Package ‘ggblend’

May 22, 2023
Title Blending and Compositing Algebra for 'ggplot2'
Version 0.1.0

Description Algebra of operations for blending, copying, adjusting, and
compositing layers in 'ggplot2'. Supports copying and adjusting the
aesthetics or parameters of an existing layer, partitioning a layer
into multiple pieces for re-composition, applying affine transformations
to layers, and combining layers (or partitions of layers) using blend modes
(including commutative blend modes, like multiply and darken). Blend
mode support is particularly useful for creating plots with overlapping
groups where the layer drawing order does not change the output;
see Kindlmann and Scheidegger (2014) <doi:10.1109/TVCG.2014.2346325>.

License MIT + file LICENSE

Language en-US

Depends R (>=4.2)

Imports methods, grid, ggplot2 (>= 3.4.0), rlang

Suggests covr, testthat (>= 3.0.0), fontquiver, showtext, sysfonts,
ggnewscale

Config/testthat/edition 3
BugReports https://github.com/mjskay/ggblend/issues/new

URL https://mjskay.github.io/ggblend/,
https://github.com/mjskay/ggbhlend/

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Matthew Kay [aut, cre, cph] (<https://orcid.org/0000-0001-9446-0419>)

Maintainer Matthew Kay <mjskay@northwestern.edu>

Repository CRAN

Date/Publication 2023-05-22 08:30:05 UTC

https://doi.org/10.1109/TVCG.2014.2346325
https://github.com/mjskay/ggblend/issues/new
https://mjskay.github.io/ggblend/
https://github.com/mjskay/ggblend/
https://orcid.org/0000-0001-9446-0419

2 ggblend-package

R topics documented:

ggblend-package 2
adjust . ..o e 3
affine_transform L e 4
blend 6
COPY '+ o v e e e e e e e e e e e e 9
layer-like e e 10
layer_list L e e e 11
170 P 12
operation-class e e e e 14
operation_compositiono e e e e 15
operation_product L. e e e e 16
OPETation_SUM v v vt v et e e i e e e e e e e e e e e 19
Partition L. e e e e e e 20

Index 22

ggblend-package Blending and compositing for ggplot2
Description

n o on

ggblend is an R package that adds support for R 4.2 blend modes (e.g. "multiply”, "overlay”,
etc) to ggplot2.

Details

The primary support for blending is provided by the blend() function, which can be used to aug-
ment ggplot () layers/geoms or lists of layers/geoms in a ggplot () specification.

For example, one can replace something like this:

df |>
ggplot(aes(x, y)) +
geom_X(...) +
geom_Y(...) +
geom_Z(...)

With something like this:

df |>
ggplot(aes(x, y)) +
geom_X(...) +
geom_Y(...) |> blend("multiply”) +
geom_Z(...)

In order to apply a "multiply” blend to the layer with geom_Y(. . .).

adjust 3

Package options
The following global options can be set using options() to modify the behavior of ggblend:

* "ggblend.check_blend": If TRUE (default), blend() will warn if you attempt to use a blend
mode not supported by the current graphics device, as reported by dev.capabilities()$compositing.
Since this check can be unreliable on some devices (they will report not support a blend mode
that they do support), you can disable this warning by setting this option to FALSE.

e "ggblend.check_affine_transform”: If TRUE (default), affine_transform() will warn if
you attempt to use a blend mode not supported by the current graphics device, as reported by
dev.capabilities()$transformation. Since this check can be unreliable on some devices
(they will report not support a blend mode that they do support), you can disable this warning
by setting this option to FALSE.

adjust Adjust layer params and aesthetics (Layer operation)

Description

A layer operation for adjusting the params and aesthetic mappings of a layer-like object.

Usage
adjust(object, mapping = aes(), ...)
Arguments
object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
* Anything else: creates an operation, passing object along to the mapping
argument
mapping An aesthetic created using aes (). Mappings provided here will overwrite map-
pings in ggplot2::layer()s when this operation is applied to them.
ggplot2::layer() parameters, such as would be passed to a geom_. .. () or
stat_... () call. Params provided here will overwrite params in layers when
this operation is applied to them.
Value

A layer-like object (if object is layer-like) or an operation (if not).

See Also

operation for a description of layer operations.

Other layer operations: affine_transform, blend, copy, nop, partition()

4 affine_transform

Examples

library(ggplot2)

Here we use adjust() with nop() (+ 1) to create a copy of
the stat_smooth layer, putting a white outline around it.
set.seed(1234)
k = 1000
data.frame(
x = seq(1, 10, length.out = k),
y = rnorm(k, seq(1, 2, length.out = k) + c(@, 0.5)),
g = c("a", "b")
) 1>
ggplot(aes(x, y, color = g)) +
geom_point() +
stat_smooth(method = 1m, formula =y ~ x, linewidth = 1.5, se = FALSE) x
(adjust(aes(group = g), color = "white”, linewidth = 4) + 1) +
scale_color_brewer(palette = "Dark2")

(note this could also be done with copy_under())

affine_transform Translate, scale, and rotate ggplot2 layers (Layer operation)

Description

Transform objects within a single layer (geom) or across multiple layers (geoms) using affine trans-
formations, like translation, scale, and rotation. Uses the built-in compositing support in graphical
devices added in R 4.2.

Usage

affine_transform(object, x = @, y = @, width = 1, height = 1, angle = 0)

Arguments
object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
* Anumeric() orunit() giving the x-axis translation, which takes the place
of the x argument.
X A numeric() or unit() giving the X translation to apply.
y A numeric() orunit() giving the y translation to apply.
width A numeric() orunit() giving the width.
height A numeric() or unit() giving the height.

angle A numeric() giving the angle to rotate, in degrees.

affine_transform 5

Details

Applies an affine transformation (translation, scaling, rotation) to a layer.

Note: due to limitations in the implementation of scaling and rotation, currently these operations
can only be performed relative to the center of the plot. In future versions, the translation and
rotation origin may be configurable.

Value

A layer-like object (if object is layer-like) or an operation (if not).

Supported devices

Transformation is not currently supported by all graphics devices. As of this writing, at least
png(type = "cairo”), svg(), and cairo_pdf () are known to support blending.

affine_transform() attempts to auto-detect support for affine transformation using dev. capabilities().
You may receive a warning when using affine_transform() if it appears transformation is not
supported by the current graphics device. This warning either means (1) your graphics device does

not support transformation (in which case you should switch to one that does) or (2) your graphics

device supports transformation but incorrectly reports that it does not. Unfortunately, not all graph-

ics devices that support transformation appear to correctly report that they support transformation,

so even if auto-detection fails, blend () will still attempt to apply the transformation, just in case.

If the warning is issued and the output is still correctly transformed, this is likely a bug in the
graphics device. You can report the bug to the authors of the graphics device if you wish; in
the mean time, you can use options(ggblend.check_affine_transform = FALSE) to disable the
check.

References

Murrell, Paul (2021): Groups, Compositing Operators, and Affine Transformations in R Graphics.
The University of Auckland. Report. doi:10.17608/k6.auckland.17009120.v1.

See Also

operation for a description of layer operations.

Other layer operations: adjust, blend, copy, nop, partition()

Examples

library(ggplot2)

a simple dataset:

set.seed(1234)

data.frame(x = rnorm(100), y = rnorm(100)) |>
ggplot(aes(x, y)) +
geom_point() +
xlim(-5, 5)

we could scale and translate copies of the point cloud

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://doi.org/10.17608/k6.auckland.17009120.v1

6 blend

(though I'm not sure why...)
data.frame(x = rnorm(100), y = rnorm(100)) |>
ggplot(aes(x, y)) +
geom_point() * (
affine_transform(x = -unit(100, "pt"), width = @.5) |> adjust(color = "red"”) +
affine_transform(width = 0.5) +
affine_transform(x = unit(100, "pt"), width = 0.5) |> adjust(color = "blue")
) +
xlim(-5, 5)

blend Blend ggplot2 layers (Layer operation)

Description

Blend objects within a single layer (geom) or across multiple layers (geoms) using graphical blend-

n n

ing modes, such as "multiply”, "overlay”, etc. Uses the built-in compositing support in graphical
devices added in R 4.2.

Usage

blend(object, blend = "over”, alpha = 1)

Arguments
object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
* A string (character vector of length 1) giving the name of a blend, which
takes the place of the blend argument.
blend The blend mode to use. The default mode, "over"”, corresponds to the "usual"

blend mode of drawing objects on top of each other. The list of supported blend
modes depends on your graphical device (see Murrell 2021), and are listed
in dev.capabilities()$compositing. Blend modes can include: "clear”,
"source”, "over”, "in", "out"”, "atop”, "dest”, "dest.over”, "dest.in",
"dest.out"”, "dest.atop”, "xor", "add", "saturate”, "multiply”, "screen”,
"overlay”, "darken”, "lighten"”, "color.dodge”, "color.burn”, "hard.light",
"soft.light”, "difference”, and "exclusion”

Blend modes like "multiply”, "darken”, and "lighten” are particularly use-
ful as they are commutative: the result is the same whichever order they are
applied in.

A warning is issued if the current graphics device does not appear to support the
requested blend mode. In some cases this warning may be spurious, so it can be

disabled by setting options(ggblend.check_blend = FALSE).

alpha A numeric between @ and 1 (inclusive). The opacity of a transparency mask
applied to objects prior to blending.

blend 7

Details

If object is a single layer / geometry and the partition aesthetic is not set, every graphical object
(grob()) output by the geometry will be blended together using the blend blend mode. If alpha !=
1, a transparency mask with the provided alpha level will be applied to each grob before blending.

If object is a single layer / geometry and the partition aesthetic is set, the geometry will be
rendered for each subset of the data defined by the partition aesthetic, a transparency mask with
the provided alpha level will be applied to each resulting group as a whole (if alpha !=1), then
these groups will be blended together using the blend blend mode.

If object is a list of layers / geometries, those layers will be rendered separately, a transparency
mask with the provided alpha level will be applied to each layer as a whole (if alpha != 1), then
these layers will be blended together using the blend blend mode.

If a blend() is multiplied by a list of layers using *, it acts on each layer individually (as if each
layer were passed to blend()).

Value

A layer-like object (if object is layer-like) or an operation (if not).

Supported devices

Blending is not currently supported by all graphics devices. As of this writing, at least png(type =
"cairo"), svg(), and cairo_pdf () are known to support blending.

blend() attempts to auto-detect support for blending using dev.capabilities(). You may re-
ceive a warning when using blend() if it appears blending is not supported by the current graphics
device. This warning either means (1) your graphics device does not support blending (in which
case you should switch to one that does) or (2) your graphics device supports blending but incor-
rectly reports that it does not. Unfortunately, not all graphics devices that support blending appear
to correctly report that they support blending, so even if auto-detection fails, blend() will still
attempt to apply the blend, just in case.

If the warning is issued and the output is still correctly blended, this is likely a bug in the graphics
device. You can report the bug to the authors of the graphics device if you wish; in the mean time,
you can use options(ggblend.check_blend = FALSE) to disable the check.

References
Murrell, Paul (2021): Groups, Compositing Operators, and Affine Transformations in R Graphics.
The University of Auckland. Report. doi:10.17608/k6.auckland.17009120.v1.

See Also

operation for a description of layer operations.

Other layer operations: adjust, affine_transform, copy, nop, partition()

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://doi.org/10.17608/k6.auckland.17009120.v1

8 blend
Examples

library(ggplot2)

create two versions of a dataset, where draw order can affect output

set.seed(1234)

df_a = data.frame(x = rnorm(500, 0), y
df_b = data.frame(x = rnorm(500, 1), y

rnorm(500, 1), set
rnorm(500, 2), set

"am
b

df_ab = rbind(df_a, df_b) |>

transform(order = "draw a then b")

df_ba = rbind(df_b, df_a) |>

transform(order = "draw b then a")

df = rbind(df_ab, df_ba)

#

Using the "darken" blend mode, draw order does not matter:

df |>

#

ggplot(aes(x, y, color = set)) +
geom_point(size = 3) |> blend("darken") +
scale_color_brewer(palette = "Set2") +
facet_grid(~ order)

Using the "multiply” blend mode, we can see density within groups:

df |>

ggplot(aes(x, y, color = set)) +
geom_point(size = 3) |> blend("multiply”) +
scale_color_brewer(palette = "Set2") +
facet_grid(~ order)

blend() on a single geom by default blends all grobs in that geom together
using the requested blend mode. If we wish to blend within specific data
subsets using normal blending ("over”) but between subsets using the
requested blend mode, we can set the partition aesthetic. This will

make "multiply” behave more like "darken":

df |>

ggplot(aes(x, y, color = set, partition = set)) +
geom_point(size = 3) |> blend("multiply”) +
scale_color_brewer(palette = "Set2") +
facet_grid(~ order)

We can also blend lists of geoms together; these geoms are rendered using
normal ("over”) blending (unless a blend() call is applied to a specific
sub-layer, as in the first layer below) and then blended together using
the requested blend mode.

df |>

ggplot(aes(x, y, color = set)) +
list(
geom_point(size = 3) |> blend("darken"),
geom_vline(xintercept = @, color = "gray75"”, linewidth = 1.5),
geom_hline(yintercept = @, color = "gray75"”, linewidth = 1.5)
) |> blend("hard.light") +
scale_color_brewer(palette = "Set2") +
facet_grid(~ order)

copy 9

copy Copy layers then adjust params and aesthetics (Layer operation)

Description

A layer operation for copying and then adjusting the params and aesthetic mappings of a layer-like

object.
Usage
copy_over(object, mapping = aes(), ...)
copy_under(object, mapping = aes(), ...)
Arguments
object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
* Anything else: creates an operation, passing object along to the mapping
argument
mapping An aesthetic created using aes (). Mappings provided here will overwrite map-
pings in ggplot2: :layer()s when this operation is applied to them.
ggplot2::layer() parameters, such as would be passed to a geom_. .. () or
stat_... () call. Params provided here will overwrite params in layers when
this operation is applied to them.
Details

These are shortcuts for duplicating a layer and then applying adjust(). Specifically:

* copy_over(...) isequivalent to 1 + adjust(...)

e copy_under(...) is equivalent to adjust(...) +1

Value

A layer-like object (if object is layer-like) or an operation (if not).

See Also

operation for a description of layer operations.

Other layer operations: adjust, affine_transform, blend, nop, partition()

10 layer-like

Examples

library(ggplot2)

here we use copy_under() to create a copy of
the stat_smooth layer, putting a white outline around it.
set.seed(1234)
k = 1000
data.frame(
x = seq(1, 10, length.out = k),
y = rnorm(k, seq(1, 2, length.out = k) + c(@, 0.5)),
g = c("a", "b")
) 1>
ggplot(aes(x, y, color = g)) +
geom_point() +
stat_smooth(method = 1m, formula =y ~ x, linewidth = 1.5, se = FALSE) *

copy_under(aes(group = g), color = "white”, linewidth = 4) +
scale_color_brewer(palette = "Dark2")
layer-like ggplot2 layer-like objects
Description

For technical reasons related to how ggplot2 implements layers, there is no single class from which
all valid ggplot2 layers and lists of layers inherit. Thus, ggblend operations supports a variety of
"layer-like" objects, documented here (see Details).

Usage
is_layer_like(x)
as_layer_like(x)

Default S3 method:
as_layer_like(x)

S3 method for class 'LayerInstance'
as_layer_like(x)

S3 method for class 'list'
as_layer_like(x)

S3 method for class 'layer_list'
as_layer_like(x)

Arguments

X A layer-like object. See Details.

layer_list 11

Details
ggblend operations can be applied to several ggplot2: : layer ()-like objects, including:
* objects of class "LayerInstance”;e.g. stats and geoms.

» list()s of layer-like objects.

* layer_list()s, which are a more type-safe version of 1ist()s of layer-like objects.

Anywhere in ggblend where a function parameter is documented as being layer-like, it can be any
of the above object types.

Value

For is_layer_like(), a logical: TRUE if x is layer-like, FALSE otherwise.

For as_layer_like(), a "LayerInstance” or a layer_list().

Functions

* is_layer_like(): checks if an object is layer-like according to ggblend.

* as_layer_like(): validates that an object is layer-like and converts it to a "LayerInstance”
or layer_list().

Examples

library(ggplot2)

is_layer_like(geom_line())
is_layer_like(list(geom_line()))
is_layer_like(list(geom_line(), scale_x_continuous()))
is_layer_like(list(geom_line(), "abc"))

layer_list Lists of layer-like objects

Description

A list of layer-like objects, which can be used in layer operations (through function application or
multiplication) or added to a ggplot2() object.

Usage
layer_list(...)

as_layer_list(x)

S3 method for class 'layer_list'
as_layer_list(x)

12 nop

S3 method for class 'list'
as_layer_list(x)

S3 method for class 'LayerInstance'
as_layer_list(x)

S4 method for signature 'layer_list,layer_list'
el + e2

S4 method for signature 'layer_list'
show(object)

Arguments

X, o. layer-like objects

object, el, e2 layer_list()s

Details

For the most part, users of ggblend need not worry about this class. It is used internally to simplify
multiple dispatch on binary operators, as the alternative (1ist()s of ggplot2::layer()s) is more
cumbersome. ggblend converts input lists to this format as needed.

Value

An object of class "layer_list".

Examples

library(ggplot2)

layer_list()s act just like list()s of layer()s in that they can
be added to ggplot() objects
data.frame(x = 1:10) |>
ggplot(aes(x, x)) +
layer_list(
geom_line(),
geom_point()
)

nop Identity ("no-op") transformation (Layer operation)

Description

A layer operation which returns the input layer-like object unchanged.

nop 13

Usage
nop(object)
Arguments
object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
Details

When numeric()s are used with operations, they are converted into sums of nop()s.

Value

A layer-like object (if object is layer-like) or an operation (if not).

See Also

operation for a description of layer operations.

Other layer operations: adjust, affine_transform, blend, copy, partition()

Examples

library(ggplot2)

adding a nop to another operation is equivalent to adding a numeric
adjust() + nop()

and vice versa
adjust() + 2

here we use adjust() with nop() (+ 1) to create a copy of
the stat_smooth layer, putting a white outline around it.
set.seed(1234)
k = 1000
data.frame(
x = seq(1, 10, length.out = k),
y = rnorm(k, seq(1, 2, length.out = k) + c(@, 0.5)),
g = c("a", "b")
) 1>
ggplot(aes(x, y, color = g)) +
geom_point() +
stat_smooth(method = 1m, formula =y ~ x, linewidth = 1.5, se = FALSE) x
(adjust(aes(group = g), color = "white”, linewidth = 4) + 1) +
scale_color_brewer(palette = "Dark2")

(note this could also be done with copy_under())

14 operation-class

operation-class Layer operations

Description

Layer operations are composable transformations that can be applied to ggplot2 layer-like objects,
such as stats, geoms, and lists of stats and geoms; see the layer-like documentation page for a
description of valid layer-like objects.

Usage

S4 method for signature 'operation'
show(object)

S4 method for signature 'operation'
format(x, ...)

S4 method for signature 'adjust'
format(x, ...)

S4 method for signature 'affine_transform'
format(x, ...)

S4 method for signature 'blend'
format(x, ...)

S4 method for signature 'operation_composition'
format(x, ...)

S4 method for signature 'nop'
format(x, ...)

S4 method for signature 'operation_product’
format(x, ...)

Arguments

X, object An operation.

Further arguments passed to other methods.

Details

operations can be composed using the + and * operators (see operation_sum and operation_product).
Addition and multiplication of operations and layer-like objects obeys the distributive law.

operations can be applied to layer-like objects using * or |>, with slightly different results:

operation_composition 15

» Using *, application of operations to a list of layer-like objects is distributive. For example,
list(geom_line(), geom_point()) * blend("multiply") is equivalentto list(geom_line()
*blend("multiply”), geom_point() * blend("multiply”)); i.e. it multiply-blends the
contents of the two layers individually.

» Using |>, application of operations to a list of layer-like objects is not distributive (unless
the only reasonable interpretation of applying the transformation is necessarily distributive;
e.g. adjust()). For example, list(geom_line(), geom_point()) |>blend("multiply")
would multiply-blend both layers together, rather than multiply-blending the contents of the
two layers individually.

Value

For show(), an invisible() copy of the input.

For format (), a character string representing the input.

Methods (by generic)

* show(operation): Print an operation.

* format(operation): Format an operation for printing.

Examples

library(ggplot2)

operations can stand alone
adjust(aes(color = x))

they can also be applied to layers through multiplication or piping
geom_line() |> adjust(aes(color = x))
geom_line() * adjust(aes(color = x))

layer operations act as a small algebra, and can be combined through
multiplication and addition
(adjust(fill = "green”) + 1) % blend("multiply”)

operation_composition Layer operation composition

Description

operations can be composed together to form chains of operations, which when multiplied by (ap-
plied to) layer-like objects, return modified layer-like objects. In contrast to operation_products,
compositions of operations are not distributive over sums of operations or layer-like objects.

16 operation_product

Details

Operation composition is achieved through function application, typically using the pipe operator
(]>); e.g. operationl |> operation2.

The output of composing ggblend operations depends on the types of objects being composed:
* If you compose an operation with an operation, they are merged into a single operation that
applies each operation in sequence, without distributing over layers.

* If you compose an operation with a layer-like object, that operation is applied to the layer,
returning a new layer-like object. The operation is applied to the layer as a whole, not any
sub-parts (e.g. sub-layers or graphical objects).

Value

An operation.

Examples

library(ggplot2)

composing operations together chains them
adjust(color = "red") |> blend("multiply”)

unlike multiplication, composition does not follow the distributive law
mult_op = (adjust(aes(y = 11 -x), color = "skyblue") + 1) * blend("multiply”)
mult_op

comp_op = (adjust(aes(y = 11 -x), color = "skyblue") + 1) |> blend("multiply”)
comp_op

multiplication by a geom returns a modified version of that geom
data.frame(x = 1:10) |>
ggplot(aes(x = x, y = x)) +

geom_line(linewidth = 1@, color = "red") * comp_op
operation_product Layer operation products
Description

operations can be multiplied together to form chains of operations, which when multiplied by (ap-
plied to) layer-like objects, return modified layer-like objects.

operation_product

Usage

##
el

it
el

##
el

#i
el

1t
el

##
el

it
el

##
el

##

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method

prod(x, ...,

##
el

#it
el

##
el

#it
el

1t
el

##
el

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

S4 method
* e2

for

for

for

for

for

for

for

for

for

na.rm = FALSE)

for

for

for

for

for

for

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

'operation, ANY'

"ANY, operation'’

'adjust,adjust’

'nop, nop'

'operation,nop'’

'operation_sum,nop’

'nop,operation’

'nop,operation_sum'

'operation’

'operation,operation’

'numeric,operation’

'operation,numeric'’

'operation,operation_sum'

'operation_sum,operation’

'operation_sum,operation_sum'

17

18 operation_product

Arguments
el an operation, layer-like, or numeric()
e2 an operation, layer-like, or numeric()
Xy oun operations
na.rm ignored

Details

Multiplication of ggblend operations depends on the types of objects being multiplied:
¢ If you multiply an operation with an operation, they are merged into a single operation that
applies each operation in sequence.

* If you multiply an operation with a layer-like object, that operation is applied to the layer,
returning a new layer-like object.

¢ If you multiply an operation by a numeric() n, a new operation that repeats the input operation
is n times is returned.

Value

An operation.

Examples
library(ggplot2)

multiplying operations by numerics repeats them...
adjust(color = "red") * 2

multiplying operations together chains (or merges) them
adjust(color = "red"”) * adjust(linewidth = 2)

multiplication obeys the distributive law
op = (adjust(aes(y = 11 -x), color = "skyblue”) + 1) * (adjust(color = "white", linewidth = 4) + 1)
op

multiplication by a geom returns a modified version of that geom
data.frame(x = 1:10) |>

ggplot(aes(x = x, y = x)) +

geom_line(linewidth = 2) * op

operation_sum 19

operation_sum Layer operation sums

Description

operations can be added together to form stacks of operations, which when multiplied by (applied
to) layer-like objects, those layer-like objects are distributed over the operations (i.e. copied).

Usage

S4 method for signature 'operation'
sum(x, ..., na.rm = FALSE)

S4 method for signature 'operation,operation'
el + e2

S4 method for signature 'operation,numeric'
el + e2

S4 method for signature 'numeric,operation’
el + e2

S4 method for signature 'operation_sum'

format(x, ...)
Arguments
Xy e operations
na.rm ignored
el an operation or numeric()
e2 an operation or numeric()
Details

Addition of ggblend operations depends on the types of objects being summed:

* If you add an operation to an operation, they are merged into a single operation that copies
input layer-like objects, one for each operation.

* If you add an operation to a numeric() n, it is equivalent to adding * nop()s to that operation.

Value

An operation.

20 partition

Examples

library(ggplot2)

adding operations together creates a sum of operations
adjust(color = "red"”) + adjust(linewidth = 2)

addition and multiplication obey the distributive law
op = (adjust(aes(y = 11 -x), color = "skyblue”) + 1) * (adjust(color = "white", linewidth =4) + 1)
op

multiplication by a geom returns a modified version of that geom,
distributed over the sum of the operations
data.frame(x = 1:10) |>

ggplot(aes(x = x, y = x)) +

geom_line(linewidth = 2) * op

partition Fartition a layer into subgroups (Layer operation)

Description

A layer operation for adding a partition aesthetic to a layer.

Usage

partition(object, partition)

Arguments

object One of:
* A layer-like object: applies this operation to the layer.
* A missing argument: creates an operation
* Anything else: creates an operation, passing object along to the partition
argument
partition One of:

* A list of quosures, such as returned by vars(), giving a (possibly multi-
) column expression for the partition aesthetic. These expressions are
combined using interaction() to be passed on to aes(partition=...)

* A one-sided formula, giving a single-column expression for the partition
aesthetic, which is passed on to aes_(partition=...).

Details

This is a shortcut for setting the partition aesthetic of a layer.

e partition(~ XXX) is roughly equivalent to adjust(aes(partition = XXX))

partition 21

e partition(vars(X, Y, ...)) isroughly equivalentto adjust(aes(partition = interaction(X,

Y, .0

When a layer with a partition aesthetic is used by the following operations, the effects of the
operations are applied across groups:

* blend(): Blends graphical objects within the subgroups defined by the partition together
using normal ("over") blending before applying its blend between subgroups.
Value

A layer-like object (if object is layer-like) or an operation (if not).

See Also

operation for a description of layer operations.

Other layer operations: adjust, affine_transform, blend, copy, nop

Examples

library(ggplot2)

create two versions of a dataset, where draw order can affect output
set.seed(1234)

df_a = data.frame(x = rnorm(500, @), y = rnorm(500, 1), set = "a")

df_b = data.frame(x = rnorm(500, 1), y = rnorm(500, 2), set = "b")
df_ab = rbind(df_a, df_b) |>

transform(order = "draw a then b")
df_ba = rbind(df_b, df_a) |>

transform(order = "draw b then a")

df = rbind(df_ab, df_ba)

Using the "multiply” blend mode, draw order does not matter, but
the "multiply” blend is applied to all points, creating dark regions
outside the intersection:
df |>
ggplot(aes(x, y, color = set)) +
geom_point(size = 3, alpha = 0.5) |> blend("multiply”) +
scale_color_brewer(palette = "Set1") +
facet_grid(~ order)

By partitioning (either through |> partition(vars(set)) or aes(partition = set))
we will blend using the default blend mode (over) first, then we can apply the
"multiply” blend just between the two sets, so the regions outside the
intersection are not blended using "multiply”:

df |>

ggplot(aes(x, y, color = set, partition = set)) +

geom_point(size = 3, alpha = 0.5) |> blend("multiply”) +
scale_color_brewer(palette = "Set1") +

facet_grid(~ order)

Index

* layer operations
adjust, 3
affine_transform, 4
blend, 6
copy, 9
nop, 12
partition, 20
*,ANY, operation-method
(operation_product), 16
* adjust,adjust-method
(operation_product), 16
*,nop,nop-method (operation_product), 16
*,nop,operation-method
(operation_product), 16
*,nop,operation_sum-method
(operation_product), 16
* numeric,operation-method
(operation_product), 16
*,operation, ANY-method
(operation_product), 16
*, operation,nop-method
(operation_product), 16
*,operation,numeric-method
(operation_product), 16
* operation,operation-method
(operation_product), 16
*,operation,operation_sum-method
(operation_product), 16
* operation_sum,nop-method
(operation_product), 16
* operation_sum,operation-method
(operation_product), 16
*,operation_sum,operation_sum-method
(operation_product), 16
+,layer_list,layer_list-method
(layer_list), 11
+,numeric,operation-method
(operation_sum), 19
+,operation,numeric-method

(operation_sum), 19
+,operation,operation-method
(operation_sum), 19

adjust, 3,5,7,9, 13,21
adjust(), 9
adjust-class (adjust), 3
affine_transform, 3,4, 7,9, 13,21
affine_transform(), 3
affine_transform-class
(affine_transform), 4
as_layer_like (layer-1like), 10
as_layer_list (layer_list), 11

blend, 3,5,6,9, 13,21
blend(), 3, 21
blend-class (blend), 6

copy, 3,5,7,9, 13,21
copy_over (copy), 9
copy_under (copy), 9

format,adjust-method (operation-class),
14
format,affine_transform-method
(operation-class), 14
format,blend-method (operation-class),
14
format,nop-method (operation-class), 14
format,operation-method
(operation-class), 14
format,operation_composition-method
(operation-class), 14
format,operation_product-method
(operation-class), 14
format,operation_sum-method
(operation_sum), 19

ggblend (ggblend-package), 2
ggblend-package, 2
ggplot(), 2

INDEX

ggplot2(), 11
ggplot2::layer(),3,9,11, 12
grob(), 7

interaction(), 20
invisible(), 15
is_layer_like (layer-like), 10

layer, 20, 21

layer (layer-like), 10
layer-like, 3-7,9, 10, 10, 11-16, 18-21
layer_list, 11

layer_list(), 11, 12
layer_list-class (layer_list), 11
list(), 11,12

nop, 3,5,7,9,12, 21
nop(), 19
nop-class (nop), 12
numeric(), 18, 19

operation, 37, 9-16, 18-21
operation (operation-class), 14
operation-class, 14
operation_composition, 15
operation_composition-class

(operation_composition), 15
operation_product, /4, 15, 16
operation_product-class

(operation_product), 16
operation_sum, /4, 19
operation_sum-class (operation_sum), 19
options(), 3

partition, 3,5,7,9, 13,20
prod, operation-method
(operation_product), 16

show, layer_list-method (layer_list), 11

show, operation-method
(operation-class), 14

sum, operation-method (operation_sum), 19

vars(), 20

23

	ggblend-package
	adjust
	affine_transform
	blend
	copy
	layer-like
	layer_list
	nop
	operation-class
	operation_composition
	operation_product
	operation_sum
	partition
	Index

