con.border = "one",
con.cap = unit(3, "mm"),
con.arrow = NULL,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



geom_mark_ellipse 71

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

n The number of points used to draw each ellipse. Defaults to 100.

tol The tolerance cutoff. Lower values will result in ellipses closer to the optimal
solution. Defaults to 0.01.

label.margin The margin around the annotation boxes, given by a call to ggplot2::margin().

label.width A fixed width for the label. Set to NULL to let the text or label.minwidth decide.

label.minwidth The minimum width to provide for the description. If the size of the label ex-
ceeds this, the description is allowed to fill as much as the label.

label.hjust The horizontal justification for the annotation. If it contains two elements the
first will be used for the label and the second for the description.

label.fontsize The size of the text for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.family The font family used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.lineheight

The height of a line as a multipler of the fontsize. If it contains two elements the
first will be used for the label and the second for the description.

label.fontface The font face used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.fill The fill colour for the annotation box. Use "inherit" to use the fill from the
enclosure or "inherit_col" to use the border colour of the enclosure.

label.colour The text colour for the annotation. If it contains two elements the first will be
used for the label and the second for the description. Use "inherit" to use the
border colour of the enclosure or "inherit_fill" to use the fill colour from
the enclosure.

label.buffer The size of the region around the mark where labels cannot be placed.

con.colour The colour for the line connecting the annotation to the mark. Use "inherit" to
use the border colour of the enclosure or "inherit_fill" to use the fill colour
from the enclosure.

con.size The width of the connector. Use "inherit" to use the border width of the
enclosure.

con.type The type of the connector. Either "elbow", "straight", or "none".

con.linetype The linetype of the connector. Use "inherit" to use the border linetype of the
enclosure.

con.border The bordertype of the connector. Either "one" (to draw a line on the horizontal
side closest to the mark), "all" (to draw a border on all sides), or "none" (not
going to explain that one).

con.cap The distance before the mark that the line should stop at.

con.arrow An arrow specification for the connection using grid::arrow() for the end
pointing towards the mark.



72 geom_mark_ellipse

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_mark_ellipse understands the following aesthetics (required aesthetics are in bold):

• x
• y
• x0 (used to anchor the label)

• y0 (used to anchor the label)

• filter

• label

• description

• color

• fill

• group



geom_mark_ellipse 73

• size

• linetype

• alpha

Annotation

All geom_mark_* allow you to put descriptive textboxes connected to the mark on the plot, using
the label and description aesthetics. The textboxes are automatically placed close to the mark,
but without obscuring any of the datapoints in the layer. The placement is dynamic so if you resize
the plot you’ll see that the annotation might move around as areas become big enough or too small
to fit the annotation. If there’s not enough space for the annotation without overlapping data it will
not get drawn. In these cases try resizing the plot, change the size of the annotation, or decrease the
buffer region around the marks.

Filtering

Often marks are used to draw attention to, or annotate specific features of the plot and it is thus not
desirable to have marks around everything. While it is possible to simply pre-filter the data used for
the mark layer, the geom_mark_* geoms also comes with a dedicated filter aesthetic that, if set,
will remove all rows where it evalutates to FALSE. There are multiple benefits of using this instead
of prefiltering. First, you don’t have to change your data source, making your code more adaptable
for exploration. Second, the data removed by the filter aesthetic is remembered by the geom, and
any annotation will take care not to overlap with the removed data.

See Also

Other mark geoms: geom_mark_circle(), geom_mark_hull(), geom_mark_rect()

Examples

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_ellipse(aes(fill = Species, filter = Species != 'versicolor')) +
geom_point()

# Add annotation
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_ellipse(aes(fill = Species, label = Species)) +
geom_point()

# Long descriptions are automatically wrapped to fit into the width
iris$desc <- c(

'A super Iris - and it knows it',
'Pretty mediocre Iris, but give it a couple of years and it might surprise you',
"You'll never guess what this Iris does every Sunday"

)[iris$Species]

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_ellipse(aes(fill = Species, label = Species, description = desc,

filter = Species == 'setosa')) +
geom_point()



74 geom_mark_hull

# Change the buffer size to move labels farther away (or closer) from the
# marks
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_ellipse(aes(fill = Species, label = Species),
label.buffer = unit(40, 'mm')) +

geom_point()

# The connector is capped a bit before it reaches the mark, but this can be
# controlled
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_ellipse(aes(fill = Species, label = Species),
con.cap = 0) +

geom_point()

# If you want to use the scaled colours for the labels or connectors you can
# use the "inherit" keyword instead
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_ellipse(aes(fill = Species, label = Species),
label.fill = "inherit") +

geom_point()

geom_mark_hull Annotate areas with hulls

Description

This geom lets you annotate sets of points via hulls. While convex hulls are most common due to
their clear definition, they can lead to large areas covered that does not contain points. Due to this
geom_mark_hull uses concaveman which lets you adjust concavity of the resulting hull. The hull
is calculated at draw time, and can thus change as you resize the plot. In order to clearly contain all
points, and for aesthetic purpose the resulting hull is expanded 5mm and rounded on the corners.
This can be adjusted with the expand and radius parameters.

Usage

geom_mark_hull(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
expand = unit(5, "mm"),
radius = unit(2.5, "mm"),
concavity = 2,
label.margin = margin(2, 2, 2, 2, "mm"),
label.width = NULL,
label.minwidth = unit(50, "mm"),
label.hjust = 0,
label.fontsize = 12,



geom_mark_hull 75

label.family = "",
label.lineheight = 1,
label.fontface = c("bold", "plain"),
label.fill = "white",
label.colour = "black",
label.buffer = unit(10, "mm"),
con.colour = "black",
con.size = 0.5,
con.type = "elbow",
con.linetype = 1,
con.border = "one",
con.cap = unit(3, "mm"),
con.arrow = NULL,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:



76 geom_mark_hull

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

concavity A measure of the concavity of the hull. 1 is very concave while it approaches
convex as it grows. Defaults to 2.

label.margin The margin around the annotation boxes, given by a call to ggplot2::margin().

label.width A fixed width for the label. Set to NULL to let the text or label.minwidth decide.

label.minwidth The minimum width to provide for the description. If the size of the label ex-
ceeds this, the description is allowed to fill as much as the label.

label.hjust The horizontal justification for the annotation. If it contains two elements the
first will be used for the label and the second for the description.

label.fontsize The size of the text for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.family The font family used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.lineheight

The height of a line as a multipler of the fontsize. If it contains two elements the
first will be used for the label and the second for the description.

label.fontface The font face used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.fill The fill colour for the annotation box. Use "inherit" to use the fill from the
enclosure or "inherit_col" to use the border colour of the enclosure.

label.colour The text colour for the annotation. If it contains two elements the first will be
used for the label and the second for the description. Use "inherit" to use the
border colour of the enclosure or "inherit_fill" to use the fill colour from
the enclosure.

label.buffer The size of the region around the mark where labels cannot be placed.

con.colour The colour for the line connecting the annotation to the mark. Use "inherit" to
use the border colour of the enclosure or "inherit_fill" to use the fill colour
from the enclosure.

con.size The width of the connector. Use "inherit" to use the border width of the
enclosure.

con.type The type of the connector. Either "elbow", "straight", or "none".

con.linetype The linetype of the connector. Use "inherit" to use the border linetype of the
enclosure.



geom_mark_hull 77

con.border The bordertype of the connector. Either "one" (to draw a line on the horizontal
side closest to the mark), "all" (to draw a border on all sides), or "none" (not
going to explain that one).

con.cap The distance before the mark that the line should stop at.

con.arrow An arrow specification for the connection using grid::arrow() for the end
pointing towards the mark.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_mark_hull understand the following aesthetics (required aesthetics are in bold):

• x

• y

• x0 (used to anchor the label)

• y0 (used to anchor the label)



78 geom_mark_hull

• filter

• label

• description

• color

• fill

• group

• size

• linetype

• alpha

Annotation

All geom_mark_* allow you to put descriptive textboxes connected to the mark on the plot, using
the label and description aesthetics. The textboxes are automatically placed close to the mark,
but without obscuring any of the datapoints in the layer. The placement is dynamic so if you resize
the plot you’ll see that the annotation might move around as areas become big enough or too small
to fit the annotation. If there’s not enough space for the annotation without overlapping data it will
not get drawn. In these cases try resizing the plot, change the size of the annotation, or decrease the
buffer region around the marks.

Filtering

Often marks are used to draw attention to, or annotate specific features of the plot and it is thus not
desirable to have marks around everything. While it is possible to simply pre-filter the data used for
the mark layer, the geom_mark_* geoms also comes with a dedicated filter aesthetic that, if set,
will remove all rows where it evalutates to FALSE. There are multiple benefits of using this instead
of prefiltering. First, you don’t have to change your data source, making your code more adaptable
for exploration. Second, the data removed by the filter aesthetic is remembered by the geom, and
any annotation will take care not to overlap with the removed data.

See Also

Other mark geoms: geom_mark_circle(), geom_mark_ellipse(), geom_mark_rect()

Examples

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_hull(aes(fill = Species, filter = Species != 'versicolor')) +
geom_point()

# Adjusting the concavity lets you change the shape of the hull
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_hull(aes(fill = Species, filter = Species != 'versicolor'),
concavity = 1

) +
geom_point()

ggplot(iris, aes(Petal.Length, Petal.Width)) +



geom_mark_rect 79

geom_mark_hull(aes(fill = Species, filter = Species != 'versicolor'),
concavity = 10

) +
geom_point()

# Add annotation
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_hull(aes(fill = Species, label = Species)) +
geom_point()

# Long descriptions are automatically wrapped to fit into the width
iris$desc <- c(

'A super Iris - and it knows it',
'Pretty mediocre Iris, but give it a couple of years and it might surprise you',
"You'll never guess what this Iris does every Sunday"

)[iris$Species]

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_hull(aes(fill = Species, label = Species, description = desc,

filter = Species == 'setosa')) +
geom_point()

# Change the buffer size to move labels farther away (or closer) from the
# marks
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_hull(aes(fill = Species, label = Species),
label.buffer = unit(40, 'mm')) +

geom_point()

# The connector is capped a bit before it reaches the mark, but this can be
# controlled
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_hull(aes(fill = Species, label = Species),
con.cap = 0) +

geom_point()

# If you want to use the scaled colours for the labels or connectors you can
# use the "inherit" keyword instead
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_hull(aes(fill = Species, label = Species),
label.fill = "inherit") +

geom_point()

geom_mark_rect Annotate areas with rectangles

Description

This geom lets you annotate sets of points via rectangles. The rectangles are simply scaled to the
range of the data and as with the other geom_mark_*() geoms expanded and have rounded corners.



80 geom_mark_rect

Usage

geom_mark_rect(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
expand = unit(5, "mm"),
radius = unit(2.5, "mm"),
label.margin = margin(2, 2, 2, 2, "mm"),
label.width = NULL,
label.minwidth = unit(50, "mm"),
label.hjust = 0,
label.fontsize = 12,
label.family = "",
label.lineheight = 1,
label.fontface = c("bold", "plain"),
label.fill = "white",
label.colour = "black",
label.buffer = unit(10, "mm"),
con.colour = "black",
con.size = 0.5,
con.type = "elbow",
con.linetype = 1,
con.border = "one",
con.cap = unit(3, "mm"),
con.arrow = NULL,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a



geom_mark_rect 81

geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

label.margin The margin around the annotation boxes, given by a call to ggplot2::margin().

label.width A fixed width for the label. Set to NULL to let the text or label.minwidth decide.

label.minwidth The minimum width to provide for the description. If the size of the label ex-
ceeds this, the description is allowed to fill as much as the label.

label.hjust The horizontal justification for the annotation. If it contains two elements the
first will be used for the label and the second for the description.

label.fontsize The size of the text for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.family The font family used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.lineheight

The height of a line as a multipler of the fontsize. If it contains two elements the
first will be used for the label and the second for the description.

label.fontface The font face used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.fill The fill colour for the annotation box. Use "inherit" to use the fill from the
enclosure or "inherit_col" to use the border colour of the enclosure.

label.colour The text colour for the annotation. If it contains two elements the first will be
used for the label and the second for the description. Use "inherit" to use the
border colour of the enclosure or "inherit_fill" to use the fill colour from
the enclosure.



82 geom_mark_rect

label.buffer The size of the region around the mark where labels cannot be placed.

con.colour The colour for the line connecting the annotation to the mark. Use "inherit" to
use the border colour of the enclosure or "inherit_fill" to use the fill colour
from the enclosure.

con.size The width of the connector. Use "inherit" to use the border width of the
enclosure.

con.type The type of the connector. Either "elbow", "straight", or "none".

con.linetype The linetype of the connector. Use "inherit" to use the border linetype of the
enclosure.

con.border The bordertype of the connector. Either "one" (to draw a line on the horizontal
side closest to the mark), "all" (to draw a border on all sides), or "none" (not
going to explain that one).

con.cap The distance before the mark that the line should stop at.

con.arrow An arrow specification for the connection using grid::arrow() for the end
pointing towards the mark.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_mark_rect 83

Aesthetics

geom_mark_rect understands the following aesthetics (required aesthetics are in bold):

• x

• y

• x0 (used to anchor the label)

• y0 (used to anchor the label)

• filter

• label

• description

• color

• fill

• group

• size

• linetype

• alpha

Annotation

All geom_mark_* allow you to put descriptive textboxes connected to the mark on the plot, using
the label and description aesthetics. The textboxes are automatically placed close to the mark,
but without obscuring any of the datapoints in the layer. The placement is dynamic so if you resize
the plot you’ll see that the annotation might move around as areas become big enough or too small
to fit the annotation. If there’s not enough space for the annotation without overlapping data it will
not get drawn. In these cases try resizing the plot, change the size of the annotation, or decrease the
buffer region around the marks.

Filtering

Often marks are used to draw attention to, or annotate specific features of the plot and it is thus not
desirable to have marks around everything. While it is possible to simply pre-filter the data used for
the mark layer, the geom_mark_* geoms also comes with a dedicated filter aesthetic that, if set,
will remove all rows where it evalutates to FALSE. There are multiple benefits of using this instead
of prefiltering. First, you don’t have to change your data source, making your code more adaptable
for exploration. Second, the data removed by the filter aesthetic is remembered by the geom, and
any annotation will take care not to overlap with the removed data.

See Also

Other mark geoms: geom_mark_circle(), geom_mark_ellipse(), geom_mark_hull()



84 geom_parallel_sets

Examples

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_rect(aes(fill = Species, filter = Species != 'versicolor')) +
geom_point()

# Add annotation
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_rect(aes(fill = Species, label = Species)) +
geom_point()

# Long descriptions are automatically wrapped to fit into the width
iris$desc <- c(

'A super Iris - and it knows it',
'Pretty mediocre Iris, but give it a couple of years and it might surprise you',
"You'll never guess what this Iris does every Sunday"

)[iris$Species]

ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_mark_rect(aes(fill = Species, label = Species, description = desc,

filter = Species == 'setosa')) +
geom_point()

# Change the buffer size to move labels farther away (or closer) from the
# marks
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_rect(aes(fill = Species, label = Species),
label.buffer = unit(30, 'mm')) +

geom_point()

# The connector is capped a bit before it reaches the mark, but this can be
# controlled
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_rect(aes(fill = Species, label = Species),
con.cap = 0) +

geom_point()

# If you want to use the scaled colours for the labels or connectors you can
# use the "inherit" keyword instead
ggplot(iris, aes(Petal.Length, Petal.Width)) +

geom_mark_rect(aes(fill = Species, label = Species),
label.fill = "inherit") +

geom_point()

geom_parallel_sets Create Parallel Sets diagrams

Description

A parallel sets diagram is a type of visualisation showing the interaction between multiple categori-
cal variables. If the variables has an intrinsic order the representation can be thought of as a Sankey
Diagram. If each variable is a point in time it will resemble an alluvial diagram.



geom_parallel_sets 85

Usage

stat_parallel_sets(
mapping = NULL,
data = NULL,
geom = "shape",
position = "identity",
n = 100,
strength = 0.5,
sep = 0.05,
axis.width = 0,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_parallel_sets(
mapping = NULL,
data = NULL,
stat = "parallel_sets",
position = "identity",
n = 100,
na.rm = FALSE,
orientation = NA,
sep = 0.05,
strength = 0.5,
axis.width = 0,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_parallel_sets_axes(
mapping = NULL,
data = NULL,
geom = "parallel_sets_axes",
position = "identity",
sep = 0.05,
axis.width = 0,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_parallel_sets_axes(



86 geom_parallel_sets

mapping = NULL,
data = NULL,
stat = "parallel_sets_axes",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_parallel_sets_labels(
mapping = NULL,
data = NULL,
stat = "parallel_sets_axes",
angle = -90,
nudge_x = 0,
nudge_y = 0,
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".



geom_parallel_sets 87

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

n The number of points to create for each of the bounding diagonals

strength The proportion to move the control point along the x-axis towards the other end
of the bezier curve

sep The proportional separation between categories within a variable

axis.width The width of the area around each variable axis

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.



88 geom_parallel_sets

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

angle The angle of the axis label text
nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from the category segments.

Details

In a parallel sets visualization each categorical variable will be assigned a position on the x-axis. The
size of the intersection of categories from neighboring variables are then shown as thick diagonals,
scaled by the sum of elements shared between the two categories. The natural data representation for
such as plot is to have each categorical variable in a separate column and then have a column giving
the amount/magnitude of the combination of levels in the row. This representation is unfortunately
not fitting for the ggplot2 API which needs every position encoding in the same column. To make
it easier to work with ggforce provides a helper gather_set_data(), which takes care of the
transformation.

Aesthetics

geom_parallel_sets understand the following aesthetics (required aesthetics are in bold):

• x|y
• id
• split
• value
• color
• fill
• size
• linetype
• alpha
• lineend



geom_regon 89

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Author(s)

Thomas Lin Pedersen

Examples

data <- reshape2::melt(Titanic)
data <- gather_set_data(data, 1:4)

ggplot(data, aes(x, id = id, split = y, value = value)) +
geom_parallel_sets(aes(fill = Sex), alpha = 0.3, axis.width = 0.1) +
geom_parallel_sets_axes(axis.width = 0.1) +
geom_parallel_sets_labels(colour = 'white')

# Use nudge_x to offset and hjust = 0 to left-justify label
ggplot(data, aes(x, id = id, split = y, value = value)) +

geom_parallel_sets(aes(fill = Sex), alpha = 0.3, axis.width = 0.1) +
geom_parallel_sets_axes(axis.width = 0.1) +
geom_parallel_sets_labels(colour = 'red', angle = 0, nudge_x = 0.1, hjust = 0)

geom_regon Draw regular polygons by specifying number of sides

Description

This geom makes it easy to construct regular polygons (polygons where all sides and angles are
equal) by specifying the number of sides, position, and size. The polygons are always rotated so
that they "rest" on a flat side, but this can be changed with the angle aesthetic. The size is based on
the radius of their circumcircle and is thus not proportional to their area.

Usage

stat_regon(
mapping = NULL,
data = NULL,
geom = "shape",
position = "identity",
na.rm = FALSE,
show.legend = NA,



90 geom_regon

inherit.aes = TRUE,
...

)

geom_regon(
mapping = NULL,
data = NULL,
stat = "regon",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".



geom_regon 91

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

Aesthetics

geom_regon understand the following aesthetics (required aesthetics are in bold):



92 geom_shape

• x0 x coordinate

• y0 y coordinate

• sides the number of sides for regon

• r the ratio of regon with respect to plot

• angle regon rotation angle (unit is radian)

• color

• fill

• size

• linetype

• alpha

• lineend

Computed variables

x, y The coordinates for the corners of the polygon

Examples

ggplot() +
geom_regon(aes(x0 = runif(8), y0 = runif(8), sides = sample(3:10, 8),

angle = 0, r = runif(8) / 10)) +
coord_fixed()

# The polygons are drawn with geom_shape, so can be manipulated as such
ggplot() +

geom_regon(aes(x0 = runif(8), y0 = runif(8), sides = sample(3:10, 8),
angle = 0, r = runif(8) / 10),

expand = unit(1, 'cm'), radius = unit(1, 'cm')) +
coord_fixed()

geom_shape Draw polygons with expansion/contraction and/or rounded corners

Description

This geom is a cousin of ggplot2::geom_polygon() with the added possibility of expanding or
contracting the polygon by an absolute amount (e.g. 1 cm). Furthermore, it is possible to round
the corners of the polygon, again by an absolute amount. The resulting geom reacts to resizing
of the plot, so the expansion/contraction and corner radius will not get distorted. If no expan-
sion/contraction or corner radius is specified, the geom falls back to geom_polygon so there is no
performance penality in using this instead of geom_polygon.



geom_shape 93

Usage

geom_shape(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
expand = 0,
radius = 0,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".



94 geom_shape

• For more information and other ways to specify the position, see the layer
position documentation.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_shape understand the following aesthetics (required aesthetics are in bold):

• x

• y

• color

• fill



geom_sina 95

• group

• size

• linetype

• alpha

Note

Some settings can result in the dissappearance of polygons, specifically when contracting or round-
ing corners with a relatively large amount. Also note that x and y scale limits does not take expan-
sion into account and the resulting polygon might thus not fit into the plot.

Author(s)

Thomas Lin Pedersen

Examples

shape <- data.frame(
x = c(0.5, 1, 0.75, 0.25, 0),
y = c(0, 0.5, 1, 0.75, 0.25)

)
# Expand and round
ggplot(shape, aes(x = x, y = y)) +

geom_shape(expand = unit(1, 'cm'), radius = unit(0.5, 'cm')) +
geom_polygon(fill = 'red')

# Contract
ggplot(shape, aes(x = x, y = y)) +

geom_polygon(fill = 'red') +
geom_shape(expand = unit(-1, 'cm'))

# Only round corners
ggplot(shape, aes(x = x, y = y)) +

geom_polygon(fill = 'red') +
geom_shape(radius = unit(1, 'cm'))

geom_sina Sina plot

Description

The sina plot is a data visualization chart suitable for plotting any single variable in a multiclass
dataset. It is an enhanced jitter strip chart, where the width of the jitter is controlled by the density
distribution of the data within each class.



96 geom_sina

Usage

stat_sina(
mapping = NULL,
data = NULL,
geom = "point",
position = "dodge",
scale = "area",
method = "density",
bw = "nrd0",
kernel = "gaussian",
maxwidth = NULL,
adjust = 1,
bin_limit = 1,
binwidth = NULL,
bins = NULL,
seed = NA,
jitter_y = TRUE,
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_sina(
mapping = NULL,
data = NULL,
stat = "sina",
position = "dodge",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.



geom_sina 97

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

scale How should each sina be scaled. Corresponds to the scale parameter in ggplot2::geom_violin()?
Available are:

• 'area' for scaling by the largest density/bin among the different sinas
• 'count' as above, but in addition scales by the maximum number of points

in the different sinas.
• 'width' Only scale according to the maxwidth parameter

For backwards compatibility it can also be a logical with TRUE meaning area
and FALSE meaning width

method Choose the method to spread the samples within the same bin along the x-axis.
Available methods: "density", "counts" (can be abbreviated, e.g. "d"). See
Details.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

kernel Kernel. See list of available kernels in density().

maxwidth Control the maximum width the points can spread into. Values between 0 and 1.

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.



98 geom_sina

bin_limit If the samples within the same y-axis bin are more than bin_limit, the sam-
ples’s X coordinates will be adjusted.

binwidth The width of the bins. The default is to use bins bins that cover the range of the
data. You should always override this value, exploring multiple widths to find
the best to illustrate the stories in your data.

bins Number of bins. Overridden by binwidth. Defaults to 50.

seed A seed to set for the jitter to ensure a reproducible plot

jitter_y If y is integerish banding can occur and the default is to jitter the values slightly
to make them better distributed. Setting jitter_y = FALSE turns off this be-
haviour

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_sina 99

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

Details

There are two available ways to define the x-axis borders for the samples to spread within:

• method == "density"

A density kernel is estimated along the y-axis for every sample group, and the samples are
spread within that curve. In effect this means that points will be positioned randomly within a
violin plot with the same parameters.

• method == "counts":
The borders are defined by the number of samples that occupy the same bin.

Aesthetics

geom_sina understand the following aesthetics (required aesthetics are in bold):

• x
• y
• color
• group
• size
• alpha

Computed variables

density The density or sample counts per bin for each point
scaled density scaled by the maximum density in each group
n The number of points in the group the point belong to

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.



100 geom_sina

Author(s)

Nikos Sidiropoulos, Claus Wilke, and Thomas Lin Pedersen

Examples

ggplot(midwest, aes(state, area)) + geom_point()

# Boxplot and Violin plots convey information on the distribution but not the
# number of samples, while Jitter does the opposite.
ggplot(midwest, aes(state, area)) +

geom_violin()

ggplot(midwest, aes(state, area)) +
geom_jitter()

# Sina does both!
ggplot(midwest, aes(state, area)) +

geom_violin() +
geom_sina()

p <- ggplot(midwest, aes(state, popdensity)) +
scale_y_log10()

p + geom_sina()

# Colour the points based on the data set's columns
p + geom_sina(aes(colour = inmetro))

# Or any other way
cols <- midwest$popdensity > 10000
p + geom_sina(colour = cols + 1L)

# Sina plots with continuous x:
ggplot(midwest, aes(cut_width(area, 0.02), popdensity)) +

geom_sina() +
scale_y_log10()

### Sample gaussian distributions
# Unimodal
a <- rnorm(500, 6, 1)
b <- rnorm(400, 5, 1.5)

# Bimodal
c <- c(rnorm(200, 3, .7), rnorm(50, 7, 0.4))

# Trimodal
d <- c(rnorm(200, 2, 0.7), rnorm(300, 5.5, 0.4), rnorm(100, 8, 0.4))

df <- data.frame(
'Distribution' = c(
rep('Unimodal 1', length(a)),



geom_spiro 101

rep('Unimodal 2', length(b)),
rep('Bimodal', length(c)),
rep('Trimodal', length(d))

),
'Value' = c(a, b, c, d)

)

# Reorder levels
df$Distribution <- factor(

df$Distribution,
levels(df$Distribution)[c(3, 4, 1, 2)]

)

p <- ggplot(df, aes(Distribution, Value))
p + geom_boxplot()
p + geom_violin() +

geom_sina()

# By default, Sina plot scales the width of the class according to the width
# of the class with the highest density. Turn group-wise scaling off with:
p +

geom_violin() +
geom_sina(scale = FALSE)

geom_spiro Draw spirograms based on the radii of the different "wheels" involved

Description

This, rather pointless, geom allows you to draw spirograms, as known from the popular drawing
toy where lines were traced by inserting a pencil into a hole in a small gear that would then trace
around inside another gear. The potential practicality of this geom is slim and it excists mainly for
fun and art.

Usage

stat_spiro(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
na.rm = FALSE,
n = 500,
revolutions = NULL,
show.legend = NA,
inherit.aes = TRUE,
...

)



102 geom_spiro

geom_spiro(
mapping = NULL,
data = NULL,
stat = "spiro",
position = "identity",
arrow = NULL,
n = 500,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".



geom_spiro 103

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

n The number of points that should be used to draw a fully closed spirogram. If
revolutions < 1 the actual number of points will be less than this.

revolutions The number of times the inner gear should revolve around inside the outer gear.
If NULL the number of revolutions to reach the starting position is calculated and
used.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".



104 geom_spiro

• For more information and other ways to specify the stat, see the layer stat
documentation.

arrow Arrow specification, as created by grid::arrow().

lineend Line end style (round, butt, square).

Aesthetics

stat_spiro and geom_spiro understand the following aesthetics (required aesthetics are in bold):

• R

• r

• d

• x0

• y0

• outer

• color

• size

• linetype

• alpha

Computed variables

x, y The coordinates for the path describing the spirogram

index The progression along the spirogram mapped between 0 and 1

Examples

# Basic usage
ggplot() +

geom_spiro(aes(R = 10, r = 3, d = 5))

# Only draw a portion
ggplot() +

geom_spiro(aes(R = 10, r = 3, d = 5), revolutions = 1.2)

# Let the inner gear circle the outside of the outer gear
ggplot() +

geom_spiro(aes(R = 10, r = 3, d = 5, outer = TRUE))



geom_voronoi 105

geom_voronoi Voronoi tesselation and delaunay triangulation

Description

This set of geoms and stats allows you to display voronoi tesselation and delaunay triangulation,
both as polygons and as line segments. Furthermore it lets you augment your point data with related
summary statistics. The computations are based on the deldir::deldir() package.

Usage

geom_voronoi_tile(
mapping = NULL,
data = NULL,
stat = "voronoi_tile",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
max.radius = NULL,
normalize = FALSE,
asp.ratio = 1,
expand = 0,
radius = 0,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_voronoi_segment(
mapping = NULL,
data = NULL,
stat = "voronoi_segment",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_delaunay_tile(
mapping = NULL,
data = NULL,



106 geom_voronoi

stat = "delaunay_tile",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
expand = 0,
radius = 0,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_delaunay_segment(
mapping = NULL,
data = NULL,
stat = "delaunay_segment",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_delaunay_segment2(
mapping = NULL,
data = NULL,
stat = "delaunay_segment2",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
n = 100,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_delvor_summary(
mapping = NULL,
data = NULL,



geom_voronoi 107

geom = "point",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



108 geom_voronoi

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

bound The bounding rectangle for the tesselation or a custom polygon to clip the tesse-
lation to. Defaults to NULL which creates a rectangle expanded 10\ vector giving
the bounds in the following order: xmin, xmax, ymin, ymax. If supplied as a
polygon it should either be a 2-column matrix or a data.frame containing an x
and y column.

eps A value of epsilon used in testing whether a quantity is zero, mainly in the
context of whether points are collinear. If anomalous errors arise, it is possible
that these may averted by adjusting the value of eps upward or downward.

max.radius The maximum distance a tile can extend from the point of origin. Will in effect
clip each tile to a circle centered at the point with the given radius. If normalize
= TRUE the radius will be given relative to the normalized values

normalize Should coordinates be normalized prior to calculations. If x and y are in wildly
different ranges it can lead to tesselation and triangulation that seems off when
plotted without ggplot2::coord_fixed(). Normalization of coordinates solves
this. The coordinates are transformed back after calculations.

asp.ratio If normalize = TRUE the x values will be multiplied by this amount after nor-
malization.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.



geom_voronoi 109

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

n The number of points to create for each segment

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

Aesthetics

geom_voronoi_tile and geom_delaunay_tile understand the following aesthetics (required aesthet-
ics are in bold):

• x

• y

• alpha

• color

• fill

• linetype

• size

geom_voronoi_segment, geom_delaunay_segment, and geom_delaunay_segment2 understand the
following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• color

• linetype

• size



110 geom_voronoi

Computed variables

stat_delvor_summary computes the following variables:

x, y If switch.centroid = TRUE this will be the coordinates for the voronoi tile centroid, otherwise
it is the original point

xcent, ycent If switch.centroid = FALSE this will be the coordinates for the voronoi tile centroid,
otherwise it will be NULL

xorig, yorig If switch.centroid = TRUE this will be the coordinates for the original point, other-
wise it will be NULL

ntri Number of triangles emanating from the point

triarea The total area of triangles emanating from the point divided by 3

triprop triarea divided by the sum of the area of all triangles

nsides Number of sides on the voronoi tile associated with the point

nedges Number of sides of the associated voronoi tile that is part of the bounding box

vorarea The area of the voronoi tile associated with the point

vorprop vorarea divided by the sum of all voronoi tiles

Examples

# Voronoi
# You usually wants all points to take part in the same tesselation so set
# the group aesthetic to a constant (-1L is just a convention)
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +

geom_voronoi_tile(aes(fill = Species)) +
geom_voronoi_segment() +
geom_text(aes(label = after_stat(nsides), size = after_stat(vorarea)),
stat = 'delvor_summary', switch.centroid = TRUE

)

# Difference of normalize = TRUE (segment layer is calculated without
# normalisation)
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +

geom_voronoi_tile(aes(fill = Species), normalize = TRUE) +
geom_voronoi_segment()

# Set a max radius
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +

geom_voronoi_tile(aes(fill = Species), colour = 'black', max.radius = 0.25)

# Set custom bounding polygon
triangle <- cbind(c(3, 9, 6), c(1, 1, 6))
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +

geom_voronoi_tile(aes(fill = Species), colour = 'black', bound = triangle)

# Use geom_shape functionality to round corners etc
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +

geom_voronoi_tile(aes(fill = Species), colour = 'black',
expand = unit(-.5, 'mm'), radius = unit(2, 'mm'))



label_tex 111

# Delaunay triangles
ggplot(iris, aes(Sepal.Length, Sepal.Width)) +

geom_delaunay_tile(alpha = 0.3, colour = 'black')

# Use geom_delauney_segment2 to interpolate aestetics between end points
ggplot(iris, aes(Sepal.Length, Sepal.Width)) +

geom_delaunay_segment2(aes(colour = Species, group = -1), size = 2,
lineend = 'round')

label_tex A labeller function to parse TeX syntax

Description

This function formats the strip labels of facet grids and wraps that contains TeX expressions. The
latex2exp package must be installed.

Usage

label_tex(labels, ...)

Arguments

labels Data frame of labels. Usually contains only one element, but faceting over mul-
tiple factors entails multiple label variables.

... Arguments passed on to ggplot2::label_parsed

multi_line Whether to display the labels of multiple factors on separate lines.

See Also

ggplot2::labeller, latex2exp::TeX()

Examples

# requires latex2exp package be installed
if (requireNamespace("latex2exp", quietly = TRUE)) {

library(ggplot2)
d <- data.frame(x = 1, y = 1, facet = "$\\beta$")
ggplot(d, aes(x, y)) +

geom_point() +
facet_wrap(~ facet, labeller = label_tex)

}



112 linear_trans

linear_trans Create a custom linear transformation

Description

This function lets you compose transformations based on a sequence of linear transformations. If
the transformations are parameterised the parameters will become arguments in the transformation
function. The transformations are one of rotate, shear, stretch, translate, and reflect.

Usage

linear_trans(...)

rotate(angle)

stretch(x, y)

shear(x, y)

translate(x, y)

reflect(x, y)

Arguments

... A number of transformation functions.

angle An angle in radians

x the transformation magnitude in the x-direction

y the transformation magnitude in the x-direction

Value

linear_trans creates a trans object. The other functions return a 3x3 transformation matrix.

Examples

trans <- linear_trans(rotate(a), shear(1, 0), translate(x1, y1))
square <- data.frame(x = c(0, 0, 1, 1), y = c(0, 1, 1, 0))
square2 <- trans$transform(square$x, square$y, a = pi / 3, x1 = 4, y1 = 8)
square3 <- trans$transform(square$x, square$y, a = pi / 1.5, x1 = 2, y1 = -6)
square <- rbind(square, square2, square3)
square$group <- rep(1:3, each = 4)
ggplot(square, aes(x, y, group = group)) +

geom_polygon(aes(fill = factor(group)), colour = 'black')



n_pages 113

n_pages Determine the number of pages in a paginated facet plot

Description

This is a simple helper that returns the number of pages it takes to plot all panels when using
facet_wrap_paginate() and facet_grid_paginate(). It partially builds the plot so depending
on the complexity of your plot it might take some time to calculate...

Usage

n_pages(plot)

Arguments

plot A ggplot object using either facet_wrap_paginate or facet_grid_paginate

Value

If the plot uses using either facet_wrap_paginate or facet_grid_paginate it returns the total number
of pages. Otherwise it returns NULL

Examples

p <- ggplot(diamonds) +
geom_point(aes(carat, price), alpha = 0.1) +
facet_wrap_paginate(~ cut:clarity, ncol = 3, nrow = 3, page = 1)

n_pages(p)

position_auto Jitter based on scale types

Description

This position adjustment is able to select a meaningful jitter of the data based on the combination of
positional scale types. IT behaves differently depending on if none, one, or both the x and y scales
are discrete. If both are discrete it will jitter the datapoints evenly inside a disc, if one of them is
discrete it will jitter the discrete dimension to follow the density along the other dimension (like a
sina plot). If neither are discrete it will not do any jittering.

Usage

position_auto(jitter.width = 0.75, bw = "nrd0", scale = TRUE, seed = NA)



114 position_jitternormal

Arguments

jitter.width The maximal width of the jitter

bw The smoothing bandwidth to use in the case of sina jittering. See the bw argu-
ment in stats::density

scale Should the width of jittering be scaled based on the number of points in the
group

seed A seed to supply to make the jittering reproducible across layers

See Also

geom_autopoint for a point geom that uses auto-position by default

Examples

# Continuous vs continuous: No jitter
ggplot(mpg) + geom_point(aes(cty, hwy), position = 'auto')

# Continuous vs discrete: sina jitter
ggplot(mpg) + geom_point(aes(cty, drv), position = 'auto')

# Discrete vs discrete: disc-jitter
ggplot(mpg) + geom_point(aes(fl, drv), position = 'auto')

# Don't scale the jitter based on group size
ggplot(mpg) + geom_point(aes(cty, drv), position = position_auto(scale = FALSE))
ggplot(mpg) + geom_point(aes(fl, drv), position = position_auto(scale = FALSE))

position_jitternormal Jitter points with normally distributed random noise

Description

ggplot2::geom_jitter() adds random noise to points using a uniform distribution. When many
points are plotted, they appear in a rectangle. This position jitters points using a normal distribution
instead, resulting in more circular clusters.

Usage

position_jitternormal(sd_x = NULL, sd_y = NULL, seed = NA)

Arguments

sd_x, sd_y Standard deviation to add along the x and y axes. The function uses stats::rnorm()
with mean = 0 behind the scenes.
If omitted, defaults to 0.15. As with ggplot2::geom_jitter(), categorical
data is aligned on the integers, so a standard deviation of more than 0.2 will
spread the data so it’s not possible to see the distinction between the categories.



power_trans 115

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).

Examples

# Example data
df <- data.frame(

x = sample(1:3, 1500, TRUE),
y = sample(1:3, 1500, TRUE)

)

# position_jitter results in rectangular clusters
ggplot(df, aes(x = x, y = y)) +

geom_point(position = position_jitter())

# geom_jitternormal results in more circular clusters
ggplot(df, aes(x = x, y = y)) +

geom_point(position = position_jitternormal())

# You can adjust the standard deviations along both axes
# Tighter circles
ggplot(df, aes(x = x, y = y)) +

geom_point(position = position_jitternormal(sd_x = 0.08, sd_y = 0.08))

# Oblong shapes
ggplot(df, aes(x = x, y = y)) +

geom_point(position = position_jitternormal(sd_x = 0.2, sd_y = 0.08))

# Only add random noise to one dimension
ggplot(df, aes(x = x, y = y)) +

geom_point(
position = position_jitternormal(sd_x = 0.15, sd_y = 0),
alpha = 0.1

)

power_trans Create a power transformation object

Description

This function can be used to create a proper trans object that encapsulates a power transformation
(x^n).

Usage

power_trans(n)



116 radial_trans

Arguments

n The degree of the power transformation

Value

A trans object

Examples

# Power of 2 transformations
trans <- power_trans(2)
trans$transform(1:10)

# Cubic root transformation
trans <- power_trans(1 / 3)
trans$transform(1:10)

# Use it in a plot
ggplot() +

geom_line(aes(x = 1:10, y = 1:10)) +
scale_x_continuous(trans = power_trans(2),

expand = c(0, 1))

radial_trans Create radial data in a cartesian coordinate system

Description

This function creates a trans object that converts radial data to their corresponding coordinates in
cartesian space. The trans object is created for a specific radius and angle range that will be mapped
to the unit circle so data doesn’t have to be normalized to 0-1 and 0-2*pi in advance. While there
exists a clear mapping from radial to cartesian, the inverse is not true as radial representation is
periodic. It is impossible to know how many revolutions around the unit circle a point has taken
from reading its coordinates. The inverse function will always assume that coordinates are in their
first revolution i.e. map them back within the range of a.range.

Usage

radial_trans(r.range, a.range, offset = pi/2, pad = 0.5, clip = FALSE)

Arguments

r.range The range in radius that correspond to 0 - 1 in the unit circle.

a.range The range in angles that correspond to 2*pi - 0. As radians are normally mea-
sured counterclockwise while radial displays are read clockwise it’s an inverse
mapping

offset The offset in angles to apply. Determines that start position on the circle. pi/2
(the default) corresponds to 12 o’clock.



scale_depth 117

pad Adds to the end points of the angle range in order to separate the start and end
point. Defaults to 0.5

clip Should input data be clipped to r.range and a.range or be allowed to extend
beyond. Defaults to FALSE (no clipping)

Value

A trans object. The transform method for the object takes an r (radius) and a (angle) argument and
returns a data.frame with x and y columns with rows for each element in r/a. The inverse method
takes an x and y argument and returns a data.frame with r and a columns and rows for each element
in x/y.

Note

While trans objects are often used to modify scales in ggplot2, radial transformation is different as it
is a coordinate transformation and takes two arguments. Consider it a trans version of coord_polar
and use it to transform your data prior to plotting.

Examples

# Some data in radial form
rad <- data.frame(r = seq(1, 10, by = 0.1), a = seq(1, 10, by = 0.1))

# Create a transformation
radial <- radial_trans(c(0, 1), c(0, 5))

# Get data in x, y
cart <- radial$transform(rad$r, rad$a)

# Have a look
ggplot() +

geom_path(aes(x = x, y = y), data = cart, color = 'forestgreen') +
geom_path(aes(x = r, y = a), data = rad, color = 'firebrick')

scale_depth Scales for depth perception

Description

These scales serve to scale the depth aesthetic when creating stereographic plots. The range speci-
fies the relative distance between the points and the paper plane in relation to the distance between
the eyes and the paper plane i.e. a range of c(-0.5, 0.5) would put the highest values midways be-
tween the eyes and the image plane and the lowest values the same distance behind the image plane.
To ensure a nice viewing experience these values should not exceed ~0.3 as it would get hard for
the eyes to consolidate the two pictures.



118 stat_err

Usage

scale_depth(..., range = c(0, 0.3))

scale_depth_continuous(..., range = c(0, 0.3))

scale_depth_discrete(..., range = c(0, 0.3))

Arguments

... arguments passed on to continuous_scale or discrete_scale

range The relative range as related to the distance between the eyes and the paper
plane.

Examples

ggplot(mtcars) +
geom_point(aes(mpg, disp, depth = cyl)) +
scale_depth(range = c(-0.1, 0.25)) +
facet_stereo()

stat_err Intervals in vertical and horizontal directions

Description

stat_err draws intervals of points (x, y) in vertical (ymin, ymax) and horizontal (xmin, xmax)
directions.

Usage

stat_err(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.



stat_err 119

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the



120 stat_err

params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Aesthetics

stat_err() understands the following aesthetics (required aesthetics are in bold):

• x
• xmin
• xmax
• y
• ymin
• ymax
• alpha
• color
• group
• linetype
• linewidth

Examples

library(ggplot2)

x <- 1:3
xmin <- x - 2.5
xmax <- x + 2.5
d <- data.frame(

x = x, y = x, xmin = xmin, ymin = xmin, xmax = xmax, ymax = xmax,
color = as.factor(x)

)
ggplot(

d,
aes(x = x, y = y, xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, color = color)

) +
stat_err(size = 2)



theme_no_axes 121

theme_no_axes Theme without axes and gridlines

Description

This theme is a simple wrapper around any complete theme that removes the axis text, title and
ticks as well as the grid lines for plots where these have little meaning.

Usage

theme_no_axes(base.theme = theme_bw())

Arguments

base.theme The theme to use as a base for the new theme. Defaults to ggplot2::theme_bw().

Value

A modified version of base.theme

Examples

p <- ggplot() + geom_point(aes(x = wt, y = qsec), data = mtcars)

p + theme_no_axes()
p + theme_no_axes(theme_grey())

trans_reverser Reverse a transformation

Description

While the scales package export a reverse_trans object it does not allow for reversing of already
transformed ranged - e.g. a reverse exp transformation is not possible. trans_reverser takes a trans
object or something coercible to one and creates a reverse version of it.

Usage

trans_reverser(trans)

Arguments

trans A trans object or an object that can be converted to one using scales::as.trans()



122 trans_reverser

Value

A trans object

Examples

# Lets make a plot
p <- ggplot() +

geom_line(aes(x = 1:10, y = 1:10))

# scales already have a reverse trans
p + scale_x_continuous(trans = 'reverse')

# But what if you wanted to reverse an already log transformed scale?
p + scale_x_continuous(trans = trans_reverser('log'))



Index

∗ datasets
GeomShape, 14

∗ ggforce facets
facet_grid_paginate, 3
facet_stereo, 9
facet_wrap_paginate, 10
facet_zoom, 12

∗ mark geoms
geom_mark_circle, 64
geom_mark_ellipse, 69
geom_mark_hull, 74
geom_mark_rect, 79

∗ position adjustments
position_jitternormal, 114

aes(), 16, 20, 25, 28, 31, 36, 40, 44, 49, 53,
57, 61, 65, 70, 75, 80, 86, 90, 93, 96,
102, 107, 118

borders(), 17, 21, 26, 29, 32, 37, 41, 45, 50,
54, 57, 62, 67, 72, 77, 82, 87, 91, 94,
98, 103, 108, 119

deldir::deldir(), 105
density(), 26, 97
diagonal, 52

facet_col (facet_row), 7
facet_grid_paginate, 3, 10, 11, 13
facet_grid_paginate(), 113
facet_matrix, 5, 27, 29
facet_matrix(), 24
facet_row, 7
facet_stereo, 4, 9, 11, 13
facet_wrap_paginate, 4, 10, 10, 13
facet_wrap_paginate(), 113
facet_zoom, 4, 10, 11, 12
FacetCol (GeomShape), 14
FacetGridPaginate (GeomShape), 14
FacetMatrix (GeomShape), 14

FacetRow (GeomShape), 14
FacetStereo (GeomShape), 14
FacetWrapPaginate (GeomShape), 14
FacetZoom (GeomShape), 14
fortify(), 16, 21, 25, 28, 31, 37, 41, 44, 49,

53, 57, 61, 65, 70, 75, 80, 86, 90, 93,
96, 102, 107, 119

gather_set_data, 13
gather_set_data(), 88
geom_arc, 14
geom_arc(), 23
geom_arc0 (geom_arc), 14
geom_arc2 (geom_arc), 14
geom_arc_bar, 19
geom_arc_bar(), 19, 46
geom_autodensity, 6, 24
geom_autohistogram, 6
geom_autohistogram (geom_autodensity),

24
geom_autopoint, 6, 27, 114
geom_bezier, 29
geom_bezier(), 35, 47
geom_bezier0 (geom_bezier), 29
geom_bezier2 (geom_bezier), 29
geom_bspline, 34
geom_bspline0 (geom_bspline), 34
geom_bspline2 (geom_bspline), 34
geom_bspline_closed, 39
geom_bspline_closed0

(geom_bspline_closed), 39
geom_circle, 43
geom_circle(), 56
geom_delaunay (geom_voronoi), 105
geom_delaunay_segment (geom_voronoi),

105
geom_delaunay_segment2 (geom_voronoi),

105
geom_delaunay_tile (geom_voronoi), 105
geom_diagonal, 47

123



124 INDEX

geom_diagonal0 (geom_diagonal), 47
geom_diagonal2 (geom_diagonal), 47
geom_diagonal_wide, 52
geom_ellipse, 56
geom_link, 59
geom_link(), 30
geom_link0 (geom_link), 59
geom_link2 (geom_link), 59
geom_link2(), 30
geom_mark_circle, 64, 73, 78, 83
geom_mark_ellipse, 68, 69, 78, 83
geom_mark_hull, 68, 73, 74, 83
geom_mark_rect, 68, 73, 78, 79
geom_parallel_sets, 84
geom_parallel_sets_axes

(geom_parallel_sets), 84
geom_parallel_sets_labels

(geom_parallel_sets), 84
geom_regon, 89
geom_shape, 92
geom_shape(), 64
geom_sina, 95
geom_spiro, 101
geom_voronoi, 105
geom_voronoi_segment (geom_voronoi), 105
geom_voronoi_tile (geom_voronoi), 105
GeomArc (GeomShape), 14
GeomArc0 (GeomShape), 14
GeomArcBar (GeomShape), 14
GeomAutoarea (GeomShape), 14
GeomAutorect (GeomShape), 14
GeomBezier0 (GeomShape), 14
GeomBspline0 (GeomShape), 14
GeomBsplineClosed0 (GeomShape), 14
GeomCircle (GeomShape), 14
GeomMarkCircle (GeomShape), 14
GeomMarkEllipse (GeomShape), 14
GeomMarkHull (GeomShape), 14
GeomMarkRect (GeomShape), 14
GeomParallelSetsAxes (GeomShape), 14
GeomPathInterpolate (GeomShape), 14
GeomShape, 14
ggforce-extensions (GeomShape), 14
ggplot(), 16, 20, 25, 28, 31, 37, 41, 44, 49,

53, 57, 61, 65, 70, 75, 80, 86, 90, 93,
96, 102, 107, 119

ggplot2::coord_fixed(), 43, 108
ggplot2::coord_polar(), 14

ggplot2::facet_grid(), 3, 7
ggplot2::facet_wrap(), 7, 10
ggplot2::geom_density(), 24
ggplot2::geom_histogram(), 24
ggplot2::geom_jitter(), 114
ggplot2::geom_path(), 59
ggplot2::geom_point(), 5, 27, 43, 46
ggplot2::geom_polygon(), 92
ggplot2::geom_segment(), 59
ggplot2::geom_violin(), 97
ggplot2::label_parsed, 111
ggplot2::labeller, 111
ggplot2::margin(), 65, 71, 76, 81
ggplot2::theme_bw(), 121
ggplot2::vars(), 5
grid::arrow(), 18, 33, 38, 50, 62, 66, 71, 77,

82, 104
grid::bezierGrob(), 33
grid::xsplineGrob(), 35, 40

key glyphs, 18, 22, 26, 29, 33, 38, 42, 45, 50,
55, 58, 62, 67, 72, 77, 82, 88, 91, 94,
98, 103, 109, 120

label_parsed(), 4, 6, 8, 11
label_tex, 111
label_value(), 4, 6, 8, 11
labeller(), 4, 6, 8, 11
latex2exp::TeX(), 111
layer geom, 17, 21, 32, 37, 41, 44, 49, 54, 57,

61, 87, 90, 97, 102, 109, 119
layer position, 17, 21, 25, 28, 32, 37, 41,

45, 49, 54, 57, 61, 65, 70, 76, 81, 87,
91, 94, 97, 103, 107, 119

layer stat, 18, 22, 25, 28, 33, 38, 42, 46, 50,
55, 58, 62, 65, 70, 75, 81, 88, 91, 93,
99, 104, 107

layer(), 17, 18, 21, 22, 26, 28, 29, 32, 33, 37,
38, 41, 42, 45, 50, 54, 55, 57, 58, 62,
66, 67, 72, 77, 82, 87, 88, 91, 94, 98,
103, 108, 109, 119, 120

linear_trans, 112

n_pages, 113
n_pages(), 4, 11

position_auto, 6, 29, 113
position_auto(), 27
position_jitternormal, 114



INDEX 125

PositionAuto (GeomShape), 14
PositionFloatstack (GeomShape), 14
PositionJitterNormal (GeomShape), 14
power_trans, 115

radial_trans, 116
reflect (linear_trans), 112
rotate (linear_trans), 112

scale_depth, 117
scale_depth(), 9
scale_depth_continuous (scale_depth),

117
scale_depth_discrete (scale_depth), 117
scales::as.trans(), 121
shear (linear_trans), 112
stat_arc (geom_arc), 14
stat_arc0 (geom_arc), 14
stat_arc2 (geom_arc), 14
stat_arc_bar (geom_arc_bar), 19
stat_bezier (geom_bezier), 29
stat_bezier0 (geom_bezier), 29
stat_bezier2 (geom_bezier), 29
stat_bspline (geom_bspline), 34
stat_bspline0 (geom_bspline), 34
stat_bspline2 (geom_bspline), 34
stat_bspline_closed

(geom_bspline_closed), 39
stat_circle (geom_circle), 43
stat_delvor_summary (geom_voronoi), 105
stat_diagonal (geom_diagonal), 47
stat_diagonal0 (geom_diagonal), 47
stat_diagonal2 (geom_diagonal), 47
stat_diagonal_wide

(geom_diagonal_wide), 52
stat_ellip (geom_ellipse), 56
stat_err, 118
stat_link (geom_link), 59
stat_link2 (geom_link), 59
stat_parallel_sets

(geom_parallel_sets), 84
stat_parallel_sets_axes

(geom_parallel_sets), 84
stat_pie (geom_arc_bar), 19
stat_regon (geom_regon), 89
stat_sina (geom_sina), 95
stat_spiro (geom_spiro), 101
StatArc (GeomShape), 14
StatArc0 (GeomShape), 14

StatArc2 (GeomShape), 14
StatArcBar (GeomShape), 14
StatAutobin (GeomShape), 14
StatAutodensity (GeomShape), 14
StatBezier (GeomShape), 14
StatBezier0 (GeomShape), 14
StatBezier2 (GeomShape), 14
StatBspline (GeomShape), 14
StatBspline2 (GeomShape), 14
StatCircle (GeomShape), 14
StatDelaunaySegment (GeomShape), 14
StatDelaunaySegment2 (GeomShape), 14
StatDelaunayTile (GeomShape), 14
StatDelvorSummary (GeomShape), 14
StatDiagonal (GeomShape), 14
StatDiagonal0 (GeomShape), 14
StatDiagonal2 (GeomShape), 14
StatDiagonalWide (GeomShape), 14
StatEllip (GeomShape), 14
StatErr (GeomShape), 14
StatLink (GeomShape), 14
StatLink2 (GeomShape), 14
StatParallelSets (GeomShape), 14
StatParallelSetsAxes (GeomShape), 14
StatPie (GeomShape), 14
StatRegon (GeomShape), 14
stats::bw.nrd(), 26, 97
stats::density, 114
stats::rnorm(), 114
StatSina (GeomShape), 14
StatSpiro (GeomShape), 14
StatVoronoiSegment (GeomShape), 14
StatVoronoiTile (GeomShape), 14
stretch (linear_trans), 112

theme_no_axes, 121
trans_reverser, 121
translate (linear_trans), 112

vars(), 8, 11


	facet_grid_paginate
	facet_matrix
	facet_row
	facet_stereo
	facet_wrap_paginate
	facet_zoom
	gather_set_data
	GeomShape
	geom_arc
	geom_arc_bar
	geom_autodensity
	geom_autopoint
	geom_bezier
	geom_bspline
	geom_bspline_closed
	geom_circle
	geom_diagonal
	geom_diagonal_wide
	geom_ellipse
	geom_link
	geom_mark_circle
	geom_mark_ellipse
	geom_mark_hull
	geom_mark_rect
	geom_parallel_sets
	geom_regon
	geom_shape
	geom_sina
	geom_spiro
	geom_voronoi
	label_tex
	linear_trans
	n_pages
	position_auto
	position_jitternormal
	power_trans
	radial_trans
	scale_depth
	stat_err
	theme_no_axes
	trans_reverser
	Index

