Package ‘gdalraster’

May 11, 2025
Title Bindings to 'GDAL'
Version 2.0.0

Description API bindings to the Geospatial Data Abstraction Library (GDAL',
<https://gdal.org>). Implements the 'GDAL' Raster and Vector Data Models.
Bindings are implemented with 'Rcpp’ modules. Exposed C++ classes and
stand-alone functions wrap much of the 'GDAL' API and provide additional
functionality. Calling signatures resemble the native C, C++ and Python APIs
provided by the 'GDAL' project. Class 'GDALRaster' encapsulates a
'GDALDataset' and its raster band objects. Class 'GDALVector' encapsulates
an 'OGRLayer' and the 'GDALDataset' that contains it. Class "VSIFile'
provides bindings to the 'GDAL' 'VSIVirtualHandle' API. Additional classes
include 'CmbTable' for counting unique combinations of integers, and
'RunningStats' for computing summary statistics efficiently on large data
streams. C++ stand-alone functions provide bindings to most 'GDAL' raster
and vector utilities including 'OGR' facilities for vector geoprocessing,
several algorithms, the Geometry API (GEOS' via 'GDAL' headers), the
Spatial Reference Systems API, and methods for coordinate transformation.
Bindings to the Virtual Systems Interface ('"VSI') API implement standard
file system operations, abstracted for URLs, cloud storage services,
'Zip'/'GZip'/"7z'/RAR’, in-memory files, as well as regular local file
systems. This provides a single interface for operating on file system
objects that works the same for any storage backend. A custom raster
calculator evaluates a user-defined R expression on a layer or stack of
layers, with pixel x/y available as variables in the expression. Raster
'combine()' identifies and counts unique pixel combinations across multiple
input layers, with optional raster output of the pixel-level combination
IDs. Basic plotting capability is provided for raster and vector display.
'gdalraster’ leans toward minimalism and the use of simple, lightweight
objects for holding raw data. Currently, only minimal S3 class interfaces
have been implemented for selected R objects that contain spatial data.
'gdalraster’ may be useful in applications that need scalable, low-level
I/O, or prefer a direct ' GDAL" API.

License MIT + file LICENSE
Copyright See file inst/COPYRIGHTS for details.

URL https://usdaforestservice.github.io/gdalraster/,

1

https://gdal.org
https://usdaforestservice.github.io/gdalraster/

https://github.com/USDAForestService/gdalraster

BugReports https://github.com/USDAForestService/gdalraster/issues
Depends R (>=4.2.0)

Imports bit64, graphics, grDevices, methods, nanoarrow, Repp (>=
1.0.7), stats, tools, utils, wk, xml2

LinkingTo nanoarrow, Rcpp, ReppInt64

Suggests gt, knitr, rmarkdown, scales, testthat (>= 3.0.0)
NeedsCompilation yes

SystemRequirements C++17, GDAL (>= 3.1.0, built against GEOS)
Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

Author Chris Toney [aut, cre] (R interface/additional functionality),

Michael D. Sumner [ctb],

Frank Warmerdam [ctb, cph] (GDAL API documentation; src/progress_r.cpp
from gdal/port/cpl_progress.cpp),

Even Rouault [ctb, cph] (GDAL API documentation),

Marius Appel [ctb, cph] (configure.ac based on
https://github.com/appelmar/gdalcubes),

Daniel James [ctb, cph] (Boost combine hashes method in
src/cmb_table.h),

Peter Dimov [ctb, cph] (Boost combine hashes method in src/cmb_table.h)

Maintainer Chris Toney <chris. toney@usda.gov>
Repository CRAN
Date/Publication 2025-05-11 21:40:02 UTC

Contents

gdalraster-package L L
addFilesInZip L
apply_geotransform
autoCreateWarpedVRT
bandCopyWholeRaster
bbox_from_wkt
bbox_Intersect e
bbox_to_wkt
bbox_transform
buildRAT e
buildVRT e
calc . .. e e e
CmbTable-class e
combine e e e

Contents

https://github.com/USDAForestService/gdalraster
https://github.com/USDAForestService/gdalraster/issues

Contents

3
copyDatasetFiles 32
CTEALE .+ v v v v v v e i e e e e e e e e e e e e e e e 33
createColorRamp 34
CreateCopy .« « v v v v e e e e e 36
data_type_helpers 38
DEFAULT_DEM_PROC e e e e 40
DEFAULT_NODATA e e e s e e 41
deleteDataset e e e 41
dem_proc e e e 42
displayRAT e 43
dump_open_datasetso 44
fillNodata e e e 45
footprint 46
GDALRaster-class e 47
GDALVector-class o o e e e e e e e 62
gdal_compute_versiono e e 78
gdal_formats 79
gdal_Version e e e e e e 80
GEOS_VETSION . . . v v v i e it e e e e e e e e e e e e e e e e e e 80
getCreationOptions 81
get_cache_max e e e 82
get_cache_used e e 83
get_config option 84
GEELLMUM_CPUS « . . o v v v e e e e e e e e e e e e e e e e e 85
get_pixel_line L 85
get_usable_physical_ramo 86
g binary_op 87
g binary_pred 89
g buffer 91
g COOTdS .« . L e e e e e 92
geenvelope 93
g factory e e 93
g make valid 95
C MEASUIES . .« v v v v e 97
S QUETY « o o et e e e e e e e e e 99
g simplify e 101
CoSWAP_XY v v e 103
g transform 104
g WK2WK . e 106
has_geos 107
has_spatialite 107
http_enabled e e 108
identifyDriver L 109
inspectDataset 110
inv_geotransform L. L 111
INV_PIOJECt . . o v vt o i i e e e e e e e e e e e e e e 112
OZI208L « « o i i e e e e 113

ogrinfO L L 115

Contents

ogrdefine L e e e 117
OZI_MANAZE . « . . v v v e e et e e e e e e e e e e e e e e e e 120
OZE_PIOC « ¢ v v e v v e e e e e e e e e e e e e e e e e 127
OI_IEPIOJECT « . v v v vt e e i e e e e e e e e e e 131
pixel_extract. e e e e e e 134
plot.OGRFeature 136
plot.OGRFeatureSet. 137
PIOL_TaSter e e e e e e e e e 137
polygonize e e e 141
pop_error_handler. 144
print.tOGRFeature 145
print. OGRFeatureSet e 145
proj_networking 146
proj_search_paths 146
PrOJ_VEISION o v vt it e et e e e e e e e e e e e e e e e 147
push_error_handler 148
rastertFromRaster 149
TASEETIZE o o o e e e e e e e e e e 150
rasterTOVRT e 153
read_dS L e 158
renameDataset L. e 160
RunningStats-class e 161
set_cache_maxX e e 164
set_config_optionl 165
sieveFilter e e e 166
SIS_CONVETL . . v v vt v e e e e e e e e e e e e e e e e e e e 168
SIS_QUETY .« v v v vt e e e e e e e e e e e e e e e e 169
transform_bounds e 173
transform_Xy L e e e e e e 175
translate L e e e 176
validateCreationOptions e 177
VSIFile-class e e e e e e 178
vsi_clear_path_options 183
VSI_CONSEANES o o e e e e e e e e 184
vsi_copy_file 185
vsi_curl_clear_cache e 186
vsi_get_actual_urlo 187
vsi_get_disk_free_space L 188
vsi_get_file_metadata 188
vsi_get_fs_options e e 189
vsi_get_fs_prefixes 190
vsi_get_signed_url 191
vsi_is_local e e e e e e 192
vsiimkdir e 193
vsi_read_dir e 194
VSI_TENAME v v v v e e e e e e e e e e e e e e e e 195
vsi_rmdir e e e 196

vsi_set_path_option 197

gdalraster-package 5

VSI_StAt . . . L e e e e e 198
VSI_SUpports_tnd_Write e e e e e e 199
VSI_SUPPOIES_SEq_WIILE ¢« v v o vt e it e e e e e e e 200
VSI_SYNC . . . o o o e e 201
vsiunlinko e 203
vsi_unlink_batch e 204
WAID & v v o v e 205
Index 209

gdalraster-package Bindings to the GDAL API

Description

gdalraster is an interface to the Geospatial Data Abstraction Library (GDAL) providing an R imple-
mentation of the GDAL Raster and Vector Data Models. Bindings also include the GDAL Geometry
API, Spatial Reference Systems API, utilities and algorithms, methods for coordinate transforma-
tion, and the Virtual Systems Interface (VSI) API. Calling signatures resemble those of the native C,
C++ and Python APIs provided by the GDAL project. See https://gdal.org/en/stable/api/
for details of the GDAL API.

Details
Core raster functionality is contained in class GDALRaster and several related stand-alone functions:

* GDALRaster-class is an exposed C++ class that allows opening a raster dataset and calling
methods on the GDALDataset, GDALDriver and GDALRasterBand objects in the underlying
API (e.g., get/set parameters, read/write pixel data).

e raster creation: create(), createCopy(), rasterfFromRaster(), translate(), getCreationOptions(),
validateCreationOptions()

e virtual raster: autoCreateWarpedVRT (), buildVRT(), rasterToVRT()
* reproject/resample/crop/mosaic: warp()

e algorithms: dem_proc(), fillNodata(), footprint(), polygonize(), rasterize(), sieveFilter(),
GDALRaster$getChecksum()

* raster attribute tables: buildRAT(), displayRAT(), GDALRaster$getDefaultRAT(), GDALRaster$setDefaultRAT()

* geotransform conversion: apply_geotransform(), get_pixel_line(), inv_geotransform(),
pixel_extract()

* data type convenience functions: dt_size(), dt_is_complex(),dt_is_integer(),dt_is_floating(),
dt_is_signed(),dt_union(),dt_union_with_value(),dt_find(),dt_find_for_value()

Core vector functionality is contained in class GDALVector and several related stand-alone func-
tions:

* GDALVector-class is an exposed C++ class that allows opening a vector dataset and calling
methods on a specified OGRLayer object that it contains (e.g., obtain layer information, set
attribute and/or spatial filters, read/write feature data).

https://gdal.org/en/stable/api/

gdalraster-package

OGR vector utilities: ogrinfo(), ogr2ogr(), ogr_reproject(), ogr_define, ogr_manage,
ogr_proc()

Bindings to the GDAL Geometry API, Spatial Reference Systems API, methods for coordinate
transformation, the Virtual Systems Interface (VSI) API, general data management and system
configuration are implemented in several stand-alone functions:

Geometry API: bbox_from_wkt (), bbox_to_wkt (), bbox_intersect(), bbox_union(), bbox_transform(),
g_factory, g_query, g_binary_pred, g_binary_op, g_measures, g_buffer(), g_coords(),
g_envelope(), g_make_valid(), g_simplify(), g_swap_xy(), g_transform(), g_wk2wk(),
geos_version()

Spatial Reference Systems API: srs_convert, srs_query
coordinate transformation: transform_xy (), inv_project(), transform_bounds()

data management: addFilesInZip(), copyDatasetFiles(), deleteDataset(), renameDataset(),
bandCopyWholeRaster (), identifyDriver(), inspectDataset()

Virtual Systems Interface API: VSIFile-class, vsi_clear_path_options(), vsi_copy_file(),
vsi_curl_clear_cache(),vsi_get_disk_free_space(),vsi_get_file_metadata(),vsi_get_fs_options(),
vsi_get_fs_prefixes(),vsi_is_local(),vsi_mkdir(),vsi_read_dir(),vsi_rename(),
vsi_rmdir(),vsi_set_path_option(), vsi_stat(), vsi_supports_rnd_write(), vsi_supports_seq_write(),
vsi_sync(), vsi_unlink(), vsi_unlink_batch()

GDAL configuration: gdal_version, gdal_compute_version(), gdal_formats(), get_cache_used(),
get_cache_max(), set_cache_max(), get_config_option(), set_config_option(), get_num_cpus(),
get_usable_physical_ram(), has_spatialite(), http_enabled(), push_error_handler(),
pop_error_handler (), dump_open_datasets()

PROIJ configuration: proj_version(), proj_search_paths(), proj_networking()

Additional functionality includes:

Note

RunningStats-class calculates mean and variance in one pass. The min, max, sum, and
count are also tracked (efficient summary statistics on data streams).

CmbTable-class implements a hash table for counting unique combinations of integer values.

combine() overlays multiple rasters so that a unique ID is assigned to each unique combina-
tion of input values. Pixel counts for each unique combination are obtained, and combination
IDs are optionally written to an output raster.

calc() evaluates an R expression for each pixel in a raster layer or stack of layers. Individual
pixel coordinates are available as variables in the R expression, as either x/y in the raster
projected coordinate system or inverse projected longitude/latitude.

plot_raster() displays raster data using base R graphics. Supports single-band grayscale,
RGB, color tables and color map functions (e.g., color ramp).

Documentation for the API bindings borrows heavily from the GDAL documentation, (c) 1998-
2025, Frank Warmerdam, Even Rouault, and others, MIT license.

Sample datasets included with the package are used in examples throughout the documentation.
The sample data sources include:

https://gdal.org/en/stable/license.html

gdalraster-package 7

LANDFIRE raster layers describing terrain, vegetation and wildland fuels (LF 2020 version)
* Landsat C2 Analysis Ready Data from USGS Earth Explorer

* Monitoring Trends in Burn Severity (MTBS) fire perimeters from 1984-2022

* NLCD Tree Canopy Cover produced by USDA Forest Service

* National Park Service Open Data vector layers for roads and points-of-interest

* Montana State Library boundary layer for Yellowstone National Park

Metadata for these sample datasets are in inst/extdata/metadata.zip and inst/extdata/ynp_features.zip.

system.file() is used in the examples to access the sample datasets. This enables the code to
run regardless of where R is installed. Users will normally give file names as a regular full path or
relative to the current working directory.

Temporary files are created in some examples which have cleanup code wrapped in dontshow{}.
While the cleanup code is not shown in the documentation, note that this code runs by default if
examples are run with example().

Author(s)

GDAL is by: Frank Warmerdam, Even Rouault and others
(see https://github.com/0SGeo/gdal/graphs/contributors)

R interface/additional functionality: Chris Toney

Maintainer: Chris Toney <chris.toney at usda.gov>

See Also

GDAL Raster Data Model:
https://gdal.org/en/stable/user/raster_data_model.html

Raster driver descriptions:
https://gdal.org/en/stable/drivers/raster/index.html

Geotransform tutorial:
https://gdal.org/en/stable/tutorials/geotransforms_tut.html

GDAL Vector Data Model:
https://gdal.org/en/stable/user/vector_data_model.html

Vector driver descriptions:
https://gdal.org/en/stable/drivers/vector/index.html

GDAL Virtual File Systems:
https://gdal.org/en/stable/user/virtual_file_systems.html

https://landfire.gov/
https://earthexplorer.usgs.gov/
https://www.mtbs.gov/
https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/
https://public-nps.opendata.arcgis.com/
https://msl.mt.gov/geoinfo/
https://github.com/OSGeo/gdal/graphs/contributors
https://gdal.org/en/stable/user/raster_data_model.html
https://gdal.org/en/stable/drivers/raster/index.html
https://gdal.org/en/stable/tutorials/geotransforms_tut.html
https://gdal.org/en/stable/user/vector_data_model.html
https://gdal.org/en/stable/drivers/vector/index.html
https://gdal.org/en/stable/user/virtual_file_systems.html

addFilesInZip

addFilesInZip

Create/append to a potentially Seek-Optimized ZIP file (SOZip)

Description

addFilesInZip() will create new or open existing ZIP file, and add one or more compressed
files potentially using the seek optimization extension. This function is basically a wrapper for
CPLAddFileInZip() in the GDAL Common Portability Library, but optionally creates a new ZIP
file first (with CPLCreateZip()). It provides a subset of functionality in the GDAL sozip command-
line utility (https://gdal.org/en/stable/programs/sozip.html). Requires GDAL >=3.7.

Usage

addFilesInZip(

zip_file,
add_files,
overwrite =
full_paths

FALSE,
TRUE,

sozip_enabled = NULL,
sozip_chunk_size = NULL,
sozip_min_file_size = NULL,

num_threads

content_type
quiet = FALSE

Arguments

zip_file

add_files
overwrite

full_paths

sozip_enabled

NULL,

= NULL,

Filename of the ZIP file. Will be created if it does not exist or if overwrite =
TRUE. Otherwise will append to an existing file.

Character vector of one or more input filenames to add.
Logical scalar. Overwrite the target zip file if it already exists.

Logical scalar. By default, the full path will be stored (relative to the current
directory). FALSE to store just the name of a saved file (drop the path).

String. Whether to generate a SOZip index for the file. One of "AUTO" (the
default), "YES"” or "NO" (see Details).

sozip_chunk_size

The chunk size for a seek-optimized file. Defaults to 32768 bytes. The value is
specified in bytes, or K and M suffix can be used respectively to specify a value
in kilo-bytes or mega-bytes. Will be coerced to string.

sozip_min_file_size

The minimum file size to decide if a file should be seek-optimized, in sozip_enabled="AUTO"
mode. Defaults to 1 MB byte. The value is specified in bytes, or K, M or G

suffix can be used respectively to specify a value in kilo-bytes, mega-bytes or

giga-bytes. Will be coerced to string.

https://gdal.org/en/stable/programs/sozip.html

addFilesInZip 9

num_threads Number of threads used for SOZip generation. Defaults to "ALL_CPUS" or spec-
ify an integer value (coerced to string).

content_type String Content-Type value for the file. This is stored as a key-value pair in the
extra field extension KV’ (0x564b) dedicated to storing key-value pair meta-
data.

quiet Logical scalar. TRUE for quiet mode, no progress messages emitted. Defaults to
FALSE.

Details

A Seek-Optimized ZIP file (SOZip) contains one or more compressed files organized and annotated
such that a SOZip-aware reader can perform very fast random access within the .zip file (see https:
//github.com/sozip/sozip-spec). Large compressed files can be accessed directly from SOZip
without prior decompression. The .zip file is otherwise fully backward compatible.

If sozip_enabled="AUTO0" (the default), a file is seek-optimized only if its size is above the values
of sozip_min_file_size (default 1 MB) and sozip_chunk_size (default 32768). In "YES" mode,
all input files will be seek-optimized. In "NO" mode, no input files will be seek-optimized. The
default can be changed with the CPL_SOZIP_ENABLED configuration option.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

The GDAL_NUM_THREADS configuration option can be set to ALL_CPUS or an integer value to specify
the number of threads to use for SOZip-compressed files (see set_config_option()).

SOZip can be validated with:
vsi_get_file_metadata(zip_file, domain="ZIP")
where zip_file uses the /vsizip/ prefix.

See Also

vsi_get_file_metadata()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
zip_file <- file.path(tempdir(), "storml_lcp.zip")

Requires GDAL >= 3.7
if (gdal_version_num() >= gdal_compute_version(3, 7, 0)) {
addFilesInZip(zip_file, lcp_file, full_paths=FALSE, sozip_enabled="YES",
num_threads=1)

print("Files in zip archive:")
print(unzip(zip_file, 1list=TRUE))

https://github.com/sozip/sozip-spec
https://github.com/sozip/sozip-spec

10 apply_geotransform

Open with GDAL using Virtual File System handler '/vsizip/'

see: https://gdal.org/en/stable/user/virtual_file_systems.html#vsizip-zip-archives
lcp_in_zip <- file.path("/vsizip", zip_file, "storm_lake.lcp")

print("S0Zip metadata:")

print(vsi_get_file_metadata(lcp_in_zip, domain="ZIP"))

ds <- new(GDALRaster, lcp_in_zip)
ds$info()
ds$close()

apply_geotransform Apply geotransform (raster column/row to geospatial x/y)

Description

apply_geotransform() applies geotransform coefficients to raster coordinates in pixel/line space
(column/row), converting into georeferenced (x/y) coordinates. Wrapper of GDALApplyGeoTransform()
in the GDAL API, operating on matrix input.

Usage

apply_geotransform(col_row, gt)

Arguments
col_row Numeric matrix of raster column, row (pixel/line) coordinates (or two-column
data frame that will be coerced to numeric matrix, or a vector of column, row
for one coordinate).
gt Either a numeric vector of length six containing the affine geotransform for the
raster, or an object of class GDALRaster from which the geotransform will be
obtained.
Value

Numeric matrix of geospatial x/y coordinates.

Note

Bounds checking on the input coordinates is done if gt is obtained from an object of class GDALRaster.
See Note for get_pixel_line().

See Also

GDALRaster$getGeoTransform(), get_pixel_line()

autoCreateWarped VRT 11

Examples

raster_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, raster_file)

compute some raster coordinates in column/row space

set.seed(42)

col_coords <- runif (10, min = @, max = ds$getRasterXSize() - 0.00001)
row_coords <- runif(10, min = @, max = ds$getRasterYSize() - 0.00001)
col_row <- chind(col_coords, row_coords)

convert to geospatial x/y coordinates
gt <- ds$getGeoTransform()
apply_geotransform(col_row, gt)

or, using the class method
ds$apply_geotransform(col_row)

bounds checking
col_row <- rbind(col_row, c(ds$getRasterXSize(), ds$getRasterYSize()))

ds$apply_geotransform(col_row)

ds$close()

autoCreateWarpedVRT Create a virtual warped dataset automatically

Description

autoCreateWarpedVRT () creates a warped virtual dataset representing the input raster warped into
a target coordinate system. The output virtual dataset will be "north-up" in the target coordinate sys-
tem. GDAL automatically determines the bounds and resolution of the output virtual raster which
should be large enough to include all the input raster. Wrapper of GDALAutoCreateWarpedVRT()
in the GDAL Warper API.

Usage

autoCreateWarpedVRT(
src_ds,
dst_wkt,
resample_alg,

nn

src_wkt = ,
max_err = 0,
alpha_band = FALSE

Arguments

src_ds An object of class GDALRaster for the source dataset.

12 bandCopyWholeRaster

dst_wkt WKT string specifying the coordinate system to convert to. If empty string ("")
no change of coordinate system will take place.

resample_alg Character string specifying the sampling method to use. One of NearestNeigh-
bour, Bilinear, Cubic, CubicSpline, Lanczos, Average, RMS or Mode.

src_wkt WKT string specifying the coordinate system of the source raster. If empty
string it will be read from the source raster (the default).

max_err Numeric scalar specifying the maximum error measured in input pixels that is
allowed in approximating the transformation (0.0 for exact calculations, the
default).

alpha_band Logical scalar, TRUE to create an alpha band if the source dataset has none.

Defaults to FALSE.

Value

An object of class GDALRaster for the new virtual dataset. An error is raised if the operation fails.

Note

The returned dataset will have no associated filename for itself. If you want to write the virtual
dataset to a VRT file, use the $setFilename () method on the returned GDALRaster object to assign
a filename before it is closed.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

ds2 <- autoCreateWarpedVRT(ds, epsg_to_wkt(5070), "Bilinear")
ds2%$info()

set filename before close if a VRT file is needed for the virtual dataset
ds2$setFilename("/path/to/file.vrt")

ds2$close()
ds$close()

bandCopyWholeRaster Copy a whole raster band efficiently

Description

bandCopyWholeRaster () copies the complete raster contents of one band to another similarly con-
figured band. The source and destination bands must have the same xsize and ysize. The bands
do not have to have the same data type. It implements efficient copying, in particular "chunking"
the copy in substantial blocks. This is a wrapper for GDALRasterBandCopyWholeRaster() in the
GDAL APIL

bandCopyWholeRaster 13

Usage

bandCopyWholeRaster(
src_filename,
src_band,
dst_filename,
dst_band,
options = NULL,
quiet = FALSE

Arguments

src_filename Filename of the source raster.

src_band Band number in the source raster to be copied.
dst_filename Filename of the destination raster.

dst_band Band number in the destination raster to copy into.

options Optional list of transfer hints in a vector of "NAME=VALUE" pairs. The currently
supported options are:

* "COMPRESSED=YES" to force alignment on target dataset block sizes to achieve
best compression.

e "SKIP_HOLES=YES" to skip chunks that contain only empty blocks. Empty
blocks are blocks that are generally not physically present in the file, and
when read through GDAL, contain only pixels whose value is the nodata
value when it is set, or whose value is 0 when the nodata value is not set.
The query is done in an efficient way without reading the actual pixel values
(if implemented by the raster format driver, otherwise will not be skipped).

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

GDALRaster-class, create(), createCopy(), rasterFromRaster()

Examples

copy Landsat data from a single-band file to a new multi-band image
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
dst_file <- file.path(tempdir(), "sr_multi.tif"”)

rasterFromRaster(b5_file, dst_file, nbands=7, init=0)

opt <- c("COMPRESSED=YES", "SKIP_HOLES=YES")

bandCopyWholeRaster(b5_file, 1, dst_file, 5, options=opt)

ds <- new(GDALRaster, dst_file)

ds$getStatistics(band=5, approx_ok=FALSE, force=TRUE)

ds$close()

14 bbox_from_wkt

bbox_from_wkt Get the bounding box of a geometry specified in OGC WKT format

Description

bbox_from_wkt() returns the bounding box of a WKT 2D geometry (e.g., LINE, POLYGON,
MULTIPOLYGON).

Usage

bbox_from_wkt(wkt, extend_x = @, extend_y = 0)

Arguments
wkt Character. OGC WKT string for a simple feature 2D geometry.
extend_x Numeric scalar. Distance to extend the output bounding box in both direc-
tions along the x-axis (results in xmin = bbox[1] - extend_x, xmax = bbox[3]
+ extend_x).
extend_y Numeric scalar. Distance to extend the output bounding box in both direc-
tions along the y-axis (results in ymin = bbox[2] - extend_y, ymax = bbox[4]
+ extend_y).
Value

Numeric vector of length four containing the xmin, ymin, xmax, ymax of the geometry specified by
wkt (possibly extended by values in extend_x, extend_y).

See Also

bbox_to_wkt ()

Examples

bnd <- "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,
325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"
bbox_from_wkt(bnd, 100, 100)

bbox_intersect 15

bbox_intersect Bounding box intersection / union

Description

bbox_intersect () returns the bounding box intersection, and bbox_union () returns the bounding
box union, for input of either raster file names or list of bounding boxes. All of the inputs must be
in the same projected coordinate system.

Usage

bbox_intersect(x, as_wkt = FALSE)

bbox_union(x, as_wkt = FALSE)

Arguments
X Either a character vector of raster file names, or a list with each element a bound-
ing box numeric vector (Xmin, ymin, xmax, ymax).
as_wkt Logical. TRUE to return the bounding box as a polygon in OGC WKT format, or
FALSE to return as a numeric vector.
Value

The intersection (bbox_intersect()) or union (bbox_union()) of inputs. If as_wkt = FALSE, a
numeric vector of length four containing xmin, ymin, xmax, ymax. If as_wkt = TRUE, a character
string containing OGC WKT for the bbox as POLYGON.

See Also
bbox_from_wkt (), bbox_to_wkt()

Examples

bbox_list <-list()

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

bbox_list[[1]1] <- ds$bbox()

ds$close()

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)
ds <- new(GDALRaster, b5_file)

bbox_list[[2]] <- ds$bbox()

ds$close()

bnd <- "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,

16 bbox_to_ wkt

325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"
bbox_list[[3]] <- bbox_from_wkt(bnd)

print(bbox_list)
bbox_intersect(bbox_list)
bbox_union(bbox_list)

bbox_to_wkt Convert a bounding box to POLYGON in OGC WKT format

Description

bbox_to_wkt () returns a WKT POLYGON string for the given bounding box.

Usage

bbox_to_wkt(bbox, extend_x = @, extend_y = 0)

Arguments
bbox Numeric vector of length four containing xmin, ymin, xmax, ymax.
extend_x Numeric scalar. Distance in units of bbox to extend the rectangle in both direc-
tions along the x-axis (results in xmin = bbox[1] - extend_x, xmax = bbox[3]
+ extend_x).
extend_y Numeric scalar. Distance in units of bbox to extend the rectangle in both direc-
tions along the y-axis (results in ymin = bbox[2] - extend_y, ymax = bbox[4]
+ extend_y).
Value

Character string for an OGC WKT polygon. NA is returned if GDAL was built without the GEOS
library.

See Also
bbox_from_wkt (), g_buffer()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file, read_only=TRUE)

bbox_to_wkt (ds$bbox())

ds$close()

bbox_transform 17

bbox_transform Transform a bounding box to a different projection

Description
bbox_transform() is a convenience function to transform the coordinates of a boundary from their
current spatial reference system to a new target spatial reference system.

Usage

bbox_transform(bbox, srs_from, srs_to, use_transform_bounds = TRUE)

Arguments
bbox Numeric vector of length four containing a bounding box (xmin, ymin, xmax,
ymax) to transform.
srs_from Character string specifying the spatial reference system for pts. May be in
WKT format or any of the formats supported by srs_to_wkt().
srs_to Character string specifying the output spatial reference system. May be in WKT

format or any of the formats supported by srs_to_wkt ().
use_transform_bounds

Logical value, TRUE to use transform_bounds() (the default, requires GDAL
>=3.4). If FALSE, transformation is done with g_transform().

Details
With use_transform_bounds = TRUE (the default) this function returns:

requires GDAL >= 3.4
transform_bounds(bbox, srs_from, srs_to)

See Details for transform_bounds () for cases where the bounds crossed the antimeridian.

With use_transform_bounds = FALSE, this function returns:
bbox_to_wkt(bbox) [>
g_transform(srs_from, srs_to) |>
bbox_from_wkt ()

See the Note for g_transform() for cases where the bounds crossed the antimeridian.

Value

Numeric vector of length four containing a transformed bounding box (xmin, ymin, Xmax, ymax).

See Also

bbox_from_wkt (), g_transform(), transform_bounds()

18 buildRAT

Examples

bb <- c(-1405880.72, -1371213.76, 5405880.72, 5371213.76)

the default assumes GDAL >= 3.4
if (gdal_version_num() >= gdal_compute_version(3, 4, 0)) {
bb_wgs84 <- bbox_transform(bb, "EPSG:32661", "EPSG:4326")
} else {
bb_wgs84 <- bbox_transform(bb, "EPSG:32661", "EPSG:4326",
use_transform_bounds = FALSE)

3

print(bb_wgs84)

buildRAT Build a GDAL Raster Attribute Table with VALUE, COUNT

Description

buildRAT () reads all pixels of an input raster to obtain the set of unique values and their counts. The
result is returned as a data frame suitable for use with the class method GDALRaster$setDefaultRAT().
The returned data frame might be further modified before setting as a Raster Attribute Table in a
dataset, for example, by adding columns containing class names, color values, or other information
(see Details). An optional input data frame containing such attributes may be given, in which case
buildRAT() will attempt to join the additional columns and automatically assign the appropriate
metadata on the output data frame (i.e., assign R attributes on the data frame and its columns that
define usage in a GDAL Raster Attribute Table).

Usage

buildRAT(
raster,
band = 1L,
col_names = c("VALUE", "COUNT"),
table_type = "athematic”,
na_value = NULL,
join_df = NULL,
quiet = FALSE

)
Arguments
raster Either a GDALRaster object, or a character string containing the file name of a
raster dataset to open.
band Integer scalar, band number to read (default 1L).
col_names Character vector of length two containing names to use for column 1 (pixel val-

ues) and column 2 (pixel counts) in the output data frame (defaults are c ("VALUE" ,
"COUNT™)).

buildRAT 19

table_type Character string describing the type of the attribute table. One of either "thematic”,
or "athematic” for continuous data (the default).

na_value Numeric scalar. If the set of unique pixel values has an NA, it will be recoded
to na_value in the returned data frame. If NULL (the default), NA will not be
recoded.

join_df Optional data frame for joining additional attributes. Must have a column of

unique values with the same name as col_names[1] ("VALUE" by default).

quiet Logical scalar. If TRUE™ ~, a progress bar will not be displayed. Defaults to FALSE®.

Details

A GDAL Raster Attribute Table (or RAT) provides attribute information about pixel values. Raster
attribute tables can be used to represent histograms, color tables, and classification information.
Each row in the table applies to either a single pixel value or a range of values, and might have
attributes such as the histogram count for that value (or range), the color that pixels of that value (or
range) should be displayed, names of classes, or various other information.

Each column in a raster attribute table has a name, a type (integer, double, or string), and a
GDALRATFieldUsage. The usage distinguishes columns with particular understood purposes (such
as color, histogram count, class name), and columns that have other purposes not understood by the
library (long labels, ancillary attributes, etc).

In the general case, each row has a field indicating the minimum pixel value falling into that cate-
gory, and a field indicating the maximum pixel value. In the GDAL API, these are indicated with
usage values of GFU_Min and GFU_Max. In the common case where each row is a discrete pixel value,
a single column with usage GFU_MinMax would be used instead. In R, the table is represented as a
data frame with column attribute "GFU" containing the field usage as a string, e.g., "Max”, "Min" or
"MinMax" (case-sensitive). The full set of possible field usage descriptors is:

GFU attr GDAL enum Description
"Generic” GFU_Generic General purpose field
"PixelCount” GFU_PixelCount Histogram pixel count
"Name” GFU_Name Class name
"Min" GFU_Min Class range minimum
"Max" GFU_Max Class range maximum
"MinMax" GFU_MinMax Class value (min=max)
"Red" GFU_Red Red class color (0-255)
"Green” GFU_Green Green class color (0-255)
"Blue” GFU_Blue Blue class color (0-255)
"Alpha" GFU_Alpha Alpha transparency (0-255)
"RedMin” GFU_RedMin Color range red minimum
"GreenMin” GFU_GreenMin Color range green minimum
"BlueMin” GFU_BlueMin Color range blue minimum
"AlphaMin” GFU_AlphaMin Color range alpha minimum
"RedMax"” GFU_RedMax Color range red maximum
"GreenMax" GFU_GreenMax Color range green maximum
"BlueMax” GFU_BlueMax Color range blue maximum

"AlphaMax” GFU_AlphaMax Color range alpha maximum

20

buildRAT

buildRAT() assigns GFU "MinMax" on the column of pixel values (named "VALUE" by default) and
GFU "PixelCount” on the column of counts (named "COUNT" by default). If join_df is given,
the additional columns that result from joining will have GFU assigned automatically based on the
column names (ignoring case). First, the additional column names are checked for containing the
string "name” (e.g., "classname”, "TypeName", "EVT_NAME", etc). The first matching column (if
any) will be assigned a GFU of "Name" (=GFU_Name, the field usage descriptor for class names).
Next, columns named "R"” or "Red” will be assigned GFU "Red", columns named "G" or "Green"
will be assigned GFU "Green"”, columns named "B" or "Blue” will be assigned GFU "Blue”, and
columns named "A" or "Alpha" will be assigned GFU "Alpha". Finally, any remaining columns
that have not been assigned a GFU will be assigned "Generic”.

In a variation of RAT, all the categories are of equal size and regularly spaced, and the categorization
can be determined by knowing the value at which the categories start and the size of a category.
This is called "Linear Binning" and the information is kept specially on the raster attribute table
as a whole. In R, a RAT that uses linear binning would have the following attributes set on the
data frame: attribute "RowdMin" = the numeric lower bound (pixel value) of the first category, and
attribute "BinSize" = the numeric width of each category (in pixel value units). buildRAT () does
not create tables with linear binning, but one could be created manually based on the specifications
above, and applied to a raster with the class method GDALRaster$setDefaultRAT().

A raster attribute table is thematic or athematic (continuous). In R, this is defined by an attribute on
the data frame named "GDALRATTableType" with value of either "thematic” or "athematic"”.

Value

A data frame with at least two columns containing the set of unique pixel values and their counts.
These columns have attribute "GFU” set to "MinMax” for the values, and "PixelCount” for the
counts. If join_df is given, the returned data frame will have additional columns that result from
merge(). The "GFU" attribute of the additional columns will be assigned automatically based on
the column names (case-insensitive matching, see Details). The returned data frame has attribute
"GDALRATTableType" set to table_type.

Note

The full raster will be scanned.

If na_value is not specified, then an NA pixel value (if present) will not be recoded in the output
data frame. This may have implications if joining to other data (NA will not match), or when using
the returned data frame to set a default RAT on a dataset (NA will be interpreted as the value that
R uses internally to represent it for the type, e.g., -2147483648 for NA_integer_). In some cases,
removing the row in the output data frame with value NA, rather than recoding, may be desirable
(i.e., by removing manually or by side effect of joining via merge(), for example). Users should
consider what is appropriate for a particular case.

See Also

GDALRaster$getDefaultRAT (), GDALRaster$setDefaultRAT(), displayRAT()

vignette("raster-attribute-tables")

buildRAT 21

Examples

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")
make a copy to modify

f <- file.path(tempdir(), "storml_evt_tmp.tif")

file.copy(evt_file, f)

ds <- new(GDALRaster, f, read_only=FALSE)
ds$getDefaul tRAT(band=1) # NULL

get the full attribute table for LANDFIRE EVT from the CSV file
evt_csv <- system.file("extdata/LF20_EVT_220.csv", package="gdalraster")
evt_df <- read.csv(evt_csv)

nrow(evt_df)

head(evt_df)

evt_df <- evt_df[,1:7]

tbl <- buildRAT(ds,
table_type = "thematic”,
na_value = -9999,
join_df = evt_df)

nrow(tbl)
head(tbl)

attributes on the data frame and its columns define usage in a GDAL RAT
attributes(tbl)

attributes(tb1$VALUE)

attributes(tb1$COUNT)

attributes(tbl$EVT_NAME)

attributes(tbl$EVT_LF)

attributes(tbl$EVT_PHYS)

attributes(tbl$R)

attributes(tb1$G)

attributes(tbl$B)

ds$setDefaul tRAT (band=1, tbl)
ds$flushCache()

tbl2 <- ds$getDefaultRAT(band=1)
nrow(tbl2)
head(tb12)

ds$close()

Display

evt_gt <- displayRAT(tbl2, title = "Storm Lake EVT Raster Attribute Table")
class(evt_gt) # an object of class "gt_tbl" from package gt

To show the table:

evt_gt

or simply call “displayRAT()" as above but without assignment

“vignette("raster-attribute-tables”)™ has example output

22 buildVRT

buildVRT Build a GDAL virtual raster from a list of datasets

Description

buildVRT() is a wrapper of the gdalbuildvrt command-line utility for building a VRT (Virtual
Dataset) that is a mosaic of the list of input GDAL datasets (see https://gdal.org/en/stable/
programs/gdalbuildvrt.html).

Usage

buildVRT(vrt_filename, input_rasters, cl_arg = NULL, quiet = FALSE)

Arguments

vrt_filename Character string. Filename of the output VRT.

input_rasters Character vector of input raster filenames.

cl_arg Optional character vector of command-line arguments to gdalbuildvrt.
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Details

Several command-line options are described in the GDAL documentation at the URL above. By
default, the input files are considered as tiles of a larger mosaic and the VRT file has as many bands
as one of the input files. Alternatively, the -separate argument can be used to put each input raster
into a separate band in the VRT dataset.

Some amount of checks are done to assure that all files that will be put in the resulting VRT have
similar characteristics: number of bands, projection, color interpretation.... If not, files that do not
match the common characteristics will be skipped. (This is true in the default mode for virtual
mosaicing, and not when using the -separate option).

In a virtual mosaic, if there is spatial overlap between input rasters then the order of files appearing
in the list of sources matter: files that are listed at the end are the ones from which the data will
be fetched. Note that nodata will be taken into account to potentially fetch data from less priority
datasets.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

rasterToVRT()

https://gdal.org/en/stable/programs/gdalbuildvrt.html
https://gdal.org/en/stable/programs/gdalbuildvrt.html

calc 23

Examples

build a virtual 3-band RGB raster from individual Landsat band files
b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster")
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
b6_file <- system.file("extdata/sr_b6_20200829.tif", package="gdalraster"”)
band_files <- c(b6_file, b5_file, b4_file)

vrt_file <- file.path(tempdir(), "storml_b6_b5_b4.vrt")

buildVRT(vrt_file, band_files, cl_arg = "-separate")
ds <- new(GDALRaster, vrt_file)
ds$getRasterCount()
plot_raster(ds, nbands=3, main="Landsat 6-5-4 (vegetative analysis)")
ds$close()
calc Raster calculation
Description

calc() evaluates an R expression for each pixel in a raster layer or stack of layers. Each layer is
defined by a raster filename, band number, and a variable name to use in the R expression. If not
specified, band defaults to 1 for each input raster. Variable names default to LETTERS if not specified
(A (layer 1), B (layer 2), ...). All of the input layers must have the same extent and cell size. The
projection will be read from the first raster in the list of inputs. Individual pixel coordinates are also
available as variables in the R expression, as either x/y in the raster projected coordinate system or
inverse projected longitude/latitude. Multiband output is supported as of gdalraster 1.11.0.

Usage

calc(
expr,
rasterfiles,
bands = NULL,
var.names = NULL,
dstfile = tempfile("rastcalc”, fileext = ".tif"),
fmt = NULL,
dtName = "Int16",
out_band = NULL,
options = NULL,
nodata_value = NULL,
setRasterNodataValue = FALSE,
usePixellLonLat = NULL,
write_mode = "safe"”,
quiet = FALSE

24

Arguments
expr
rasterfiles
bands
var.names
dstfile
fmt

dtName

out_band

options

nodata_value

calc

An R expression as a character string (e.g., "A +B").
Character vector of source raster filenames.

Integer vector of band numbers to use for each raster layer.
Character vector of variable names to use for each raster layer.
Character filename of output raster.

Output raster format name (e.g., "GTiftf" or "HFA"). Will attempt to guess from
the output filename if not specified.

Character name of output data type (e.g., Byte, Int16, Ulnt16, Int32, Ulnt32,
Float32).

Integer band number(s) in dstfile for writing output. Defaults to 1. Multiband
output is supported as of gdalraster 1.11.0, in which case out_band would be a
vector of band numbers.

Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).

Numeric value to assign if expr returns NA.

setRasterNodataValue

usePixellLonlLat

write_mode

quiet

Details

Logical. TRUE will attempt to set the raster format nodata value to nodata_value,
or FALSE not to set a raster nodata value.

This argument is deprecated and will be removed in a future version. Variable
names pixellLon and pixellLat can be used in expr, and the pixel x/y coordi-
nates will be inverse projected to longitude/latitude (adds computation time).

Character. Name of the file write mode for output. One of:

* safe - execution stops if dstfile already exists (no output written)

* overwrite - if dstfile exists if will be overwritten with a new file

* update - if dstfile exists, will attempt to open in update mode and write
output to out_band

Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

The variables in expr are vectors of length raster xsize (row vectors of the input raster layer(s)). The
expression should return a vector also of length raster xsize (an output row). Four special variable
names are available in expr: pixelX and pixelY provide pixel center coordinates in projection
units. pixellon and pixellLat can also be used, in which case the pixel x/y coordinates will be
inverse projected to longitude/latitude (in the same geographic coordinate system used by the input
projection, which is read from the first input raster). Note that inverse projection adds computation

time.

To refer to specific bands in a multi-band input file, repeat the filename in rasterfiles and spec-
ify corresponding band numbers in bands, along with optional variable names in var.names, for

example,

calc 25

rasterfiles = c("multiband.tif”, "multiband.tif")
bands = c(4, 5)
var.names = c("B4", "B5")

Output will be written to dstfile. To update a file that already exists, set write_mode = "update”
and set out_band to an existing band number(s) in dstfile (new bands cannot be created in
dstfile).

To write multiband output, expr must return a vector of values interleaved by band. This is equiva-
lent to, and can also be returned as, a matrix m with nrow(m) equal to length() of an input vector,
and ncol(m) equal to the number of output bands. In matrix form, each column contains a vector
of output values for a band. 1length(m) must be equal to the length() of an input vector multiplied
by length(out_band). The dimensions described above are assumed and not read from the return
value of expr.

Value

Returns the output filename invisibly.

See Also

GDALRaster-class, combine(), rasterToVRT()

Examples

Using pixel longitude/latitude

Hopkins bioclimatic index (HI) as described in:

Bechtold, 2004, West. J. Appl. For. 19(4):245-251.

Integrates elevation, latitude and longitude into an index of the
phenological occurrence of springtime. Here it is relativized to
mean values for an eight-state region in the western US.

Positive HI means spring is delayed by that number of days relative
to the reference position, while negative values indicate spring is
advanced. The original equation had elevation units as feet, so
converting m to ft in “expr-.

od o O O O I

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

expression to calculate HI

expr <- "round(((ELEV_M x 3.281 - 5449) / 100) +
((pixelLat - 42.16) * 4) +
((-116.39 - pixellLon) * 1.25))"

calc() writes to a tempfile by default
hi_file <- calc(expr = expr,
rasterfiles = elev_file,
var.names = "ELEV_M",
dtName = "Intl16",
nodata_value = -32767,
setRasterNodataValue = TRUE)

26

ds <- new(GDALRaster, hi_file)

min, max, mean, sd

ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

Calculate normalized difference vegetation index (NDVI)

Landast band 4 (red) and band 5 (near infrared):
b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster"”)
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")

expr <- "((B5 * 0.0000275 - 0.2) - (B4 * 0.0000275 - 0.2)) /
((B5 * 0.0000275 - 0.2) + (B4 * 0.0000275 - 0.2))"
ndvi_file <- calc(expr = expr,
rasterfiles = c(b4_file, b5_file),
var.names = c("B4", "B5"),
dtName = "Float32",
nodata_value = -32767,
setRasterNodataValue = TRUE)

ds <- new(GDALRaster, ndvi_file)
ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

Reclassify a variable by rule set

Combine two raster layers and look for specific combinations. Then
recode to a new value by rule set.

#
#
#
Based on example in:

Stratton, R.D. 2009. Guidebook on LANDFIRE fuels data acquisition,
critique, modification, maintenance, and model calibration.

Gen. Tech. Rep. RMRS-GTR-220. U.S. Department of Agriculture,

Forest Service, Rocky Mountain Research Station. 54 p.

Context: Refine national-scale fuels data to improve fire simulation
results in localized applications.

Issue: Areas with steep slopes (40+ degrees) were mapped as

GR1 (101; short, sparse dry climate grass) and

GR2 (102; low load, dry climate grass) but were not carrying fire.
Resolution: After viewing these areas in Google Earth,

NB9 (99; bare ground) was selected as the replacement fuel model.

look for combinations of slope >= 40 and FBFM 101 or 102

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
rasterfiles <- c(lcp_file, lcp_file)

var.names <- c("SLP", "FBFM")

bands <- c(2, 4)

tbl <- combine(rasterfiles, var.names, bands)

nrow(tbl)

calc

CmbTable-class 27

tbl_subset <- subset(tbl, SLP >= 40 & FBFM %in% c(101,102))
print(tbl_subset) # twelve combinations meet the criteria
sum(tbl_subset$count) # 85 total pixels

recode these pixels to 99 (bare ground)

the LCP driver does not support in-place write so make a copy as GTiff
tif_file <- file.path(tempdir(), "storml_lndscp.tif"”)

createCopy ("GTiff", tif_file, lcp_file)

expr <- "ifelse(SLP >= 40 & FBFM %in% c(101,102), 99, FBFM)"
calc(expr = expr,

rasterfiles = c(lcp_file, lcp_file),

bands = c(2, 4),

var.names = c("SLP", "FBFM"),

dstfile = tif_file,

out_band = 4,

write_mode = "update")

verify the ouput

rasterfiles <- c(tif_file, tif_file)

tbl <- combine(rasterfiles, var.names, bands)

tbl_subset <- subset(tbl, SLP >= 40 & FBFM %in% c(101,102))
print(tbl_subset)

sum(tbl_subset$count)

if LCP file format is needed:
createCopy("LCP", "storml_edited.lcp”, tif_file)

CmbTable-class Class for counting unique combinations of integers

Description

CmbTable implements a hash table having a vector of integers as the key, and the count of occur-
rences of each unique integer combination as the value. A unique ID is assigned to each unique
combination of input values.

CmbTable is a C++ class exposed directly to R (via RCPP_EXPOSED_CLASS). Methods of the class
are accessed using the $ operator. Note that all arguments to class methods are required and
must be given in the order documented. Naming the arguments is optional but may be preferred
for readability.

Arguments

keyLen The number of integer values comprising each combination.

varNames Optional character vector of names for the variables in the combination.

28

CmbTable-class

Value

An object of class CmbTable. Contains a hash table having a vector of keyLen integers as the key,
and the count of occurrences of each unique integer combination as the value. Class methods that
operate on the hash table are described in Details.

Usage (see Details)

Constructors

cmb <- new(CmbTable, keyLen)

or, giving the variable names:

cmb <- new(CmbTable, keylLen, varNames)

Methods

cmb$update(int_cmb, incr)
cmb$updateFromMatrix(int_cmbs, incr)
cmb$updateFromMatrixByRow(int_cmbs, incr)
cmb$asDataFrame()

cmb$asMatrix()

Details

Constructors:

new(CmbTable, keyLen)
Default variable names will be assigned as V1, V2, Returns an object of class CmbTable.

new(CmbTable, keyLen, varNames)
Alternate constructor to specify variable names. Returns an object of class CmbTable.

Methods:

$update(int_cmb, incr)

Updates the hash table for the integer combination in the numeric vector int_cmb (coerced to
integer by truncation). If this combination exists in the table, its count will be incremented by
incr. If the combination is not found in the table, it will be inserted with count set to incr.
Returns the unique ID assigned to this combination. Combination IDs are sequential integers
starting at 1.

$updateFromMatrix(int_cmbs, incr)

This method is the same as $update () but for a numeric matrix of integer combinations int_cmbs
(coerced to integer by truncation). The matrix is arranged with each column vector forming an
integer combination. For example, the rows of the matrix could be one row each from a set of
keyLen rasters all read at the same extent and pixel resolution (i.e., row-by-row raster overlay).
The method calls $update() on each combination (each column of int_cmbs), incrementing
count by incr for existing combinations, or inserting new combinations with count set to incr.
Returns a numeric vector of length ncol (int_cmbs) containing the IDs assigned to the combina-
tions.

$updateFromMatrixByRow(int_cmbs, incr)

This method is the same as $updateFromMatrix() above except the integer combinations are
in rows of the matrix int_cmbs (columns are the variables). The method calls $update() on

combine 29

each combination (each row of int_cmbs), incrementing count by incr for existing combina-
tions, or inserting new combinations with count set to incr. Returns a numeric vector of length
nrow(int_cmbs) containing the IDs assigned to the combinations.

$asDataFrame()

Returns the CmbTable as a data frame with column cmbid containing the unique combination
IDs, column count containing the counts of occurrences, and keyLen columns (with names from
varNames) containing the integer values comprising each unique combination.

$asMatrix()

Returns the CmbTable as a matrix with column 1 (cmbid) containing the unique combination IDs,
column 2 (count) containing the counts of occurrences, and columns 3:keyLen+2 (with names
from varNames) containing the integer values comprising each unique combination.

Examples
m <- matrix(c(1,2,3,1,2,3,4,5,6,1,3,2,4,5,6,1,1,1), 3, 6, byrow=FALSE)
rownames(m) <- c("layer1”, "layer2", "layer3")
print(m)

cmb <- new(CmbTable, 3, rownames(m))
cmb

cmb$updateFromMatrix(m, 1)
cmb$asDataFrame()

cmb$update(c(4,5,6), 1)
cmb$update(c(1,3,5), 1)
cmb$asDataFrame()

same as above but matrix arranged with integer combinations in the rows
m <- matrix(c(1,2,3,1,2,3,4,5,6,1,3,2,4,5,6,1,1,1), 6, 3, byrow=TRUE)
colnames(m) <- c("v1", "v2", "V3")

print(m)

cmb <- new(CmbTable, 3)
cmb$updateFromMatrixByRow(m, 1)
cmb$asDataFrame()

cmb$update(c(4,5,6), 1)
cmb$update(c(1,3,5), 1)
cmb$asDataFrame ()

combine Raster overlay for unique combinations

Description

combine() overlays multiple rasters so that a unique ID is assigned to each unique combination of
input values. The input raster layers typically have integer data types (floating point will be coerced
to integer by truncation), and must have the same projection, extent and cell size. Pixel counts

30

combine

for each unique combination are obtained, and combination IDs are optionally written to an output

raster.

Usage

combine(
rasterfiles,

var.names = NULL,

bands = NULL,

dstfile = NULL,

fmt = NULL,

dtName = "UInt32",
options = NULL,

quiet = FALSE

Arguments

rasterfiles

var.names

bands

dstfile

fmt
dtName

options

quiet

Details

Character vector of raster filenames to combine.

Character vector of length(rasterfiles) containing variable names for each
raster layer. Defaults will be assigned if var.names are omitted.

Numeric vector of length(rasterfiles) containing the band number to use
for each raster in rasterfiles. Band 1 will be used for each input raster if
bands are not specified.

Character. Optional output raster filename for writing the per-pixel combination
IDs. The output raster will be created (and overwritten if it already exists).

Character. Output raster format name (e.g., "GTiff" or "HFA").

Character. Output raster data type name. Combination IDs are sequential inte-
gers starting at 1. The data type for the output raster should be large enough to
accommodate the potential number of unique combinations of the input values
(e.g., "Ulnt16" or the default "Ulnt32").

Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = ¢ ("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).

Logical scalar. If TRUE, progress bar and messages will be suppressed. Defaults
to FALSE.

To specify input raster layers that are bands of a multi-band raster file, repeat the filename in
rasterfiles and provide the corresponding band numbers in bands. For example:

rasterfiles <- c("multi-band.tif”, "multi-band.tif”, "other.tif")

bands <- c(4, 5

» D

var.names <- c("multi_b4", "multi_b5"”, "other")

combine 31
rasterToVRT() provides options for virtual clipping, resampling and pixel alignment, which may
be helpful here if the input rasters are not already aligned on a common extent and cell size.

If an output raster of combination IDs is written, the user should verify that the number of combi-
nations obtained did not exceed the range of the output data type. Combination IDs are sequential
integers starting at 1. Typical output data types are the unsigned types: Byte (0 to 255), Ulnt16 (0
to 65,535) and Ulnt32 (the default, O to 4,294,967,295).

Value

A data frame with column cmbid containing the combination IDs, column count containing the
pixel counts for each combination, and length(rasterfiles) columns named var.names con-
taining the integer values comprising each unique combination.

See Also

CmbTable-class, GDALRaster-class, calc(), rasterToVRT()

buildRAT() to compute a table of the unique pixel values and their counts for a single raster layer

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
evc_file <- system.file("extdata/storml_evc.tif", package="gdalraster")
evh_file <- system.file("extdata/storml_evh.tif", package="gdalraster")
rasterfiles <- c(evt_file, evc_file, evh_file)

var.names <- c("veg_type", "veg_cov", "veg_ht")
tbl <- combine(rasterfiles, var.names)
nrow(tbl)

tbl <- tbl[order(-tbl$count),]
head(tbl, n = 20)

combine two bands from a multi-band file and write the combination IDs
to an output raster

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
rasterfiles <- c(lcp_file, lcp_file)

bands <- c(4, 5)

var.names <- c("fbfm", "tree_cov")

cmb_file <- file.path(tempdir(), "fbfm_cov_cmbid.tif")

opt <- c("COMPRESS=LZW")

tbl <- combine(rasterfiles, var.names, bands, cmb_file, options = opt)
head(tbl)

ds <- new(GDALRaster, cmb_file)

ds$info()

ds$close()

32 copyDatasetFiles

copyDatasetFiles Copy the files of a dataset

Description

copyDatasetFiles() copies all the files associated with a dataset. Wrapper for GDALCopyDatasetFiles()
in the GDAL APIL

Usage

copyDatasetFiles(new_filename, old_filename, format = "")

Arguments

new_filename New name for the dataset (copied to).
old_filename Old name for the dataset (copied from).

format Raster format short name (e.g., "GTiff"). If set to empty string "" (the default),
will attempt to guess the raster format from old_filename.

Value

Logical TRUE if no error or FALSE on failure.

Note

nn

If format is set to an empty string "" (the default) then the function will try to identify the driver
from old_filename. This is done internally in GDAL by invoking the Identify method of each
registered GDALDriver in turn. The first driver that successful identifies the file name will be re-
turned. An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), deleteDataset(), renameDataset(), vsi_copy_file()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

ds$getFilelList()

ds$close()

lcp_tmp <- file.path(tempdir(), "storm_lake_copy.lcp")
copyDatasetFiles(lcp_tmp, lcp_file)

ds_copy <- new(GDALRaster, lcp_tmp)
ds_copy$getFilelList()

ds_copy$close()

deleteDataset(lcp_tmp)

create

33

create

Create a new uninitialized raster

Description

create() makes an empty raster in the specified format.

Usage

create(
format,
dst_filename,
xsize,
ysize,
nbands,
dataType,

options = NULL,
return_obj = FALSE

Arguments

format
dst_filename
xsize

ysize

nbands

dataType

options

return_obj

Value

Character string giving a raster format short name (e.g., "GTiff").
Character string giving the filename to create.

Integer width of raster in pixels.

Integer height of raster in pixels.

Integer number of bands.

Character string containing the data type name. (e.g., common data types in-
clude Byte, Int16, Ulnt16, Int32, Float32).

Optional list of format-specific creation options in a character vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file). The APPEND_SUBDATASET=YES option can be speci-

fied to avoid prior destruction of existing dataset.

Logical scalar. If TRUE, an object of class GDALRaster opened on the newly
created dataset will be returned, otherwise returns a logical value. Defaults to
FALSE.

By default, returns a logical value indicating success (invisible TRUE, output written to dst_filename).
An error is raised if the operation fails. An object of class GDALRaster open on the output dataset
will be returned if return_obj = TRUE.

34 createColorRamp

Note

dst_filename may be an empty string (" ") with format = "MEM" and return_obj = TRUE to create
an In-memory Raster (https://gdal.org/en/stable/drivers/raster/mem.html).

See Also

GDALRaster-class, createCopy(), getCreationOptions(), rasterFromRaster()

Examples

new_file <- file.path(tempdir(), "newdata.tif")
ds <- create(format="GTiff",

dst_filename = new_file,

xsize = 143,

ysize = 107,

nbands = 1,

dataType = "Int16",

return_obj=TRUE)

EPSG:26912 - NAD83 / UTM zone 12N
ds$setProjection(epsg_to_wkt(26912))

gt <- c(323476, 30, 0, 5105082, 0, -30)
ds$setGeoTransform(gt)

ds$setNoDataValue(band = 1, -9999)
ds$fillRaster(band = 1, -9999, @)

...

close the dataset when done
ds$close()

createColorRamp Create a color ramp

Description

createColorRamp() is a wrapper for GDALCreateColorRamp() in the GDAL API. It automatically
creates a color ramp from one color entry to another. Output is an integer matrix in color table
format for use with GDALRaster$setColorTable().

Usage

createColorRamp(
start_index,
start_color,
end_index,

https://gdal.org/en/stable/drivers/raster/mem.html

createColorRamp 35

end_color,
palette_interp = "RGB"
)
Arguments
start_index Integer start index (raster value).
start_color Integer vector of length three or four. A color entry value to start the ramp (e.g.,
RGB values).
end_index Integer end index (raster value).
end_color Integer vector of length three or four. A color entry value to end the ramp (e.g.,

RGB values).

palette_interp One of "Gray", "RGB" (the default), "CMYK" or "HLS" describing interpreta-
tion of start_color and end_color values (see GDAL Color Table).

Value

Integer matrix with five columns containing the color ramp from start_index to end_index, with
raster index values in column 1 and color entries in columns 2:5).

Note

createColorRamp() could be called several times, using rbind() to combine multiple ramps into
the same color table. Possible duplicate rows in the resulting table are not a problem when used in
GDALRaster$setColorTable() (i.e., when end_color of one ramp is the same as start_color
of the next ramp).

See Also
GDALRaster$getColorTable(), GDALRaster$getPaletteInterp()

Examples

create a color ramp for tree canopy cover percent

band 5 of an LCP file contains canopy cover

lcp_file <- system.file("extdata/storm_lake.lcp"”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

ds$getDescription(band=5)

ds$getMetadata(band=5, domain="")

ds$close()

create a GTiff file with Byte data type for the canopy cover band
recode nodata -9999 to 255
tcc_file <- calc(expr = "ifelse(CANCOV == -9999, 255, CANCOV)",
rasterfiles = lcp_file,
bands = 5,
var.names = "CANCOV",
fmt = "GTiff",
dtName = "Byte"”,
nodata_value = 255,

https://gdal.org/en/stable/user/raster_data_model.html#color-table

36 createCopy

setRasterNodataValue = TRUE)
ds_tcc <- new(GDALRaster, tcc_file, read_only=FALSE)

create a color ramp from @ to 100 and set as the color table
colors <- createColorRamp(start_index = 0,
start_color = c(211, 211, 211),
end_index = 100,
end_color = c(0, 100, 0))

print(colors)
ds_tcc$setColorTable(band=1, col_tbl=colors, palette_interp="RGB")
ds_tcc$setRasterColorInterp(band=1, col_interp="Palette")

close and re-open the dataset in read_only mode
ds_tcc$open(read_only=TRUE)

plot_raster(ds_tcc, interpolate=FALSE, legend=TRUE,
main="Storm Lake Tree Canopy Cover (%)")
ds_tcc$close()

createCopy Create a copy of a raster

Description

createCopy () copies araster dataset, optionally changing the format. The extent, cell size, number
of bands, data type, projection, and geotransform are all copied from the source raster.

Usage

createCopy/(
format,
dst_filename,
src_filename,
strict = FALSE,
options = NULL,
quiet = FALSE,
return_obj = FALSE

Arguments

format Character string giving the format short name for the output raster (e.g., "GTiff").
dst_filename Character string giving the filename to create.

src_filename Either a character string giving the filename of the source raster, or object of
class GDALRaster for the source.

createCopy 37

strict Logical. TRUE if the copy must be strictly equivalent, or more normally FALSE
(the default) indicating that the copy may adapt as needed for the output format.

options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file). The APPEND_SUBDATASET=YES option can be speci-
fied to avoid prior destruction of existing dataset.

quiet Logical scalar. If TRUE, a progress bar will be not be displayed. Defaults to
FALSE.
return_obj Logical scalar. If TRUE, an object of class GDALRaster opened on the newly

created dataset will be returned. Defaults to FALSE.

Value

By default, returns a logical value indicating success (invisible TRUE, output written to dst_filename).
An error is raised if the operation fails. An object of class GDALRaster open on the output dataset
will be returned if return_obj = TRUE.

Note

dst_filename may be an empty string (" ") with format = "MEM" and return_obj = TRUE to create
an In-memory Raster (https://gdal.org/en/stable/drivers/raster/mem.html).

See Also

GDALRaster-class, create(), getCreationOptions(), rasterFromRaster(), translate()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
tif_file <- file.path(tempdir(), "storml_lndscp.tif")
ds <- createCopy(format = "GTiff",

dst_filename = tif_file,

src_filename = lcp_file,

options = "COMPRESS=LZW",

return_obj = TRUE)

ds$getMetadata(band = @, domain = "IMAGE_STRUCTURE")
for (band in 1:ds$getRasterCount())
ds$setNoDataValue(band, -9999)

ds$getStatistics(band = 1, approx_ok = FALSE, force = TRUE)

ds$close()

https://gdal.org/en/stable/drivers/raster/mem.html

38

data_type_helpers

data_type_helpers

Helper functions for GDAL raster data types

Description

These are convenience functions that return information about a raster data type, return the smallest
data type that can fully express two input data types, or find the smallest data type able to support
specified requirements.

Usage

dt_size(dt, as_bytes = TRUE)

dt_is_complex(dt)

dt_is_integer(dt)

dt_is_floating(dt)

dt_is_signed(dt)

dt_union(dt, dt_other)

dt_union_with_value(dt, value, is_complex = FALSE)

dt_find(bits, is_signed, is_floating, is_complex = FALSE)

dt_find_for_value(value, is_complex = FALSE)

Arguments

dt

as_bytes

dt_other

value

is_complex

bits
is_signed

is_floating

Character string containing a GDAL data type name (e.g., "Byte”, "Int16",
"UInt16”, "Int32", "UInt32", "Float32", "Float64", etc.)

Logical value, TRUE to return data type size in bytes (the default), FALSE to return
the size in bits.

Character string containing a GDAL data type name.

Numeric value for which to find a data type (passing the real part if is_complex
= TRUE).

Logical value, TRUE if value is complex (default is FALSE), or if complex values
are necessary in dt_find().

Integer value specifying the number of bits necessary.
Logical value, TRUE if negative values are necessary.

Logical value, TRUE if non-integer values are necessary.

data_type_helpers 39

Details
dt_size() returns the data type size in bytes by default, optionally in bits (returns zero if dt is not
recognized).

dt_is_complex() returns TRUE if the passed type is complex (one of Clnt16, CInt32, CFloat32 or
CFloat64), i.e., if it consists of a real and imaginary component.

dt_is_integer () returns TRUE if the passed type is integer (one of Byte, Int16, Ulntl6, Int32,
UlInt32, CInt16, CInt32).

dt_is_floating() returns TRUE if the passed type is floating (one of Float32, Floatl6, Float64,
CFloat16, CFloat32, CFloat64).

dt_is_signed() returns TRUE if the passed type is signed.

dt_union() returns the smallest data type that can fully express both input data types (returns a
data type name as character string).

dt_union_with_value() unions a data type with the data type found for a given value, and returns
the resulting data type name as character string.

dt_find() finds the smallest data type able to support the given requirements (returns a data type
name as character string).

dt_find_for_value() finds the smallest data type able to support the given value (returns a data
type name as character string).

See Also

GDALRaster$getDataTypeName ()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

1) |> dt_size()

1) |> dt_size(as_bytes = FALSE)
1) |> dt_is_complex()

1) |> dt_is_integer()

1) |> dt_is_floating()

1) |> dt_is_signed()

ds$getDataTypeName (band
ds$getDataTypeName (band
ds$getDataTypeName (band
ds$getDataTypeName (band
ds$getDataTypeName (band
ds$getDataTypeName (band

ds$close()

f <- system.file("extdata/complex.tif"”, package="gdalraster")
ds <- new(GDALRaster, f)

ds$getDataTypeName(band = 1) |> dt_size()
ds$getDataTypeName(band = 1) |> dt_size(as_bytes = FALSE)
ds$getDataTypeName(band = 1) |> dt_is_complex()
ds$getDataTypeName(band = 1) |> dt_is_integer()
ds$getDataTypeName(band = 1) |> dt_is_floating()
ds$getDataTypeName(band = 1) |> dt_is_signed()

ds$close()

40 DEFAULT _DEM_PROC

dt_union("Byte", "Int16")
dt_union_with_value("Byte"”, -1)
dt_union_with_value("Byte", 256)

dt_find(bits = 32, is_signed = FALSE, is_floating = FALSE)
dt_find_for_value(@)

dt_find_for_value(-1)

dt_find_for_value(NaN)
dt_find_for_value(.Machine$integer.max)

DEFAULT_DEM_PROC List of default DEM processing options

Description

These values are used in dem_proc() as the default processing options:

list(
"hillshade" = c("-z", "1", "=s", "1", "-az", "315",
"-alt"”, "45", "-alg", "Horn",
"-combined”, "-compute_edges"),
"slope"” = c("-s", "1", "-alg", "Horn", "-compute_edges"),
"aspect” = c("-alg"”, "Horn", "-compute_edges"),
"color-relief” = character(),
"TRI" = c("-alg", "Riley”, "-compute_edges"),
"TPI" = c("-compute_edges"),
"roughness” = c("-compute_edges"))

Usage

DEFAULT_DEM_PROC

Format

An object of class 1ist of length 7.

See Also

dem_proc()

https://gdal.org/en/stable/programs/gdaldem.html for a description of all available command-
line options for each processing mode

https://gdal.org/en/stable/programs/gdaldem.html

DEFAULT _NODATA 41

DEFAULT_NODATA List of default nodata values by raster data type

Description

These values are currently used in gdalraster when a nodata value is needed but has not been
specified:

list("Byte” = 255, "Int8” = -128,
"UInt16” = 65535, "Int16” = -32767,
"UInt32" = 4294967293, "Int32" = -2147483647,
"Float32” = -99999.0, "Float64” = -99999.0)

Usage
DEFAULT_NODATA

Format

An object of class 1ist of length 8.

deleteDataset Delete named dataset

Description

deleteDataset () will attempt to delete the named dataset in a format specific fashion. Full fea-
tured drivers will delete all associated files, database objects, or whatever is appropriate. The de-
fault behavior when no format specific behavior is provided is to attempt to delete all the files
that would be returned by GDALRaster$getFileList() on the dataset. The named dataset should
not be open in any existing GDALRaster objects when deleteDataset() is called. Wrapper for
GDALDeleteDataset() in the GDAL APIL.

Usage
deleteDataset(filename, format = "")
Arguments
filename Filename to delete (should not be open in a GDALRaster object).
format Raster format short name (e.g., "GTift"). If set to empty string "" (the default),
will attempt to guess the raster format from filename.
Value

Logical TRUE if no error or FALSE on failure.

42 dem_proc

Note

nn

If format is set to an empty string "" (the default) then the function will try to identify the driver
from filename. This is done internally in GDAL by invoking the Identify method of each regis-
tered GDALDriver in turn. The first driver that successful identifies the file name will be returned.
An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), copyDatasetFiles(), renameDataset ()

Examples

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)
b5_tmp <- file.path(tempdir(), "b5_tmp.tif")
file.copy(b5_file, b5_tmp)

ds <- new(GDALRaster, b5_tmp)

ds$buildOverviews ("BILINEAR", levels = c(2, 4, 8), bands = c(1))
files <- ds$getFilelList()

print(files)

ds$close()

file.exists(files)

deleteDataset(b5_tmp)

file.exists(files)

dem_proc GDAL DEM processing

Description

dem_proc() generates DEM derivatives from an input elevation raster. This function is a wrapper
for the gdaldem command-line utility. See https://gdal.org/en/stable/programs/gdaldem.
html for details.

Usage

dem_proc(
mode,
srcfile,
dstfile,
mode_options = DEFAULT_DEM_PROC[[model],
color_file = NULL,
quiet = FALSE

https://gdal.org/en/stable/programs/gdaldem.html
https://gdal.org/en/stable/programs/gdaldem.html

displayRAT 43

Arguments
mode Character. Name of the DEM processing mode. One of hillshade, slope, aspect,
color-relief, TRI, TPI or roughness.
srcfile Filename of the source elevation raster.
dstfile Filename of the output raster.

mode_options An optional character vector of command-line options (see DEFAULT_DEM_PROC
for default values).

color_file Filename of a text file containing lines formatted as: "elevation_value red green
blue". Only used when mode = "color-relief”.
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

Band 1 of the source elevation raster is read by default, but this can be changed by including a -b
command-line argument in mode_options. See the documentation for gdaldem for a description of
all available options for each processing mode.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
slp_file <- file.path(tempdir(), "storml_slp.tif")
dem_proc("slope”, elev_file, slp_file)

displayRAT Display a GDAL Raster Attribute Table

Description

displayRAT() generates a presentation table. Colors are shown if the Raster Attribute Table con-
tains RGB columns. This function requires package gt.

Usage
displayRAT(tbl, title = "Raster Attribute Table")

Arguments

tbl A data frame formatted as a GDAL RAT (e.g., as returned by buildRAT() or
GDALRaster$getDefaultRAT()).

title Character string to be used in the table title.

https://gdal.org/en/stable/programs/gdaldem.html

44 dump_open_datasets

Value

An object of class "gt_tbl" (i.e., a table created with gt: :gt()).

See Also
buildRAT (), GDALRaster$getDefaul tRAT()

vignette("raster-attribute-tables"”)

Examples

see examples for “buildRAT()"

dump_open_datasets Report open datasets

Description

dump_open_datasets() dumps a list of all open datasets (shared or not) to the console. This
function is primarily intended to assist in debugging "dataset leaks" and reference counting issues.
The information reported includes the dataset name, referenced count, shared status, driver name,
size, and band count. This a wrapper for GDALDumpOpenDatasets() with output to the console.

Usage

dump_open_datasets()

Value

Number of open datasets.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

ds <- new(GDALRaster, elev_file)

dump_open_datasets()

ds2 <- new(GDALRaster, elev_file)

dump_open_datasets()

open without using shared mode

ds3 <- new(GDALRaster, elev_file, read_only = TRUE,
open_options = NULL, shared = FALSE)

dump_open_datasets()

ds$close()

dump_open_datasets()

ds2$close()

dump_open_datasets()

ds3$close()

dump_open_datasets()

fillNodata 45

fillNodata Fill selected pixels by interpolation from surrounding areas

Description

fillNodata() is a wrapper for GDALFillNodata() in the GDAL Algorithms API. This algorithm
will interpolate values for all designated nodata pixels (pixels having an intrinsic nodata value,
or marked by zero-valued pixels in the optional raster specified in mask_file). For each nodata
pixel, a four direction conic search is done to find values to interpolate from (using inverse distance
weighting). Once all values are interpolated, zero or more smoothing iterations (3x3 average filters
on interpolated pixels) are applied to smooth out artifacts.

Usage

fillNodata(
filename,
band,
mask_file = "",
max_dist = 100,
smooth_iterations = oL,
quiet = FALSE

)
Arguments
filename Filename of input raster in which to fill nodata pixels.
band Integer band number to modify in place.
mask_file Optional filename of raster to use as a validity mask (band 1 is used, zero marks
nodata pixels, non-zero marks valid pixels).
max_dist Maximum distance (in pixels) that the algorithm will search out for values to

interpolate (100 pixels by default).

smooth_iterations
The number of 3x3 average filter smoothing iterations to run after the interpola-
tion to dampen artifacts (0 by default).

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

The input raster will be modified in place. It should not be open in a GDALRaster object while
processing with fillNodata().

46 footprint

Examples

fill nodata edge pixels in the elevation raster
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

get count of nodata
tbl <- buildRAT(elev_file)
head(tbl)
tbl[is.na(tb1$VALUE),]

make a copy that will be modified
mod_file <- file.path(tempdir(), "storml_elev_fill.tif")
file.copy(elev_file, mod_file)

fillNodata(mod_file, band=1)
mod_tbl = buildRAT(mod_file)

head(mod_tbl)
mod_tbl[is.na(mod_tb1$VALUE),]

footprint Compute footprint of a raster

Description

footprint() is a wrapper of the gdal_footprint command-line utility (see https://gdal.org/
en/stable/programs/gdal_footprint.html). The function can be used to compute the footprint
of a raster file, taking into account nodata values (or more generally the mask band attached to the
raster bands), and generating polygons/multipolygons corresponding to areas where pixels are valid,
and write to an output vector file. Refer to the GDAL documentation at the URL above for a list of
command-line arguments that can be passed in c1_arg. Requires GDAL >=3.8.

Usage

footprint(src_filename, dst_filename, cl_arg = NULL)

Arguments

src_filename Character string. Filename of the source raster.

dst_filename Character string. Filename of the destination vector. If the file and the out-
put layer exist, the new footprint is appended to them, unless the -overwrite
command-line argument is used.

cl_arg Optional character vector of command-line arguments for gdal_footprint.

https://gdal.org/en/stable/programs/gdal_footprint.html
https://gdal.org/en/stable/programs/gdal_footprint.html

GDALRaster-class 47

Details

Post-vectorization geometric operations are applied in the following order:

* optional splitting (-split_polys)

* optional densification (-densify)

* optional reprojection (-t_srs)

* optional filtering by minimum ring area (-min_ring_area)
* optional application of convex hull (-convex_hull)

* optional simplification (-simplify)

* limitation of number of points (-max_points)

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

polygonize()

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
out_file <- file.path(tempdir(), "storml.geojson")

Requires GDAL >= 3.8

if (gdal_version_num() >= gdal_compute_version(3, 8, 0)) {
command-line arguments for gdal_footprint
args <- c("-t_srs", "EPSG:4326")
footprint(evt_file, out_file, args)

GDALRaster-class Class encapsulating a raster dataset and associated band objects

Description

GDALRaster provides an interface for accessing a raster dataset via GDAL and calling methods on
the underlying GDALDataset, GDALDriver and GDALRasterBand objects. See https://gdal.org/
en/stable/api/index.html for details of the GDAL Raster API.

GDALRaster is a C++ class exposed directly to R (via RCPP_EXPOSED_CLASS). Fields and methods
of the class are accessed using the $ operator. Note that all arguments to class methods are
required and must be given in the order documented. Naming the arguments is optional but
may be preferred for readability.

https://gdal.org/en/stable/api/index.html
https://gdal.org/en/stable/api/index.html

48

Arguments

filename

read_only

open_options

shared

Value

GDALRaster-class

Character string containing the file name of a raster dataset to open, as full path
or relative to the current working directory. In some cases, filename may not
refer to a local file system, but instead contain format-specific information on
how to access a dataset such as database connection string, URL, /vsiPREFIX/,
etc. (see GDAL raster format descriptions: https://gdal.org/en/stable/
drivers/raster/index.html).

Logical. TRUE to open the dataset read-only (the default), or FALSE to open with
write access.

Optional character vector of NAME=VALUE pairs specifying dataset open options.

Logical. FALSE to open the dataset without using shared mode. Default is TRUE
(see Note).

An object of class GDALRaster, which contains a pointer to the opened dataset. Class methods that
operate on the dataset are described in Details, along with a set of writable fields for per-object
settings. Values may be assigned to the class fields as needed during the lifetime of the object (i.e.,
by regular <- or = assignment).

Usage (see Details)

Constructors

read-only by default:
ds <- new(GDALRaster, filename)
for update access:

ds <- new(GDALRaster, filename, read_only

FALSE)

to specify dataset open options:
ds <- new(GDALRaster, filename, read_only = TRUE|FALSE, open_options)
to open without using shared mode:

new(GDALRaster,

filename, read_only, open_options, shared = FALSE)

Read/write fields (per-object settings)

ds$infoOptions
ds$quiet

ds$readByteAsRaw

Methods

ds$getFilename()
ds$setFilename(filename)
ds$open(read_only)

ds$isOpen()

ds$getFilelList()

ds$info()
ds$infoAsJSON()

https://gdal.org/en/stable/drivers/raster/index.html
https://gdal.org/en/stable/drivers/raster/index.html

GDALRaster-class

ds$getDriverShortName ()
ds$getDriverLongName ()

ds$getRasterXSize()
ds$getRasterYSize()
ds$getRasterCount ()

ds$addBand(dataType, options)

ds$getGeoTransform()
ds$setGeoTransform(transform)

ds$getProjection()
ds$getProjectionRef ()
ds$setProjection(projection)

ds$bbox ()

ds$res()

ds$dim()
ds$apply_geotransform(col_row)
ds$get_pixel_line(xy)
ds$get_block_indexing(band)

ds$getDescription(band)
ds$setDescription(band, desc)
ds$getBlockSize(band)
ds$getActualBlockSize(band, xblockoff, yblockoff)
ds$getOverviewCount (band)
ds$buildOverviews(resampling, levels, bands)
ds$getDataTypeName (band)
ds$getNoDataValue(band)
ds$setNoDataValue(band, nodata_value)
ds$deleteNoDataValue(band)
ds$getMaskFlags(band)

ds$getMaskBand(band)

ds$getUnitType(band)

ds$setUnitType(band, unit_type)
ds$getScale(band)

ds$setScale(band, scale)

ds$getOffset(band)

ds$setOffset(band, offset)
ds$getRasterColorInterp(band)
ds$setRasterColorInterp(band, col_interp)

ds$getMinMax(band, approx_ok)

ds$getStatistics(band, approx_ok, force)

ds$clearStatistics()

ds$getHistogram(band, min, max, num_buckets, incl_out_of_range, approx_ok)

50

GDALRaster-class

ds$getDefaul tHistogram(band, force)

ds$getMetadata(band, domain)

ds$setMetadata(band, metadata, domain)
ds$getMetadataltem(band, mdi_name, domain)
ds$setMetadataltem(band, mdi_name, mdi_value, domain)
ds$getMetadataDomainList (band)

ds$read(band, xoff, yoff, xsize, ysize, out_xsize, out_ysize)
ds$write(band, xoff, yoff, xsize, ysize, rasterData)
ds$fillRaster(band, value, ivalue)

ds$getColorTable(band)

ds$getPalettelInterp(band)

ds$setColorTable(band, col_tbl, palette_interp)
ds$clearColorTable(band)

ds$getDefaul tRAT (band)
ds$setDefaul tRAT (band, df)

ds$flushCache()
ds$getChecksum(band, xoff, yoff, xsize, ysize)

ds$close()

Details

Constructors:

new(GDALRaster, filename, read_only)

Returns an object of class GDALRaster. The read_only argument defaults to TRUE if not specified.
new(GDALRaster, filename, read_only, open_options)

Alternate constructor for passing dataset open_options, a character vector of NAME=VALUE pairs.
read_only is required for this form of the constructor, TRUE for read-only access, or FALSE to
open with write access. Returns an object of class GDALRaster.

new(GDALRaster, filename, read_only, open_options, shared)

Alternate constructor for specifying the shared mode for dataset opening. The shared argument
defaults to TRUE but can be set to FALSE with this constructor (see Note). All arguments are
required with this form of the constructor, but open_options can be NULL. Returns an object of
class GDALRaster.

Read/write fields:

$infoOptions

A character vector of command-line arguments to control the output of $info() and $infoAsJSON()
(see below). Defaults to character(0). Can be set to a vector of strings specifying arguments to
the gdalinfo command-line utility, e.g., c("-nomd"”, "-norat”, "-noct"). Restore the default
by setting to empty string ("") or character ().

$quiet

A logical value, FALSE by default. This field can be set to TRUE which will suppress various

GDALRaster-class 51

messages as well as progress reporting for potentially long-running processes such as building
overviews and computation of statistics and histograms.

$readByteAsRaw

A logical value, FALSE by default. This field can be set to TRUE which will affect the data
type returned by $read() and read_ds(). When the underlying band data type is Byte and
readByteAsRaw is TRUE the output type will be raw rather than integer. See also the as_raw ar-
gument to read_ds () to control this in a non-persistent setting. If the underlying band data type
is not Byte this setting has no effect.

Methods:

$getFilename()

Returns a character string containing the filename associated with this GDALRaster object (filename
originally used to open the dataset). May be a regular filename, database connection string, URL,
etc.

$setFilename(filename)

Sets the filename if the underlying dataset does not already have an associated filename. Ex-
plicitly setting the filename is an advanced setting that should only be used when the user has
determined that it is needed. Writing certain virtual datasets to file is one potential use case (e.g.,
a dataset returned by autoCreateWarpedVRT()).

$open(read_only)

(Re-)opens the raster dataset on the existing filename. Use this method to open a dataset that has
been closed using $close(). May be used to re-open a dataset with a different read/write access
(read_only set to TRUE or FALSE). The method will first close an open dataset, so it is not required
to call $close() explicitly in this case. No return value, called for side effects.

$isOpen()

Returns logical indicating whether the associated raster dataset is open.

$getFileList()

Returns a character vector of files believed to be part of this dataset. If it returns an empty string
("") it means there is believed to be no local file system files associated with the dataset (e.g., a
virtual file system). The returned filenames will normally be relative or absolute paths depending
on the path used to originally open the dataset.

$info()

Prints various information about the raster dataset to the console (no return value, called for that
side effect only). Equivalent to the output of the gdalinfo command-line utility (gdalinfo
filename, if using the default infoOptions). See the field $infoOptions above for setting
the arguments to gdalinfo.

$infoAsJSON()

Returns information about the raster dataset as a JSON-formatted string. Equivalent to the output
of the gdalinfo command-line utility (gdalinfo -json filename, if using the default infoOptions).
See the field $infoOptions above for setting the arguments to gdalinfo.
$getDriverShortName()

Returns the short name of the raster format driver.

$getDriverLongName ()

Returns the long name of the raster format driver.

$getRasterXSize()

Returns the number of pixels along the x dimension.

$getRasterYSize()

Returns the number of pixels along the y dimension.

52

GDALRaster-class

$getRasterCount()

Returns the number of raster bands on this dataset. For the methods described below that operate
on individual bands, the band argument is the integer band number (1-based).
$addBand(dataType, options)

Adds a band to a dataset if the underlying format supports this action. Most formats do not, but
"MEM" and "VRT" are notable exceptions that support adding bands. The added band will always
be the last band. dataType is a character string containing the data type name (e.g., "Byte”,
"Int16", "UInt16", "Int32", "Float32", etc). The options argument is a character vector of
NAME=VALUE option strings. Supported options are format specific. Note that the options
argument is required but may be given as NULL. Returns logical TRUE on success or FALSE if a
band could not be added.

$getGeoTransform()

Returns the affine transformation coefficients for transforming between pixel/line raster space
(column/row) and projection coordinate space (geospatial x/y). The return value is a numeric vec-
tor of length six. See https://gdal.org/en/stable/tutorials/geotransforms_tut.html
for details of the affine transformation. With I-based indexing in R, the geotransform vector con-
tains (in map units of the raster spatial reference system):

GT[1] x-coordinate of upper-left corner of the upper-left pixel
GT[2] x-component of pixel width

GT[3] row rotation (zero for north-up raster)

GT[4] y-coordinate of upper-left corner of the upper-left pixel
GT[5] column rotation (zero for north-up raster)

GT[6] y-component of pixel height (negative for north-up raster)

$setGeoTransform(transform)

Sets the affine transformation coefficients on this dataset. transformis a numeric vector of length
six. Returns logical TRUE on success or FALSE if the geotransform could not be set.
$getProjection()

Returns the coordinate reference system of the raster as an OGC WKT format string. Equivalent
to ds$getProjectionRef ().

$getProjectionRef ()

Returns the coordinate reference system of the raster as an OGC WKT format string. An empty
string is returned when a projection definition is not available.

$setProjection(projection)

Sets the projection reference for this dataset. projection is a string in OGC WKT format. Re-
turns logical TRUE on success or FALSE if the projection could not be set.

$bbox ()

Returns a numeric vector of length four containing the bounding box (xmin, ymin, xmax, ymax).
$res()

Returns a numeric vector of length two containing the resolution (pixel width, pixel height as
positive values) for a non-rotated raster. A warning is emitted and NA values returned if the raster
has a rotated geotransform (see $getGeoTransform() above).

$dim()

Returns an integer vector of length three containing the raster dimensions (xsize, ysize, number
of bands). Equivalent to:

c(ds$getRasterXSize(), ds$getRasterYSize(), ds$getRasterCount())

https://gdal.org/en/stable/tutorials/geotransforms_tut.html

GDALRaster-class 53

$apply_geotransform(col_row)

Applies geotransform coefficients to raster coordinates in pixel/line space (column/row), con-
verting into georeferenced (x/y) coordinates. col_row is a numeric matrix of raster col/row
coordinates (or two-column data frame that will be coerced to numeric matrix). Returns a nu-
meric matrix of geospatial x/y coordinates. See the stand-alone function of the same name
(apply_geotransform()) for more info and examples.

$get_pixel_line(xy)

Converts geospatial coordinates to pixel/line (raster column/row numbers). xy is a numeric matrix
of geospatial x,y coordinates in the same spatial reference system as the raster (or two-column data
frame that will be coerced to numeric matrix). Returns an integer matrix of raster pixel/line. See
the stand-alone function of the same name (get_pixel_line()) for more info and examples.
$get_block_indexing(band)

Helper method returning a numeric matrix with named columns: xblockoff, yblockoff, xoff,
yoff, xsize, ysize, xmin, xmax, ymin, ymax. For the meanings of these names, refer to the
following class methods below: $getBlockSize(), $getActualBlockSize and $read(). All
offsets are zero-based. The columns xmin, xmax, ymin and ymax give the extent of each block in
geospatial coordinates. This method provides indexing values for the block layout of the given
band number. The returned matrix has number of rows equal to the number of blocks comprising
the band, with blocks ordered left to right, top to bottom. The xof f/yoff values are pixel offsets to
the start of a block. The xsize/ysize values give the actual block sizes accounting for potentially
incomplete blocks along the right and bottom edges.

$getDescription(band)

Returns a string containing the description for band. An empty string is returned if no description
is set for the band. Passing band = @ will return the dataset-level description.
$setDescription(band, desc)

Sets a description for band. desc is the character string to set. No return value. (Passing band
= @ can be used to set the dataset-level description. Note that the dataset description is generally
the filename that was used to open the dataset. It usually should not be changed by calling this
method on an existing dataset.)

$getBlockSize (band)

Returns an integer vector of length two (xsize, ysize) containing the "natural” block size of band.
GDAL has a concept of the natural block size of rasters so that applications can organize data
access efficiently for some file formats. The natural block size is the block size that is most
efficient for accessing the format. For many formats this is simply a whole row in which case
block xsize is the same as $getRasterXSize() and block ysize is 1. However, for tiled images
block size will typically be the tile size. Note that the X and Y block sizes don’t have to divide
the image size evenly, meaning that right and bottom edge blocks may be incomplete.
$getActualBlockSize(band, xblockoff, yblockoff)

Returns an integer vector of length two (xvalid, yvalid) containing the actual block size for a given
block offset in band. Handles partial blocks at the edges of the raster and returns the true number
of pixels. xblockoff is an integer value, the horizontal block offset for which to calculate the
number of valid pixels, with zero indicating the left most block, 1 the next block, etc. yblockoff
is likewise the vertical block offset, with zero indicating the top most block, 1 the next block, etc.
$getOverviewCount (band)

Returns the number of overview layers (a.k.a. pyramids) available for band.
$buildOverviews(resampling, levels, bands)

Build one or more raster overview images using the specified downsampling algorithm. resampling
is a character string, one of AVERAGE, AVERAGE _MAGPHASE, RMS, BILINEAR, CUBIC, CUBICSPLINE,

54

GDALRaster-class

GAUSS, LANCZO0S, MODE, NEAREST or NONE. levels is an integer vector giving the list of overview
decimation factors to build (e.g., c(2, 4, 8)), or @ to delete all overviews (at least for exter-
nal overviews (.ovr) and GTiff internal overviews). bands is an integer vector giving a list of
band numbers to build overviews for, or @ to build for all bands. Note that for GTiff, overviews
will be created internally if the dataset is open in update mode, while external overviews (.ovr)
will be created if the dataset is open read-only. External overviews created in GTiff format may
be compressed using the COMPRESS_OVERVIEW configuration option. All compression methods
supported by the GTiff driver are available (e.g., set_config_option(”"COMPRESS_OVERVIEW",
"LZW")). Since GDAL 3.6, COMPRESS_OVERVIEW is honored when creating internal overviews of
GTiff files. The GDAL documentation for gdaladdo command-line utility describes additional
configuration for overview building. See also set_config_option(). No return value, called for
side effects.

$getDataTypeName (band)
Returns the name of the pixel data type for band. The possible data types are:

Unknown Unknown or unspecified type
Byte 8-bit unsigned integer
Int8 8-bit signed integer (GDAL >= 3.7)
Ulntl6 16-bit unsigned integer
Intl6 16-bit signed integer
Ulnt32 32-bit unsigned integer
Int32 32-bit signed integer
Ulnt64 64-bit unsigned integer (GDAL >= 3.5)
Int64 64-bit signed integer (GDAL >= 3.5)
Float32 32-bit floating point
Float64 64-bit floating point
CIntl6 Complex Intl16
CInt32 Complex Int32
CFloat32 Complex Float32
CFloat64 Complex Float64

Some raster formats including GeoTIFF ("GTiff") and Erdas Imagine .img ("HFA") support sub-
byte data types. Rasters can be created with these data types by specifying the "NBITS=n" cre-
ation option where n=1...7 for GTiff or n=1/2/4 for HFA. In these cases, $getDataTypeName () re-
ports the apparent type "Byte”. GTiff also supports n=9...15 (UInt16 type) and n=17...31 (UInt32
type), and n=16 is accepted for Float32 to generate half-precision floating point values.

$getNoDataValue(band)

Returns the nodata value for band if one exists. This is generally a special value defined to mark
pixels that are not valid data. NA is returned if a nodata value is not defined for band. Not all raster
formats support a designated nodata value.

$setNoDataValue(band, nodata_value)

Sets the nodata value for band. nodata_value is a numeric value to be defined as the nodata
marker. Depending on the format, changing the nodata value may or may not have an effect
on the pixel values of a raster that has just been created (often not). It is thus advised to call
$fillRaster() explicitly if the intent is to initialize the raster to the nodata value. In any case,
changing an existing nodata value, when one already exists on an initialized dataset, has no effect
on the pixels whose values matched the previous nodata value. Returns logical TRUE on success
or FALSE if the nodata value could not be set.

https://gdal.org/en/stable/programs/gdaladdo.html

GDALRaster-class 55

$deleteNoDataValue(band)

Removes the nodata value for band. This affects only the definition of the nodata value for raster
formats that support one (does not modify pixel values). No return value. An error is raised if the
nodata value cannot be removed.

$getMaskFlags (band)

Returns the status flags of the mask band associated with band. Masks are represented as Byte
bands with a value of zero indicating nodata and non-zero values indicating valid data. Normally
the value 255 will be used for valid data pixels. GDAL supports external (.msk) mask bands,
and normal Byte alpha (transparency) band as mask (any value other than @ to be treated as valid
data). But masks may not be regular raster bands on the datasource, such as an implied mask
from a band nodata value or the ALL_VALID mask. See RFC 15: Band Masks for more details
(https://gdal.org/en/stable/development/rfc/rfci5_nodatabitmask.html.

Returns a named list of GDAL mask flags and their logical values, with the following definitions:

* ALL_VALID: There are no invalid pixels, all mask values will be 255. When used this will
normally be the only flag set.

* PER_DATASET: The mask band is shared between all bands on the dataset.

¢ ALPHA: The mask band is actually an alpha band and may have values other than @ and 255.

* NODATA: Indicates the mask is actually being generated from nodata values (mutually exclu-
sive of ALPHA).

$getMaskBand(band)

Returns the mask filename and band number associated with band. The return value is a named
list with two elements. The MaskFile element gives the filename where the mask band is located,
e.g., a file with the same name as the main dataset but suffixed with .msk in the case of a GDAL
external mask file. MaskFile will be an empty string for the derived ALL_VALID and NODATA
masks, which internally are freestanding bands not considered to be a part of a dataset. The
MaskBand element gives the band number for a mask that is a regular alpha band in the main
dataset or external mask file. BandNumber will be @ for the ALL_VALID and NODATA masks.
$getUnitType(band)

Returns the name of the unit type of the pixel values for band (e.g., "m" or "ft"). An empty string
("") is returned if no units are available.

$setUnitType(band, unit_type)

Sets the name of the unit type of the pixel values for band. unit_type should be one of empty
string "" (the default indicating it is unknown), "m" indicating meters, or "ft" indicating feet,
though other nonstandard values are allowed. Returns logical TRUE on success or FALSE if the unit
type could not be set.

$getScale(band)

Returns the pixel value scale (units value = (raw value * scale) + offset) for band. This value (in
combination with the $getOffset() value) can be used to transform raw pixel values into the
units returned by $getUnitType (). Returns NA if a scale value is not defined for this band.
$setScale(band, scale)

Sets the pixel value scale (units value = (raw value * scale) + offset) for band. Many raster formats
do not implement this method. Returns logical TRUE on success or FALSE if the scale could not be
set.

$getOffset(band)

Returns the pixel value offset (units value = (raw value * scale) + offset) for band. This value (in
combination with the $getScale () value) can be used to transform raw pixel values into the units
returned by $getUnitType(). Returns NA if an offset value is not defined for this band.

https://gdal.org/en/stable/development/rfc/rfc15_nodatabitmask.html

56

GDALRaster-class

$setOffset(band, offset)

Sets the pixel value offset (units value = (raw value * scale) + offset) for band. Many raster
formats do not implement this method. Returns logical TRUE on success or FALSE if the offset
could not be set.

$getRasterColorInterp(band)

Returns a string describing the color interpretation for band. The color interpretation values and
their meanings are:

Undefined Undefined
Gray Grayscale
Palette Paletted (see associated color table)
Red Red band of RGBA image
Green Green band of RGBA image
Blue Blue band of RGBA image
Alpha Alpha (O=transparent, 255=opaque)
Hue Hue band of HLS image
Saturation Saturation band of HLS image
Lightness Lightness band of HLS image
Cyan Cyan band of CMYK image
Magenta Magenta band of CMYK image
Yellow Yellow band of CMYK image
Black Black band of CMYK image
YCbCr_Y Y Luminance
YCbCr_Cb Cb Chroma
YCbCr_Cr Cr Chroma

$setRasterColorInterp(band, col_interp)

Sets the color interpretation for band. See above for the list of valid values for col_interp
(passed as a string).

$getMinMax (band, approx_ok)

Returns a numeric vector of length two containing the min/max values for band. If approx_ok is
TRUE and the raster format knows these values intrinsically then those values will be returned. If
that doesn’t work, a subsample of blocks will be read to get an approximate min/max. If the band
has a nodata value it will be excluded from the minimum and maximum. If approx_ok is FALSE,
then all pixels will be read and used to compute an exact range.

$getStatistics(band, approx_ok, force)

Returns a numeric vector of length four containing the minimum, maximum, mean and standard
deviation of pixel values in band (excluding nodata pixels). Some raster formats will cache statis-
tics allowing fast retrieval after the first request.

approx_ok:

* TRUE: Approximate statistics are sufficient, in which case overviews or a subset of raster tiles
may be used in computing the statistics.

* FALSE: All pixels will be read and used to compute statistics (if computation is forced).

force:

* TRUE: The raster will be scanned to compute statistics. Once computed, statistics will gen-
erally be “set” back on the raster band if the format supports caching statistics. (Note:
ComputeStatistics() in the GDAL API is called automatically here. This is a change
in the behavior of GetStatistics() in the API, to a definitive force.)

GDALRaster-class 57

* FALSE: Results will only be returned if it can be done quickly (i.e., without scanning the raster,
typically by using pre-existing STATISTICS_xxx metadata items). NAs will be returned if
statistics cannot be obtained quickly.

$clearStatistics()

Clear statistics. Only implemented for now in PAM supported datasets (Persistable Auxiliary
Metadata via .aux.xml file). GDAL >= 3.2.

$getHistogram(band, min, max, num_buckets, incl_out_of_range, approx_ok)
Computes raster histogram for band. min is the lower bound of the histogram. max is the upper
bound of the histogram. num_buckets is the number of buckets to use (bucket size is (max - min)
/ num_buckets). incl_out_of_range is a logical scalar: if TRUE values below the histogram
range will be mapped into the first bucket and values above will be mapped into the last bucket,
if FALSE out of range values are discarded. approx_ok is a logical scalar: TRUE if an approximate
histogram is OK (generally faster), or FALSE for an exactly computed histogram. Returns the
histogram as a numeric vector of length num_buckets.

$getDefaul tHistogram(band, force)

Returns a default raster histogram for band. In the GDAL API, this method is overridden by
derived classes (such as GDALPamRasterBand, VRTDataset, HFADataset...) that may be able
to fetch efficiently an already stored histogram. force is a logical scalar: TRUE to force the
computation of a default histogram; or if FALSE and no default histogram is available, a warning
is emitted and the returned list has a 0-length histogram vector. Returns a list of length four
containing named elements $min (lower bound), $max (upper bound), $num_buckets (number of
buckets), and $histogram (a numeric vector of length num_buckets).

$getMetadata(band, domain)

Returns a character vector of all metadata NAME=VALUE pairs that exist in the specified domain,
or empty string ("") if there are no metadata items in domain (metadata in the context of the
GDAL Raster Data Model: https://gdal.org/en/stable/user/raster_data_model.html).
Set band = @ to retrieve dataset-level metadata, or to an integer band number to retrieve band-level
metadata. Set domain = "" (empty string) to retrieve metadata in the default domain.
$setMetadata(band, metadata, domain)

Sets metadata in the specified domain. The metadata argument is given as a character vector of
NAME=VALUE pairs. Pass band = 0 to set dataset-level metadata, or pass an integer band number
to set band-level metadata. Use domain ="" (empty string) to set an item in the default domain.
Returns logical TRUE on success or FALSE if metadata could not be set.
$getMetadataltem(band, mdi_name, domain)

Returns the value of a specific metadata item named mdi_name in the specified domain, or empty
string ("") if no matching item is found. Set band = @ to retrieve dataset-level metadata, or to an
integer band number to retrieve band-level metadata. Set domain ="" (empty string) to retrieve
an item in the default domain.

$setMetadataltem(band, mdi_name, mdi_value, domain)

Sets the value (mdi_value) of a specific metadata item named mdi_name in the specified domain.
Pass band = @ to set dataset-level metadata, or pass an integer band number to set band-level
metadata. Use domain ="" (empty string) to set an item in the default domain. Returns logical
TRUE on success or FALSE if metadata could not be set.

$getMetadataDomainList (band)

Returns a character vector of metadata domains or empty string (""”). Set band = @ to retrieve
dataset-level domains, or to an integer band number to retrieve band-level domains.

$read(band, xoff, yoff, xsize, ysize, out_xsize, out_ysize)

Reads a region of raster data from band. The method takes care of pixel decimation / replication

https://gdal.org/en/stable/user/raster_data_model.html

58

GDALRaster-class

if the output size (out_xsize x out_ysize) is different than the size of the region being accessed
(xsize * ysize). xoff is the pixel (column) offset to the top left corner of the region of the band
to be accessed (zero to start from the left side). yoff is the line (row) offset to the top left corner
of the region of the band to be accessed (zero to start from the top). Note that raster row/column
offsets use 0-based indexing. xsize is the width in pixels of the region to be accessed. ysize is
the height in pixels of the region to be accessed. out_xsize is the width of the output array into
which the desired region will be read (typically the same value as xsize). out_ysize is the height
of the output array into which the desired region will be read (typically the same value as ysize).
Returns a numeric or complex vector containing the values that were read. It is organized in left
to right, top to bottom pixel order. NA will be returned in place of the nodata value if the raster
dataset has a nodata value defined for this band. Data are read as R integer type when possible
for the raster data type (Byte, Int8, Int16, UInt16, Int32), otherwise as type double (UInt32,
Float32, Float64). No rescaling of the data is performed (see $getScale() and $getOffset()
above). An error is raised if the read operation fails. See also the setting $readByteAsRaw above.
$write(band, xoff, yoff, xsize, ysize, rasterData)

Writes a region of raster data to band. xoff is the pixel (column) offset to the top left corner
of the region of the band to be accessed (zero to start from the left side). yoff is the line (row)
offset to the top left corner of the region of the band to be accessed (zero to start from the top).
Note that raster row/column offsets use 0-based indexing. xsize is the width in pixels of the
region to write. ysize is the height in pixels of the region to write. rasterData is a numeric
or complex vector containing values to write. It is organized in left to right, top to bottom pixel
order. NA in rasterData should be replaced with a suitable nodata value prior to writing (see
$getNoDataValue() and $setNoDataValue() above). An error is raised if the operation fails
(no return value).

$fillRaster(band, value, ivalue)

Fills band with a constant value. GDAL makes no guarantees about what values the pixels in
newly created files are set to, so this method can be used to clear a band to a specified "default"
value. The fill value is passed as numeric, but this will be converted to the underlying raster data
type before writing to the file. The ivalue argument allows setting the imaginary component of
a complex value. Note that ivalue is a required argument but can be set to @ for real data types.
No return value. An error is raised if the operation fails.

$getColorTable(band)

Returns the color table associated with band, or NULL if there is no associated color table. The
color table is returned as an integer matrix with five columns. To associate a color with a raster
pixel, the pixel value is used as a subscript into the color table. This means that the colors are
always applied starting at zero and ascending (see GDAL Color Table). Column 1 contains the
pixel values. Interpretation of columns 2:5 depends on the value of $getPaletteInterp() (see
below). For "RGB", columns 2:5 contain red, green, blue, alpha as 0-255 integer values.

$getPaletteInterp(band)
If band has an associated color table, this method returns a character string with the palette inter-
pretation for columns 2:5 of the table. An empty string ("") is returned if band does not have an
associated color table. The palette interpretation values and their meanings are:

* Gray: column 2 contains grayscale values (columns 3:5 unused)

* RGB: columns 2:5 contain red, green, blue, alpha

* CMYK: columns 2:5 contain cyan, magenta, yellow, black

e HLS: columns 2:4 contain hue, lightness, saturation (column 5 unused)

$setColorTable(band, col_tbl, palette_interp)

https://gdal.org/en/stable/user/raster_data_model.html#color-table

GDALRaster-class 59

Sets the raster color table for band (see GDAL Color Table). col_tbl is an integer matrix or
data frame with either four or five columns (see $getColorTable() above). Column 1 contains
the pixel values. Valid values are integers O and larger (note that GTiff format supports color
tables only for Byte and Ulnt16 bands). Negative values will be skipped with a warning emitted.
Interpretation of columns 2:5 depends on the value of $getPaletteInterp() (see above). For
RGB, columns 2:4 contain red, green, blue as 0-255 integer values, and an optional column 5
contains alpha transparency values (defaults to 255 opaque). palette_interp is a string, one of
Gray, RGB, CMYK or HLS (see $getPaletteInterp() above). Returns logical TRUE on success or
FALSE if the color table could not be set.

$clearColorTable(band)
Clears the raster color table for band. Returns logical TRUE on success or FALSE if the color table
could not be cleared, e.g., if this action is not supported by the driver.

$getDefaul tRAT (band)

Returns the Raster Attribute Table for band as a data frame, or NULL if there is no associated Raster
Attribute Table. See the stand-alone function buildRAT () for details of the Raster Attribute Table
format.

$setDefaultRAT (band, df)

Sets a default Raster Attribute Table for band from data frame df. The input data frame will be
checked for attribute "GDALRATTableType" which can have values of "thematic"” or "athematic”
(for continuous data). Columns of the data frame will be checked for attribute "GFU" (for "GDAL
field usage"). If the "GFU" attribute is missing, a value of "Generic” will be used (correspond-
ing to GFU_Generic in the GDAL API, for general purpose field). Columns with other, specific
field usage values should generally be present in df, such as fields containing the set of unique
(discrete) pixel values (GFU "MinMax"), pixel counts (GFU "PixelCount"), class names (GFU
"Name"), color values (GFUs "Red”, "Green”, "Blue"), etc. The data frame will also be checked
for attributes "RowdMin"” and "BinSize" which can have numeric values that describe linear bin-
ning. See the stand-alone function buildRAT () for details of the GDAL Raster Attribute Table
format and its representation as data frame.

$flushCache()

Flush all write cached data to disk. Any raster data written via GDAL calls, but buffered internally
will be written to disk. Using this method does not preclude calling $close() to properly close
the dataset and ensure that important data not addressed by $flushCache() is written in the file
(see also $open() above). No return value, called for side effect.

$getChecksum(band, xoff, yoff, xsize, ysize)

Returns a 16-bit integer (0-65535) checksum from a region of raster data on band. Floating point
data are converted to 32-bit integer so decimal portions of such raster data will not affect the
checksum. Real and imaginary components of complex bands influence the result. xoff is the
pixel (column) offset of the window to read. yoff is the line (row) offset of the window to read.
Raster row/column offsets use 0-based indexing. xsize is the width in pixels of the window to
read. ysize is the height in pixels of the window to read.

$close()

Closes the GDAL dataset (no return value, called for side effects). Calling $close() results in
proper cleanup, and flushing of any pending writes. Forgetting to close a dataset opened in update
mode on some formats such as GTiff could result in being unable to open it afterwards. The
GDALRaster object is still available after calling $close(). The dataset can be re-opened on the
existing filename with $open(read_only=TRUE) or $open(read_only=FALSE).

https://gdal.org/en/stable/user/raster_data_model.html#color-table

60 GDALRaster-class

Note

If a dataset object is opened with update access (read_only = FALSE), it is not recommended to
open a new dataset on the same underlying filename.

Datasets are opened in shared mode by default. This allows the sharing of GDALDataset handles for
a dataset with other callers that open shared on the same filename, if the dataset is opened from the
same thread. Functions in gdalraster that do processing will open input datasets in shared mode.
This provides potential efficiency for cases when an object of class GDALRaster is already open in
read-only mode on the same filename (avoids overhead associated with initial dataset opening by
using the existing handle, and potentially makes use of existing data in the GDAL block cache).
Opening in shared mode can be disabled by specifying the optional shared parameter in the class
constructor.

The $read() method will perform automatic resampling if the specified output size (out_xsize *
out_ysize) is different than the size of the region being read (xsize * ysize). In that case, the
GDAL_RASTERIO_RESAMPLING configuration option could also be set to override the default resam-
pling to one of BILINEAR, CUBIC, CUBICSPLINE, LANCZOS, AVERAGE or MODE (see set_config_option()).

See Also

Package overview in help(”gdalraster-package”)
vignette("raster-api-tutorial”)

read_ds() is a convenience wrapper for GDALRaster$read()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)
ds

print information about the dataset to the console
ds$info()

retrieve the raster format name
ds$getDriverShortName ()
ds$getDriverLongName()

retrieve a list of files composing the dataset
ds$getFilelList()

retrieve dataset parameters
ds$getRasterXSize()
ds$getRasterYSize()
ds$getGeoTransform()
ds$getProjection()
ds$getRasterCount()

ds$bbox ()

ds$res()

ds$dim()

retrieve some band-level parameters

GDALRaster-class

ds$getDescription(band = 1)

ds$getBlockSize(band = 1)

ds$getOverviewCount(band = 1)

ds$getDataTypeName(band = 1)

LCP format does not support an intrinsic nodata value so this returns NA:
ds$getNoDataValue(band = 1)

LCP driver reports several dataset- and band-level metadata

see the format description at https://gdal.org/en/stable/drivers/raster/lcp.html
set band = @ to retrieve dataset-level metadata

set domain = "" (empty string) for the default metadata domain
ds$getMetadata(band = @, domain = "")

retrieve metadata for a band as a vector of name=value pairs
ds$getMetadata(band = 4, domain = "")

retrieve the value of a specific metadata item
ds$getMetadataltem(band = 2, mdi_name = "SLOPE_UNIT_NAME"”, domain = "")

read one row of pixel values from band 1 (elevation)
raster row/column index are @-based
the upper left corner is the origin
read the tenth row:
ncols <- ds$getRasterXSize()
rowdata <- ds$read(band = 1, xoff = @, yoff = 9,
xsize = ncols, ysize =1,
out_xsize = ncols, out_ysize = 1)
head(rowdata)

ds$close()

create a new raster using lcp_file as a template
new_file <- file.path(tempdir(), "storml_newdata.tif")
rasterFromRaster(srcfile = lcp_file,

dstfile = new_file,

nbands = 1,
dtName = "Byte"”,
init = -9999)

ds_new <- new(GDALRaster, new_file, read_only = FALSE)

write random values to all pixels
set.seed(42)
ncols <- ds_new$getRasterXSize()
nrows <- ds_new$getRasterYSize()
for (row in @:(nrows - 1)) {
rowdata <- round(runif(ncols, @, 100))
ds_new$write(band = 1,

xoff = 0,
yoff = row,
xsize = ncols,
ysize = 1,

rowdata)

61

62

GDALVector-class

re-open in read-only mode when done writing
this will ensure flushing of any pending writes (implicit $close)
ds_new$open(read_only = TRUE)

getStatistics returns min, max, mean, sd, and sets stats in the metadata
ds_new$getStatistics(band = 1, approx_ok = FALSE, force = TRUE)
ds_new$getMetadataltem(band = 1, "STATISTICS_MEAN", "")

close the dataset for proper cleanup
ds_new$close()

using a GDAL Virtual File System handler '/vsicurl/'

see: https://gdal.org/en/stable/user/virtual_file_systems.html
url <- "/vsicurl/https://raw.githubusercontent.com/"

url <- paste@(url, "usdaforestservice/gdalraster/main/sample-data/")
url <- paste@(url, "1f_elev_220_mt_hood_utm.tif")

set_config_option("GDAL_HTTP_CONNECTTIMEOUT", "20")
set_config_option("GDAL_HTTP_TIMEOUT", "20")
if (http_enabled() && vsi_stat(url)) {
ds <- new(GDALRaster, url)
plot_raster(ds, legend = TRUE, main = "Mount Hood elevation (m)")
ds$close()

3
set_config_option("GDAL_HTTP_CONNECTTIMEOUT", "")
set_config_option("GDAL_HTTP_TIMEOUT", "")
GDALVector-class Class encapsulating a vector layer in a GDAL dataset
Description

GDALVector provides an interface for accessing a vector layer in a GDAL dataset and calling meth-
ods on the underlying OGRLayer object. An object of class GDALVector persists an open con-
nection to the dataset, and exposes methods to: retrieve layer information, set attribute and spa-
tial filters, traverse and read feature data by traditional row-based cursor (including an analog of
DBI::dbFetch()), read via column-oriented Arrow Array stream, write new features in a layer,
edit/overwrite existing features, upsert, and delete features, and perform data manipulation within
transactions.

GDALVector is a C++ class exposed directly to R (via RCPP_EXPOSED_CLASS). Fields and methods
of the class are accessed using the $ operator. Note that all arguments to class methods are
required and must be given in the order documented. Most GDALVector methods take zero or
one argument, so this is usually not an issue. Class constructors are the main exception. Naming
the arguments is optional but may be preferred for readability.

GDALVector-class 63

Arguments
dsn Character string containing the data source name (DSN), usually a filename or
database connection string.
layer Character string containing the name of a layer within the data source. May also
be given as an SQL SELECT statement to be executed against the data source,
defining a layer as the result set.
read_only Logical scalar. TRUE to open the layer read-only (the default), or FALSE to open

with write access.
open_options Optional character vector of NAME=VALUE pairs specifying dataset open options.

spatial_filter Optional character string containing a geometry in Well Known Text (WKT)
format which represents a spatial filter.

dialect Optional character string to control the statement dialect when SQL is used to
define the layer. By default, the OGR SQL engine will be used, except for
RDBMS drivers that will use their dedicated SQL engine, unless "OGRSQL" is
explicitly passed as the dialect. The "SQLITE" dialect can also be used.

Value

An object of class GDALVector, which contains pointers to the opened layer and the GDAL dataset
that owns it. Class methods that operate on the layer are described in Details, along with a set of
writable fields for per-object settings. Values may be assigned to the class fields as needed during
the lifetime of the object (i.e., by regular <- or = assignment).

Usage (see Details)

Constructors

for single-layer file formats such as shapefile

lyr <- new(GDALVector, dsn)

specifying the layer name, or SQL statement defining the layer
lyr <- new(GDALVector, dsn, layer)

for update access

lyr <- new(GDALVector, dsn, layer, read_only = FALSE)

using dataset open options

lyr <- new(GDALVector, dsn, layer, read_only, open_options)

setting a spatial filter and/or specifying the SQL dialect

lyr <- new(GDALVector, dsn, layer, read_only, open_options, spatial_filter, dialect)

Read/write fields (per-object settings)
lyr$defaultGeomColName

lyr$returnGeomAs

lyr$promoteToMulti

lyr$convertToLinear

lyr$wkbByteOrder

lyr$arrowStreamOptions

lyr$quiet

lyr$transactionsForce

64

Methods
lyr$open(read_only)
lyr$isOpen()
lyr$getDsn()
lyr$getFilelist()
lyr$info()
lyr$getDriverShortName ()
lyr$getDriverLongName ()

lyr$getName ()
lyr$getFieldNames()
lyr$testCapability()
lyr$getFIDColumn()
lyr$getGeomType()
lyr$getGeometryColumn()
lyr$getSpatialRef ()

lyr$bbox ()

lyr$getLayerDefn()
lyr$getFieldDomain(domain_name)

lyr$setAttributeFilter(query)
lyr$getAttributeFilter()
lyr$setIgnoredFields(fields)
lyr$setSelectedFields(fields)
lyr$getIgnoredFields()

lyr$setSpatialFilter(wkt)
lyr$setSpatialFilterRect(bbox)
lyr$getSpatialFilter()
lyr$clearSpatialFilter()

lyr$getFeatureCount()
lyr$getNextFeature()
lyr$setNextByIndex (i)
lyr$getFeature(fid)
lyr$resetReading()
lyr$fetch(n)

lyr$getArrowStream()
lyr$releaseArrowStream()

lyr$setFeature(feature)
lyr$createFeature(feature)
lyr$batchCreateFeature(feature_set)
lyr$upsertFeature(feature)
lyr$getLastWriteFID()
lyr$deleteFeature(fid)
lyr$syncToDisk()

GDALVector-class

GDALVector-class 65

lyr$startTransaction()
lyr$commitTransaction()
lyr$rollbackTransaction()

lyr$getMetadata()
lyr$setMetadata(metadata)
lyr$getMetadataltem(mdi_name)

lyr$close()

Details

Constructors:

new(GDALVector, dsn)

The first layer by index is assumed if the 1ayer argument is omitted, so this form of the constructor
might be used for single-layer formats like shapefile.

new(GDALVector, dsn, layer)

Constructor specifying the name of a layer to open. The layer argument may also be given as an
SQL SELECT statement to define a layer as the result set.

new(GDALVector, dsn, layer, read_only)

Constructor specifying read/write access (read_only = {TRUE|FALSE}). The layer argument
is required in this form of the constructor, but may be given as empty string (""), in which case
the first layer by index will be assumed.

new(GDALVector, dsn, layer, read_only, open_options)

Constructor specifying dataset open options as a character vector of NAME=VALUE pairs.
new(GDALVector, dsn, layer, read_only, open_options, spatial_filter, dialect))
Constructor to specify a spatial filter and/or SQL dialect. All arguments are required in this form
of the constructor, but open_options may be NULL, and spatial_filter or dialect may be an
empty string ("").

Read/write fields:

$defaultGeomColName

Character string specifying a name to use for returned columns when the geometry column name
in the source layer is empty, like with shapefiles etc. Defaults to "geom”.

$returnGeomAs

Character string specifying the return format of feature geometries. Must be one of WKB (the
default), WKB_ISO, WKT, WKT_ISO, BBOX, or NONE. Using WKB/WKT exports as 99-402 extended di-
mension (Z) types for Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon
and GeometryCollection. For other geometry types, it is equivalent to using WKB_ISO/WKT_ISO
(see https://libgeos.org/specifications/wkb/). Using BBOX exports as a list of numeric
vectors, each of length 4 with values xmin, ymin, xmax, ymax. If an empty geometry is en-
countered these values will be NA_real_ in the corresponding location. Using NONE will result in
no geometry value being present in the feature returned.

$promoteToMulti

A logical value specifying whether to automatically promote geometries from Polygon to Multi-
Polygon, Point to MultiPoint, or LineString to MultiLineString during read operations (i.e., with
methods $getFeature(), $getNextFeature(), $fetch()). Defaults to FALSE. Setting to TRUE

https://libgeos.org/specifications/wkb/

66

GDALVector-class

may be useful when reading from layers such as shapefiles that mix, e.g., Polygons and Multi-
Polygons.

$convertTolLinear

A logical value specifying whether to convert non-linear geometry types into linear geometry

types by approximating them (i.e., during read operations with methods $getFeature(), $getNextFeature(),

$fetch()). Defaults to FALSE. If set to TRUE, handled conversions are:

* wkbCurvePolygon -> wkbPolygon

» wkbCircularString -> wkbLineString

* wkbCompoundCurve -> wkbLineString
* wkbMultiSurface -> wkbMultiPolygon
* wkbMultiCurve -> wkbMultiLineString

$wkbByteOrder

Character string specifying the byte order for WKB geometries. Must be either LSB (Least Sig-
nificant Byte first, the default) or MSB (Most Significant Byte first).

$arrowStreamOptions

Character vector of "NAME=VALUE" pairs giving options used by the $getArrowStream() method
(see below). The available options may be driver and GDAL version specific. Options available
as of GDAL 3.8 are listed below. For more information about options for Arrow stream, see the
GDAL API documentation for OGR_L_GetArrowStream().

e INCLUDE_FID=YES/NO. Defaults to YES.

* MAX_FEATURES_IN_BATCH=integer. Maximum number of features to retrieve in an Ar-
rowArray batch. Defaults to 65536.

e TIMEZONE=unknown/UTC/(+|:)HH:MM or any other value supported by Arrow (GDAL
>=3.8).

* GEOMETRY_METADATA_ENCODING=0OGC/GEOARROW (GDAL >=3.8). The GDAL
default is OGC if not specified.

* GEOMETRY_ENCODING=WKB (Arrow/Parquet drivers). To force a fallback to the generic
implementation when the native geometry encoding is not WKB. Otherwise the geometry
will be returned with its native Arrow encoding (possibly using GeoArrow encoding).

$quiet

A logical value, FALSE by default. Set to TRUE to suppress various messages and warnings.
$transactionsForce

A logical value, FALSE by default. Affects the behavior of attempted transactions on the layer
(see the $startTransaction() method below). By default, only "efficient" transactions will be
attempted. Some drivers may offer an emulation of transactions, but sometimes with significant
overhead, in which case the user must explicitly allow for such an emulation by first setting
$transactionsForce <- TRUE.

Methods:

$open(read_only)

(Re-)opens the vector layer on the existing DSN. Use this method to open a layer that has
been closed using $close(). May be used to re-open a layer with a different read/write ac-
cess (read_only set to TRUE or FALSE). The method will first close an open dataset, so it is not
required to call $close() explicitly in this case. No return value, called for side effects.
$isOpen()

Returns a logical value indicating whether the vector dataset is open.

https://gdal.org/en/stable/api/vector_c_api.html#_CPPv420OGR_L_GetArrowStream9OGRLayerHP16ArrowArrayStreamPPc

GDALVector-class 67

$getDsn()

Returns a character string containing the dsn associated with this GDALVector object (dsn origi-
nally used to open the layer).

$getFilelList()

Returns a character vector of files believed to be part of the data source. If it returns an empty
string ("") it means there is believed to be no local file system files associated with the dataset
(e.g., a virtual file system). The returned filenames will normally be relative or absolute paths
depending on the path used to originally open the dataset.

$info()

Prints information about the vector layer to the console (no return value, called for that side
effect only). For non-SQL DSN/layer, calls ogrinfo() passing the command options cl_arg
=c("-so0", "-nomd"), and for layers open with a SQL statement, calls ogrinfo() passing the
command options cl_arg = c("-so"”, "-nomd”, "-sql”, <statement>).
$getDriverShortName()

Returns the short name of the vector format driver.

$getDriverLongName()

Returns the long name of the vector format driver.

$getName ()

Returns the layer name.

$getFieldNames()

Returns a character vector of the layer’s field names.

$testCapability()

Tests whether the layer supports named capabilities based on the current read/write access. Re-
turns a list of capabilities with values TRUE or FALSE. The returned list contains the following
named elements: RandomRead, SequentialWrite, RandomWrite, UpsertFeature, FastSpatialFilter,
FastFeatureCount, FastGetExtent, FastSetNextByIndex, FastGetArrowStream, FastWriteArrowBatch,
CreateField, CreateGeomField, DeleteField, ReorderFields, AlterFieldDefn, AlterGeomFieldDefn,
DeleteFeature, StringsAsUTF8, Transactions, CurveGeometries. Note that some layer ca-
pabilities are GDAL version dependent and may not be listed if not supported by the GDAL
version currently in use. (See the GDAL documentation for OGR_L_TestCapability().)
$getFIDColumn()

Returns the name of the underlying database column being used as the FID column, or empty
string ("") if not supported.

$getGeomType ()

Returns the well known name of the layer geometry type as character string. For layers with
multiple geometry fields, this method only returns the geometry type of the first geometry column.
For other columns, use $getLayerDefn(). For layers without any geometry field, this method
returns "NONE".

$getGeometryColumn()

Returns he name of the underlying database column being used as the geometry column, or an
empty string ("") if not supported. For layers with multiple geometry fields, this method only
returns the name of the first geometry column. For other columns, use $getLayerDefn().
$getSpatialRef ()

Returns a WKT string containing the spatial reference system for this layer, or empty string (")
if no spatial reference exists.

$bbox ()
Returns a numeric vector of length four containing the bounding box for this layer (xmin, ymin,

https://gdal.org/en/stable/api/vector_c_api.html#_CPPv420OGR_L_TestCapability9OGRLayerHPKc

68

GDALVector-class

xmax, ymax). Note that bForce = true is set in the underlying API call to OGR_L_GetExtent(),
so the entire layer may be scanned to compute a minimum bounding rectangle (see FastGetExtent
in the list returned by $testCapability()). Depending on the format driver, a spatial filter may
or may not be taken into account, so it is safer to call $bbox () without setting a spatial filter.
$getLayerDefn()

Returns a list containing the OGR feature class definition for this layer (a.k.a. layer definition).
The list contains zero or more attribute field definitions, along with one or more geometry field
definitions. See ogr_define for details of the field and feature class definitions.
$getFieldDomain(domain_name)

Returns a list containing specifications of the OGR field domain with the passed domain_name, or
NULL if domain_name is not found. Some formats support the use of field domains that describe the
valid values that can be stored in a given attribute field, e.g., coded values that are present in a spec-
ified enumeration, values constrained to a specified range, or values that must match a specified
pattern. See https://gdal.org/en/stable/user/vector_data_model.html#field-domains.
Requires GDAL >=3.3.

$setAttributeFilter(query)

Sets an attribute query string to be used when fetching features via the $getNextFeature()
or $fetch() methods. Only features for which query evaluates as true will be returned. The
query string should be in the format of an SQL WHERE clause, described in the "WHERE"
section of the OGR SQL dialect documentation (e.g., "population > 1000000 and population
< 5000000", where population is an attribute in the layer). In some cases (RDBMS backed
drivers, SQLite, GeoPackage) the native capabilities of the database may be used to to interpret
the WHERE clause, in which case the capabilities will be broader than those of OGR SQL. Note
that installing a query string will generally result in resetting the current reading position (as with
$resetReading() described below). The query parameter may be set to empty string (") to
clear the current attribute filter.

$getAttributeFilter()

Returns the attribute query string currently in use, or empty string (
set.

$setIgnoredFields(fields)

Set which fields can be omitted when retrieving features from the layer. The fields argument is
a character vector of field names. Passing an empty string ("") for fields will reset to no ignored

nn

) if an attribute filter is not

fields. If the format driver supports this functionality (testable using $testCapability() $IgnoreFields),

it will not fetch the specified fields in subsequent calls to $getFeature() / $getNextFeature() /
$fetch(), and thus save some processing time and/or bandwidth. Besides field names of the layer,
the following special fields can be passed: "OGR_GEOMETRY" to ignore geometry and "OGR_STYLE"
to ignore layer style. By default, no fields are ignored. Note that fields that are used in an attribute
filter should generally not be set as ignored fields, as most drivers (such as those relying on the
OGR SQL engine) will be unable to correctly evaluate the attribute filter. No return value, called
for side effects.

$setSelectedFields(fields)

Set which fields will be included when retrieving features from the layer. The fields argument is
a character vector of field names. Passing an empty string ("") for fields will reset to no ignored
fields. See the $setIgnoredFields() method above for more information. The data source must
provide IgnoreFields capability in order to set selected fields. Note that geometry fields, if desired,
must be specified when setting selected fields, either by including named geometry field(s) or the
special field "OGR_GEOMETRY" in the fields argument. No return value, called for side effects.

$getIgnoredFields()

https://gdal.org/en/stable/user/vector_data_model.html#field-domains
https://gdal.org/en/stable/user/ogr_sql_dialect.html#where

GDALVector-class 69

Returns a character vector containing the list of currently ignored fields, or an empty vector
(character(@)) if no fields are currently set to ignored (or if the format driver does not sup-
port ignored fields).

$setSpatialFilter(wkt)

Sets a new spatial filter from a geometry in WKT format. This method sets the geometry to be
used as a spatial filter when fetching features via the $getNextFeature() or $fetch() methods.
Only features that geometrically intersect the filter geometry will be returned. Currently this test
may be inaccurately implemented (depending on the vector format driver), but it is guaranteed
that all features whose envelope overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case. wkt is a character string
containing a WKT geometry in the same coordinate system as the layer. An empty string ("") may
be passed indicating that the current spatial filter should be cleared, but no new one instituted.
$setSpatialFilterRect (bbox)

Sets a new rectangular spatial filter. This method sets a rectangle to be used as a spatial filter
when fetching features via the $getNextFeature() or $fetch() methods. Only features that
geometrically intersect the given rectangle will be returned. bbox is a numeric vector of length
four containing xmin, ymin, xmax, ymax in the same coordinate system as the layer as a whole
(as returned by $getSpatialRef ()).

$getSpatialFilter()

Returns the current spatial filter geometry as a WKT string, or empty string ("") if a spatial filter
is not set.

$clearSpatialFilter()

Clears a spatial filter that was set with $setSpatialFilterRect(). No return value, called for
that side effect.

$getFeatureCount()

Returns the number of features in the layer. For dynamic databases the count may not be ex-
act. This method forces a count in the underlying API call (i.e., bForce = TRUE in the call to
OGR_L_GetFeatureCount()). Note that some vector drivers will actually scan the entire layer
once to count features. The FastFeatureCount element in the list returned by the $testCapability ()
method can be checked if this might be a concern. The number of features returned takes into ac-
count the spatial and/or attribute filters. Some driver implementations of this method may alter
the read cursor of the layer.

$getNextFeature()

Fetch the next available feature from this layer. Only features matching the current spatial and/or
attribute filter (if defined) will be returned. This method implements sequential access to the
features of a layer. The $resetReading() method can be used to start at the beginning again.
Returns a list with the unique feature identifier (FID), the attribute and geometry field names,
and their values. The returned list carries the OGRFeature class attribute with S3 methods for for
print() and plot(). NULL is returned if no more features are available.

$setNextByIndex(i)

Moves the read cursor to feature i in the current result set (with 0-based indexing). This method
allows positioning of a layer such that a call to $getNextFeature() or $fetch() will read the
requested feature(s), where i is an absolute index into the current result set. So, setting i =3
would mean the next feature read with $getNextFeature() would have been the fourth fea-
ture read if sequential reading took place from the beginning of the layer, including accounting
for spatial and attribute filters. This method is not implemented efficiently by all vector for-
mat drivers. The default implementation simply resets reading to the beginning and then calls
GetNextFeature() i times. To determine if fast seeking is available on the current layer, check

70

GDALVector-class

the FastSetNextByIndex element in the list returned by the $testCapability() method. No
return value, called for side effect.

$getFeature(fid)

Returns a feature by its identifier. The value of fid must be a numeric value, optionally carrying
the bit64::integer64 class attribute. Success or failure of this operation is unaffected by any
spatial or attribute filters that may be in effect. The RandomRead element in the list returned by
$testCapability() can be checked to establish if this layer supports efficient random access
reading; however, the call should always work if the feature exists since a fallback implemen-
tation just scans all the features in the layer looking for the desired feature. Returns a list with
the unique feature identifier (FID), the attribute and geometry field names, and their values, or
NULL on failure. Note that sequential reads (with $getNextFeature()) are generally considered
interrupted by a call to $getFeature().

$resetReading()

Reset feature reading to start on the first feature. No return value, called for that side effect.
$fetch(n)

Fetches the next n features from the layer and returns them as a data frame. This allows retrieving
the entire set of features, one page of features at a time, or the remaining features (from the current
cursor position). Returns a data frame with as many rows as features were fetched, and as many
columns as attribute plus geometry fields in the result set, even if the result is a single value or
has one or zero rows. The returned data frame carries the OGRFeatureSet class attribute with S3
methods for for print() and plot().

This method is an analog of DBI: :dbFetch().

The n argument is the maximum number of features to retrieve per fetch given as integer or
numeric but assumed to be a whole number (will be truncated). Use n = -1 or n = Inf to retrieve
all pending features (resets reading to the first feature). Otherwise, $fetch() can be called mul-
tiple times to perform forward paging from the current cursor position. Passing n = NA is also
supported and returns the remaining features. Fetching zero features is possible to retrieve the
structure of the feature set as a data frame (columns fully typed).

OGR field types are returned as the following R types (type-specific NA for OGR NULL values):

¢ OFTInteger: integer value

¢ OFTInteger subtype OFSTBoolean: logical value

¢ OFTIntegerList: vector of integer (list column)

* OFTInteger64: numeric value carrying the "integer64" class attribute

* OFTInteger64 subtype OFSTBoolean: logical value

* OFTInteger64List: vector of bit64::integer64 (list column)

* OFTReal: numeric value

¢ OFTRealList: vector of numeric (list column)

* OFTString: character string

¢ OFTStringList: vector of character strings (list column)

¢ OFTDate: numeric value of class "Date”

¢ OFTDateTime: numeric value of class "POSIXct" (millisecond accuracy)
* OFTTime: character string ("HH:MM:SS")

e OFTBinary: raw vector (list column, NULL entries for OGR NULL values)

Geometries are not returned if the field returnGeomAs is set to NONE. Omitting the geometries
may be beneficial for performance and memory usage when access only to feature attributes is

https://dbi.r-dbi.org/reference/dbFetch.html

GDALVector-class 71

needed. Geometries are returned as raw vectors in a data frame list column when returnGeomAs
is set to WKB (the default) or WKB_ISO, or as character strings when returnGeomAs is set to one
of WKT or WKT_ISO.

Note that $getFeatureCount() is called internally when fetching the full feature set or all re-
maining features (but not for a page of features).

$getArrowStream()

Returns a nanoarrow_array_stream object exposing an Arrow C stream on the layer (requires
GDAL >= 3.6). The writable field $arrowStreamOptions can be used to set options before
calling this method (see above). An error is raised if an array stream on the layer cannot be
obtained. Generally, only one ArrowArrayStream can be active at a time on a given layer (i.e., the
last active one must be explicitly released before a next one is asked). Changing attribute or spatial
filters, ignored columns, modifying the schema or using $resetReading()/$getNextFeature()
while using an ArrowArrayStream is strongly discouraged and may lead to unexpected results.
As a rule of thumb, no OGRLayer methods that affect the state of a layer should be called on
the layer while an ArrowArrayStream on it is active. Methods available on the stream object are:
$get_schema(), $get_next() and $release() (see Examples).

The stream should be released once reading is complete. Calling the release method as soon as
you can after consuming a stream is recommended by the nanoarrow documentation.

See also the $testCapability() method above to check whether the format driver provides a
specialized implementation (FastGetArrowStream), as opposed to the (slower) default imple-
mentation. Note however that specialized implementations may fallback to the default when at-
tribute or spatial filters are in use. (See the GDAL documentation for OGR_L_GetArrowStream().)
$releaseArrowStream()

Releases the Arrow C stream returned by $getArrowStream() and clears the nanoarrow_array_stream
object (if GDAL >= 3.6, otherwise does nothing). This is equivalent to calling the $release()
method on the nanoarrow_array_stream object. No return value, called for side effects.
$setFeature(feature)

Rewrites/replaces an existing feature. This method writes a feature based on the feature id within
the input feature. The feature argument is a named list of fields and their values, and must
include a $FID element referencing the existing feature to rewrite. The RandomWrite element in
the list returned by $testCapability() can be checked to establish if this layer supports random
access writing via $setFeature(). The way omitted fields in the passed feature are processed
is driver dependent:

¢ SQL-based drivers which implement set feature through SQL UPDATE will skip unset fields,
and thus the content of the existing feature will be preserved.

* The shapefile driver will write a NULL value in the DBF file.

* The GeoJSON driver will take into account unset fields to remove the corresponding JSON
member.

Returns logical TRUE upon successful completion, or FALSE if setting the feature did not succeed.
The FID of the last feature written to the layer may be obtained with the method $getLastWriteFID()
(see below). To set a feature, but create it if it doesn’t exist see the $upsertFeature() method.
$createFeature(feature)

Creates and writes a new feature within the layer. The feature argument is a named list of fields
and their values (might be one row of a data frame). The passed feature is written to the layer

as a new feature, rather than overwriting an existing one. If the feature has a $FID element with
other than NA (i.e., a numeric value, optionally carrying the bit64: : integer64 class attribute and
assumed to be a whole number), then the format driver may use that as the feature id of the new

https://gdal.org/en/stable/api/vector_c_api.html#_CPPv420OGR_L_GetArrowStream9OGRLayerHP16ArrowArrayStreamPPc

72

GDALVector-class

feature, but not necessarily. The FID of the last feature written to the layer may be obtained with
the method $getlLastWriteFID() (see below). Returns logical TRUE upon successful completion,
or FALSE if creating the feature did not succeed. To create a feature, but set it if it already exists
see the $upsertFeature() method.

$batchCreateFeature(feature_set)

Batch version of $createFeature(). Creates and writes a batch of new features within the layer
from input passed as a data frame in the feature_set argument. Column names in the data
frame must match field names of the layer and have compatible data types. The specifications
listed above under the $fetch() method generally apply to input data types for writing, but in-
tegers may be passed as ‘numeric’, and the ’integer64’ class attribute is not strictly required on
‘numeric’ input if it is not needed for the data being passed to an OFTInteger64 field. Returns a
logical vector of length equal to the number of input features (rows of the data frame), with TRUE
indicating success for the feature at that row index, or FALSE if writing the feature failed. It is rec-
ommended to use transactions when batch writing features to a layer (see $startTransaction()
below). This will generally give large performance benefit with data sources that provide efficient
transaction support (e.g., RDBMS-based sources such as GeoPackage and PostGIS). In addition,
the return value of $hatchCreateFeature() can be checked, and the transaction optionally com-
mitted or rolled back based on results of the operation across the full set of input features.

$upsertFeature(feature)

Rewrites/replaces an existing feature or creates a new feature within the layer. This method will
write a feature to the layer, based on the feature id within the input feature. The feature argument
is a named list of fields and their values (might be one row of a data frame), potentially including
a $FID element referencing an existing feature to rewrite. If the feature id doesn’t exist a new
feature will be written. Otherwise, the existing feature will be rewritten. The UpsertFeature
element in the list returned by $testCapability() can be checked to determine if this layer
supports upsert writing. See $setFeature() above for a description of how omitted fields in the
passed feature are processed. Returns logical TRUE upon successful completion, or FALSE if
upsert did not succeed. Requires GDAL >= 3.6.

$getLastWriteFID()

Returns the FID of the last feature written (either newly created or updated existing). NULL is
returned if no features have been written in the layer. Note that OGRNullFID (-1) may be returned
after writing a feature in some formats. This is the case if a FID has not been assigned yet,
and generally does not indicate an error (e.g., formats that do not store a persistent FID and
assign FIDs upon a sequential read operation). The returned FID is a numeric value carrying the
bit64::integer64 class attribute.

$deleteFeature(fid)

Deletes a feature from the layer. The feature with the indicated feature ID is deleted from the
layer if supported by the format driver. The value of fid must be a numeric value, optionally car-
rying the bit64: :integer64 class attribute (should be a whole number, will be truncated). The
DeleteFeature element in the list returned by $testCapability() can be checked to establish
if this layer has delete feature capability. Returns logical TRUE if the operation succeeds, or FALSE
on failure.

$syncToDisk()

Flushes pending changes to disk. This call is intended to force the layer to flush any pending
writes to disk, and leave the disk file in a consistent state. It would not normally have any effect
on read-only datasources. Some formats do not implement this method, and will still return no
error. An error is only returned if an error occurs while attempting to flush to disk. In any event,
you should always close any opened datasource with $close() which will ensure all data is

GDALVector-class 73

correctly flushed. Returns logical TRUE if no error occurs (even if nothing is done) or FALSE on
error.

$startTransaction()

Creates a transaction if supported by the vector data source. By default, only "efficient" transac-
tions will be attempted. See the writable field $transactionsForce above, which must be set

to TRUE to allow for emulated transactions. These are supported by some drivers but with poten-
tially significant overhead. The function ogr_ds_test_cap() can be used to determine whether

a vector data source supports efficient or emulated transactions.

All changes done after the start of the transaction are definitely applied in the data source if
$commitTransaction() is called. They can be canceled by calling rollbackTransaction()
instead. Nested transactions are not supported. Transactions are implemented at the dataset level,

so multiple GDALVector objects using the same data source should not have transactions active at

the same time.

In case $startTransaction() fails, neither $commitTransaction() nor $rollbackTransaction()
should be called. If an error occurs after a successful $startTransaction(), the whole trans-
action may or may not be implicitly canceled, depending on the format driver (e.g., the PostGIS
driver will cancel it, SQLite/GPKG will not). In any case, in the event of an error, an explicit call

to rollbackTransaction() should be done to keep things balanced.

Returns logical TRUE if the transaction is created, or FALSE on failure.

$commitTransaction()

Commits a transaction if supported by the vector data source. Returns a logical value, TRUE if the
transaction is successfully committed. Returns FALSE if no transaction is active, or the rollback
fails, or if the data source does not support transactions. Depending on the format driver, this may

or may not abort layer sequential reading that may be active.

$rollbackTransaction()

Rolls back a data source to its state before the start of the current transaction, if transactions are
supported by the data source. Returns a logical value, TRUE if the transaction is successfully rolled
back. Returns FALSE if no transaction is active, or the rollback fails, or if the data source does not
support transactions.

$getMetadata()

Returns a character vector of all metadata NAME=VALUE pairs for the layer or empty string ("") if
there are no metadata items.

$setMetadata(metadata)

Sets metadata on the layer if the format supports it. The metadata argument is given as a character
vector of NAME=VALUE pairs. Returns logical TRUE on success or FALSE if metadata could not be
set.

$getMetadataltem(mdi_name)

Returns the value of a specific metadata item named mdi_name, or empty string (
item is found.

$close()

Closes the vector dataset (no return value, called for side effects). Calling $close() results in
proper cleanup, and flushing of any pending writes. The GDALVector object is still available
after calling $close(). The layer can be re-opened on the existing dsn with $open(read_only =
{TRUE |FALSE}).

nn

) if no matching

See Also

ogr_define, ogr_manage, ogr2ogr (), ogrinfo()

74 GDALVector-class

GDAL vector format descriptions:
https://gdal.org/en/stable/drivers/vector/index.html

GDAL-supported SQL dialects:
https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html

GDAL Vector API documentation:
https://gdal.org/en/stable/api/index.html

Examples

MTBS fire perimeters in Yellowstone National Park 1984-2022
f <- system.file("extdata/ynp_fires_1984_2022.gpkg", package = "gdalraster”)

copy to a temporary file that is writeable
dsn <- file.path(tempdir(), basename(f))
file.copy(f, dsn)

(lyr <- new(GDALVector, dsn, "mtbs_perims"))
str(lyr)

dataset info
lyr$getDriverShortName ()
lyr$getDriverLongName ()
lyr$getFileList()

layer info
lyr$getName ()
lyr$getGeomType ()
lyr$getGeometryColumn()
lyr$getFIDColumn()
lyr$getSpatialRef ()
lyr$bbox ()

layer capabilities
lyr$testCapability()

re-open with write access
lyr$open(read_only = FALSE)
lyr$testCapability()$SequentialWrite
lyr$testCapability()$RandomWrite

feature class definition - a list of field names and their definitions
defn <- lyr$getLayerDefn()

names (defn)

str(defn)

default value of the read/write field 'returnGeomAs'
lyr$returnGeomAs

lyr$getFeatureCount()

sequential read cursor

https://gdal.org/en/stable/drivers/vector/index.html
https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html
https://gdal.org/en/stable/api/index.html

GDALVector-class

a single feature returned as a named list of fields and their values:
(feat <- lyr$getNextFeature())

set an attribute filter
lyr$setAttributeFilter("ig_year = 2020")
lyr$getFeatureCount()

feat <- lyr$getNextFeature()
plot(feat)

NULL when no more features are available
lyr$getNextFeature()

reset reading to the start
lyr$resetReading()
lyr$getNextFeature()

clear the attribute filter
lyr$setAttributeFilter("")
lyr$getFeatureCount()

set a spatial filter

get the bounding box of the largest 1988 fire and use as spatial filter
first set a temporary attribute filter to do the lookup
lyr$setAttributeFilter("ig_year = 1988 ORDER BY burn_bnd_ac DESC")

(feat <- lyr$getNextFeature())

bbox <- g_wk2wk(feat$geom) |> bbox_from_wkt()

set spatial filter on the full layer
lyr$setAttributeFilter("") # clears the attribute filter
lyr$setSpatialFilterRect (bbox)

lyr$getFeatureCount()

fetch in chunks and return as data frame (class “OGRFeatureSet~)
feat_set <- lyr$fetch(20)

head(feat_set)

plot(feat_set)

the next chunk
feat_set <- lyr$fetch(20)
nrow(feat_set)

no features remaining

feat_set <- lyr$fetch(20)

nrow(feat_set)

str(feat_set) # 0-row data frame with columns fully typed

or, fetch all pending features from the beginning

feat_set <- lyr$fetch(-1) # resets reading to the first feature
nrow(feat_set)

plot(feat_set)

76

GDALVector-class

lyr$clearSpatialFilter()
lyr$getFeatureCount()

lyr$close()

simple example of feature write methods showing use of various data types
create and write to a new layer in a GeoPackage data source
dsn2 <- tempfile(fileext = ".gpkg")

define a feature class
defn <- ogr_def_layer("POINT", srs = epsg_to_wkt(4326))

add field definitions
defn$unique_int <- ogr_def_field("OFTInteger"”, is_nullable = FALSE,
is_unique = TRUE)
defn$bool_data <- ogr_def_field("OFTInteger"”, fld_subtype = "OFSTBoolean")
defn$large_ints <- ogr_def_field("OFTInteger64")
defn$doubles <- ogr_def_field("OFTReal")
defn$strings <- ogr_def_field("OFTString”, fld_width = 50)
defn$dates <- ogr_def_field("OFTDate")
defn$dt_modified <- ogr_def_field("OFTDateTime",
default_value = "CURRENT_TIMESTAMP")
defn$blobs <- ogr_def_field("OFTBinary")

lyr <- ogr_ds_create("GPKG", dsn2, "test_layer”, layer_defn = defn,
return_obj = TRUE)

lyr$getlLayerDefn() |> str()

define a feature to write

featl <- list()

$FID is omitted since it is assigned when written (could also be NA)
$dt_modified is omitted since a default timestamp is defined on the field
feat1$unique_int <- 1001

feat1$bool_data <- TRUE

pass a string to as.integer64() since the value is too large to be

represented exactly as an R numeric value (i.e., double)
feat1$large_ints <- bit64::as.integer64("90071992547409910")
feat1$doubles <- 1.234

feat1$strings <- "A test string”

feat1$dates <- as.Date("2025-01-01")

feat1$blobs <- charToRaw("A binary object")

feat1$geom <- "POINT (1 1)" # can be a WKT string or raw vector of WKB

create as a new feature in the layer
lyr$createFeature(featl)

get the assigned FID
lyr$getlLastWriteFID()

attempt to re-write the same feature fails due to the unique constraint
lyr$createFeature(featl)

GDALVector-class 77

feat2 <- list()

feat2$unique_int <- 1002

feat2$bool_data <- FALSE

feat2$large_ints <- bit64::as.integer64("90071992547409920")
feat2$doubles <- 2.345

feat2$strings <- "A test string 2"

feat2$dates <- as.Date("2024-01-02")

feat2$blobs <- charToRaw("A binary object 2")

feat2$geom <- "POINT (2 2)"

lyr$createFeature(feat2)
lyr$getlLastWriteFID()

close and re-open as a read-only layer
lyr$open(read_only = TRUE)

lyr$getFeatureCount()
feat_set <- lyr$fetch(-1) # -1 to fetch all features from the beginning
str(feat_set)

edit an existing feature, e.g., feat <- lyr$getFeature(2)

here we copy a row of the data frame returned by lyr$fetch() above
feat <- feat_set[2,]

str(feat)

Sys.sleep(1) # to ensure a timestamp difference

feat$bool_data <- TRUE

feat$strings <- paste(feat$strings, "- edited"”)
feat$dt_modified <- Sys.time()

feat$geom <- "POINT (2.001 2.001)"

lyr$open(read_only = FALSE)

lyr$setFeature() re-writes the feature identified by the $FID element
lyr$setFeature(feat)

lyr$open(read_only = TRUE)
lyr$getFeatureCount()

lyr$returnGeomAs <- "WKT"
feat_set <- lyr$fetch(-1)
str(feat_set)

lyr$close()
Arrow array stream exposed as a nanoarrow_array_stream object
requires GDAL >= 3.6

if (gdal_version_num() >= gdal_compute_version(3, 6, 0)) {

sql <- "SELECT incid_name, geom from mtbs_perims LIMIT 5"
lyr <- new(GDALVector, dsn, sql)

78 gdal_compute_version

stream <- lyr$getArrowStream()
batch <- stream$get_next()

disable a warning for the example that can be safely ignored here
options(nanoarrow.warn_unregistered_extension = FALSE)

d <- as.data.frame(batch)
head(d) |> print()

the geometry column is a list column of WKB raw vectors
g_centroid(d$geom) |> print()

the last batch is NULL
stream$get_next() |> print()

release the stream when finished
stream$release()

lyr$close()

gdal_compute_version Compute a GDAL integer version number from major, minor, revision

Description

gdal_compute_version() computes a full integer version number (GDAL_VERSION_NUM)
from individual components (major, minor, revision). Convenience function for checking a GDAL
version requirement using gdal_version_num().

Usage

gdal_compute_version(maj, min, rev)

Arguments
maj Numeric value, major version component (coerced to integer by truncation).
min Numeric value, min version component (coerced to integer by truncation).
rev Numeric value, revision version component (coerced to integer by truncation).
Value

Integer version number compatible with gdal_version_num().

See Also

gdal_version_num()

gdal_formats 79

Examples

(gdal_version_num() >= gdal_compute_version(3, 7, 0))

gdal_formats Retrieve information on GDAL format drivers for raster and vector

Description

gdal_formats() returns a table of the supported raster and vector formats, with information about
the capabilities of each format driver.

Usage
gdal_formats(format = "")
Arguments
format A character string containing a driver short name. By default, information for
all configured raster and vector format drivers will be returned.
Value

A data frame containing the format short name, long name, raster (logical), vector (logical), read/write
flag (ro is read-only, w supports CreateCopy, w+ supports Create), virtual I/O supported (logical),
and subdatasets (logical).

Note

Virtual I/O refers to operations on GDAL Virtual File Systems. See https://gdal.org/en/
stable/user/virtual_file_systems.html#virtual-file-systems.

Examples

nrow(gdal_formats())
head(gdal_formats())

gdal_formats("GPKG")

https://gdal.org/en/stable/user/virtual_file_systems.html#virtual-file-systems
https://gdal.org/en/stable/user/virtual_file_systems.html#virtual-file-systems

80 geos_version

gdal_version Get GDAL version

Description
gdal_version() returns a character vector of GDAL runtime version information. gdal_version_num()
returns only the full version number (gdal_version()[2]) as an integer value.

Usage

gdal_version()

gdal_version_num()

Value

gdal_version() returns a character vector of length four containing:

* "—version" - one line version message, e.g., “GDAL 3.6.3, released 2023/03/12”

* "GDAL_VERSION_NUM" - formatted as a string, e.g., “3060300” for GDAL 3.6.3.0
* "GDAL_RELEASE_DATE" - formatted as a string, e.g., “20230312”

* "GDAL_RELEASE_NAME" - e.g., “3.6.3”

gdal_version_num() returns as.integer(gdal_version()[2])

Examples

gdal_version()

gdal_version_num()

geos_version Get GEOS version
Description
geos_version() returns version information for the GEOS library in use by GDAL. Requires
GDAL >=3.4.
Usage

geos_version()

getCreationOptions 81

Value
A list of length four containing:
* name - a string formatted as "major.minor.patch"
* major - major version as integer

* minor - minor version as integer

* patch - patch version as integer

List elements will be NA if GDAL < 3.4.

See Also

gdal_version(), proj_version()

Examples

geos_version()

getCreationOptions Return the list of creation options for a GDAL driver

Description

getCreationOptions() returns the list of creation options supported by a GDAL format driver.
This function is a wrapper of GDALGetDriverCreationOptionList() in the GDAL API, parsing
its XML output into a named list.

Usage

getCreationOptions(format, filter = NULL)

Arguments

format Format short name (e.g., "GTiff").

filter Optional character vector of creation option names.
Details

The output is a nested list with names matching the creation option names. The information for
each creation option is a named list with the following elements:

* $type: acharacter string describing the data type, e.g., "int", "float”, "string”. The type
"string-select” denotes a list of allowed string values which are returned as a character
vector in the $values element (see below).

* $description: acharacter string describing the option, or NA if no description is provided by
the GDAL driver.

82 get_cache_max

* $default: the default value of the option as either a character string or numeric value, or NA
if no description is provided by the GDAL driver.

* $values: a character vector of allowed string values for the creation option if $type is
"string-select”, otherwise NULL if the option is not a "string-select” type.

* $min: (GDAL >= 3.11) the minimum value of the valid range for the option, or NA if not
provided by the GDAL driver or the option is not a numeric type.

e $max: (GDAL >= 3.11) the maximum value of the valid range for the option, or NA if not
provided by the GDAL driver or the option is not a numeric type.
Value
A named list with names matching the creation option names, and each element a named list with
elements $type, $description, $default and $values (see Details).
See Also

create(), createCopy(), translate(), validateCreationOptions(), warp()

Examples

opt <- getCreationOptions("GTiff", "COMPRESS")
names (opt)

(opt$COMPRESS$type == "string-select”) # TRUE
opt$COMPRESS$values

all_opt <- getCreationOptions("GTiff")
names(all_opt)

$description and $default will be NA if no value is provided by the driver
$values will be NULL if the option is not a 'string-select' type

all_opt$PREDICTOR

all_opt$BIGTIFF

get_cache_max Get the maximum memory size available for the GDAL block cache

Description

get_cache_max() returns the maximum amount of memory available to the GDALRasterBlock
caching system for caching raster read/write data. Wrapper of GDALGetCacheMax64 () with return
value in MB by default.

Usage

get_cache_max(units = "MB")

get_cache_used 83

Arguments
units Character string specifying units for the return value. One of "MB" (the default),
"GB", "KB" or "bytes" (values of "byte”, "B" and empty string "" are also
recognized to mean bytes).
Details

The first time this function is called, it will read the GDAL_CACHEMAX configuration option to ini-
tialize the maximum cache memory. The value of the configuration option can be expressed as x%
of the usable physical RAM (which may potentially be used by other processes). Otherwise it is
expected to be a value in MB. As of GDAL 3.10, the default value, if GDAL_CACHEMAX has not been
set explicitly, is 5% of usable physical RAM.

Value
A numeric value carrying the integer64 class attribute. Maximum cache memory available in the
requested units.

Note

The value of the GDAL_CACHEMAX configuration option is only consulted the first time the cache size
is requested (i.e., it must be set as a configuration option prior to any raster I/O during the current
session). To change this value programmatically during operation of the program it is better to use
set_cache_max() (in which case, always given in bytes).

See Also

GDAL_CACHEMAX configuration option

get_config_option(), set_config_option(), get_usable_physical_ram(), get_cache_used(),
set_cache_max()

Examples

get_cache_max()

get_cache_used Get the size of memory in use by the GDAL block cache

Description
get_cache_used() returns the amount of memory currently in use for GDAL block caching. Wrap-
per of GDALGetCacheUsed64 () with return value in MB by default.

Usage

get_cache_used(units = "MB")

https://gdal.org/en/stable/user/configoptions.html#performance-and-caching

84 get_config_option

Arguments
units Character string specifying units for the return value. One of "MB" (the default),
"GB", "KB" or "bytes” (values of "byte”, "B" and empty string "" are also
recognized to mean bytes).
Value

A numeric value carrying the integer64 class attribute. Amount of the available cache memory
currently in use in the requested units.

See Also
GDAL Block Cache

get_cache_max(), set_cache_max()

Examples

get_cache_used()

get_config_option Get GDAL configuration option

Description

get_config_option() gets the value of GDAL runtime configuration option. Configuration op-
tions are essentially global variables the user can set. They are used to alter the default behavior of
certain raster format drivers, and in some cases the GDAL core. For a full description and listing of
available options see https://gdal.org/en/stable/user/configoptions.html.

Usage

get_config_option(key)

Arguments

key Character name of a configuration option.

Value
Character. The value of a (key, value) option previously set with set_config_option(). An empty
string ("") is returned if key is not found.

See Also

set_config_option()

vignette("gdal-config-quick-ref")

https://usdaforestservice.github.io/gdalraster/articles/gdal-block-cache.html
https://gdal.org/en/stable/user/configoptions.html

get_num_cpus 85

Examples

this option is set during initialization of the gdalraster package
get_config_option(”OGR_CT_FORCE_TRADITIONAL_GIS_ORDER")

get_num_cpus Get the number of processors detected by GDAL

Description
get_num_cpus () returns the number of processors detected by GDAL. Wrapper of CPLGe tNumCPUs ()
in the GDAL Common Portability Library.

Usage

get_num_cpus()

Value

Integer scalar, number of CPUs.

Examples

get_num_cpus()

get_pixel_line Raster pixel/line from geospatial x,y coordinates

Description

get_pixel_line() converts geospatial coordinates to pixel/line (raster column, row numbers).
The upper left corner pixel is the raster origin (0,0) with column, row increasing left to right, top to
bottom.

Usage

get_pixel_line(xy, gt)

Arguments
Xy Numeric matrix of geospatial x, y coordinates in the same spatial reference sys-
tem as gt (or two-column data frame that will be coerced to numeric matrix, or
a vector x, y for one coordinate).
gt Either a numeric vector of length six containing the affine geotransform for the

raster, or an object of class GDALRaster from which the geotransform will be
obtained (see Note).

86

Value

Integer matrix of raster pixel/line.

Note

get_usable_physical_ram

This function applies the inverse geotransform to the input points. If gt is given as the numeric
vector, no bounds checking is done (i.e., min pixel/line could be less than zero and max pixel/line
could be greater than the raster x/y size). If gt is obtained from an object of class GDALRaster,
then NA is returned for points that fall outside the raster extent and a warning emitted giving the
number points that were outside. This latter case is equivalent to calling the $get_pixel_line()

class method on the GDALRaster object (see Examples).

See Also

GDALRaster$getGeoTransform(), inv_geotransform()

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")

id, x, y in NAD83 / UTM zone 12N
pts <- read.csv(pt_file)
print(pts)

raster_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")

ds <- new(GDALRaster, raster_file)
gt <- ds$getGeoTransform()
get_pixel_line(pts[, -1], gt)

or, using the class method
ds$get_pixel_line(pts[, -11)

add a point outside the raster extent
pts[11, 1 <- c(11, 323318, 5105104)
get_pixel_line(pts[, -11, gt)

with bounds checking on the raster extent
ds$get_pixel_line(pts[, -11)

ds$close()

get_usable_physical_ram

Get usable physical RAM reported by GDAL

g binary_op 87

Description

get_usable_physical_ram() returns the total physical RAM, usable by a process, in bytes. It
will limit to 2 GB for 32 bit processes. Starting with GDAL 2.4.0, it will also take into account
resource limits (virtual memory) on Posix systems. Starting with GDAL 3.6.1, it will also take
into account RLIMIT_RSS on Linux. Wrapper of CPLGetUsablePhysicalRAM() in the GDAL
Common Portability Library.

Usage

get_usable_physical_ram()

Value

Numeric scalar, number of bytes as bit64: :integer64 type (or O in case of failure).

Note

This memory may already be partly used by other processes.

Examples

get_usable_physical_ram()

g_binary_op Binary operations on WKB or WKT geometries

Description

These functions implement operations on pairs of geometries in OGC WKB or WKT format.

Usage

g_intersection(
this_geom,
other_geom,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)

g_union(
this_geom,
other_geom,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",

88

quiet = FALSE
)

g_difference(
this_geom,
other_geom,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)

g_sym_difference(
this_geom,
other_geom,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

g binary_op

)
Arguments
this_geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
other_geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings. Must contain the same number of geometries as
this_geom.
as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.
as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".
byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB"” (uncommon).
quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.
Details

These functions use the GEOS library via GDAL headers.

g_intersection() returns a new geometry which is the region of intersection of the two geome-
tries operated on. g_intersects() can be used to test if two geometries intersect.

g_union() returns a new geometry which is the region of union of the two geometries operated on.

g_difference() returns a new geometry which is the region of this geometry with the region of
the other geometry removed.

g_sym_difference() returns a new geometry which is the symmetric difference of this geometry
and the other geometry (union minus intersection).

g binary_pred 89

Value

A geometry as WKB raw vector or WKT string, or a list/character vector of geometries as WKB/WKT
with length equal to the number of input geometry pairs. NA is returned with a warning if WKB
input cannot be converted into an OGR geometry object, or if an error occurs in the call to the
underlying OGR API function.

Note

this_geom and other_geom are assumed to be in the same coordinate reference system.

Geometry validity is not checked. In case you are unsure of the validity of the input geometries,
call g_is_valid() before, otherwise the result might be wrong.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

gl <- ds$bbox() |> bbox_to_wkt()

ds$close()

g2 <- "POLYGON ((327381.9 5104541.2, 326824.0 5104092.5, 326708.8 5103182.9,
327885.2 5102612.9, 329334.5 5103322.4, 329304.2 5104474.5,328212.7
5104656.4, 328212.7 5104656.4, 327381.9 5104541.2))"

see spatial predicate defintions at https://en.wikipedia.org/wiki/DE-9IM
g_intersects(gl, g2) # TRUE

g_overlaps(gl, g2) # TRUE

therefore,

g_contains(gl, g2) # FALSE

g_sym_difference(gl, g2) |> g_area()
g3 <- g_intersection(gl, g2)

g4 <- g_union(gl, g2)
g_difference(g4, g3) |> g_area()

g_binary_pred Geometry binary predicates operating on WKB or WKT

Description

These functions implement tests for pairs of geometries in OGC WKB or WKT format.

Usage

g_intersects(this_geom, other_geom, quiet = FALSE)

g_disjoint(this_geom, other_geom, quiet = FALSE)

90

g binary_pred

g_touches(this_geom, other_geom, quiet = FALSE)
g_contains(this_geom, other_geom, quiet = FALSE)
g_within(this_geom, other_geom, quiet = FALSE)

g_crosses(this_geom, other_geom, quiet = FALSE)
g_overlaps(this_geom, other_geom, quiet = FALSE)

g_equals(this_geom, other_geom, quiet = FALSE)

Arguments
this_geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
other_geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings. Must contain the same number of geometries as
this_geom.
quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.
Details

These functions use the GEOS library via GDAL headers.
g_intersects() tests whether two geometries intersect.

g_disjoint() tests if this geometry and the other geometry are disjoint.
g_touches() tests if this geometry and the other geometry are touching.
g_contains() tests if this geometry contains the other geometry.
g_within() tests if this geometry is within the other geometry.
g_crosses() tests if this geometry and the other geometry are crossing.

g_overlaps() tests if this geometry and the other geometry overlap, that is, their intersection has
a non-zero area (they have some but not all points in common).

g_equals() tests whether two geometries are equivalent. The GDAL documentation says: "This
operation implements the SQL/MM ST_OrderingEquals() operation. The comparison is done in
a structural way, that is to say that the geometry types must be identical, as well as the number
and ordering of sub-geometries and vertices. Or equivalently, two geometries are considered equal
by this method if their WKT/WKB representation is equal. Note: this must be distinguished from
equality in a spatial way."

Value

Logical vector with length equal to the number of input geometry pairs.

g_buffer 91

Note

this_geom and other_geom are assumed to be in the same coordinate reference system.

Geometry validity is not checked. In case you are unsure of the validity of the input geometries,
call g_is_valid() before, otherwise the result might be wrong.

See Also

https://en.wikipedia.org/wiki/DE-9IM

g_buffer Compute buffer of a WKB/WKT geometry

Description

g_buffer() builds a new geometry containing the buffer region around the geometry on which it
is invoked. The buffer is a polygon containing the region within the buffer distance of the original
geometry. Wrapper of OGR_G_Buffer ()in the GDAL API (GEOS via GDAL headers).

Usage
g_buffer(
geom,
dist,
quad_segs = 30L,
as_wkb = TRUE,

as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)
Arguments

geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.

dist Numeric buffer distance in units of the input geom.

quad_segs Integer number of segments used to define a 90 degree curve (quadrant of a
circle). Large values result in large numbers of vertices in the resulting buffer
geometry while small numbers reduce the accuracy of the result.

as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.

as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".

byte_order Character string specifying the byte order when output is WKB. One of "LSB"

(the default) or "MSB” (uncommon).

quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.

https://en.wikipedia.org/wiki/DE-9IM

92 g _coords

Value

A polygon as WKB raw vector or WKT string, or a list/character vector of polygons as WKB/WKT
with length equal to the number of input geometries. NA is returned with a warning if WKB input
cannot be converted into an OGR geometry object, or if an error occurs in the call to the underlying
OGR APL

Examples

g_buffer("POINT (@ @)", dist = 10, as_wkb = FALSE)

g_coords Extract coordinate values from geometries

Description
g_coords() extracts coordinate values (vertices) from the input geometries and returns a data frame
with coordinates as columns.

Usage

g_coords(geom)

Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
Value

A data frame as returned by wk: :wk_coords(): columns feature_id (the index of the feature
from the input), part_id (an arbitrary integer identifying the point, line, or polygon from whence it
came), ring_id (an arbitrary integer identifying individual rings within polygons), and one column
per coordinate (x, y, and/or z and/or m).

Examples

dsn <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")
lyr <- new(GDALVector, dsn)
d <- lyr$fetch(10)

vertices <- g_coords(d$geom)
head(vertices)

lyr$close()

g _envelope 93

g_envelope Obtain the bounding envelope for input geometries

Description
g_envelope() computes and returns the bounding envelope(s) for the input geometries. Wrapper
of OGR_G_GetEnvelope() in GDAL OGRGeometry.

Usage
g_envelope(geom, quiet = FALSE)

Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.
Value

Either a numeric vector of length 4 containing the envelope (xmin, xmax, ymin, ymax), or a four-
column numeric matrix with number of rows equal to the number of input geometries and column

names ("xmin”, "xmax", "ymin", "ymax").
g_factory Create WKB/WKT geometries from vertices, and add sub-geometries
Description

These functions create WKB/WKT geometries from input vertices, and build container geometry
types from sub-geometries.

Usage

g_create(
geom_type,
pts = NULL,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB"
)

g_add_geom(
sub_geom,
container,

94 g factory

as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB"

)
Arguments
geom_type Character string (case-insensitive), one of "POINT", "MULTIPOINT", "LINESTRING",
"POLYGON" (see Note) or "GEOMETRYCOLLECTION".
pts Numeric matrix of points (X, y, z, m), or NULL to create an empty geometry. The
points can be given as (X, y), (X, ¥, Z) or (X, Y, Z, m), so the input must have
two, three or four columns. Data frame input will be coerced to numeric matrix.
Rings for polygon geometries should be closed.
as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return a WKT string.
as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".
byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB"” (uncommon).
sub_geom Either a raw vector of WKB or a character string of WKT.
container Either a raw vector of WKB or a character string of WKT for a container geom-
etry type.
Details

These functions use the GEOS library via GDAL headers.

g_create() creates a geometry object from the given point(s) and returns a raw vector of WKB (the
default) or a character string of WKT. Currently supports creating Point, MultiPoint, LineString,
Polygon, and GeometryCollection. If multiple input points are given for creating Point type,
then multiple geometries will be returned as a list of WKB raw vectors, or character vector of
WKT strings (if as_wkb = FALSE). Otherwise, a single geometry is created from the input points.
Only an empty GeometryCollection can be created with this function, for subsequent use with
g_add_geom().

g_add_geom() adds a geometry to a geometry container, e.g., Polygon to Polygon (to add an inte-
rior ring), Point to MultiPoint, LineString to MultiLineString, Polygon to MultiPolygon, or mixed
geometry types to a GeometryCollection. Returns a new geometry, i.e, the container geometry is
not modified.

Value

A geometry as WKB raw vector by default, or a WKT string if as_wkb = FALSE. In the case of
multiple input points for creating Point geometry type, a list of WKB raw vectors or character
vector of WKT strings will be returned.

g _make_valid 95

Note

A POLYGON can be created for a single ring which will be the exterior ring. Additional POLY-
GONs can be created and added to an existing POLYGON with g_add_geom(). These will become
interior rings. Alternatively, an empty polygon can be created with g_create(”"POLYGON"), fol-
lowed by creation and addition of POLYGONSs as subgeometries. In that case, the first added
POLYGON will be the exterior ring. The next ones will be the interior rings.

Only an empty GeometryCollection can be created with g_create(), which can then be used as a
container with g_add_geom(). If given, input points will be ignored by g_create() if geom_type
= "GEOMETRYCOLLECTION".

Examples

raw vector of WKB by default
g_create("POINT", c(1, 2))

as WKT
g_create("POINT", c(1, 2), as_wkb = FALSE)

or convert in either direction
g_create("POINT", c(1, 2)) |> g_wk2wk()
g_create("POINT", c(1, 2), as_wkb = FALSE) |> g_wk2wk()

create multipoint from a matrix of xyz points
x <= ¢c(9, 1)

y <= c(1, 9)

z <- c(0, 10)

pts <- chbind(x, y, z)

mp <- g_create("MULTIPOINT", pts)

g_wk2wk (mp)

g_wk2wk (mp, as_iso = TRUE)

create an empty container and add subgeometries
mp2 <- g_create("MULTIPOINT")

mp2 <- g_create("POINT"”, c(11, 2)) |> g_add_geom(mp2)
mp2 <- g_create("POINT"”, c(12, 3)) |> g_add_geom(mp2)
g_wk2wk (mp2)

plot WKT strings or a list of WKB raw vectors with wk::wk_plot()
pts <- c(0, 0, 3, 0, 3, 4, 0, @)

m <- matrix(pts, ncol = 2, byrow = TRUE)

g <- g_create("POLYGON", m, as_wkb = FALSE)

wk::wkt(g) |> wk::wk_plot()

g_make_valid Attempt to make invalid geometries valid

96 g _make_valid

Description

g_make_valid() attempts to make an invalid geometry valid without losing vertices. Already-valid
geometries are cloned without further intervention. Wrapper of O0GR_G_MakeValid()/0GR_G_MakeValidEx ()
in the GDAL API.

Usage

g_make_valid(
geom,
method = "LINEWORK",
keep_collapsed = FALSE,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)
Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
method Character string. One of "LINEWORK" (the default) or "STRUCTURE" (requires

GEOS >= 3.10 and GDAL >= 3.4). See Details.

keep_collapsed Logical value, applies only to the STRUCTURE method. Defaults to FALSE.
See Details.

as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.

as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".

byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB"” (uncommon).

quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.

Details

LINEWORK is the default method, which combines all rings into a set of noded lines and then
extracts valid polygons from that linework. The STRUCTURE method (requires GEOS >= 3.10
and GDAL >= 3.4) first makes all rings valid, then merges shells and subtracts holes from shells to
generate a valid result. Assumes that holes and shells are correctly categorized.

KEEP_COLLAPSED only applies to the STRUCTURE method:

* FALSE (the default): collapses are converted to empty geometries

* TRUE: collapses are converted to a valid geometry of lower dimension

g _measures 97

Value

A geometry as WKB raw vector or WKT string, or a list/character vector of geometries as WKB/WKT
with length equal to length(geom). NA is returned with a warning if WKB input cannot be con-
verted into an OGR geometry object, or if an error occurs in the call to MakeValid() in the underly-
ing OGR APL

Note

This function is built on the GEOS >= 3.8 library, check it for the definition of the geometry opera-
tion. If OGR is built without GEOS >= 3.8, this function will return a clone of the input geometry
if it is valid, or NA if it is invalid.

Examples

requires GEOS >= 3.8, otherwise is only a validity test (see Note)
geos_version()

valid
wkt <- "POINT (0)"
g_make_valid(wkt, as_wkb = FALSE)

invalid to valid
wkt <- "POLYGON ((@ 0,10 10,0 10,10 0,0 0))"
g_make_valid(wkt, as_wkb = FALSE)

invalid - error
wkt <- "LINESTRING (@ 0)"
g_make_valid(wkt) # NA

g_measures Compute measurements for WKB/WKT geometries

Description

These functions compute measurements for geometries. The input geometries may be given as a
single raw vector of WKB, a list of WKB raw vectors, or a character vector containing one or more
WKT strings.

Usage
g_area(geom, quiet = FALSE)

g_centroid(geom, quiet = FALSE)
g_distance(geom, other_geom, quiet = FALSE)

g_length(geom, quiet = FALSE)

98

£_measures

g_geodesic_area(geom, srs, traditional_gis_order = TRUE, quiet = FALSE)

g_geodesic_length(geom, srs, traditional_gis_order = TRUE, quiet = FALSE)

Arguments

geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.

quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.

other_geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings. Must contain the same number of geometries as
geom.

srs Character string specifying the spatial reference system for geom. May be in

WKT format or any of the formats supported by srs_to_wkt().
traditional_gis_order

Logical value, TRUE to use traditional GIS order of axis mapping (the default)

or FALSE to use authority compliant axis order. By default, input geom vertices

are assumed to be in longitude/latitude order if srs is a geographic coordinate

system. This can be overridden by setting traditional_gis_order = FALSE.

Details

These functions use the GEOS library via GDAL headers.

g_area() computes the area for a Polygon or MultiPolygon. Undefined for all other geometry
types (returns zero). Returns a numeric vector, having length equal to the number of input geome-
tries, containing computed area or ’0’ if undefined.

g_centroid() returns a numeric vector of length 2 containing the centroid (X, Y), or a two-column
numeric matrix (X, Y) with number of rows equal to the number of input geometries. The GDAL
documentation states "This method relates to the SFCOM ISurface::get_Centroid() method
however the current implementation based on GEOS can operate on other geometry types such as
multipoint, linestring, geometrycollection such as multipolygons. OGC SF SQL 1.1 defines the
operation for surfaces (polygons). SQL/MM-Part 3 defines the operation for surfaces and multisur-
faces (multipolygons)."

g_distance() returns the distance between two geometries or -1 if an error occurs. Returns the
shortest distance between the two geometries. The distance is expressed into the same unit as the
coordinates of the geometries. Returns a numeric vector, having length equal to the number of input
geometry pairs, containing computed distance or ’-1’ if an error occurs.

g_length() computes the length for LineString or MultiCurve objects. Undefined for all other
geometry types (returns zero). Returns a numeric vector, having length equal to the number of input
geometries, containing computed length or ’0’ if undefined.

g_geodesic_area() computes geometry area, considered as a surface on the underlying ellipsoid
of the SRS attached to the geometry. The returned area will always be in square meters, and as-
sumes that polygon edges describe geodesic lines on the ellipsoid. If the geometry SRS is not a
geographic one, geometries are reprojected to the underlying geographic SRS. By default, input
geometry vertices are assumed to be in longitude/latitude order if using a geographic coordinate
system. This can be overridden with the traditional_gis_order argument. Returns the area in

g query 99

square meters, or NA in case of error (unsupported geometry type, no SRS attached, etc.) Requires
GDAL >=3.9.

g_geodesic_length() computes the length of the curve, considered as a geodesic line on the
underlying ellipsoid of the SRS attached to the geometry. The returned length will always be in
meters. If the geometry SRS is not a geographic one, geometries are reprojected to the underlying
geographic SRS. By default, input geometry vertices are assumed to be in longitude/latitude order
if using a geographic coordinate system. This can be overridden with the traditional_gis_order
argument. Returns the length in meters, or NA in case of error (unsupported geometry type, no SRS
attached, etc.) Requires GDAL >= 3.10.

Note

For g_distance(), geom and other_geom must contain the same number of geometries (i.e., op-
erates pair-wise on the inputs with no recycling), and are assumed to be in the same coordinate
reference system.

Geometry validity is not checked. In case you are unsure of the validity of the input geometries,
call g_is_valid() before, otherwise the result might be wrong.

Examples
g_area("POLYGON ((@ @, 10 10, 10 0, @ 0))")
g_centroid("POLYGON ((@ @, 10 10, 10 0, @ 9))")
g_distance("POINT (@ @)", "POINT (5 12)")
g_length("LINESTRING (0 0, 3 4)")

f <- system.file("extdata/ynp_fires_1984_2022.gpkg", package = "gdalraster")
lyr <- new(GDALVector, f, "mtbs_perims")

read all features into a data frame
feat_set <- lyr$fetch(-1)
head(feat_set)

g_area(feat_set$geom) |> head()

g_centroid(feat_set$geom) |> head()

lyr$close()

g_query Obtain information about WKB/WKT geometries

Description

These functions return information about WKB/WKT geometries. The input geometries may be
given as a single raw vector of WKB, a list of WKB raw vectors, or a character vector containing
one or more WKT strings.

100 g_query
Usage

g_is_empty(geom, quiet = FALSE)

g_is_valid(geom, quiet = FALSE)

g_is_3D(geom, quiet = FALSE)

g_is_measured(geom, quiet = FALSE)

g_name(geom, quiet = FALSE)

g_summary(geom, quiet = FALSE)

Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.
Details

g_is_empty() tests whether a geometry has no points. Returns a logical vector of the same length
as the number of input geometries containing TRUE for the corresponding geometries that are empty
or FALSE for non-empty geometries.

g_is_valid() tests whether a geometry is valid. Returns a logical vector analogous to the above
for g_is_empty().

g_is_3D() checks whether a geometry has Z coordinates. Returns a logical vector analogous to the
above for g_is_empty().

g_is_measured() checks whether a geometry is measured (has M values). Returns a logical vector
analogous to the above for g_is_empty ().

g_name () returns the WKT type names of the input geometries in a character vector of the same
length as the number of input geometries.

g_summary () returns text summaries of WKB/WKT geometries in a character vector of the same
length as the number of input geometries. Requires GDAL >= 3.7.

Examples

gl <- "POLYGON ((@ @, 10 10, 10 @, 0 0))"
g2 <- "POLYGON ((5 1, 95, 91, 51))"
g_difference(g2, g1) |> g_is_empty()

g1 <- "POLYGON ((0 o, 10 10, 10 0, @ 0))"
g2 <- "POLYGON ((@ o, 10 10, 10 @))"

g3 <- "POLYGON ((@ @, 10 10, 10 @, @ 1))"
g_is_valid(c(gl, g2, g3))

g_is_3D(gl)
g_is_measured(gl)

g _simplify 101

pt_xyz <- g_create("POINT", c(1, 9, 100))
g_is_3D(pt_xyz)
g_is_measured(pt_xyz)

pt_xyzm <- g_create("POINT"”, c(1, 9, 100, 2000))
g_is_3D(pt_xyzm)
g_is_measured(pt_xyzm)

f <- system.file("extdata/ynp_fires_1984_2022.gpkg", package = "gdalraster")
lyr <- new(GDALVector, f, "mtbs_perims")

feat <- lyr$getNextFeature()
g_name(feat$geom)

g_summary() requires GDAL >= 3.7

if (gdal_version_num() >= gdal_compute_version(3, 7, 0)) {
feat <- lyr$getNextFeature()
g_summary (feat$geom) |> print()

feat_set <- lyr$fetch(5)
g_summary (feat_set$geom) |> print()
3

lyr$close()

g_simplify Simplify WKB/WKT geometries optionally preserving topology

Description

g_simplify() computes a simplified geometry. By default, it simplifies the input geometries while
preserving topology (see Details). Wrapper of OGR_G_Simplify() /OGR_G_SimplifyPreserveTopology()
in the GDAL API (GEOS via GDAL headers).

Usage

g_simplify(
geom,
tolerance,
preserve_topology = TRUE,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

102 g _simplify

Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
tolerance Numeric value of the simplification tolerance, as distance in units of the input

geom. Simplification removes vertices which are within the tolerance distance of
the simplified linework (as long as topology is preserved when preserve_topology
= TRUE).

preserve_topology
Logical value, TRUE to simplify geometries while preserving topology (the de-
fault). Setting to FALSE simplifies geometries using the standard Douglas-Peucker
algorithm which is significantly faster (see Details).

as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.

as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".

byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB"” (uncommon).

quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.

Details

Definitions of these operations are given in the GEOS documentation (https://libgeos.org/
doxygen/), which are copied here (GEOS 3.14.0dev).

With preserve_topology = TRUE (the default):

Simplifies a geometry, ensuring that the result is a valid geometry having the same dimension and
number of components as the input. The simplification uses a maximum distance difference algo-
rithm similar to the one used in the Douglas-Peucker algorithm. In particular, if the input is an areal
geometry (Polygon or MultiPolygon), the result has the same number of shells and holes (rings) as
the input, in the same order. The result rings touch at no more than the number of touching point in
the input (although they may touch at fewer points).

With preserve_topology = FALSE:

Simplifies a geometry using the standard Douglas-Peucker algorithm. Ensures that any polygonal
geometries returned are valid. Simple lines are not guaranteed to remain simple after simplifica-
tion. Note that in general D-P does not preserve topology - e.g. polygons can be split, collapse
to lines or disappear, holes can be created or disappear, and lines can cross. To simplify geometry
while preserving topology use TopologyPreservingSimplifier. (However, using D-P is significantly
faster).

Value

A polygon as WKB raw vector or WKT string, or a list/character vector of polygons as WKB/WKT
with length equal to the number of input geometries. NA is returned with a warning if WKB input
cannot be converted into an OGR geometry object, or if an error occurs in the call to the underlying
OGR APL

https://libgeos.org/doxygen/
https://libgeos.org/doxygen/

g swap_xy 103

Note

preserve_topology = TRUE does not preserve boundaries shared between polygons.

Examples

g <- "LINESTRING(® 0,1 1,10 @)"
g_simplify(g, tolerance = 5, as_wkb = FALSE)

g_swap_xy Swap geometry x and y coordinates

Description

g_swap_xy() swaps x and y coordinates of the input geometry. Wrapper of OGR_G_SwapXY () in
the GDAL API.

Usage

g_swap_xy(
geom,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)
Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.
as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".
byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB" (uncommon).
quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.
Value

A geometry as WKB raw vector or WKT string, or a list/character vector of geometries as WKB/WKT
with length equal to length(geom). NA is returned with a warning if WKB input cannot be con-
verted into an OGR geometry object.

104 g_transform

Examples

g <- "GEOMETRYCOLLECTION(POINT(1 2),
LINESTRING(1 2,2 3),
POLYGON((® 0,0 1,1 1,0 0)))"

g_swap_xy(g, as_wkb = FALSE)

g_transform Apply a coordinate transformation to a WKB/WKT geometry

Description

g_transform() will transform the coordinates of a geometry from their current spatial reference
system to a new target spatial reference system. Normally this means reprojecting the vectors, but
it could include datum shifts, and changes of units.

Usage

g_transform(
geom,
srs_from,
srs_to,
wrap_date_line = FALSE,
date_line_offset = 10L,
traditional_gis_order = TRUE,
as_wkb = TRUE,
as_iso = FALSE,
byte_order = "LSB",
quiet = FALSE

)
Arguments
geom Either a raw vector of WKB or list of raw vectors, or a character vector contain-
ing one or more WKT strings.
srs_from Character string specifying the spatial reference system for geom. May be in
WKT format or any of the formats supported by srs_to_wkt().
srs_to Character string specifying the output spatial reference system. May be in WKT

format or any of the formats supported by srs_to_wkt ().

wrap_date_line Logical value, TRUE to correct geometries that incorrectly go from a longitude
on a side of the antimeridian to the other side. Defaults to FALSE.
date_line_offset
Integer longitude gap in degree. Defaults to 10L.

g transform 105

traditional_gis_order
Logical value, TRUE to use traditional GIS order of axis mapping (the default) or
FALSE to use authority compliant axis order. By default, input geom vertices are
assumed to be in longitude/latitude order if srs_fromis a geographic coordinate
system. This can be overridden by setting traditional_gis_order = FALSE.

as_wkb Logical value, TRUE to return the output geometry in WKB format (the default),
or FALSE to return as WKT.

as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT".

byte_order Character string specifying the byte order when output is WKB. One of "LSB"
(the default) or "MSB"” (uncommon).

quiet Logical value, TRUE to suppress warnings. Defaults to FALSE.

Value

A geometry as WKB raw vector or WKT string, or a list/character vector of geometries as WKB/WKT
with length equal to the number of input geometries. NA is returned with a warning if WKB input
cannot be converted into an OGR geometry object, or if an error occurs in the call to the underlying
OGR APL

Note

This function uses the OGR_GeomTransformer_Create() and OGR_GeomTransformer_Transform()
functions in the GDAL API: "This is an enhanced version of OGR_G_Transform(). When repro-
jecting geometries from a Polar Stereographic projection or a projection naturally crossing the an-
timeridian (like UTM Zone 60) to a geographic CRS, it will cut geometries along the antimeridian.
So aLineString might be returned as a MultilLineString."

The wrap_date_line = TRUE option might be specified for circumstances to correct geometries that

incorrectly go from a longitude on a side of the antimeridian to the other side, e.g., LINESTRING (-179 0,179 @)
will be transformed to MULTILINESTRING ((-179 0,-180 9), (180 ©,179 @)). For that use case,

srs_to might be the same as srs_from.

See Also

bbox_transform(), transform_bounds()

Examples

pt <- "POINT (-114.0 47.0)"
g_transform(pt, "WGS84", "EPSG:5070", as_wkb = FALSE)

correct geometries that incorrectly go from a longitude on a side of the
antimeridian to the other side

geom <- "LINESTRING (-179 @,179 @)"

g_transform(geom, "WGS84", "WGS84", wrap_date_line = TRUE, as_wkb = FALSE)

106 g wk2wk

g_wk2wk Geometry WKB/WKT conversion

Description

g_wk2wk () converts geometries between Well Known Binary (WKB) and Well Known Text (WKT)
formats. A geometry given as a raw vector of WKB will be converted to a WKT string, while a
geometry given as a WKT string will be converted to a WKB raw vector. Input may also be a list
of WKB raw vectors or a character vector of WKT strings.

Usage
g_wk2wk(geom, as_iso = FALSE, byte_order = "LSB")

Arguments
geom Either a raw vector of WKB or list of raw vectors to convert to WKT, or a
character vector containing one or more WKT strings to convert to WKB.
as_iso Logical value, TRUE to export as ISO WKB/WKT (ISO 13249 SQL/MM Part 3),
or FALSE (the default) to export as "Extended WKB/WKT" (see Note).
byte_order Character string specifying the byte order when converting to WKB. One of
"LSB" (the default) or "MSB"” (uncommon).
Value

For input of a WKB raw vector or list of raw vectors, returns a character vector of WKT strings,
with length of the returned vector equal to the number of input raw vectors. For input of a single
WKT string, returns a raw vector of WKB. For input of a character vector containing more than one
WKT string, returns a list of WKB raw vectors, with length of the returned list equal to the number
of input strings.

Note

With as_iso = FALSE (the default), geometries are exported as extended dimension (Z) WKB/WKT
for types Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon and GeometryCol-
lection. For other geometry types, it is equivalent to ISO.

When the return value is a list of WKB raw vectors, an element in the returned list will contain NA
if the corresponding input string was NA or empty ("").

When input is a list of WKB raw vectors, a corresponding element in the returned character vector
will be an empty string ("") if the input was a raw vector of length @ (raw(@)). If an input list
element is not a raw vector, then the corresponding element in the returned character vector will be
NA.

See Also

GEOS reference for geometry formats:
https://libgeos.org/specifications/

https://libgeos.org/specifications/

has_geos 107

Examples

wkt <- "POINT (-114 47)"
wkb <- g_wk2wk (wkt)
str(wkb)

g_wk2wk (wkb)

has_geos Is GEOS available?

Description

has_geos () returns a logical value indicating whether GDAL was built against the GEOS library.
GDAL built with GEOS is a system requirement as of gdalraster 1.10.0, so this function will
always return TRUE (may be removed in a future version).

Usage
has_geos()

Value

Logical. TRUE if GEOS is available, otherwise FALSE.

Examples

has_geos()

has_spatialite Is SpatiaLite available?

Description
has_spatialite() returns a logical value indicating whether GDAL was built with support for the
SpatiaLite library. SpatiaLite extends the SQLite core to support full Spatial SQL capabilities.
Usage

has_spatialite()

Details

GDAL supports executing SQL statements against a datasource. For most file formats (e.g. Shape-
files, GeoJSON, FlatGeobuf files), the built-in OGR SQL dialect will be used by default. It is also
possible to request the alternate "SQLite” dialect, which will use the SQLite engine to evaluate
commands on GDAL datasets. This assumes that GDAL is built with support for SQLite, and
preferably with Spatialite support too to benefit from spatial functions.

108 http_enabled

Value

Logical scalar. TRUE if SpatiaLite is available to GDAL.

Note

All GDAL/OGR drivers for database systems, e.g., PostgreSQL / PostGIS, Oracle Spatial, SQLite
/ Spatialite RDBMS, GeoPackage, etc., override the GDALDataset: :ExecuteSQL() function with
a dedicated implementation and, by default, pass the SQL statements directly to the underlying
RDBMS. In these cases the SQL syntax varies in some particulars from OGR SQL. Also, anything
possible in SQL can then be accomplished for these particular databases. For those drivers, it is also
possible to explicitly request the OGRSQL or SQLite dialects, although performance will generally
be much less than the native SQL engine of those database systems.

See Also

ogrinfo(), ogr_execute_sql()

OGR SQL dialect and SQLITE SQL dialect:
https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html

Examples

has_spatialite()

http_enabled Check if GDAL CPLHTTP services can be useful (libcurl)

Description

http_enabled() returns TRUE if 1ibcurl support is enabled. Wrapper of CPLHTTPEnabled() in
the GDAL Common Portability Library.

Usage

http_enabled()

Value

Logical scalar, TRUE if GDAL was built with 1ibcurl support.

Examples

http_enabled()

https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html

identifyDriver 109

identifyDriver Identify the GDAL driver that can open a dataset

Description

identifyDriver() will try to identify the driver that can open the passed file name by invoking
the Identify method of each registered GDALDriver in turn. The short name of the first driver that
successfully identifies the file name will be returned as a character string. If all drivers fail then
NULL is returned. Wrapper of GDALIdentifyDriverEx() in the GDAL C APL

Usage

identifyDriver(
filename,
raster = TRUE,
vector = TRUE,
allowed_drivers = NULL,
file_list = NULL

)
Arguments

filename Character string containing the name of the file to access. This may not refer to
a physical file, but instead contain information for the driver on how to access a
dataset (e.g., connection string, URL, etc.)

raster Logical value indicating whether to include raster format drivers in the search,
TRUE by default. May be set to FALSE to include only vector drivers.

vector Logical value indicating whether to include vector format drivers in the search,

TRUE by default. May be set to FALSE to include only raster drivers.

allowed_drivers
Optional character vector of driver short names that must be considered. Set to
NULL to consider all candidate drivers (the default).

file_list Optional character vector of filenames, including those that are auxiliary to the
main filename (see Note). May contain the input filename but this is not re-
quired. Defaults to NULL.

Value
A character string with the short name of the first driver that successfully identifies the input file
name, or NULL on failure.

Note

In order to reduce the need for such searches to touch the file system machinery of the operating
system, it is possible to give an optional list of files. This is the list of all files at the same level in

110 inspectDataset

the file system as the target file, including the target file. The filenames should not include any path
components. If the target object does not have filesystem semantics then the file list should be NULL.

At least one of the raster or vector arguments must be TRUE.

See Also

gdal_formats()

Examples

src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

identifyDriver(src) |> gdal_formats()

inspectDataset Obtain information about a GDAL raster or vector dataset

Description

inspectDataset () returns information about the format and content of a dataset. The function first
calls identifyDriver(), and then opens the dataset as raster and/or vector to obtain information
about its content. The return value is a list with named elements.

Usage
inspectDataset(filename, ...)
Arguments
filename Character string containing the name of the file to access. This may not refer to
a physical file, but instead contain information for the driver on how to access a
dataset (e.g., connection string, URL, etc.)
Additional arguments passed to identifyDriver().
Value

A list with the following named elements:

e $format: character string, the format short name
* $supports_raster: logical, TRUE if the format supports raster data

* $contains_raster: logical, TRUE if this is a raster dataset or the source contains raster sub-
datasets

* $supports_subdatasets: logical, TRUE if the format supports raster subdatasets
* $contains_subdatasets: logical, TRUE if the source contains subdatasets

* $subdataset_names: character vector containing the subdataset names, or empty vector if
subdatasets are not supported or not present

* $supports_vector: logical, TRUE if the format supports vector data

inv_geotransform 111

* $contains_vector: logical, TRUE if the source contains one or more vector layers
* $layer_names: character vector containing the vector layer names, or empty vector if the

format does not support vector or the source does not contain any vector layers
Note

Subdataset names are the character strings that can be used to instantiate GDALRaster objects. See
https://gdal.org/en/stable/en/latest/user/raster_data_model.html#subdatasets-domain.

PostgreSQL / PostGISRaster are handled as a special case. If additional arguments raster or
vector are not given for identifyDriver(), then raster = FALSE is assumed.

See Also

gdal_formats(), identifyDriver()

Examples

f <- system.file("extdata/ynp_features.zip", package = "gdalraster")
ynp_dsn <- file.path("/vsizip"”, f, "ynp_features.gpkg")

inspectDataset(ynp_dsn)

inv_geotransform Invert geotransform

Description

inv_geotransform() inverts a vector of geotransform coefficients. This converts the equation
from being:

raster pixel/line (column/row) -> geospatial x/y coordinate

to:

geospatial x/y coordinate -> raster pixel/line (column/row)

Usage

inv_geotransform(gt)

Arguments

gt Numeric vector of length six containing the geotransform to invert.

Value

Numeric vector of length six containing the inverted geotransform. The output vector will contain
NAss if the input geotransform is uninvertable.

See Also
GDALRaster$getGeoTransform(), get_pixel_line()

112 inv_project

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)
invgt <- ds$getGeoTransform() |> inv_geotransform()

ds$close()
ptX = 324181.7
ptY = 5103901.4

for a point x, y in the spatial reference system of elev_file
raster pixel (column number):
pixel <- floor(invgt[1] +

invgt[2] * ptX +

invgt[3] * ptY)

raster line (row number):

line <- floor(invgt[4] +
invgt[5] * ptX +
invgt[6] * ptY)

get_pixel_line() applies this conversion

inv_project Inverse project geospatial x/y coordinates to longitude/latitude

Description

inv_project() transforms geospatial x/y coordinates to longitude/latitude in the same geographic
coordinate system used by the given projected spatial reference system. The output long/lat can
optionally be set to a specific geographic coordinate system by specifying a well known name (see
Details).

Usage

inv_project(pts, srs, well_known_gcs = NULL)

Arguments
pts A data frame or numeric matrix containing geospatial point coordinates, or point
geometries as a list of WKB raw vectors or character vector of WKT strings. If
data frame or matrix, the number of columns must be either two (x, y), three (x,
y, z) or four (X, y, z, t). May be also be given as a numeric vector for one point
(xy, Xyz, or Xyzt).
srs Character string specifying the projected spatial reference system for pts. May

be in WKT format or any of the formats supported by srs_to_wkt().

well_known_gcs Optional character string containing a supported well known name of a geo-
graphic coordinate system (see Details for supported values).

ogr2ogr 113

Details

By default, the geographic coordinate system of the projection specified by srs will be used. If
a specific geographic coordinate system is desired, then well_known_gcs can be set to one of the
values below:

EPSG:n where n is the code of a geographic coordinate system
WGS84 same as EPSG:4326
WGS72 same as EPSG:4322
NADS83 same as EPSG:4269
NAD27 same as EPSG:4267
CRS84 same as WGS84
CRS72 same as WGS72
CRS27 same as NAD27

The coordinates returned by inv_project () will always be in longitude, latitude order (traditional
GIS order) regardless of the axis order defined for the GCS names above.

Value

Numeric matrix of longitude, latitude (potentially also with z, or z and t columns).

Note

Input points that contain missing values (NA) will be assigned NA in the output and a warning emitted.
Input points that fail to transform with the GDAL API call will also be assigned NA in the output
with a specific warning indicating that case.

See Also

transform_xy()

Examples

pt_file <- system.file("extdata/storml_pts.csv", package="gdalraster")
id, x, y in NAD83 / UTM zone 12N

pts <- read.csv(pt_file)

print(pts)

inv_project(pts[,-1], "EPSG:26912")

ogr2ogr Convert vector data between different formats

114 ogr2ogr

Description

ogr2ogr () is a wrapper of the ogr2ogr command-line utility (see https://gdal.org/en/stable/
programs/ogr2ogr.html). This function can be used to convert simple features data between file
formats. It can also perform various operations during the process, such as spatial or attribute se-
lection, reducing the set of attributes, setting the output coordinate system or even reprojecting the
features during translation. Refer to the GDAL documentation at the URL above for a description
of command-line arguments that can be passed in c1_arg.

Usage
ogr2ogr(
src_dsn,
dst_dsn,
src_layers = NULL,
cl_arg = NULL,
open_options = NULL
)
Arguments
src_dsn Character string. Data source name of the source vector dataset.
dst_dsn Character string. Data source name of the destination vector dataset.
src_layers Optional character vector of layer names in the source dataset. Defaults to all
layers.
cl_arg Optional character vector of command-line arguments for the GDAL ogr2ogr

command-line utility (see URL above).

open_options Optional character vector of dataset open options.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note
For progress reporting, see command-line argument -progress: Display progress on terminal.
Only works if input layers have the "fast feature count" capability.

See Also

ogrinfo(), the ogr_manage utilities

translate() for raster data
Examples
src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

Convert GeoPackage to Shapefile
ynp_shp <- file.path(tempdir(), "ynp_fires.shp")

https://gdal.org/en/stable/programs/ogr2ogr.html
https://gdal.org/en/stable/programs/ogr2ogr.html

ogrinfo 115

ogr2ogr(src, ynp_shp, src_layers = "mtbs_perims")

Reproject to WGS84

ynp_gpkg <- file.path(tempdir(), "ynp_fires.gpkg")

args <- c("-t_srs", "EPSG:4326", "-nln", "fires_wgs84")
ogr2ogr(src, ynp_gpkg, cl_arg = args)

Clip to a bounding box (xmin, ymin, xmax, ymax in the source SRS)
This will select features whose geometry intersects the bounding box.
The geometries themselves will not be clipped unless "-clipsrc” is
specified.

The source SRS can be overridden with "-spat_srs"” "<srs_def>"

Using -update mode to write a new layer in the existing DSN

bb <- c(469685.97, 11442.45, 544069.63, 85508.15)

args <- c("-update”, "-nln"”, "fires_clip"”, "-spat”, bb)

ogr2ogr(src, ynp_gpkg, cl_arg = args)

% o H W

Filter features by a -where clause

sql <- "ig_year >= 2000 ORDER BY ig_year”

args <- c("-update”, "-nln", "fires_2000-2020", "-where"”, sql)
ogr2ogr(src, ynp_gpkg, src_layers = "mtbs_perims”, cl_arg = args)

Dissolve features based on a shared attribute value
if (has_spatialite()) {
sql <- "SELECT ig_year, ST_Union(geom) AS geom FROM mtbs_perims GROUP BY ig_year"

args <- c("-update”, "-sql”, sql, "-dialect”, "SQLITE")
args <- c(args, "-nlt"”, "MULTIPOLYGON", "-nln", "dissolved_on_year")
ogr2ogr(src, ynp_gpkg, cl_arg = args)
3
ogrinfo Retrieve information about a vector data source
Description

ogrinfo() is a wrapper of the ogrinfo command-line utility (see https://gdal.org/en/stable/
programs/ogrinfo.html). This function lists information about an OGR-supported data source.
It is also possible to edit data with SQL statements. Refer to the GDAL documentation at the URL
above for a description of command-line arguments that can be passed in c1_arg. Requires GDAL
>=3.7.

Usage

ogrinfo(
dsn,
layers = NULL,
cl_arg = as.character(c(”-so", "-nomd")),

https://gdal.org/en/stable/programs/ogrinfo.html
https://gdal.org/en/stable/programs/ogrinfo.html

116 ogrinfo

open_options = NULL,
read_only = TRUE,

cout = TRUE
)
Arguments
dsn Character string. Data source name (e.g., filename, database connection string,
etc.)
layers Optional character vector of layer names in the source dataset.
cl_arg Optional character vector of command-line arguments for the ogrinfo command-

line utility in GDAL (see URL above for reference). The default is c("-so”,
"-nomd") (see Note).

open_options Optional character vector of dataset open options.

read_only Logical scalar. TRUE to open the data source read-only (the default), or FALSE to
open with write access.

cout Logical scalar. TRUE to write info to the standard C output stream (the default).
FALSE to suppress console output.
Value
Invisibly, a character string containing information about the vector dataset, or empty string ("") in
case of error.
Note

The command-line argument -so provides a summary only, i.e., does not include details about every
single feature of a layer. -nomd suppresses metadata printing. Some datasets may contain a lot of
metadata strings.

See Also

ogr2ogr(), ogr_manage
Examples
src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

Get the names of the layers in a GeoPackage file
ogrinfo(src)

Summary of a layer
ogrinfo(src, "mtbs_perims")

Query an attribute to restrict the output of the features in a layer
args <- c("-ro"”, "-nomd"”, "-where"”, "ig_year = 2020")

ogrinfo(src, "mtbs_perims”, args)

Copy to a temporary in-memory file that is writeable

ogr_define 117

src_mem <- paste@(”/vsimem/", basename(src))
vsi_copy_file(src, src_mem)

Add a column to a layer
args <- c("-sql”, "ALTER TABLE mtbs_perims ADD burn_bnd_ha float")
ogrinfo(src_mem, cl_arg = args, read_only = FALSE)

Update values of the column with SQL and specify a dialect

sql <- "UPDATE mtbs_perims SET burn_bnd_ha = (burn_bnd_ac / 2.471)"
args <- c("-dialect”, "sqlite"”, "-sql”, sql)

ogrinfo(src_mem, cl_arg = args, read_only = FALSE)

ogr_define OGR feature class definition for vector data

Description

This topic contains documentation and helper functions for defining an OGR feature class. A named
list containing zero or more attribute field definitions, along with one or more geometry field defini-
tions, comprise an OGR feature class definition (a.k.a. layer definition). ogr_def_layer() initial-
izes such a list with a geometry type and (optionally) a spatial reference system. Attribute fields may
then be added to the layer definition. ogr_def_field() creates an attribute field definition, a list
containing the field’s data type and potentially other optional field properties. ogr_def_geom_field()
similarly creates a geometry field definition. This might be used with certain vector formats that
support multiple geometry columns (e.g., PostGIS).

Usage

ogr_def_layer(geom_type, geom_fld_name = "geom”, srs = NULL)

ogr_def_field(
fld_type,
fld_subtype = NULL,
fld_width = NULL,
fld_precision = NULL,
is_nullable = NULL,
is_unique = NULL,
default_value = NULL

ogr_def_geom_field(geom_type, srs = NULL, is_nullable = NULL)

Arguments

geom_type Character string specifying a geometry type (see Details).

geom_fld_name Character string specifying a geometry field name Defaults to "geom”.

118 ogr_define

srs Character string containing a spatial reference system definition as OGC WKT
or other well-known format (e.g., the input formats usable with srs_to_wkt()).

fld_type Character string containing the name of a field data type (e.g., OFTInteger,
OFTInteger64, OFTReal, OFTString).

fld_subtype Character string containing the name of a field subtype. One of OFSTNone (the
default), OFSTBoolean, OFSTInt16, OFSTFloat32, OFSTJSON, OF STUUID.

fld_width Optional integer value specifying max number of characters.
fld_precision Optional integer value specifying number of digits after the decimal point.
is_nullable Optional NOT NULL field constraint (logical value). Defaults to TRUE.
is_unique Optional UNIQUE constraint on the field (logical value). Defaults to FALSE.

default_value Optional default value for the field as a character string.

Details

All features in an OGR Layer share a common schema (feature class), modeled in GDAL by its
OGRFeatureDefn class. A feature class definition includes the set of attribute fields and their data
types and the geometry field(s). In R, a feature class definition is represented as a named list,
with names being the attribute/geometry field names, and each list element holding an attribute or
geometry field definition.

The definition for an attribute field is a named list with elements:

$type : OGR Field Type ("OFTReal”, "OFTString" etc.)
$subtype : optional ("OFSTBoolean", ...)

$width : optional max number of characters

$precision : optional number of digits after the decimal point
$is_nullable: optional NOT NULL constraint (logical value)
$is_unique : optional UNIQUE constraint (logical value)
$default : optional default value as character string
$is_geom : FALSE (the default) for attribute fields

An OGR field type is specified as a character string with possible values: OFTInteger, OFTIntegerList,
OFTReal, OFTReallList, OFTString, OFTStringlList, OFTBinary, OFTDate, OFTTime, OFTDateTime,
OFTInteger64, OFTInteger64List.

An optional field subtype is specified as a character string with possible values: OFSTNone, OFSTBoolean,
OFSTINnt16, OFSTFloat32, OFSTJSON, OF STUUID.

By default, fields are nullable, have no unique constraint, and are not ignored (i.e., not omitted when
fetching features). Not-null and unique constraints are not supported by all format drivers.

A default field value is taken into account by format drivers (generally those with a SQL interface)
that support it at field creation time. If given in the field definition, $default must be a character
string. The accepted values are "NULL", a numeric value (e.g., "@"), a literal value enclosed be-
tween single quote characters (e.g., " 'a default value'”, with any inner single quote characters
escaped by repetition of the single quote character), "CURRENT_TIMESTAMP", "CURRENT_TIME",
"CURRENT_DATE" or a driver-specific expression (that might be ignored by other drivers). For a
datetime literal value, format should be "'YYYY/MM/DD HH:MM:SS[.sss]'" (considered as UTC
time).

"

The definition for a geometry field is a named list with elements:

ogr_define 119

$type : geom type ("Point”, "Polygon”, etc.)

$srs : optional spatial reference as WKT string
$is_nullable: optional NOT NULL constraint (logical value)
$is_geom : TRUE (required) for geometry fields

Typically, there is one geometry field on a layer, but some formats support more than one geometry
column per table (e.g., "PostgreSQL / PostGIS" and "SQLite / Spatialite RDBMS").

Geometry types are specified as a character string containing OGC WKT. Common types include:
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon. See the GDAL
documentation for a list of all supported geometry types:
https://gdal.org/en/stable/api/vector_c_api.html#_CPPv4180GRwkbGeometryType

Format drivers may or may not support not-null constraints on attribute and geometry fields. If they
support creating fields with not-null constraints, this is generally before creating any features to the
layer. In some cases, a not-null constraint may be available as a layer creation option. For example,
GeoPackage format has a layer creation option GEOMETRY_NULLABLE=[YES/NO].

Note

The feature id (FID) is a special property of a feature and not treated as an attribute of the feature.
Additional information is given in the GDAL documentation for the OGR SQL and SQLite SQL
dialects. Implications for SQL statements and result sets may depend on the dialect used.

Some vector formats do not support schema definition prior to creating features. For example, with
GeoJSON only the Feature object has a member with name properties. The specification does not
require all Feature objects in a collection to have the same schema of properties, nor does it require
all Feature objects in a collection to have geometry of the same type (https://geojson.org/).

See Also

ogr_ds_create(), ogr_layer_create(), ogr_field_create()

WKT representation of geometry:
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Examples

create a SQLite data source, with Spatialite extensions if available
dsn <- file.path(tempdir(), "test.sqlite")
opt <- NULL
if (has_spatialite()) {
opt <- "SPATIALITE=YES"
3

This creates an empty data source. Note that we could also create a layer
at the same time in this function call, but for this example we do that
separately, to show creation of a layer on an existing data source.
ogr_ds_create("SQLite"”, dsn, dsco = opt)

define a layer
defn <- ogr_def_layer("Point”, srs = "EPSG:4326")
defn$my_id <- ogr_def_field("OFTInteger64")

https://gdal.org/en/stable/api/vector_c_api.html#_CPPv418OGRwkbGeometryType
https://gdal.org/en/stable/user/ogr_sql_dialect.html#feature-id-fid
https://gdal.org/en/stable/user/sql_sqlite_dialect.html#feature-id-fid
https://geojson.org/
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

120 ogr_manage

defn$my_description <- ogr_def_field("OFTString")

create a layer in the existing data source
ogr_ds_test_cap(dsn)$CreateLayer # TRUE

ogr_layer_create(dsn, "layer1"”, layer_defn = defn)
ogr_ds_layer_names(dsn)
ogr_layer_field_names(dsn, "layer1")

deleteDataset(dsn)

ogr_manage Utility functions for managing vector data sources

Description

This set of functions can be used to create new vector datasets, test existence of dataset/layer/field,
test dataset and layer capabilities, create new layers in an existing dataset, delete layers, create new
attribute and geometry fields on an existing layer, rename and delete fields, and edit data with SQL
statements.

Usage

ogr_ds_exists(dsn, with_update = FALSE)
ogr_ds_format(dsn)
ogr_ds_test_cap(dsn, with_update = TRUE)

ogr_ds_create(
format,
dsn,
layer = NULL,
layer_defn = NULL,
geom_type = NULL,
srs = NULL,
fld_name = NULL,
fld_type = NULL,
dsco = NULL,
lco = NULL,
overwrite = FALSE,
return_obj = FALSE

ogr_ds_layer_count(dsn)

0gr_manage 121

ogr_ds_layer_names(dsn)
ogr_layer_exists(dsn, layer)
ogr_layer_test_cap(dsn, layer = NULL, with_update = TRUE)

ogr_layer_create(
dsn,
layer,
layer_defn = NULL,
geom_type = NULL,

srs = NULL,

lco = NULL,

return_obj = FALSE
)

ogr_layer_field_names(dsn, layer = NULL)
ogr_layer_rename(dsn, layer, new_name)
ogr_layer_delete(dsn, layer)
ogr_field_index(dsn, layer, fld_name)

ogr_field_create(
dsn,
layer,
fld_name,
fld_defn = NULL,
fld_type = "OFTInteger”,
fld_subtype = "OFSTNone",
fld_width = oL,
fld_precision = 0oL,
is_nullable = TRUE,
is_unique = FALSE,
default_value = ""

)

ogr_geom_field_create(
dsn,
layer,
fld_name,
geom_fld_defn = NULL,
geom_type = NULL,
srs = NULL,
is_nullable = TRUE

ogr_manage

ogr_field_rename(dsn, layer, fld_name, new_name)

ogr_field_delete(dsn, layer, fld_name)

ogr_execute_sql(dsn, sql, spatial_filter = NULL, dialect = NULL)

Arguments

dsn

with_update

format

layer

layer_defn

geom_type

Srs

fld_name
fld_type

dsco

lco

overwrite

return_obj

new_name

Character string. The vector data source name, e.g., a filename or database
connection string.

Logical scalar. TRUE to request update access when opening the dataset, or
FALSE to open read-only.

GDAL short name of the vector format as character string. Examples of some
common output formats include: "GPKG", "FlatGeobuf”, "ESRI Shapefile”,
"SQLite".

Character string for a layer name in a vector dataset. The layer argument may
be given as empty string (" ") in which case the first layer by index will be opened
(except with ogr_layer_delete() and ogr_layer_rename() for which a layer
name must be specified).

A feature class definition for layer as a list of zero or more attribute field def-
initions, and at least one geometry field definition (see ogr_define). Each field
definition is a list with named elements containing values for the field $type
and other properties. If layer_defn is given, it will be used and any additional
parameters passed that relate to the feature class definition will be ignored (i.e.,
geom_type and srs, as well as f1d_name and fld_type in ogr_ds_create()).
The first geometry field definition in layer_defn defines the geometry type and
spatial reference system for the layer (the geom field definition must contain
$type, and should also contain $srs when creating a layer from a feature class
definition).

Character string specifying a geometry type (see Details).

Character string containing a spatial reference system definition as OGC WKT
or other well-known format (e.g., the input formats usable with srs_to_wkt()).

Character string containing the name of an attribute field in layer.

Character string containing the name of a field data type (e.g., OFTInteger,
OFTReal, OFTString).

Optional character vector of format-specific creation options for dsn ("NAME=VALUE"
pairs).

Optional character vector of format-specific creation options for layer ("NAME=VALUE"
pairs).

Logical scalar. TRUE to overwrite dsn if it already exists when calling ogr_ds_create().
Default is FALSE.

Logical scalar. If TRUE, an object of class GDALVector open on the newly created
layer will be returned. Defaults to FALSE. Must be used with either the layer or
layer_defn arguments.

Character string containing a new name to assign.

0gr_manage 123

fld_defn A field definition as list (see ogr_def_field()). Additional arguments in ogr_field_create()
will be ignored if a f1d_defn is given.

fld_subtype Character string containing the name of a field subtype. One of OFSTNone (the
default), OFSTBoolean, OFSTInt16, OFSTFloat32, OFSTJSON, OFSTUUID.

fld_width Optional integer scalar specifying max number of characters.
fld_precision Optional integer scalar specifying number of digits after the decimal point.
is_nullable Optional NOT NULL field constraint (logical scalar). Defaults to TRUE.
is_unique Optional UNIQUE constraint on the field (logical scalar). Defaults to FALSE.
default_value Optional default value for the field as a character string.

geom_fld_defn A geometry field definition as list (see ogr_def_geom_field()). Additional
arguments in ogr_geom_field_create() will be ignored if a geom_f1ld_defn
is given.

sql Character string containing an SQL statement (see Note).

spatial_filter Either a numeric vector of length four containing a bounding box (xmin, ymin,
Xmax, ymax), or a character string containing a geometry as OGC WKT, repre-
senting a spatial filter.

dialect Character string specifying the SQL dialect to use. The OGR SQL engine
("OGRSQL") will be used by default if a value is not given. The "SQLite" di-
alect can also be used (see Note).

Details

These functions are complementary to ogrinfo() and ogr2ogr() for vector data management.
Bindings to OGR wrap portions of the GDAL Vector API (ogr_core.h and ogr_api.h, https://
gdal.org/en/stable/api/vector_c_api.html).

ogr_ds_exists() tests whether a vector dataset can be opened from the given data source name
(DSN), potentially testing for update access. Returns a logical scalar.

ogr_ds_format () returns a character string containing the short name of the format driver for a
given DSN, or NULL if the dataset cannot be opened as a vector source.

ogr_ds_test_cap() tests the capabilities of a vector data source, attempting to open it with update
access by default. Returns a list of capabilities with values TRUE or FALSE, or NULL is returned if
dsn cannot be opened with the requested access. Wrapper of GDALDatasetTestCapability() in
the GDAL API. The returned list contains the following named elements:

* CreatelLayer: TRUE if this datasource can create new layers

* Deletelayer: TRUE if this datasource can delete existing layers

* CreateGeomFieldAfterCreatelLayer: TRUE if the layers of this datasource support geometry
field creation just after layer creation

* CurveGeometries: TRUE if this datasource supports curve geometries
* Transactions: TRUE if this datasource supports (efficient) transactions
* EmulatedTransactions: TRUE if this datasource supports transactions through emulation

* RandomLayerRead: TRUE if this datasource has a dedicated GetNextFeature() implementa-
tion, potentially returning features from layers in a non-sequential way

https://gdal.org/en/stable/api/vector_c_api.html
https://gdal.org/en/stable/api/vector_c_api.html

124 ogr_manage

* RandomLayerWrite: TRUE if this datasource supports calling CreateFeature() on layers in
a non-sequential way

ogr_ds_create() creates a new vector datasource, optionally also creating a layer, and optionally
creating one or more fields on the layer. The attribute fields and geometry field(s) to create can
be specified as a feature class definition (layer_defn as list, see ogr_define), or alternatively, by
giving the geom_type and srs, optionally along with one f1d_name and f1d_type to be created in
the layer. By default, returns logical TRUE indicating success (output written to dst_filename), or
an object of class GDALVector for the output layer will be returned if return_obj = TRUE. An error
is raised if the operation fails.

ogr_ds_layer_count () returns the number of layers in a vector dataset.

ogr_ds_layer_names() returns a character vector of layer names in a vector dataset, or NULL if no
layers are found.

ogr_layer_exists() tests whether a layer can be accessed by name in a given vector dataset.
Returns a logical scalar.

ogr_layer_test_cap() tests whether a layer supports named capabilities, attempting to open the

dataset with update access by default. Returns a list of capabilities with values TRUE or FALSE. NULL

is returned if dsn cannot be opened with the requested access, or layer cannot be found. The re-

turned list contains the following named elements: RandomRead, SequentialWrite, RandomWrite,
UpsertFeature, FastSpatialFilter, FastFeatureCount, FastGetExtent, FastSetNextByIndex,
CreateField, CreateGeomField, DeleteField, ReorderFields, AlterFieldDefn, AlterGeomFieldDefn,
IgnoreFields, DeleteFeature, Rename, StringsAsUTF8, CurveGeometries. See the GDAL
documentation for OGR_L_TestCapability().

ogr_layer_create() creates a new layer in an existing vector data source, with a specified geom-
etry type and spatial reference definition. This function also accepts a feature class definition given
as a list of field names and their definitions (see ogr_define). (Note: use ogr_ds_create() to create
single-layer formats such as "ESRI Shapefile", "FlatGeobuf", "GeoJSON", etc.) By default, returns
logical TRUE indicating success, or an object of class GDALVector will be returned if return_obj =
TRUE. An error is raised if the operation fails.

ogr_layer_field_names () returns a character vector of field names on a layer, or NULL if no fields
are found. The first layer by index is opened if NULL is given for the layer argument.

ogr_layer_rename() renames a layer in a vector dataset. This operation is implemented only by
layers that expose the Rename capability (see ogr_layer_test_cap() above). This operation will
fail if a layer with the new name already exists. Returns a logical scalar, TRUE indicating success.
Requires GDAL >=3.5.

ogr_layer_delete() deletes an existing layer in a vector dataset. Returns a logical scalar, TRUE
indicating success.

ogr_field_index() tests for existence of an attribute field by name. Returns the field index on the
layer (0-based), or -1 if the field does not exist.

ogr_field_create() creates a new attribute field of specified data type in a given DSN/layer.
Several optional field properties can be specified in addition to the type. Returns a logical scalar,
TRUE indicating success.

ogr_geom_field_create() creates a new geometry field of specified type in a given DSN/layer.
Returns a logical scalar, TRUE indicating success.

https://gdal.org/en/stable/api/vector_c_api.html#_CPPv420OGR_L_TestCapability9OGRLayerHPKc

0gr_manage 125

ogr_field_rename() renames an existing field on a vector layer. Not all format drivers support
this function. Some drivers may only support renaming a field while there are still no features in
the layer. AlterFieldDefn is the relevant layer capability to check. Returns a logical scalar, TRUE
indicating success.

ogr_field_delete() deletes an existing field on a vector layer. Not all format drivers support this
function. Some drivers may only support deleting a field while there are still no features in the layer.
Returns a logical scalar, TRUE indicating success.

ogr_execute_sqgl () executes an SQL statement against the data store. This function can be used
to modify the schema or edit data using SQL (e.g., ALTER TABLE, DROP TABLE, CREATE INDEX,
DROP INDEX, INSERT, UPDATE, DELETE), or to execute a query (i.e., SELECT). Returns NULL (invis-
ibly) for statements that are in error, or that have no results set, or an object of class GDALVector
representing a results set from the query. Wrapper of GDALDatasetExecuteSQL() in the GDAL
API.

Note

The OGR SQL document linked under See Also contains information on the SQL dialect supported
internally by GDAL/OGR. Some format drivers (e.g., PostGIS) pass the SQL directly through to
the underlying RDBMS (unless OGRSQL is explicitly passed as the dialect). The SQLite dialect can
also be requested with the SQL1ite string passed as the dialect argument of ogr_execute_sql().
This assumes that GDAL/OGR is built with support for SQLite, and preferably also with Spatialite
support to benefit from spatial functions. The GDAL document for SQLite dialect has detailed
information.

Other SQL dialects may also be present for some vector formats. For example, the "INDIRECT_SQLITE"
dialect might potentially be used with GeoPackage format (https://gdal.org/en/stable/drivers/
vector/gpkg.html#sql).

The function ogrinfo() can also be used to edit data with SQL statements (GDAL >= 3.7).

nn

The name of the geometry column of a layer is empty ("") with some formats such as ESRI Shape-
file and FlatGeobuf. Implications for SQL may depend on the dialect used. See the GDAL docu-
mentation for the "OGR SQL" and "SQLite" dialects for details.

See Also

OGR SQL dialect and SQLite SQL dialect:
https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html

Examples

Create GeoPackage and manage schema
dsn <- file.path(tempdir(), "testl.gpkg")
ogr_ds_create("GPKG", dsn)
ogr_ds_exists(dsn, with_update = TRUE)

dataset capabilities
ogr_ds_test_cap(dsn)

ogr_layer_create(dsn, layer = "layer1”, geom_type = "Polygon”,
srs = "EPSG:5070")

https://gdal.org/en/stable/drivers/vector/gpkg.html#sql
https://gdal.org/en/stable/drivers/vector/gpkg.html#sql
https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html

126

ogr_field_create(dsn, layer = "layer1”,
fld_name = "field1",
fld_type = "OFTInteger64”,
is_nullable = FALSE)

ogr_field_create(dsn, layer = "layer1”,
fld_name = "field2",
fld_type = "OFTString")

ogr_ds_layer_count(dsn)
ogr_ds_layer_names(dsn)
ogr_layer_field_names(dsn, layer = "layer1")

delete a field

if (ogr_layer_test_cap(dsn, "layer1")$DeleteField) {
ogr_field_delete(dsn, layer = "layer1”, fld_name = "field2")

}

ogr_layer_field_names(dsn, "layer1")

define a feature class and create layer

defn <- ogr_def_layer("Point”, srs = epsg_to_wkt(4326))

add the attribute fields

defn$id_field <- ogr_def_field(fld_type = "OFTInteger64”,
is_nullable = FALSE,
is_unique = TRUE)

defn$str_field <- ogr_def_field(fld_type = "OFTString”,
fld_width = 25,

is_nullable = FALSE,

default_value = "'a default string'")

defn$numeric_field <- ogr_def_field(fld_type = "OFTReal”,

default_value = "0.0")

ogr_layer_create(dsn, layer = "layer2", layer_defn = defn)
ogr_ds_layer_names(dsn)
ogr_layer_field_names(dsn, layer = "layer2")

add a field using SQL instead
ogr_execute_sql(dsn, sql = "ALTER TABLE layer2 ADD field4 float")

rename a field
if (ogr_layer_test_cap(dsn, "layer1")$AlterFieldDefn) {

ogr_field_rename(dsn, layer = "layer2",
fld_name = "field4",
new_name = "renamed_field")
3
ogr_layer_field_names(dsn, layer = "layer2")
GDAL >= 3.7

if (gdal_version_num() >= gdal_compute_version(3, 7, 0))
ogrinfo(dsn, "layer2")

Edit data using SQL

ogr_manage

ogr._proc 127

src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")
perims_shp <- file.path(tempdir(), "mtbs_perims.shp")

ogr2ogr(src_dsn = src, dst_dsn = perims_shp, src_layers = "mtbs_perims")
ogr_ds_format(dsn = perims_shp)

ogr_ds_layer_names(dsn = perims_shp)

ogr_layer_field_names(dsn = perims_shp, layer = "mtbs_perims")

alt_tbl <- "ALTER TABLE mtbs_perims ADD burn_bnd_ha float”
ogr_execute_sql(dsn = perims_shp, sql = alt_tbl)

upd <- "UPDATE mtbs_perims SET burn_bnd_ha = (burn_bnd_ac / 2.471)"
ogr_execute_sql(dsn = perims_shp, sql = upd, dialect = "SQLite")

ogr_layer_field_names(dsn = perims_shp, layer = "mtbs_perims")

if GDAL >= 3.7:

ogrinfo(dsn = perims_shp, layer = "mtbs_perims")
or, for output incl. the feature data (omit the default "-so” arg):
ogrinfo(dsn = perims_shp, layer = "mtbs_perims”, cl_arg = "-nomd")
ogr_proc GDAL OGR facilities for vector geoprocessing
Description

ogr_proc() performs GIS overlay operations on vector layers (https://en.wikipedia.org/
wiki/Vector_overlay). It provides an interface to the GDAL API methods for these opera-
tions (OGRLayer: :Intersection(), OGRLayer: :Union(), etc). Inputs are given as objects of
class GDALVector, which may have spatial and/or attribute filters applied. The output layer will
be created if it does not exist, but output can also be appended to an existing layer, or written to
an existing empty layer that has a custom schema defined. ogr_proc() is basically a port of the
ogr_layer_algebra utility in the GDAL Python bindings.

Usage

ogr_proc(
mode,
input_lyr,
method_lyr,
out_dsn,
out_lyr_name = NULL,
out_geom_type = NULL,
out_fmt = NULL,
dsco = NULL,
lco = NULL,
mode_opt = NULL,
overwrite = FALSE,
quiet = FALSE,
return_obj = TRUE

https://en.wikipedia.org/wiki/Vector_overlay
https://en.wikipedia.org/wiki/Vector_overlay
https://gdal.org/en/stable/programs/ogr_layer_algebra.html#ogr-layer-algebra

Arguments

mode

input_lyr

method_lyr

out_dsn

out_lyr_name

out_geom_type

out_fmt

dsco

lco

mode_opt

overwrite

quiet

return_obj

Details

ogr_proc

Character string specifying the operation to perform. One of Intersection,
Union, SymDifference, Identity, Update, Clip or Erase (see Details).

An object of class GDALVector to use as the input layer. For overlay operations,
this is the first layer in the operation.

An object of class GDALVector to use as the method layer. This is the conditional
layer supplied to an operation (e.g., Clip, Erase, Update), or the second layer in
overlay operations (e.g., Union, Intersection, SymDifference).

The destination vector filename or database connection string to which the out-
put layer will be written.

Layer name where the output vector will be written. May be NULL (e.g., shape-
file), but typically must be specified.

Character string specifying the geometry type of the output layer. One of NONE,
GEOMETRY, POINT, LINESTRING, POLY GON, GEOMETRYCOLLECTION,

MULTIPOINT, MULTIPOLY GON, GEOMETRY25D, POINT25D, LINESTRING25D,

POLYGON25D, GEOMETRYCOLLECTION25D, MULTIPOINT25D, MUL-
TIPOLYGON25D. Defaults to UNKNOWN if not specified.

GDAL short name of the output vector format. If unspecified, the function will
attempt to guess the format from the value of out_dsn.

Optional character vector of format-specific creation options for out_dsn ("NAME=VALUE"

pairs).

Optional character vector of format-specific creation options for out_layer
("NAME=VALUE" pairs).

Optional character vector of "NAME=VALUE" pairs that specify processing op-
tions. Available options depend on the value of mode (see Details).

Logical value. TRUE to overwrite the output layer if it already exists. Defaults to
FALSE.

Logical value. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Logical value. If TRUE (the default), an object of class GDALVector opened on
the output layer will be returned, otherwise the function returns a logical value.

Seven processing modes are available:

* Intersection: The output layer contains features whose geometries represent areas that are
common between features in the input layer and in the method layer. The features in the output
layer have attributes from both input and method layers.

* Union: The output layer contains features whose geometries represent areas that are either in
the input layer, in the method layer, or in both. The features in the output layer have attributes
from both input and method layers. For features which represent areas that are only in the
input layer or only in the method layer the respective attributes have undefined values.

ogr._proc 129

» SymDifference: The output layer contains features whose geometries represent areas that are
in either in the input layer or in the method layer but not in both. The features in the output
layer have attributes from both input and method layers. For features which represent areas
that are only in the input or only in the method layer the respective attributes have undefined
values.

* Identity: Identifies the features of the input layer with the ones from the method layer. The
output layer contains features whose geometries represent areas that are in the input layer. The
features in the output layer have attributes from both the input and method layers.

* Update: The update method creates a layer which adds features into the input layer from the
method layer, possibly cutting features in the input layer. The features in the output layer have
areas of the features of the method layer or those areas of the features of the input layer that
are not covered by the method layer. The features of the output layer get their attributes from
the input layer.

e Clip: The clip method creates a layer which has features from the input layer clipped to the
areas of the features in the method layer. By default the output layer has attributes of the input
layer.

* Erase: The erase method creates a layer which has features from the input layer whose areas
are erased by the features in the method layer. By default, the output layer has attributes of
the input layer.

By default, ogr_proc() will create the output layer with an empty schema. It will be initialized by
GDAL to contain all fields in the input layer, or depending on the operation, all fields in both the
input and method layers. In the latter case, the prefixes "input_" and "method_" will be added to
the output field names by default. The default prefixes can be overridden in the mode_opt argument
as described below.

Alternatively, the functions in the ogr_manage interface could be used to create an empty layer with
user-defined schema (e.g., ogr_ds_create(), ogr_layer_create() and ogr_field_create()).
If the schema of the output layer is set by the user and contains fields that have the same name as a
field in both the input and method layers, then the attribute for an output feature will get the value
from the feature of the method layer.

Options that affect processing can be set as NAME=VALUE pairs passed in the mode_opt argument.
Some options are specific to certain processing modes as noted below:

» SKIP_FAILURES=YES/NO. Setit to YES to go on, even when a feature could not be inserted
or a GEOS call failed.

* PROMOTE_TO_MULTI=YES/NO. Set to YES to convert Polygons into MultiPolygons, LineStrings
to MultiLineStrings or Points to MultiPoints (only since GDAL 3.9.2 for the latter).

» INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields
of the input layer.

* METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields
of the method layer.

* USE_PREPARED_GEOMETRIES=YES/NO. Set to NO to not use prepared geometries to
pretest intersection of features of method layer with features of input layer. Applies to Intersection,
Union, Identity.

* PRETEST_CONTAINMENT=YES/NO. Set to YES to pretest the containment of features of
method layer within the features of input layer. This will speed up the operation significantly
in some cases. Requires that the prepared geometries are in effect. Applies to Intersection.

130 ogr._proc

* KEEP_LOWER_DIMENSION_GEOMETRIES=YES/NO. Set to NO to skip result features
with lower dimension geometry that would otherwise be added to the output layer. The default
is YES, to add features with lower dimension geometry, but only if the result output has an
UNKNOWN geometry type. Applies to Intersection, Union, Identity.

The input and method layers should have the same spatial reference system. No on-the-fly repro-
jection is done. When an output layer is created it will have the SRS of input_lyr.

Value

Upon successful completion, an object of class GDALVector is returned by default (return_obj
= TRUE), or logical TRUE is returned if return_obj = FALSE. Logical FALSE is returned if an error
occurs during processing.

Note

The first geometry field on a layer is always used.

For best performance use the minimum amount of features in the method layer and copy into a
memory layer.

See Also

GDALVector-class, ogr_define, ogr_manage

Vector overlay operators:
https://en.wikipedia.org/wiki/Vector_overlay

Examples

MTBS fires in Yellowstone National Park 1984-2022
dsn <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

layer filtered to fires after 1988

lyr1 <- new(GDALVector, dsn, "mtbs_perims")
lyr1$setAttributeFilter("ig_year > 1988")
lyr1$getFeatureCount()

second layer for the 1988 North Fork fire perimeter

sql <- "SELECT incid_name, ig_year, geom FROM mtbs_perims
WHERE incid_name = 'NORTH FORK'"

lyr2 <- new(GDALVector, dsn, sql)

lyr2$getFeatureCount()

intersect to obtain areas in the North Fork perimeter that have re-burned
tmp_dsn <- tempfile(fileext = ".gpkg")
opt <- c("INPUT_PREFIX=layeri1_ ",

"METHOD_PREFIX=layer2_",

"PROMOTE_TO_MULTI=YES")

lyr_out <- ogr_proc(mode = "Intersection”,
input_lyr = lyri,
method_lyr = lyr2,

https://en.wikipedia.org/wiki/Vector_overlay

ogr._reproject 131

out_dsn = tmp_dsn,

out_lyr_name = "north_fork_reburned”,
out_geom_type = "MULTIPOLYGON",
mode_opt = opt)

the output layer has attributes of both the input and method layers
(d <= lyr_out$fetch(-1))

clean up
lyris$close()
lyr2$close()
lyr_out$close()

ogr_reproject Reproject a vector layer

Description

ogr_reproject() reprojects the features of a vector layer to a different spatial reference system
and writes the new layer to a specified output dataset. The output may be in a different vector file
format than the input dataset. A source SRS definition must be available in the source layer for
reprojection to occur.

Usage

ogr_reproject(
src_dsn,
src_layer,
out_dsn,
out_srs,
out_fmt = NULL,
overwrite = FALSE,
append = FALSE,

nln = NULL,
nlt = NULL,
dsco = NULL,
lco = NULL,

dialect = NULL,
spat_bbox = NULL,
src_open_options = NULL,
progress = FALSE,
add_cl_arg = NULL,
return_obj = TRUE

132 ogr._reproject

Arguments
src_dsn Character string. The filename or database connection string specifying the vec-
tor data source containing the input layer.
src_layer Character string. The name of the input layer in src_dsn to reproject. Option-

ally can be given as an SQL SELECT statement to be executed against src_dsn,
defining the source layer as the result set. May also be given as empty string (""),
in which case the first layer by index will be used (mainly useful for single-layer
file formats such as ESRI Shapefile).

out_dsn Character string. The filename or database connection string specifying the vec-
tor data source to which the output layer will be written.

out_srs Character string specifying the output spatial reference system. May be in WKT
format or any of the formats supported by srs_to_wkt ().

out_fmt Optional character string giving the GDAL short name of the output dataset
format. Only used if out_dsn needs to be created. Generally can be NULL in
which case the format will be guessed from the file extension.

overwrite Logical value. TRUE to overwrite the output layer if it already exists. Defaults to
FALSE.

append Logical value. TRUE to append to the output layer if it already exists. Defaults
to FALSE.

nln Optional character string giving an alternate name to assign the new layer. By
default, src_layer is used, but nln is required if src_layeris a SQL SELECT
statement.

nlt Optional character string to define the geometry type for the output layer. Mainly

useful when nlt = PROMOTE_TO_MULTI might be given to automatically promote
layers that mix polygon / multipolygons to multipolygons, and layers that mix
linestrings / multilinestrings to multilinestrings. Can be useful when converting
shapefiles to PostGIS and other output formats that implement strict checks for
geometry types.

dsco Optional character vector of format-specific creation options for out_dsn ("NAME=VALUE"
pairs). Should only be used if out_dsn does not already exist.

lco Optional character vector of format-specific creation options for the output layer
("NAME=VALUE" pairs). Should not be used if appending to an existing layer.

dialect Optional character string specifying the SQL dialect to use. The OGR SQL

engine ("OGRSQL") will be used by default if a value is not given. The "SQLite"”
dialect can also be use. Only relevant if src_layer is given as a SQL SELECT
statement.

spat_bbox Optional numeric vector of length four specifying a spatial bounding box (xmin,
ymin, xmax, ymax), in the SRS of the source layer. Only features whose geom-
etry intersects spat_bbox will be selected for reprojection.

src_open_options
Optional character vector of dataset open options for src_dsn (format-specific
"NAME=VALUE" pairs).

progress Logical value, TRUE to display progress on the terminal. Defaults to FALSE. Only
works if the input layer has "fast feature count"” capability.

ogr._reproject 133

add_cl_arg Optional character vector of additional command-line arguments to be passed to
ogr2ogr() (see Note).
return_obj Logical value, TRUE to return an object of class GDALVector open on the output
layer (the default).
Details

ogr_reproject() is a convenience wrapper to perform vector reprojection via ogr2ogr (), which
in turn is an API binding to GDAL’s ogr2ogr command-line utility.

Value

Upon successful completion, an object of class GDALVector is returned by default (if return_obj
= TRUE), or logical TRUE is returned (invisibly) if return_obj = FALSE. An error is raised if repro-
jection fails.

Note

For advanced use, additional command-line arguments may be passed to ogr2ogr() in add_cl_arg
(e.g., advanced geometry and SRS related options). Users should be aware of possible implications
and compatibility with the arguments already implied by the parameterization of ogr_reproject().

The function will attempt to create the output datasource if it does not already exist. Some formats
(e.g., PostgreSQL) do not support creation of new datasets (i.e., a database within PostgreSQL), but
output layers can be written to an existing database.

See Also

ogr2ogr(), warp() for raster reprojection

GDAL documentation for ogr2ogr:
https://gdal.org/en/stable/programs/ogr2ogr.html

Examples

MTBS fire perimeters
f <- system.file("extdata/ynp_fires_1984_2022.gpkg", package = "gdalraster")
(mtbs <- new(GDALVector, f, "mtbs_perims"))

mtbs$getSpatialRef () |> srs_is_projected() # TRUE

YNP boundary

f <- system.file("extdata/ynp_features.zip”, package = "gdalraster")
ynp_dsn <- file.path("/vsizip"”, f, "ynp_features.gpkg")

(bnd <- new(GDALVector, ynp_dsn, "ynp_bnd"))

bnd$getSpatialRef () |> srs_is_projected() # FALSE
project the boundary to match the MTBS layer

out_dsn <- tempfile(fileext = ".gpkg")
(bnd_mtsp <- ogr_reproject(ynp_dsn, "ynp_bnd"”, out_dsn, mtbs$getSpatialRef()))

https://gdal.org/en/stable/programs/ogr2ogr.html

134 pixel_extract

bnd_mtsp$getFeatureCount ()
plot(bnd_mtsp$getNextFeature(), col = "wheat”)

mtbs$setAttributeFilter(”incid_name = 'MAPLE'")
mtbs$getFeatureCount() # 1

(feat <- mtbs$getNextFeature())
plot(feat, col = "red”, border = NA, add = TRUE)
mtbs$close()

bnd$close()
bnd_mtsp$close()

pixel_extract Extract pixel values at geospatial point locations

Description

pixel_extract() returns raster pixel values for a set of geospatial point locations. The coordinates
are given as a two-column matrix of (x, y) values in the same spatial reference system as the input
raster (unless xy_srs is specified). Values are extracted from all bands of the raster by default,
or specific band numbers may be given. An optional interpolation method may be specified for
bilinear (2 x 2 kernel), cubic convolution (4 x 4 kernel, GDAL >= 3.10), or cubic spline (4 x 4
kernel, GDAL >= 3.10). Alternatively, an optional kernel dimension may be given to extract values
of the individual pixels within an N x N kernel centered on the pixel containing the point location.
If xy_srs is given, the function will attempt to transform the input points to the projection of the
raster with a call to transform_xy().

Usage
pixel_extract(
raster,
Xy,
bands = NULL,

interp = NULL,
krnl_dim = NULL,
xy_srs = NULL,
max_ram = 300

Arguments

raster Either a character string giving the filename of a raster, or an object of class
GDALRaster for the source dataset.

pixel_extract 135

Xy A two-column numeric matrix or two-column data frame of geospatial (x, y)
coordinates, or vector (x, y) for a single point, in the same spatial reference
system as raster.

bands Optional numeric vector of band numbers. All bands in raster will be pro-
cessed by default if not specified.
interp Optional character string specifying an interpolation method. Must be one of

"bilinear”, "cubic”, "cubicspline”, or "nearest” (the default if not speci-
fied, i.e., no interpolation). GDAL >=3.10 is required for "cubic” and "cubicspline”.

krnl_dim Optional integer value specifying the dimension of an N x N kernel for which all
individual pixel values will be returned. Only supported when extracting from a
single raster band. Ignored if interp is specified as other than "nearest” (i.e.,
will always use the kernel implied by the interpolation method).

Xy_srs Optional character string specifying the spatial reference system for xy. May be
in WKT format or any of the formats supported by srs_to_wkt().

max_ram Numeric value giving the maximum amount of RAM (in MB) to use for poten-
tially copying a remote raster into memory for processing (see Note). Defaults
to 300 MB. Set to zero to disable potential copy of remote files into memory.

Value

A numeric matrix of pixel values with number of rows equal to the number of rows in xy, and
number of columns equal to the number of bands, or if krnl_dim =N is used, number of columns
equal to N * N. Named columns indicate the band number, e.g., "b1". If krnl_dim is used, named
columns indicate band number and pixel, e.g., "b1_p1", "b1_p2", ..., "b1_p9" if krnl_dim = 3.
Pixels are in left-to-right, top-to-bottom order in the kernel.

Note

Depending on the number of input points, extracting from a raster on a remote filesystem may
require a large number of HTTP range requests which may be slow (i.e., URLs/remote VSI filesys-
tems). In that case, it may be faster to copy the raster into memory first (either as MEM format or
to a /vsimem filesystem). pixel_extract() will attempt to automate that process if the total size
of file(s) that would be copied does not exceed the threshold given by max_ram, and length(xy) >
1 (requires GDAL >= 3.6).

For alternative workflows that involve copying to local storage, the data management functions (e.g.,
copyDatasetFiles()) and the VSI filesystem functions (e.g., vsi_is_local(), vsi_stat(),
vsi_copy_file()) may be of interest.

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")
id, x, y in NAD83 / UTM zone 12N, same as the raster

pts <- read.csv(pt_file)

print(pts)

raster_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

pixel_extract(raster_file, pts[-11)

136 plot. OGRFeature

or as GDALRaster object
ds <- new(GDALRaster, raster_file)
pixel_extract(ds, pts[-1])

interpolated values
pixel_extract(raster_file, pts[-1], interp = "bilinear"”)

individual pixel values within a kernel
pixel_extract(raster_file, pts[-1], krnl_dim = 3)

lont/lat xy
pts_wgs84 <- transform_xy(pts[-1], srs_from = ds$getProjection(),
srs_to = "WGS84")

transform the input xy
pixel_extract(ds, xy = pts_wgs84, xy_srs = "WGS84")

ds$close()

plot.OGRFeature Plot the geometry of an OGRFeature object

Description

Plot the geometry of an OGRFeature object

Usage

S3 method for class 'OGRFeature'

plot(x, xlab = "x", ylab = "y", main = "", ...)
Arguments

X An OGRFeature object.

xlab Title for the x axis.

ylab Title for the y axis.

main The main title (on top).

Optional arguments passed to wk: :wk_plot().

Value

The input, invisibly.

plot. OGRFeatureSet 137

plot.OGRFeatureSet Plot the geometry column of an OGRFeatureSet

Description

Plot the geometry column of an OGRFeatureSet

Usage
S3 method for class 'OGRFeatureSet'

plot(x, xlab = "x"”, ylab = "y", main = "", ...)
Arguments

X An OGRFeatureSet.

x1lab Title for the x axis.

ylab Title for the y axis.

main The main title (on top).

Optional arguments passed to wk: :wk_plot().

Value

The input, invisibly.

plot_raster Display raster data

Description

plot_raster() displays raster data using base graphics.

Usage
plot_raster(
data,
xsize = NULL,
ysize = NULL,

nbands = NULL,
max_pixels = 2.5e+07,
col_tbl = NULL,
maxColorValue = 1,
normalize = TRUE,
minmax_def = NULL,
minmax_pct_cut = NULL,

138 plot_raster
col_map_fn = NULL,
pixel_fn = NULL,
xlim = NULL,
ylim = NULL,
interpolate = TRUE,
asp = 1,
axes = TRUE,
main = "",
xlab = "x",
ylab = "y",
xaxs = "i",
yaxs = "i",
legend = FALSE,
digits = 2,
na_col = rgb(o, 0, 0, 0),
)
Arguments
data Either a GDALRaster object from which data will be read, or a numeric vector
of pixel values arranged in left to right, top to bottom order, or a list of band
vectors. If input is vector or list, the information in attribute gis will be used
if present (see read_ds()), potentially ignoring values below for xsize, ysize,
nbands.
xsize The number of pixels along the x dimension in data. If data is a GDALRaster
object, specifies the size at which the raster will be read (used for argument
out_xsize in GDALRaster$read()). By default, the entire raster will be read at
full resolution.
ysize The number of pixels along the y dimension in data. If data is a GDALRaster
object, specifies the size at which the raster will be read (used for argument
out_ysize in GDALRaster$read()). By default, the entire raster will be read at
full resolution.
nbands The number of bands in data. Must be either 1 (grayscale) or 3 (RGB). For

max_pixels

col_tbl

maxColorValue

RGB, data are interleaved by band. If nbands is NULL (the default), then nbands
= 3 is assumed if the input data contain 3 bands, otherwise band 1 is used.

The maximum number of pixels that the function will attempt to display (per
band). An error is raised if (xsize * ysize) exceeds this value. Setting to NULL
turns off this check.

A color table as a matrix or data frame with four or five columns. Column 1
contains the numeric pixel values. Columns 2:4 contain the intensities of the
red, green and blue primaries (@:1 by default, or use integer @:255 by setting
maxColorValue = 255). An optional column 5 may contain alpha transparency
values, @ for fully transparent to 1 (or maxColorValue) for opaque (the default
if column 5 is missing). If data is a GDALRaster object, a built-in color table
will be used automatically if one exists in the dataset.

A number giving the maximum of the color values range in col_tb1 (see above).
The default is 1.

plot_raster

normalize

minmax_def

minmax_pct_cut

col_map_fn

pixel_fn

x1lim

ylim

interpolate

asp

axes
main
xlab
ylab
Xaxs
yaxs

legend

digits

na_col

139

Logical. TRUE to rescale pixel values so that their range is [0, 1], normalized to
the full range of the pixel data by default (min(data), max(data), per band).
Ignored if col_tbl is used. Set normalize to FALSE if a color map function is
used that operates on raw pixel values (see col_map_fn below).

Normalize to user-defined min/max values (in terms of the pixel data, per band).
For single-band grayscale, a numeric vector of length two containing min, max.
For 3-band RGB, a numeric vector of length six containing bl_min, b2_min,
b3_min, bl_max, b2_max, b3_max.

Normalize to a truncated range of the pixel data using percentile cutoffs (re-
moves outliers). A numeric vector of length two giving the percentiles to use
(e.g., c(2, 98)). Applied per band. Ignored if minmax_def is used.

An optional color map function (default is grDevices: :gray for single-band
data or grDevices: : rgb for 3-band). Ignored if col_tbl isused. Set normalize
to FALSE if using a color map function that operates on raw pixel values.

An optional function that will be applied to the input pixel data. Must accept
vector input and return a numeric vector of the same length as its input.

Numeric vector of length two giving the x coordinate range. If datais a GDALRaster
object, the default is the raster xmin, xmax in georeferenced coordinates, other-
wise the default uses pixel/line coordinates (c (@, xsize)).

Numeric vector of length two giving the y coordinate range. If datais a GDALRaster
object, the default is the raster ymin, ymax in georeferenced coordinates, other-
wise the default uses pixel/line coordinates (c(ysize, 0)).

Logical indicating whether to apply linear interpolation to the image when draw-
ing (default TRUE).

Numeric. The aspect ratio y/x (see ?plot.window).

Logical. TRUE to draw axes (the default).

The main title (on top).

Title for the x axis (see ?title).

Title for the y axis (see ?title).

The style of axis interval calculation to be used for the x axis (see ?par).
The style of axis interval calculation to be used for the y axis (see ?par).

Logical indicating whether to include a legend on the plot. Currently, legends are
only supported for continuous data. A color table will be used if one is specified
or the raster has a built-in color table, otherwise the value for col_map_fn will
be used.

The number of digits to display after the decimal point in the legend labels when
raster data are floating point.

Color to use for NA as a 7- or 9-character hexadecimal code. The default is
transparent ("#00000000", the return value of rgb(0,0,0,9)).

Other parameters to be passed to plot.default().

140 plot_raster

Details

By default, contrast enhancement by stretch to min/max is applied when the input data are single-
band grayscale with any raster data type, or three-band RGB with raster data type larger than Byte.
The minimum/maximum of the input data are used by default (i.e., no outlier removal). No stretch is
applied by default when the input is an RGB byte raster. These defaults can be overridden by spec-
ifying either the minmax_def argument (user-defined min/max per band), or the minmax_pct_cut
argument (ignore outlier pixels based on a percentile range per band). These settings (and the
normalize argument) are ignored if a color table is used.

Note

plot_raster() uses the function graphics::rasterImage() for plotting which is not supported
on some devices (see ?rasterImage).

If data is an object of class GDALRaster, then plot_raster() will attempt to read the entire raster
into memory by default (unless the number of pixels per band would exceed max_pixels). A
reduced resolution overview can be read by setting xsize, ysize smaller than the raster size on
disk. (If data is instead specified as a vector of pixel values, a reduced resolution overview would
be read by setting out_xsize and out_ysize smaller than the raster region defined by xsize,
ysize in a call to GDALRaster$read()). The GDAL_RASTERIO_RESAMPLING configuration
option can be defined to override the default resampling (NEAREST) to one of BILINEAR, CUBIC,
CUBICSPLINE, LANCZOS, AVERAGE or MODE, for example:

set_config_option(”GDAL_RASTERIO_RESAMPLING”, "BILINEAR")

See Also

GDALRaster$read(), read_ds(), set_config_option()

Examples

Elevation
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

all other arguments are optional when passing a GDALRaster object
grayscale
plot_raster(ds, legend = TRUE, main = "Storm Lake elevation (m)")

color ramp from user-defined palette
elev_pal <- c("#OQAGOE","#63C600", "#E6E600", "H#EIBD3B",
"#ECB176", "#EFC2B3", "#F2F2F2")
ramp <- scales::colour_ramp(elev_pal, alpha = FALSE)
plot_raster(ds, col_map_fn = ramp, legend = TRUE,
main = "Storm Lake elevation (m)")

ds$close()
Landsat band combination

b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster")
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)

polygonize 141

b6_file <- system.file("extdata/sr_b6_20200829.tif", package="gdalraster")
band_files <- c(b6_file, b5_file, b4_file)

vrt_file <- file.path(tempdir(), "storml_b6_b5_b4.vrt")
buildVRT(vrt_file, band_files, cl_arg = "-separate")

ds <- new(GDALRaster, vrt_file)
plot_raster(ds, main = "Landsat 6-5-4 (vegetative analysis)")

ds$close()

LANDFIRE Existing Vegetation Cover (EVC) with color map
evc_file <- system.file("extdata/storml_evc.tif"”, package="gdalraster")

colors from the CSV attribute table distributed by LANDFIRE

evc_csv <- system.file("extdata/LF20_EVC_220.csv", package="gdalraster")
vat <- read.csv(evc_csv)

head(vat)

vat <- vat[, c(1, 6:8)]

ds <- new(GDALRaster, evc_file)
plot_raster(ds, col_tbl = vat, interpolate = FALSE,
main = "Storm Lake LANDFIRE EVC")

ds$close()

Apply a pixel function

f <- system.file("extdata/complex.tif"”, package="gdalraster")
ds <- new(GDALRaster, f)

ds$getDataTypeName(band = 1) # complex floating point

ramp <- scales::colour_ramp(scales::pal_viridis(option = "plasma”)(6),
alpha = FALSE)

plot_raster(ds, pixel_fn = Arg, col_map_fn = ramp, interpolate = FALSE,
legend = TRUE, main = "Arg(complex.tif)")

ds$close()

polygonize Create a polygon feature layer from raster data

Description

polygonize() creates vector polygons for all connected regions of pixels in a source raster sharing
a common pixel value. Each polygon is created with an attribute indicating the pixel value of that
polygon. A raster mask may also be provided to determine which pixels are eligible for processing.
The function will create the output vector layer if it does not already exist, otherwise it will try to

142

polygonize

append to an existing one. This function is a wrapper of GDALPolygonize in the GDAL Algorithms
APL It provides essentially the same functionality as the gdal_polygonize.py command-line pro-
gram (https://gdal.org/en/stable/programs/gdal_polygonize.html).

Usage

polygonize(

raster_file,

out_dsn,
out_layer,
fld_name =

IIDNII ,

out_fmt = NULL,

connectedness
src_band = 1,
mask_file =

:4’

NULL,

nomask = FALSE,
overwrite = FALSE,

dsco = NULL,
lco = NULL,
quiet = FALSE
)
Arguments

raster_file

out_dsn

out_layer

fld_name

out_fmt

connectedness

src_band

mask_file

nomask

overwrite

Filename of the source raster.

The destination vector filename to which the polygons will be written (or database
connection string).

Name of the layer for writing the polygon features. For single-layer file formats
such as "ESRI Shapefile”, the layer name is the same as the filename without
the path or extension (e.g., out_dsn = "path_to_file/polygon_output.shp”,
the layer name is "polygon_output”).

Name of an integer attribute field in out_layer to which the pixel values will
be written. Will be created if necessary when using an existing layer.

GDAL short name of the output vector format. If unspecified, the function will
attempt to guess the format from the filename/connection string.

Integer scalar. Must be either 4 or 8. For the default 4-connectedness, pixels
with the same value are considered connected only if they touch along one of
the four sides, while 8-connectedness also includes pixels that touch at one of
the corners.

The band on raster_file to build the polygons from (default is 1).

Use the first band of the specified raster as a validity mask (zero is invalid, non-
zero is valid). If not specified, the default validity mask for the input band (such
as nodata, or alpha masks) will be used (unless nomask is set to TRUE).

Logical scalar. If TRUE, do not use the default validity mask for the input band
(such as nodata, or alpha masks). Default is FALSE.

Logical scalar. If TRUE, overwrite out_layer if it already exists. Default is
FALSE.

https://gdal.org/en/stable/programs/gdal_polygonize.html

polygonize 143

dsco Optional character vector of format-specific creation options for out_dsn ("NAME=VALUE"
pairs).
lco Optional character vector of format-specific creation options for out_layer

("NAME=VALUE" pairs).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Details

Polygon features will be created on the output layer, with polygon geometries representing the
polygons. The polygon geometries will be in the georeferenced coordinate system of the raster
(based on the geotransform of the source dataset). It is acceptable for the output layer to already
have features. If the output layer does not already exist, it will be created with coordinate system
matching the source raster.

The algorithm attempts to minimize memory use so that very large rasters can be processed. How-
ever, if the raster has many polygons or very large/complex polygons, the memory use for holding
polygon enumerations and active polygon geometries may grow to be quite large.

The algorithm will generally produce very dense polygon geometries, with edges that follow exactly
on pixel boundaries for all non-interior pixels. For non-thematic raster data (such as satellite images)
the result will essentially be one small polygon per pixel, and memory and output layer sizes will be
substantial. The algorithm is primarily intended for relatively simple thematic rasters, masks, and
classification results.

Note

The source pixel band values are read into a signed 64-bit integer buffer (Int64) by GDALPolygonize,
so floating point or complex bands will be implicitly truncated before processing.

When 8-connectedness is used, many of the resulting polygons will likely be invalid due to ring
self-intersection (in the strict OGC definition of polygon validity). They may be suitable as-is
for certain purposes such as calculating geometry attributes (area, perimeter). Package sf has
st_make_valid(), PostGIS has ST_MakeValid(), and QGIS has vector processing utility "Fix
geometries" (single polygons can become MultiPolygon in the case of self-intersections).

If writing to a SQLite database format as either GPKG (GeoPackage vector) or SQLite (Spatialite
vector), setting the SQLITE_USE_OGR_VFS and OGR_SQLITE_JOURNAL configuration options may in-
crease performance substantially. If writing to PostgreSQL (PostGIS vector), setting PG_USE_COPY=YES
is faster:

SQLite: GPKG (.gpkg) and Spatialite (.sqlite)

enable extra buffering/caching by the GDAL/OGR I/0 layer
set_config_option("SQLITE_USE_OGR_VFS", "YES")

set the journal mode for the SQLite database to MEMORY
set_config_option("OGR_SQLITE_JOURNAL", "MEMORY")

PostgreSQL / PostGIS
use COPY for inserting data rather than INSERT
set_config_option("PG_USE_COPY", "YES")

144 pop_error_handler

See Also

rasterize()

vignette(”"gdal-config-quick-ref")

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster"”)
dsn <- file.path(tempdir(), "storm_lake.gpkg")

layer <- "1f_evt"

fld <- "evt_value”

set_config_option("”"SQLITE_USE_OGR_VFS", "YES")
set_config_option(”"OGR_SQLITE_JOURNAL", "MEMORY")

polygonize(evt_file, dsn, layer, fld)

set_config_option(”SQLITE_USE_OGR_VFS", "")
set_config_option(”"OGR_SQLITE_JOURNAL", "")
pop_error_handler Pop error handler off stack
Description

pop_error_handler() is a wrapper for CPLPopErrorHandler () in the GDAL Common Portabil-
ity Library. Discards the current error handler on the error handler stack, and restores the one in
use before the last push_error_handler() call. This method has no effect if there are no error
handlers on the current thread’s error handler stack.

Usage

pop_error_handler()

Value

No return value, called for side effects.

See Also

push_error_handler()

Examples

push_error_handler("quiet")
...
pop_error_handler ()

print. OGRFeature

145

print.OGRFeature Print an OGRFeature object

Description

Print an OGRFeature object

Usage
S3 method for class 'OGRFeature'
print(x, ...)
Arguments
X An OGRFeature object.
Optional arguments passed to base: :print().
Value

The input, invisibly.

print.OGRFeatureSet Print an OGRFeatureSet

Description

Print an OGRFeatureSet
Usage

S3 method for class 'OGRFeatureSet'

print(x, ...)
Arguments

X An OGRFeatureSet.

Optional arguments passed to base: :print.data.frame().

Value

The input, invisibly.

146 proj_search_paths

proj_networking Check, enable or disable PROJ networking capabilities

Description
proj_networking() returns the status of PROJ networking capabilities, optionally enabling or
disabling first. Requires GDAL 3.4 or later and PROJ 7 or later.

Usage

proj_networking(enabled = NULL)

Arguments
enabled Optional logical scalar. Set to TRUE to enable networking capabilities or FALSE
to disable.
Value

Logical TRUE if PROJ networking capabilities are enabled (as indicated by the return value of
O0SRGetPROJEnableNetwork() in the GDAL Spatial Reference System C API). Logical NA is re-
turned if GDAL < 3.4.

See Also

proj_version(), proj_search_paths()
PROJ-data on GitHub, PROJ Content Delivery Network

Examples

proj_networking()

proj_search_paths Get or set search path(s) for PROJ resource files

Description
proj_search_paths() returns the search path(s) for PROJ resource files, optionally setting them
first.

Usage

proj_search_paths(paths = NULL)

Arguments

paths Optional character vector containing one or more directory paths to set.

https://github.com/OSGeo/PROJ-data
https://cdn.proj.org/

proj_version 147

Value

A character vector containing the currently used search path(s) for PROJ resource files. An empty
string ("") is returned if no search paths are returned by the function OSRGetPROJSearchPaths()
in the GDAL Spatial Reference System C APL

See Also

proj_version(), proj_networking()

Examples

proj_search_paths()

proj_version Get PROJ version

Description

proj_version() returns version information for the PROJ library in use by GDAL.

Usage

proj_version()

Value
A list of length four containing:
* name - a string formatted as "major.minor.patch"
* major - major version as integer

* minor - minor version as integer

* patch - patch version as integer

See Also

gdal_version(), geos_version(), proj_search_paths(), proj_networking()

Examples

proj_version()

148 push_error_handler

push_error_handler Push a new GDAL CPLError handler

Description

push_error_handler() is a wrapper for CPLPushErrorHandler() in the GDAL Common Porta-
bility Library. This pushes a new error handler on the thread-local error handler stack. This han-
dler will be used until removed with pop_error_handler(). A typical use is to temporarily set
CPLQuietErrorHandler () which doesn’t make any attempt to report passed error or warning mes-
sages, but will process debug messages via CPLDefaultErrorHandler.

Usage

push_error_handler(handler)

Arguments

handler Character name of the error handler to push. One of quiet, logging or default.

Value

No return value, called for side effects.

Note

Setting handler = "logging"” will use CPLLoggingErrorHandler (), error handler that logs into
the file defined by the CPL_LOG configuration option, or stderr otherwise.

This only affects error reporting from GDAL.

See Also

pop_error_handler()

Examples

push_error_handler("quiet")
...
pop_error_handler()

rasterFromRaster 149

rasterFromRaster Create a raster from an existing raster as template

Description

rasterFromRaster () creates a new raster with spatial reference, extent and resolution taken from
a template raster, without copying data. Optionally changes the format, number of bands, data type
and nodata value, sets driver-specific dataset creation options, and initializes to a value.

Usage

rasterFromRaster(
srcfile,
dstfile,
fmt = NULL,
nbands = NULL,
dtName = NULL,
options = NULL,

init = NULL,
dstnodata = init
)
Arguments
srcfile Source raster filename.
dstfile Output raster filename.
fmt Output raster format name (e.g., "GTiff" or "HFA"). Will attempt to guess from
the output filename if fmt is not specified.
nbands Number of output bands.
dtName Output raster data type name. Commonly used types include "Byte"”, "Int16",
"UInt16”, "Int32" and "Float32".
options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).
init Numeric value to initialize all pixels in the output raster.
dstnodata Numeric nodata value for the output raster.
Value

Returns the destination filename invisibly.

See Also

GDALRaster-class, create(), createCopy(), bandCopyWholeRaster (), translate()

150 rasterize

Examples

band 2 in a FARSITE landscape file has slope degrees

convert slope degrees to slope percent in a new raster

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds_lcp <- new(GDALRaster, lcp_file)

ds_lcp$getMetadata(band=2, domain="")

slpp_file <- file.path(tempdir(), "storml_slpp.tif")
opt = c("COMPRESS=LZW")
rasterfFromRaster(srcfile = lcp_file,
dstfile = slpp_file,
nbands = 1,
dtName = "Int16",
options = opt,
init = -32767)
ds_slp <- new(GDALRaster, slpp_file, read_only=FALSE)

slpp_file is initialized to -32767 and nodata value set
ds_slp$getNoDataValue(band=1)

extent and cell size are the same as lcp_file
ds_lcp$bbox ()
ds_lcp$res()
ds_slp$bbox()
ds_slp$res()

convert slope degrees in lcp_file band 2 to slope percent in slpp_file
bring through LCP nodata -9999 to the output nodata value
ncols <- ds_slp$getRasterXSize()
nrows <- ds_slp$getRasterYSize()
for (row in @:(nrows-1)) {
rowdata <- ds_lcp$read(band=2,
xoff=0, yoff=row,
xsize=ncols, ysize=1,
out_xsize=ncols, out_ysize=1)
rowslpp <- tan(rowdata*pi/180) * 100
rowslpp[rowdata==-9999] <- -32767
dim(rowslpp) <- c(1, ncols)
ds_slp$write(band=1, xoff=0, yoff=row, xsize=ncols, ysize=1, rowslpp)

min, max, mean, sd
ds_slp$getStatistics(band=1, approx_ok=FALSE, force=TRUE)

ds_slp$close()
ds_lcp$close()

rasterize Burn vector geometries into a raster

rasterize

Description

151

rasterize() burns vector geometries (points, lines, or polygons) into the band(s) of a raster
dataset. Vectors are read from any GDAL OGR-supported vector format. This function is a wrapper
for the gdal_rasterize command-line utility (https://gdal.org/en/stable/programs/gdal_

rasterize.html).

Usage

rasterize(
src_dsn,
dstfile,
band = NULL,
layer = NULL,
where = NULL,
sql = NULL,
burn_value =

NULL,

burn_attr = NULL,

invert = NULL

te = NULL,
tr = NULL,
tap = NULL,
ts = NULL,

dtName = NULL

’

’

dstnodata = NULL,

init = NULL,
fmt = NULL,
co = NULL,

add_options =
quiet = FALSE

Arguments

src_dsn
dstfile

band

layer

where

sql

NULL,

Data source name for the input vector layer (filename or connection string).

Either a character string giving the filename of the output raster dataset, or an
object of class GDALRaster for the output. Must support update mode access.
If given as a filename, this file will be created (or overwritten if it already exists
- see Note). If given as a GDALRaster object for an existing dataset, then the
affected pixels are updated in-place (object must be open with write access).

Numeric vector. The band(s) to burn values into (for existing dstfile). The
default is to burn into band 1. Not used when creating a new raster.

Character vector of layer names(s) from src_dsn that will be used for input
features. At least one layer name or a sql option must be specified.

An optional SQL WHERE style query string to select features to burn in from
the input layer(s).

An SQL statement to be evaluated against src_dsn to produce a virtual layer of
features to be burned in (alternative to layer).

https://gdal.org/en/stable/programs/gdal_rasterize.html
https://gdal.org/en/stable/programs/gdal_rasterize.html

burn_value

burn_attr

invert

te

tr

tap

ts

dtName

dstnodata
init

fmt

Cco

add_options

quiet

Value

rasterize

A fixed numeric value to burn into a band for all features. A numeric vector can
be supplied, one burn value per band being written to.

Character string. Name of an attribute field on the features to be used for a
burn-in value. The value will be burned into all output bands.

Logical scalar. TRUE to invert rasterization. Burn the fixed burn value, or the
burn value associated with the first feature, into all parts of the raster not inside
the provided polygon.

Numeric vector of length four. Sets the output raster extent. The values must be
expressed in georeferenced units. If not specified, the extent of the output raster
will be the extent of the vector layer.

Numeric vector of length two. Sets the target pixel resolution. The values must
be expressed in georeferenced units. Both must be positive.

Logical scalar. (target aligned pixels) Align the coordinates of the extent of
the output raster to the values of tr, such that the aligned extent includes the
minimum extent. Alignment means that xmin / resx, ymin / resy, xmax / resx
and ymax / resy are integer values.

Numeric vector of length two. Sets the output raster size in pixels (xsize, ysize).
Note that ts cannot be used with tr.

Character name of output raster data type, e.g., Byte, Int16, UInt16, Int32,
UInt32, Float32, Float64. Defaults to Float64.

Numeric scalar. Assign a nodata value to output bands.

Numeric vector. Pre-initialize the output raster band(s) with these value(s).
However, it is not marked as the nodata value in the output file. If only one
value is given, the same value is used in all the bands.

Output raster format short name (e.g., "GTiff"). Will attempt to guess from the
output filename if fmt is not specified.

Optional list of format-specific creation options for the output raster in a vector
of "NAME=VALUE" pairs (e.g., options = c("TILED=YES", "COMPRESS=LZW")
to set LZW compression during creation of a tiled GTiff file).

An optional character vector of additional command-line options to gdal_rasterize

(see the gdal_rasterize documentation at the URL above for all available op-
tions).
Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

rasterize() creates a new target raster when dstfile is given as a filename (character string).
In that case, some combination of the fmt, dstnodata, init, co, te, tr, tap, ts, and dtName
arguments will be used. The resolution or size must be specified using either the tr or ts argument
for all new rasters. The target raster will be overwritten if it already exists and any of these creation-
related options are used.

To update an existing raster in-place, an object of class GDALRaster may be given for the dstfile
argument. The GDALRaster object should be open for write access.

rasterToVRT 153

See Also

polygonize()

Examples

MTBS fire perimeters for Yellowstone National Park 1984-2022

dsn <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")
sql <- "SELECT * FROM mtbs_perims ORDER BY mtbs_perims.ig_year"

out_file <- file.path(tempdir(), "ynp_fires_1984_2022.tif")

rasterize(src_dsn = dsn,
dstfile = out_file,
sql = sql,
burn_attr = "ig_year”,
tr = ¢(90,90),
tap = TRUE,
dtName = "Intl16",
dstnodata = -9999,
init = -9999,
co = c("TILED=YES","COMPRESS=LZW"))

ds <- new(GDALRaster, out_file)

pal <- scales::viridis_pal(end = 0.8, direction = -1)(6)

ramp <- scales::colour_ramp(pal)

plot_raster(ds, legend = TRUE, col_map_fn = ramp, na_col = "#d9d9d9",
main="YNP Fires 1984-2022 - Most Recent Burn Year")

ds$close()

rasterToVRT Create a GDAL virtual raster derived from one source dataset

Description

rasterToVRT() creates a virtual raster dataset (VRT format) derived from one source dataset with
options for virtual subsetting, virtually resampling the source data at a different pixel resolution, or
applying a virtual kernel filter. (See buildVRT () for virtual mosaicing.)

Usage
rasterToVRT(
srcfile,
relativeToVRT = FALSE,
vrtfile = tempfile("tmprast”, fileext = ".vrt"),

resolution = NULL,
subwindow = NULL,
src_align = TRUE,
resampling = "nearest”,

154

krnl = NULL,
normalized =

Arguments

srcfile
relativeToVRT

vrtfile

resolution

subwindow

src_align

resampling

krnl

normalized

rasterToVRT

TRUE

Source raster filename.

Logical. Indicates whether the source filename should be interpreted as rela-
tive to the .vrt file (TRUE) or not relative to the .vrt file (FALSE, the default).
If TRUE, the .vrt file is assumed to be in the same directory as srcfile and
basename(srcfile) is used in the .vrt file. Use TRUE if the .vrt file will always
be stored in the same directory with srcfile.

Output VRT filename.

A numeric vector of length two (xres, yres). The pixel size must be expressed in
georeferenced units. Both must be positive values. The source pixel size is used
if resolution is not specified.

A numeric vector of length four (xmin, ymin, xmax, ymax). Selects subwindow
of the source raster with corners given in georeferenced coordinates (in the
source CRS). If not given, the upper left corner of the VRT will be the same
as source, and the VRT extent will be the same or larger than source depending
on resolution.

Logical.

* TRUE: the upper left corner of the VRT extent will be set to the upper left
corner of the source pixel that contains subwindow xmin, ymax. The VRT
will be pixel-aligned with source if the VRT resolution is the same as the
source pixel size, otherwise VRT extent will be the minimum rectangle that
contains subwindow for the given pixel size. Often, src_align=TRUE when
selecting a raster minimum bounding box for a vector polygon.

e FALSE: the VRT upper left corner will be exactly subwindow xmin, ymax,
and the VRT extent will be the minimum rectangle that contains subwindow
for the given pixel size. If subwindow is not given, the source raster extent is
used in which case src_align=FALSE has no effect. Use src_align=FALSE
to pixel-align two rasters of different sizes, i.e., when the intent is target
alignment.

The resampling method to use if xsize, ysize of the VRT is different than the size
of the underlying source rectangle (in number of pixels). The values allowed are
nearest, bilinear, cubic, cubicspline, lanczos, average and mode (as character).

A filtering kernel specified as pixel coefficients. krnl is a array with dimensions
(size, size), where size must be an odd number. krnl can also be given as a
vector with length size x size. For example, a 3x3 average filter is given by:

krnl <- c(

0.11111, 2.11111, 0.11111,
0.11111, 0.11111, 0.11111,
0.11111, 0.11111, 0.11111)

A kernel cannot be applied to sub-sampled or over-sampled data.

Logical. Indicates whether the kernel is normalized. Defaults to TRUE.

rasterToVRT 155

Details

rasterToVRT() can be used to virtually clip and pixel-align various raster layers with each other
or in relation to vector polygon boundaries. It also supports VRT kernel filtering.

A VRT dataset is saved as a plain-text file with extension .vrt. This file contains a description of
the dataset in an XML format. The description includes the source raster filename which can be
a full path (relativeToVRT = FALSE) or relative path (relativeToVRT = TRUE). For relative path,
rasterToVRT() assumes that the .vrt file will be in the same directory as the source file and uses
basename(srcfile). The elements of the XML schema describe how the source data will be read,
along with algorithms potentially applied and so forth. Documentation of the XML format for .vrt
is at: https://gdal.org/en/stable/drivers/raster/vrt.html.

Since .vrt is a small plain-text file it is fast to write and requires little storage space. Read perfor-
mance is not degraded for certain simple operations (e.g., virtual clip without resampling). Reading
will be slower for virtual resampling to a different pixel resolution or virtual kernel filtering since
the operations are performed on-the-fly (but .vrt does not require the up front writing of a resampled
or kernel-filtered raster to a regular format). VRT is sometimes useful as an intermediate raster in a
series of processing steps, e.g., as a tempfile (the default).

GDAL VRT format has several capabilities and uses beyond those covered by rasterToVRT(). See
the URL above for a full discussion.

Value

Returns the VRT filename invisibly.

Note

Pixel alignment is specified in terms of the source raster pixels (i.e., srcfile of the virtual raster).
The use case in mind is virtually clipping a raster to the bounding box of a vector polygon and
keeping pixels aligned with srcfile (src_align = TRUE). src_align would be set to FALSE if
the intent is "target alignment". For example, if subwindow is the bounding box of another raster
with a different layout, then also setting resolution to the pixel resolution of the target raster
and src_align = FALSE will result in a virtual raster pixel-aligned with the target (i.e., pixels in
the virtual raster are no longer aligned with its srcfile). Resampling defaults to nearest if not
specified. Examples for both cases of src_align are given below.

rasterToVRT() assumes srcfile is a north-up raster.

See Also

GDALRaster-class, bbox_from_wkt (), buildVRT()

warp() can write VRT for virtual reprojection

Examples

resample

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster”)
ds <- new(GDALRaster, evt_file)

ds$res()

ds$bbox ()

https://gdal.org/en/stable/drivers/raster/vrt.html

156 rasterToVRT

ds$close()

table of the unique pixel values and their counts
tbl <- buildRAT(evt_file)

print(tbl)

sum(tb1$COUNT)

resample at 90-m resolution
EVT is thematic vegetation type so use a majority value
vrt_file <- rasterToVRT(evt_file,
resolution=c(90,90),
resampling="mode")

.vrt is a small xml file pointing to the source raster
file.size(vrt_file)

tb190m <- buildRAT(vrt_file)
print(tb190m)
sum(tb190m$COUNT)

ds <- new(GDALRaster, vrt_file)
ds$res()

ds$bbox ()

ds$close()

clip

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
ds_evt <- new(GDALRaster, evt_file)
ds_evt$bbox ()

WKT string for a boundary within the EVT extent

bnd = "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,
325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"

src_align = TRUE

vrt_file <- rasterToVRT(evt_file,
subwindow = bbox_from_wkt(bnd),
src_align=TRUE)

ds_vrt <- new(GDALRaster, vrt_file)

VRT is a virtual clip, pixel-aligned with the EVT raster
bbox_from_wkt (bnd)

ds_vrt$bbox ()

ds_vrt$res()

ds_vrt$close()

src_align = FALSE
vrt_file <- rasterToVRT(evt_file,
subwindow = bbox_from_wkt(bnd),

rasterToVRT 157

src_align=FALSE)
ds_vrt_noalign <- new(GDALRaster, vrt_file)

VRT upper left corner (xmin, ymax) is exactly bnd xmin, ymax
ds_vrt_noalign$bbox()
ds_vrt_noalign$res()

ds_vrt_noalign$close()
ds_evt$close()

subset and pixel align two rasters

FARSITE landscape file for the Storm Lake area
lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds_lcp <- new(GDALRaster, lcp_file)

Landsat band 5 file covering the Storm Lake area
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)
ds_b5 <- new(GDALRaster, b5_file)

ds_lcp$bbox() # 323476.1 5101872.0 327766.1 5105082.0
ds_lcp$res() # 30 30

ds_b5%$bbox () # 323400.9 5101815.8 327870.9 5105175.8
ds_b5%res() # 30 30

src_align = FALSE because we need target alignment in this case:
vrt_file <- rasterToVRT(b5_file,

resolution = ds_lcp$res(),

subwindow = ds_lcp$bbox(),

src_align = FALSE)
ds_b5vrt <- new(GDALRaster, vrt_file)

ds_b5vrt$bbox() # 323476.1 5101872.0 327766.1 5105082.0
ds_b5vrt$res() # 30 30

read the the Landsat file pixel-aligned with the LCP file
summarize band 5 reflectance where FBFM = 165

LCP band 4 contains FBFM (a classification of fuel beds):
ds_lcp$getMetadata(band=4, domain="")

verify Landsat nodata (0):
ds_b5vrt$getNoDataValue(band=1)

will be read as NA and omitted from stats
rs <- new(RunningStats, na_rm=TRUE)

ncols <- ds_lcp$getRasterXSize()
nrows <- ds_lcp$getRasterYSize()
for (row in @:(nrows-1)) {
row_fbfm <- ds_lcp$read(band=4, xoff=0, yoff=row,
xsize=ncols, ysize=1,

158

out_xsize=ncols, out_ysize=1)

row_b5 <- ds_b5vrt$read(band=1, xoff=0, yoff=row,

xsize=ncols, ysize=1,
out_xsize=ncols, out_ysize=1)

rs$update(row_b5[row_fbfm == 165])

3
rs$get_count()
rs$get_mean()
rs$get_min()
rs$get_max()
rs$get_sum()
rs$get_var()
rs$get_sd()

ds_b5vrt$close()
ds_lcp$close()
ds_b5%$close()

read_ds

read_ds

Convenience wrapper for GDALRaster$read()

Description

read_ds () will read from a raster dataset that is already open in a GDALRaster object. By default,
it attempts to read the full raster extent from all bands at full resolution. read_ds() is sometimes
more convenient than GDALRaster$read(), e.g., to read specific multiple bands for display with
plot_raster(), or simply for the default arguments that read an entire raster into memory (see

Note).

Usage

read_ds(
ds,
bands = NULL,
xoff = 0,
yoff = 0,

xsize = ds$getRasterXSize(),
ysize = ds$getRasterYSize(),

out_xsize = xsize,
out_ysize = ysize,

as_list = FALSE,
as_raw = FALSE

Arguments

ds An object of class GDALRaster in open state.

read_ds 159

bands Integer vector of band numbers to read. By default all bands will be read.

xoff Integer. The pixel (column) offset to the top left corner of the raster region to be
read (zero to start from the left side).

yoff Integer. The line (row) offset to the top left corner of the raster region to be read
(zero to start from the top).

xsize Integer. The width in pixels of the region to be read.

ysize Integer. The height in pixels of the region to be read.

out_xsize Integer. The width in pixels of the output buffer into which the desired region
will be read (e.g., to read a reduced resolution overview).

out_ysize Integer. The height in pixels of the output buffer into which the desired region
will be read (e.g., to read a reduced resolution overview).

as_list Logical. If TRUE, return output as a list of band vectors. If FALSE (the default),

output is a vector of pixel data interleaved by band.

as_raw Logical. If TRUE and the underlying data type is Byte, return output as R’s raw
vector type. This maps to the setting $readByteAsRaw on the GDALRaster ob-
ject, which will be temporarily updated in this function. To control this behavior
in a persistent way on a dataset see $readByteAsRaw in GDALRaster-class.

Details

NA will be returned in place of the nodata value if the raster dataset has a nodata value defined for
the band. Data are read as R integer type when possible for the raster data type (Byte, Int8, Int16,
Ulnt16, Int32), otherwise as type double (UlInt32, Float32, Float64).

The output object has attribute gis, a list containing:

$type = "raster”

$bbox = c(xmin, ymin, xmax, ymax)

$dim = c(xsize, ysize, nbands)

$srs = <projection as WKT2 string>

$datatype = <character vector of data type name by band>

The WKT version used for the projection string can be overridden by setting the OSR_WKT_FORMAT
configuration option. See srs_to_wkt() for a list of supported values.

Value

If as_list = FALSE (the default), a vector of raw, integer, double or complex containing the
values that were read. It is organized in left to right, top to bottom pixel order, interleaved by band.
If as_list = TRUE, a list with number of elements equal to the number of bands read. Each element
contains a vector of raw, integer, double or complex containing the pixel values that were read
for the band.

Note

There is small overhead in calling read_ds() compared with calling GDALRaster$read() di-
rectly. This would only matter if calling the function repeatedly to read a raster in chunks. For

160 renameDataset

the case of reading a large raster in many chunks, it will be optimal performance-wise to call
GDALRaster$read() directly.

By default, this function will attempt to read the full raster into memory. It generally should not
be called on large raster datasets using the default argument values. The memory size in bytes of
the returned vector will be, e.g., (xsize * ysize * number of bands * 4) for data read as integer, or
(xsize * ysize * number of bands * 8) for data read as double (plus small object overhead for the
vector).

See Also

GDALRasters$read()

Examples

read three bands from a multi-band dataset
lcp_file <- system.file("extdata/storm_lake.lcp"”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

as a vector of pixel data interleaved by band
r <- read_ds(ds, bands=c(6,5,4))

typeof(r)

length(r)

object.size(r)

as a list of band vectors

r <- read_ds(ds, bands=c(6,5,4), as_list=TRUE)
typeof(r)

length(r)

object.size(r)

gis attributes
attr(r, "gis")

ds$close()

renameDataset Rename a dataset

Description

renameDataset () renames a dataset in a format-specific way (e.g., rename associated files as ap-
propriate). This could include moving the dataset to a new directory or even a new filesystem. The
dataset should not be open in any existing GDALRaster objects when renameDataset () is called.
Wrapper for GDALRenameDataset () in the GDAL APL

Usage

renameDataset(new_filename, old_filename, format = "")

RunningStats-class 161

Arguments

new_filename New name for the dataset.
old_filename Old name for the dataset (should not be open in a GDALRaster object).

format Raster format short name (e.g., "GTiff"). If set to empty string "" (the default),
will attempt to guess the raster format from old_filename.

Value

Logical TRUE if no error or FALSE on failure.

Note

If format is set to an empty string "" (the default) then the function will try to identify the driver
from old_filename. This is done internally in GDAL by invoking the Identify method of each
registered GDALDriver in turn. The first driver that successful identifies the file name will be re-
turned. An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), deleteDataset(), copyDatasetFiles()

Examples

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
b5_tmp <- file.path(tempdir(), "b5_tmp.tif")
file.copy(b5_file, b5_tmp)

ds <- new(GDALRaster, b5_tmp)

ds$buildOverviews ("BILINEAR", levels = c(2, 4, 8), bands = c(1))
ds$getFilelList()

ds$close()

b5_tmp2 <- file.path(tempdir(), "b5_tmp_renamed.tif")
renameDataset (b5_tmp2, b5_tmp)

ds <- new(GDALRaster, b5_tmp2)

ds$getFilelList()

ds$close()

deleteDataset (b5_tmp2)

RunningStats-class Class to calculate mean and variance in one pass

162 RunningStats-class

Description

RunningStats computes summary statistics on a data stream efficiently. Mean and variance are cal-
culated with Welford’s online algorithm (https://en.wikipedia.org/wiki/Algorithms_for_
calculating_variance). The min, max, sum and count are also tracked. The input data values
are not stored in memory, so this class can be used to compute statistics for very large data streams.

RunningStats is a C++ class exposed directly to R (via RCPP_EXPOSED_CLASS). Methods of the
class are accessed using the $ operator.

Arguments
na_rm Logical scalar. TRUE to remove NA from the input data (the default) or FALSE to
retain NA.
Value

An object of class RunningStats. A RunningStats object maintains the current minimum, max-
imum, mean, variance, sum and count of values that have been read from the stream. It can be
updated repeatedly with new values (i.e., chunks of data read from the input stream), but its mem-
ory footprint is negligible. Class methods for updating with new values, and retrieving the current
values of statistics, are described in Details.

Usage (see Details)

Constructor
rs <- new(RunningStats, na_rm)

Methods
rs$update(newvalues)
rs$get_count()
rs$get_mean()
rs$get_min()
rs$get_max()
rs$get_sum()
rs$get_var()
rs$get_sd()
rs$reset()

Details

Constructor:

new(RunningStats, na_rm)
Returns an object of class RunningStats. The na_rm argument defaults to TRUE if omitted.

Methods:

$update(newvalues)
Updates the RunningStats object with a numeric vector of newvalues (i.e., a chunk of values
from the data stream). No return value, called for side effects.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

RunningStats-class 163

$get_count()
Returns the count of values received from the data stream.

$get_mean()

Returns the mean of values received from the data stream.

$get_min()

Returns the minimum value received from the data stream.

$get_max()

Returns the maximum value received from the data stream.

$get_sum()

Returns the sum of values received from the data stream.

$get_var()

Returns the variance of values from the data stream (denominator n - 1).
$get_sd()

Returns the standard deviation of values from the data stream (denominator n - 1).
$reset()

Clears the RunningStats object to its initialized state (count = 0). No return value, called for side
effects.

Note

The intended use is computing summary statistics for specific subsets or zones of a raster that
could be defined in various ways and are generally not contiguous. The algorithm as imple-
mented here incurs the cost of floating point division for each new value updated (i.e., per pixel),
but is reasonably efficient for the use case. Note that GDAL internally uses an optimized ver-
sion of Welford’s algorithm to compute raster statistics as described in detail by Rouault, 2016
(https://github.com/0SGeo/gdal/blob/master/gcore/statistics. txt). The class method
GDALRaster$getStatistics() is a GDAL API wrapper that computes statistics for a whole raster
band.

Examples

set.seed(42)
rs <- new(RunningStats, na_rm=TRUE)
rs

chunk <- runif(1000)
rs$update(chunk)

object.size(rs)

rs$get_count()
length(chunk)

rs$get_mean()
mean (chunk)

rs$get_min()
min(chunk)

rs$get_max()

https://github.com/OSGeo/gdal/blob/master/gcore/statistics.txt

164 set_cache _max

max (chunk)

rs$get_var()
var (chunk)

rs$get_sd()
sd(chunk)

109 values read in 10,000 chunks
should take under 1 minute on most PC hardware
for (i in 1:1e4) {
chunk <- runif(1e5)
rs$update(chunk)
3
rs$get_count()
rs$get_mean()
rs$get_var()

object.size(rs)

set_cache_max Set the maximum memory size for the GDAL block cache

Description
set_cache_max() sets the maximum amount of memory that GDAL is permitted to use for GDAL-
RasterBlock caching. The unit of the value to set is bytes. Wrapper of GDALSetCacheMax64().
Usage

set_cache_max(nbytes)

Arguments
nbytes A numeric value optionally carrying the integer64 class attribute (assumed to
be a whole number, will be coerced to integer by truncation). Specifies the new
cache size in bytes (maximum number of bytes for caching).
Value

No return value, called for side effects.

Note

This function will not make any attempt to check the consistency of the passed value with the
effective capabilities of the OS.

set_config_option 165

It is recommended to consult the documentation for get_cache_max () and get_cache_used()
before using this function.

get_cache_max(), get_cache_used()

Examples

(cachemax <- get_cache_max("bytes"))

set_cache_max(1e8)
get_cache_max() # returns in MB by default

reset to original
set_cache_max(cachemax)
get_cache_max()

set_config_option Set GDAL configuration option

Description

set_config_option() sets a GDAL runtime configuration option. Configuration options are es-
sentially global variables the user can set. They are used to alter the default behavior of certain
raster format drivers, and in some cases the GDAL core. For a full description and listing of avail-
able options see https://gdal.org/en/stable/user/configoptions.html.

Usage

set_config_option(key, value)

Arguments
key Character name of a configuration option.
value Character value to set for the option. value ="" (empty string) will unset a
value previously set by set_config_option().
Value

No return value, called for side effects.

See Also

get_config_option()
vignette("gdal-config-quick-ref")

https://gdal.org/en/stable/user/configoptions.html

166

Examples

sieveFilter

set_config_option("GDAL_CACHEMAX", "10%")
get_config_option("”GDAL_CACHEMAX")

unset:
set_config_option("”GDAL_CACHEMAX", "")
sieveFilter Remove small raster polygons
Description

sieveFilter() is

a wrapper for GDALSieveFilter() in the GDAL Algorithms API. It removes

raster polygons smaller than a provided threshold size (in pixels) and replaces them with the pixel
value of the largest neighbour polygon.

Usage

sieveFilter(
src_filename,
src_band,
dst_filename,
dst_band,

size_threshold,

connectedness
mask_filename

’

— nn
- ’

mask_band = oL,
options = NULL,

quiet = FALSE

Arguments

src_filename
src_band

dst_filename
dst_band
size_threshold
connectedness

mask_filename

mask_band

Filename of the source raster to be processed.
Band number in the source raster to be processed.

Filename of the output raster. It may be the same as src_filename to update
the source file in place.

Band number in dst_filename to write output. It may be the same as src_band
to update the source raster in place.

Integer. Raster polygons with sizes (in pixels) smaller than this value will be
merged into their largest neighbour.

Integer. Either 4 indicating that diagonal pixels are not considered directly adja-
cent for polygon membership purposes, or 8 indicating they are.

Optional filename of raster to use as a mask.

Band number in mask_filename to use as a mask. All pixels in the mask band
with a value other than zero will be considered suitable for inclusion in poly-
gons.

sieveFilter 167

options Algorithm options as a character vector of name=value pairs. None currently
supported.
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Details

Polygons are determined as regions of the raster where the pixels all have the same value, and that
are contiguous (connected). Pixels determined to be "nodata" per the mask band will not be treated
as part of a polygon regardless of their pixel values. Nodata areas will never be changed nor affect
polygon sizes. Polygons smaller than the threshold with no neighbours that are as large as the
threshold will not be altered. Polygons surrounded by nodata areas will therefore not be altered.

The algorithm makes three passes over the input file to enumerate the polygons and collect limited
information about them. Memory use is proportional to the number of polygons (roughly 24 bytes
per polygon), but is not directly related to the size of the raster. So very large raster files can be
processed effectively if there aren’t too many polygons. But extremely noisy rasters with many one
pixel polygons will end up being expensive (in memory) to process.

The input dataset is read as integer data which means that floating point values are rounded to
integers.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Examples

remove single-pixel polygons from the vegetation type layer (EVT)
evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")

create a blank raster to hold the output
evt_mmu_file <- file.path(tempdir(), "storml_evt_mmu2.tif")
rasterFromRaster(srcfile = evt_file,

dstfile = evt_mmu_file,

init = 32767)

create a mask to exclude water pixels from the algorithm
recode water (7292) to @
expr <- "ifelse(EVT == 7292, @, EVT)"
mask_file <- calc(expr = expr,
rasterfiles = evt_file,
var.names = "EVT")

create a version of EVT with two-pixel minimum mapping unit
sieveFilter(src_filename = evt_file,

src_band = 1,

dst_filename = evt_mmu_file,

dst_band = 1,

size_threshold = 2,

connectedness = 8,

mask_filename = mask_file,

mask_band = 1)

168 srs_convert

srs_convert Convert spatial reference definitions to OGC Well Known Text

Description

These functions convert various spatial reference formats to Well Known Text (WKT).

Usage

epsg_to_wkt(epsg, pretty = FALSE)

srs_to_wkt(srs, pretty = FALSE)

Arguments
epsg Integer EPSG code.
pretty Logical. TRUE to return a nicely formatted WKT string for display to a person.
FALSE for a regular WKT string (the default).
srs Character string containing an SRS definition in various formats (see Details).
Details

epsg_to_wkt() exports the spatial reference for an EPSG code to WKT format. Wrapper for
OSRImportFromEPSG() in the GDAL Spatial Reference System API with output to WKT.

srs_to_wkt() converts a spatial reference system (SRS) definition in various text formats to WKT.
The function will examine the input SRS, try to deduce the format, and then export it to WKT.
Wrapper for OSRSetFromUserInput() in the GDAL Spatial Reference System API with output to
WKT.

The input SRS may take the following forms:

¢ WKT - to convert WKT versions (see below)

* EPSG:n - EPSG code n

e AUTO:proj_id,unit_id,lon0,lat0 - WMS auto projections

e urn:ogc:def:crs:EPSG::n - OGC URNSs

* PROJ.4 definitions

e filename - file to read for WKT, XML or PROJ .4 definition

¢ well known name such as NAD27, NAD83, WGS84 or WGS72
¢ IGNF:xxxx, ESRI:xxxx - definitions from the PROJ database

* PROJJSON (PROJ >=6.2)

srs_query 169

srs_to_wkt() is intended to be flexible, but by its nature it is imprecise as it must guess information
about the format intended. epsg_to_wkt () could be used instead for EPSG codes.

As of GDAL 3.0, the default format for WKT export is OGC WKT 1. The WKT version can be
overridden by using the OSR_WKT_FORMAT configuration option (see set_config_option()).
Valid values are one of: SFSQL, WKT1_SIMPLE, WKT1, WKT1_GDAL, WKT1_ESRI, WKT2_2015,
WKT2_2018, WKT2, DEFAULT. If SFSQL, a WKT1 string without AXIS, TOWGS84, AUTHOR-
ITY or EXTENSION node is returned. If WKT1_SIMPLE, a WKT1 string without AXIS, AU-
THORITY or EXTENSION node is returned. WKT1 is an alias of WKT1_GDAL. WKT2 will
default to the latest revision implemented (currently WKT2_2018). WKT2_2019 can be used as an
alias of WKT2_2018 since GDAL 3.2

Value

Character string containing OGC WKT.

See Also

srs_query

Examples

epsg_to_wkt(5070)
writeLines(epsg_to_wkt(5070, pretty=TRUE))

srs_to_wkt("NAD83")

writeLines(srs_to_wkt(”"NAD83", pretty=TRUE))
set_config_option(”"OSR_WKT_FORMAT", "WKT2")
writeLines(srs_to_wkt(”NAD83", pretty=TRUE))

set_config_option("OSR_WKT_FORMAT", "")
srs_query Obtain information about a spatial reference system
Description

Bindings to a subset of the GDAL Spatial Reference System API (https://gdal.org/en/stable/
api/ogr_srs_api.html). These functions return various information about a spatial reference
system passed as text in any of the formats supported by srs_to_wkt().

Usage

srs_get_name(srs)
srs_find_epsg(srs, all_matches = FALSE)
srs_is_geographic(srs)

srs_is_derived_gcs(srs)

https://gdal.org/en/stable/api/ogr_srs_api.html
https://gdal.org/en/stable/api/ogr_srs_api.html

170 srs_query

srs_is_local(srs)
srs_is_projected(srs)
srs_is_compound(srs)
srs_is_geocentric(srs)
srs_is_vertical(srs)
srs_is_dynamic(srs)
srs_is_same(

srs,

srs_other,

criterion = "",

ignore_axis_mapping = FALSE,

ignore_coord_epoch = FALSE

)
srs_get_angular_units(srs)
srs_get_linear_units(srs)
srs_get_coord_epoch(srs)
srs_get_utm_zone(srs)

srs_get_axis_mapping_strategy(srs)

Arguments

srs Character string containing an SRS definition in various formats (e.g., WKT,
PROJ .4 string, well known name such as NAD27, NADS83, WGS84, etc., see
srs_to_wkt()).

all_matches Logical scalar. TRUE to return all identified matches in a data frame, including
a confidence value (0-100) for each match. The default is FALSE which returns
a character string in the form "EPSG:<code>" for the first match (highest confi-
dence).

srs_other Character string containing an SRS definition in various formats(see above).

criterion Character string. One of STRICT, EQUIVALENT, EQUIVALENT_EXCEPT_AXIS_ORDER_GEOGCRS

Defaults to EQUIVALENT_EXCEPT_AXIS_ORDER_GEOGCRS.
ignore_axis_mapping
Logical scalar. If TRUE, sets IGNORE_DATA_AXIS_TO_SRS_AXIS_MAPPING=YES

in the call to OSRIsSameEx () in the GDAL Spatial Reference System API. De-
faults to NO.

srs_query 171

ignore_coord_epoch
Logical scalar. If TRUE, sets IGNORE_COORDINATE_EPOCH=YES in the call to
OSRIsSameEx () in the GDAL Spatial Reference System API. Defaults to NO.

Details

srs_find_epsg() tries to find a matching EPSG code. Matching may be partial, or may fail. If
all_matches = TRUE, returns a data frame with entries sorted by decreasing match confidence (first
entry has the highest match confidence); the default is FALSE which returns a character string in the
form "EPSG:####" for the first match (highest confidence). Wrapper of OSRFindMatches() in the
GDAL SRS APL

srs_get_name() returns the SRS name. Wrapper of 0SRGetName () in the GDAL API.

srs_is_geographic() returns TRUE if the root is a GEOGCS node. Wrapper of OSRIsGeographic()
in the GDAL API.

srs_is_derived_gcs() returns TRUE if the SRS is a derived geographic coordinate system (for
example a rotated long/lat grid). Wrapper of OSRIsDerivedGeographic() in the GDAL API.

srs_is_local() returns TRUE if the SRS is a local coordinate system (the root is a LOCAL_CS
node). Wrapper of OSRIsLocal() in the GDAL APL

srs_is_projected() returns TRUE if the SRS contains a PROJCS node indicating a it is a projected
coordinate system. Wrapper of 0SRIsProjected() in the GDAL APL

srs_is_compound() returns TRUE if the SRS is compound. Wrapper of OSRIsCompound() in the
GDAL APIL

srs_is_geocentric() returns TRUE if the SRS is a geocentric coordinate system. Wrapper of
OSRIsGeocentric() in the GDAL APIL

srs_is_vertical() returns TRUE if the SRS is a vertical coordinate system. Wrapper of 0SRIsVertical()
in the GDAL APL

srs_is_dynamic() returns TRUE if the SRS is is a dynamic coordinate system (relies on a dy-
namic datum, i.e., a datum that is not plate-fixed). Wrapper of OSRIsDynamic() in the GDAL API.
Requires GDAL >=3.4.

srs_is_same() returns TRUE if two spatial references describe the same system. Wrapper of
OSRIsSame() in the GDAL API.

srs_get_angular_units() fetches the angular geographic coordinate system units. Returns a list
of length two: the first element contains the unit name as a character string, and the second element
contains a numeric value to multiply by angular distances to transform them to radians. Wrapper of
OSRGetAngularUnits() in the GDAL API.

srs_get_linear_units() fetches the linear projection units. Returns a list of length two: the first
element contains the unit name as a character string, and the second element contains a numeric
value to multiply by linear distances to transform them to meters. If no units are available, values
of "Meters" and 1.0 will be assumed. Wrapper of OSRGetLinearUnits() in the GDAL APIL.

srs_get_coord_epoch() returns the coordinate epoch, as decimal year (e.g. 2021.3), or @ if not
set or not relevant. Wrapper of OSRGetCoordinateEpoch() in the GDAL API. Requires GDAL >=
34.

srs_get_utm_zone() returns the UTM zone number or zero if srs isn’t a UTM definition. A pos-
itive value indicates northern hemisphere; a negative value is in the southern hemisphere. Wrapper
of OSRGetUTMZone () in the GDAL API.

172 srs_query

srs_get_axis_mapping_strategy() returns the data axis to CRS axis mapping strategy as a char-
acter string, one of:

* OAMS_TRADITIONAL_GIS_ORDER: for geographic CRS with lat/long order, the data will still be
long/lat ordered. Similarly for a projected CRS with northing/easting order, the data will still
be easting/northing ordered.

e OAMS_AUTHORITY_COMPLIANT: the data axis will be identical to the CRS axis.
e OAMS_CUSTOM: custom-defined data axis

See Also

srs_convert

Examples

wkt <- 'PROJCS["ETRS89 / UTM zone 32N (N-E)”,
GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",
SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"1],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG", "6258"17,
PRIMEM["Greenwich”, @,
AUTHORITY["EPSG","8901"11],
UNIT["degree"”,0.0174532925199433,
AUTHORITY["EPSG","9122"11,
AUTHORITY["EPSG","4258"11],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin”,o],
PARAMETER["central_meridian”,9],
PARAMETER["scale_factor”,0.9996],
PARAMETER["false_easting"”,500000],
PARAMETER["false_northing”, 0],
UNIT["metre”,1,
AUTHORITY["EPSG","9001"]11],
AXIS["Northing"” ,NORTHJ],
AXIS["Easting” ,EAST]1]'

srs_find_epsg(wkt)
srs_find_epsg(wkt, all_matches = TRUE)
srs_get_name("EPSG:5070")

srs_is_geographic("EPSG:5070")
srs_is_geographic("EPSG:4326")

srs_is_derived_gcs("WGS84")

srs_is_projected("EPSG:5070")
srs_is_projected("EPSG:4326")

transform_bounds

173

srs_is_compound ("EPSG:4326")

srs_is_geocentric(”"EPSG:7789")

srs_is_vertical ("EPSG:5705")

f <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster,

ds$getProjection()
ds$getProjection()
ds$getProjection()
ds$getProjection()
ds$getProjection()

ds$getProjection()
ds$getProjection()

ds$close()

Requires GDAL >= 3.4

|>
|>
|>
|>
|>

|>
|>

f)

srs_is_projected()
srs_get_utm_zone()
srs_get_angular_units()
srs_get_linear_units()
srs_get_axis_mapping_strategy()

srs_is_same("EPSG:26912")
srs_is_same("NAD83")

if (gdal_version_num() >= gdal_compute_version(3, 4, 0)) {
if (srs_is_dynamic("WGS84"))
print("WGS84 is dynamic")

if (!srs_is_dynamic("NAD83"))
print(”"NAD83 is not dynamic")

transform_bounds

Transform boundary

Description

transform_bounds () transforms a bounding box, densifying the edges to account for nonlinear
transformations along these edges and extracting the outermost bounds. Wrapper of 0CTTransformBounds ()
in the GDAL Spatial Reference System API. Requires GDAL >= 3.4.

Usage

transform_bounds(

bbox,
srs_from,
srs_to,
densify_pts =

21L,

traditional_gis_order = TRUE

174 transform_bounds

Arguments

bbox Numeric vector of length four containing the input bounding box (xmin, ymin,
Xmax, ymax).

srs_from Character string specifying the spatial reference system for pts. May be in
WKT format or any of the formats supported by srs_to_wkt().

srs_to Character string specifying the output spatial reference system. May be in WKT
format or any of the formats supported by srs_to_wkt ().

densify_pts Integer value giving the number of points to use to densify the bounding polygon

in the transformation. Recommended to use 21 (the default).

traditional_gis_order
Logical value, TRUE to use traditional GIS order of axis mapping (the default) or
FALSE to use authority compliant axis order (see Note).

Details

The following refer to the output values xmin, ymin, xmax, ymax:

If the destination CRS is geographic, the first axis is longitude, and xmax < xmin then the bounds
crossed the antimeridian. In this scenario there are two polygons, one on each side of the antimerid-
ian. The first polygon should be constructed with (xmin, ymin, 18@, ymax) and the second with
(-180, ymin, xmax, ymax).

If the destination CRS is geographic, the first axis is latitude, and ymax < ymin then the bounds
crossed the antimeridian. In this scenario there are two polygons, one on each side of the antimerid-
ian. The first polygon should be constructed with (ymin, xmin, ymax, 180) and the second with
(ymin, -180, ymax, xmax).

Value

Numeric vector of length four containing the bounding box in the output spatial reference system
(xmin, ymin, Xmax, ymax).

Note

traditional_gis_order = TRUE (the default) means that for geographic CRS with lat/long order,
the data will still be long/lat ordered. Similarly for a projected CRS with northing/easting order, the
data will still be easting/northing ordered (GDAL's OAMS_TRADITIONAL_GIS_ORDER).

traditional_gis_order = FALSE means that the data axis will be identical to the CRS axis (GDAL’s
OAMS_AUTHORITY_COMPLIANT).

See https://gdal.org/en/stable/tutorials/osr_api_tut.html#crs-and-axis-order.

See Also

srs_to_wkt()

https://gdal.org/en/stable/tutorials/osr_api_tut.html#crs-and-axis-order

transform_xy 175

Examples

bb <- ¢(-1405880.71737, -1371213.76254, 5405880.71737, 5371213.76254)

traditional GIS axis ordering by default (lon, lat)
transform_bounds(bb, "EPSG:32761", "EPSG:4326")

authority compliant axis ordering
transform_bounds(bb, "EPSG:32761", "EPSG:4326",
traditional_gis_order = FALSE)

transform_xy Transform geospatial x/y coordinates

Description

transform_xy () transforms geospatial x, y coordinates to a new projection. The input points may
optionally have z vertices (X, y, z) or time values (X, y, z, t). Wrapper for OGRCoordinateTransformation: :Transform()
in the GDAL Spatial Reference System C++ APL

Usage

transform_xy(pts, srs_from, srs_to)

Arguments
pts A data frame or numeric matrix containing geospatial point coordinates, or point
geometries as a list of WKB raw vectors or character vector of WKT strings. If
data frame or matrix, the number of columns must be either two (X, y), three (X,
y, z) or four (X, y, z, t). May be also be given as a numeric vector for one point
(xy, Xyz, or Xyzt).
srs_from Character string specifying the spatial reference system for pts. May be in
WKT format or any of the formats supported by srs_to_wkt().
srs_to Character string specifying the output spatial reference system. May be in WKT
format or any of the formats supported by srs_to_wkt ().
Value

Numeric matrix of geospatial (x, y) coordinates in the projection specified by srs_to (potentially
also with z, or z and t columns).

Note

transform_xy() uses traditional GIS order for the input and output xy (i.e., longitude/latitude
ordered for geographic coordinates).

Input points that contain missing values (NA) will be assigned NA in the output and a warning emitted.
Input points that fail to transform with the GDAL API call will also be assigned NA in the output
with a specific warning indicating that case.

176 translate

See Also

srs_to_wkt(), inv_project()

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")

pts <- read.csv(pt_file)

print(pts)

id, x, y in NAD83 / UTM zone 12N

transform to NAD83 / CONUS Albers

transform_xy(pts = pts[, -11, srs_from = "EPSG:26912", srs_to = "EPSG:5070")

translate Convert raster data between different formats

Description

translate() is a wrapper of the gdal_translate command-line utility (see https://gdal.org/
en/stable/programs/gdal_translate.html). The function can be used to convert raster data
between different formats, potentially performing some operations like subsetting, resampling, and
rescaling pixels in the process. Refer to the GDAL documentation at the URL above for a list of
command-line arguments that can be passed in c1_arg.

Usage

translate(src_filename, dst_filename, cl_arg = NULL, quiet = FALSE)

Arguments

src_filename Either a character string giving the filename of the source raster, or an object of
class GDALRaster for the source.

dst_filename Character string. Filename of the output raster.

cl_arg Optional character vector of command-line arguments for gdal_translate (see
URL above).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

GDALRaster-class, rasterFromRaster (), warp()

ogr2ogr() for vector data

https://gdal.org/en/stable/programs/gdal_translate.html
https://gdal.org/en/stable/programs/gdal_translate.html

validateCreationOptions 177

Examples

convert the elevation raster to Erdas Imagine format and resample to 90m
elev_file <- system.file("extdata/storml_elev.tif", package="gdalraster")
img_file <- file.path(tempdir(), "storml_elev_90m.img")

command-line arguments for gdal_translate
args <- c("-tr”, "90", "90", "-r", "average")
args <- c(args, "-of", "HFA", "-co", "COMPRESSED=YES")

translate(elev_file, img_file, args)

ds <- new(GDALRaster, img_file)
ds$info()

ds$close()

validateCreationOptions
Validate the list of creation options that are handled by a driver

Description

validateCreationOptions() is a helper function primarily used by GDAL’s Create() and Create-

Copy() to validate that the passed-in list of creation options is compatible with the GDAL_DMD_CREATIONOPTIONLIST
metadata item defined by some drivers. If the GDAL_DMD_CREATIONOPTIONLIST meta-

data item is not defined, this function will return TRUE. Otherwise it will check that the keys

and values in the list of creation options are compatible with the capabilities declared by the
GDAL_DMD_CREATIONOPTIONLIST metadata item. In case of incompatibility a message will

be emitted and FALSE will be returned. Wrapper of GDALValidateCreationOptions() in the

GDAL APL

Usage

validateCreationOptions(format, options)

Arguments

format Character string giving a format driver short name (e.g., "GTiff").

options A character vector of format-specific creation options as "NAME=VALUE" pairs.
Value

A logical value, TRUE if the given creation options are compatible with the capabilities declared by
the GDAL_DMD_CREATIONOPTIONLIST metadata item for the specified format driver (or if the
GDAL_DMD_CREATIONOPTIONLIST metadata item is not defined for this driver), otherwise
FALSE.

178 VSIFile-class

See Also

getCreationOptions(), create(), createCopy()

Examples

validateCreationOptions("GTiff", c("COMPRESS=LZW", "TILED=YES"))

VSIFile-class Class wrapping the GDAL VSIVirtualHandle API for binary file I/O

Description

VSIFile provides bindings to the GDAL VSIVirtualHandle API. Encapsulates a VSIVirtualHandle
(https://gdal.org/en/stable/api/cpl_cpp.html#_CPPv416VSIVirtualHandle). This API
abstracts binary file I/O across "regular" file systems, URLS, cloud storage services, Zip/GZip/7z/RAR,
and in-memory files. It provides analogs of several Standard C file I/O functions, allowing virtual-
ization of disk I/O so that non-file data sources can be made to appear as files.

VSIFile is a C++ class exposed directly to R (via RCPP_EXPOSED_CLASS). Methods of the class are
accessed using the $ operator.

Arguments

filename Character string containing the filename to open. It may be a file in a regular
local filesystem, or a filename with a GDAL /vsiPREFIX/ (see https://gdal.
org/en/stable/user/virtual_file_systems.html).

access Character string containing the access requested (i.e., "r", "r+", "w", "w+). De-
faults to "r"”. Binary access is always implied and the "b" does not need to be
included in access.

Access Explanation If file exists

"rt open file for reading read from start
r+" open file for read/write read from start

w create file for writing destroy contents
w+" create file for read/write destroy contents

n

n

options Optional character vector of NAME=VALUE pairs specifying filesystem-dependent
options (GDAL >= 3.3, see Details).
Value

An object of class VSIFile which contains a pointer to a VSIVirtualHandle, and methods that
operate on the file as described in Details.

https://gdal.org/en/stable/api/cpl_cpp.html#_CPPv416VSIVirtualHandle
https://gdal.org/en/stable/user/virtual_file_systems.html
https://gdal.org/en/stable/user/virtual_file_systems.html

VSIFile-class 179

Usage (see Details)

Constructors

vf <- new(VSIFile, filename)

specifying access:

vf <- new(VSIFile, filename, access)

specifying access and options (both required):
vf <- new(VSIFile, filename, access, options)

Methods
vf$seek(offset, origin)
vi$tell()

vf$rewind()
vf$read(nbytes)
vf$write(object)
vf$eof ()
vf$truncate(new_size)
vf$flush()
vf$ingest(max_size)

vf$close()

vf$open()
vf$get_filename()
vf$get_access()
vf$set_access(access)

Details

Constructors:

new(VSIFile, filename)
Returns an object of class VSIFile, or an error is raised if a file handle cannot be obtained.

new(VSIFile, filename, access)

Alternate constructor for passing access as a character string (e.g., "r"”, "r+", "w", "w+"). Re-
turns an object of class VSIFile with an open file handle, or an error is raised if a file handle
cannot be obtained.

new(VSIFile, filename, access, options)
Alternate constructor for passing access as a character string, and options as a character vector
of "NAME=VALUE" pairs (all arguments required, GDAL >= 3.3 required for options support).

The options argument is highly file system dependent. Supported options as of GDAL 3.9 in-
clude:

e MIME headers such as Content-Type and Content-Encoding are supported for the /vsis3/,
/vsigs/, Ivsiaz/, /vsiadls/ file systems.
¢ DISABLE_READDIR_ON_OPEN=YES/NO (GDAL >= 3.6) for /vsicurl/ and other network-
based file systems. By default, directory file listing is done, unless YES is specified.
e WRITE_THROUGH=YES (GDAL >= 3.8) for Windows regular files to set the FILE_FLAG_WRITE_THROUGH
flag to the CreateFile() function. In that mode, the data are written to the system cache but
are flushed to disk without delay.

180

VSIFile-class

Methods:

$seek(offset, origin)

Seek to a requested of fset in the file. of fset is given as a positive numeric scalar, optionally as
bit64::integer64 type. origin is given as a character string, one of SEEK_SET, SEEK_CUR or
SEEK_END. Package global constants are defined for convenience, so these can be passed unquoted.
Note that of fset is an unsigned type, so SEEK_CUR can only be used for positive seek. If negative
seek is needed, use:

vf$seek(vf$tell() + negative_offset, SEEK_SET)

Returns @ on success or -1 on failure.

$tell()
Returns the current file read/write offset in bytes from the beginning of the file. The return value
is a numeric scalar carrying the integer64 class attribute.

$rewind()
Rewind the file pointer to the beginning of the file. This is equivalent to vf$seek (@, SEEK_SET).
No return value, called for that side effect.

$read(nbytes)

Read nbytes bytes from the file at the current offset. Returns a vector of R raw type, or NULL if
the operation fails.

$write(object)

Write bytes to the file at the current offset. object is a raw vector. Returns the number of bytes
successfully written, as numeric scalar carrying the integer64 class attribute. See also base
R charToRaw() / rawToChar(), convert to or from raw vectors, and readBin() / writeBin()
which read binary data from or write binary data to a raw vector.

$eof ()
Test for end of file. Returns TRUE if an end-of-file condition occurred during the previous read
operation. The end-of-file flag is cleared by a successful call to $seek().

$truncate(new_size)
Truncate/expand the file to the specified new_size, given as a positive numeric scalar, optionally
as bit64::integer64 type. Returns @ on success.

$flush()

Flush pending writes to disk. For files in write or update mode and on file system types where it
is applicable, all pending output on the file is flushed to the physical disk. On Windows regular
files, this method does nothing, unless the VSI_FLUSH=YES configuration option is set (and only
when the file has not been opened with the WRITE_THROUGH option). Returns @ on success or -1
on error.

$ingest(max_size)

Ingest a file into memory. Read the whole content of the file into a raw vector. max_size is the
maximum size of file allowed, given as a numeric scalar, optionally as bit64::integer64 type.
If no limit, set to a negative value. Returns a raw vector, or NULL if the operation fails.

$close()

Closes the file. The file should always be closed when I/O has been completed. Returns @ on
success or -1 on error.

$open()

This method can be used to re-open the file after it has been closed, using the same filename,
and same options if any are set. The file will be opened using access as currently set. The

VSIFile-class 181

$set_access() method can be called to change the requested access while the file is closed. No
return value. An error is raised if a file handle cannot be obtained.

$get_filename()

Returns a character string containing the filename associated with this VSIFile object (the
filename originally used to create the object).

$get_access()

Returns a character string containing the access as currently set on this VSIFile object.

$set_access(access)
Sets the requested read/write access on this VSIFile object, given as a character string (i.e., "r",
"r+", "w", "w+"). The access can be changed only while the VSIFile object is closed, and will

apply when it is re-opened with a call to $open(). Returns @ on success or -1 on error.

Note

File offsets are given as R numeric (i.e., double type), optionally carrying the bit64: :integer64

class attribute. They are returned as numeric with the integer64 class attribute attached. The
integer64 type is signed, so the maximum file offset supported by this interface is 9223372036854775807
(the value of bit64::1im.integer64()[2]).

Some virtual file systems allow only sequential write, so no seeks or read operations are then al-
lowed (e.g., AWS S3 files with /vsis3/). Starting with GDAL 3.2, a configuration option can be set
with:

set_config_option("CPL_VSIL_USE_TEMP_FILE_FOR_RANDOM_WRITE"”, "YES")

in which case random-write access is possible (involves the creation of a temporary local file, whose
location is controlled by the CPL_TMPDIR configuration option). In this case, setting access to "w+"
may be needed for writing with seek and read operations (if creating a new file, otherwise, "r+" to
open an existing file), while "w" access would allow sequential write only.

See Also

GDAL Virtual File Systems (compressed, network hosted, etc...):
/vsimem, /vsizip, /vsitar, /vsicurl, ...
https://gdal.org/en/stable/user/virtual_file_systems.html

vsi_copy_file(), vsi_read_dir(), vsi_stat(), vsi_unlink()

Examples

The examples make use of the FARSITE LCP format specification at:

https://gdal.org/en/stable/drivers/raster/lcp.html

An LCP file is a raw format with a 7,316-byte header. The format

specification gives byte offets and data types for fields in the header.

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")

identify a FARSITE v.4 LCP file

function to check if the first three fields have valid data
input is the first twelve raw bytes in the file

is_lcp <- function(bytes) {

https://gdal.org/en/stable/user/virtual_file_systems.html

182 VSIFile-class

values <- readBin(bytes, "integer"”, n = 3)

if ((values[1] == 20 || values[1] == 21) &&
(values[2] == 20 || values[2] == 21) &&
(values[3] >= -90 && values[3] <= 90)) {

return(TRUE)
} else {
return(FALSE)
}
}

vf <- new(VSIFile, lcp_file)
vf

vf$read(12) |> is_lcp()
vi$tell ()

read the whole file into memory
bytes <- vf$ingest(-1)
vf$close()

write to a VSI in-memory file
mem_file <- "/vsimem/storml_copy.lcp”
vf <- new(VSIFile, mem_file, "w+")
vf$write(bytes)

vf$tell()
vf$rewind()
vf$tell()

vf$seek (@, SEEK_END)
(vf$tell() == vsi_stat(lcp_file, "size")) # TRUE

vf$rewind()
vf$read(12) |> is_lcp()

read/write an integer field

write invalid data for the Latitude field and then set back
save the original first

vf$seek (8, SEEK_SET)

lat_orig <- vf$read(4)
readBin(lat_orig, "integer") # 46

latitude -99 out of range

vf$seek (8, SEEK_SET)

writeBin(-99L, raw()) |> vf$write()
vf$rewind()

vf$read(12) |> is_lcp() # FALSE
vf$seek (8, SEEK_SET)

vf$read(4) |> readBin("integer"”) # -99
set back to original

vf$seek (8, SEEK_SET)

vf$write(lat_orig)

vsi_clear_path_options 183

vf$rewind()
vf$read(12) |> is_lcp() # TRUE

read a vector of doubles - xmax, xmin, ymax, ymin
327766.1, 323476.1, 5105082.0, 5101872.0

vf$seek (4172, SEEK_SET)

vf$read(32) |> readBin("double”, n = 4)

read a short int, the canopy cover units
vf$seek (4232, SEEK_SET)
vf$read(2) |> readBin("integer"”, size = 2) # 1 = "percent”

read the Description field
vf$seek (6804, SEEK_SET)
bytes <- vf$read(512)
rawToChar (bytes)

edit the Description
desc <- paste(rawToChar(bytes),
"Storm Lake AOI,",
"Beaverhead-Deerlodge National Forest, Montana.”)

vf$seek (6804, SEEK_SET)
charToRaw(desc) |> vf$write()
vf$close()

verify the file as a raster dataset
ds <- new(GDALRaster, mem_file)
ds$info()

retrieve Description from the metadata

band = @ for dataset-level metadata, domain = "" for default domain
ds$getMetadata(band = @, domain = "")

ds$getMetadataltem(band = @, mdi_name = "DESCRIPTION”, domain = "")
ds$close()

vsi_clear_path_options
Clear path specific configuration options

Description

vsi_clear_path_options() clears path specific options previously set with vsi_set_path_option().
Wrapper for VSIClearPathSpecificOptions() in the GDAL Common Portability Library. Re-
quires GDAL >=3.6.

Usage

vsi_clear_path_options(path_prefix)

184 vsi_constants

Arguments
path_prefix Character string. If set to ”" (empty string), all path specific options are cleared.
If set to a path prefix, only those options set with vsi_set_path_option(path_prefix,
...) will be cleared.
Value

No return value, called for side effect.

Note

No particular care is taken to remove options from RAM in a secure way.

See Also

vsi_set_path_option()

vsi_constants Constants for VSIFile$seek()

Description

These are package global constants for convenience in calling VSIFile$seek().

Usage

SEEK_SET
SEEK_CUR

SEEK_END

Format
An object of class character of length 1.
An object of class character of length 1.

An object of class character of length 1.

vsi_copy._file 185

vsi_copy_file Copy a source file to a target filename

Description

vsi_copy_file() is a wrapper for VSICopyFile() in the GDAL Common Portability Library. The
GDAL VSI functions allow virtualization of disk I/O so that non file data sources can be made to ap-
pear as files. See https://gdal.org/en/stable/user/virtual_file_systems.html. Requires
GDAL >=3.7.

Usage

vsi_copy_file(src_file, target_file, show_progress = FALSE)

Arguments
src_file Character string. Filename of the source file.
target_file Character string. Filename of the target file.

show_progress Logical scalar. If TRUE, a progress bar will be displayed (the size of src_file
will be retrieved in GDAL with VSIStatL()). Default is FALSE.

Details

The following copies are made fully on the target server, without local download from source and
upload to target:

o /vsis3/ -> /vsis3/
o /vsigs/ -> [vsigs/
* /vsiaz/ -> /vsiaz/
* /vsiadls/ -> /vsiadls/

* any of the above or /vsicurl/ -> /vsiaz/ (starting with GDAL 3.8)

Value

@ on success or -1 on an error.

Note

If target_file has the form /vsizip/foo.zip/bar, the default options described for the function
addFilesInZip() will be in effect.

See Also

copyDatasetFiles(), vsi_stat(), vsi_sync()

https://gdal.org/en/stable/user/virtual_file_systems.html

186 vsi_curl_clear_cache

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
tmp_file <- "/vsimem/elev_temp.tif"

Requires GDAL >= 3.7

if (gdal_version_num() >= gdal_compute_version(3, 7, 0)) {
result <- vsi_copy_file(elev_file, tmp_file)
(result == 0)
print(vsi_stat(tmp_file, "size"))

vsi_unlink(tmp_file)

vsi_curl_clear_cache Clean cache associated with /vsicurl/ and related file systems

Description

vsi_curl_clear_cache() cleans the local cache associated with /vsicurl/ (and related file sys-
tems). This function is a wrapper for VSICurlClearCache() and VSICurlPartialClearCache()
in the GDAL Common Portability Library. See Details for the GDAL documentation.

Usage
vsi_curl_clear_cache(partial = FALSE, file_prefix = "", quiet = TRUE)
Arguments
partial Logical scalar. Whether to clear the cache only for a given filename (see De-
tails).
file_prefix Character string. Filename prefix to use if partial = TRUE.
quiet Logical scalar. TRUE (the default) to wrap the API call in a quiet error handler,
or FALSE to print any potential error messages to the console.
Details

/vsicurl/ (and related file systems like /vsis3/, /vsigs/, /vsiaz/, /vsioss/, /vsiswift/) cache a number of
metadata and data for faster execution in read-only scenarios. But when the content on the server-
side may change during the same process, those mechanisms can prevent opening new files, or
give an outdated version of them. If partial = TRUE, cleans the local cache associated for a given
filename (and its subfiles and subdirectories if it is a directory).

Value

No return value, called for side effects.

Examples

vsi_curl_clear_cache()

vsi_get_actual_url 187

vsi_get_actual_url Returns the actual URL of a supplied VSI filename

Description

vsi_get_actual_url() returns the actual URL of a supplied filename. Currently only returns a
non-NULL value for network-based virtual file systems. For example "/vsis3/bucket/filename" will
be expanded as "https://bucket.s3.amazon.com/filename". Wrapper for VSIGetActualURL() in the
GDAL APIL

Usage

vsi_get_actual_url(filename)

Arguments

filename Character string containing a /vsiPREFIX/ filename.

Value

Character string containing the actual URL, or NULL if filename is not a network-based virtual file
system.

See Also

vsi_get_signed_url()

Examples

Not run:

f <- "/vsiaz/items/io-lulc-9-class.parquet”

set_config_option("AZURE_STORAGE_ACCOUNT", "pcstacitems")

token obtained from:

https://planetarycomputer.microsoft.com/api/sas/v1/token/pcstacitems/items
set_config_option("AZURE_STORAGE_SAS_TOKEN", "<token>")

vsi_get_actual_url(f)

#> [1] "https://pcstacitems.blob.core.windows.net/items/io-lulc-9-class.parquet”
vsi_get_signed_url(f)

#> [1] "https://pcstacitems.blob.core.windows.net/items/io-lulc-9-class.parquet?<token>"

End(Not run)

188 vsi_get_file_metadata

vsi_get_disk_free_space
Return free disk space available on the filesystem

Description

vsi_get_disk_free_space() returns the free disk space available on the filesystem. Wrapper for
VSIGetDiskFreeSpace() in the GDAL Common Portability Library.

Usage

vsi_get_disk_free_space(path)

Arguments

path Character string. A directory of the filesystem to query.

Value

Numeric scalar. The free space in bytes (as bit64::integer64 type), or -1 in case of error.

Examples

tmp_dir <- file.path("/vsimem”, "tmpdir")
vsi_mkdir(tmp_dir)
vsi_get_disk_free_space(tmp_dir)
vsi_rmdir(tmp_dir)

vsi_get_file_metadata Get metadata on files

Description

vsi_get_file_metadata() returns metadata for file system objects. Implemented for network-
like filesystems. Starting with GDAL 3.7, implemented for /vsizip/ with SOZip metadata. Wrapper
of VSIGetFileMetadata() in the GDAL Common Portability Library.

Usage

vsi_get_file_metadata(filename, domain)

Arguments
filename Character string. The path of the file system object to be queried.
domain Character string. Metadata domain to query. Depends on the file system, see

Details.

vsi_get_fs_options 189

Details
The metadata available depends on the file system. The following are supported as of GDAL 3.9:

* HEADERS: to get HTTP headers for network-like filesystems (/vsicurl/, /vsis3/, /vsgis/, etc).
» TAGS: for /vsis3/, to get S3 Object tagging information. For /vsiaz/, to get blob tags.

» STATUS: specific to /vsiadls/: returns all system-defined properties for a path (seems in prac-
tice to be a subset of HEADERS).

* ACL.: specific to /vsiadls/ and /vsigs/: returns the access control list for a path. For /vsigs/, a
single XML=xml_content string is returned.

* METADATA: specific to /vsiaz/: blob metadata (this will be a subset of what domain=HEADERS
returns).

» ZIP: specific to /vsizip/: to obtain ZIP specific metadata, in particular if a file is SOZIP-enabled
(SOZIP_VALID=YES).

Value

A named list of values, or NULL in case of error or empty list.

See Also

vsi_stat(), addFilesInZip()

Examples

validate an SOZip-enabled file
Requires GDAL >= 3.7
f <- system.file("extdata/ynp_features.zip”, package = "gdalraster”)

zf <- file.path("/vsizip", f)
files in zip archive
vsi_read_dir(zf)

SO0Zip metadata for ynp_features.gpkg
zf_gpkg <- file.path(zf, "ynp_features.gpkg")
vsi_get_file_metadata(zf_gpkg, domain = "ZIP")

vsi_get_fs_options Return the list of options associated with a virtual file system handler

Description

vsi_get_fs_options() returns the list of options associated with a virtual file system handler.
Those options may be set as configuration options with set_config_option(). Wrapper for
VSIGetFileSystemOptions() in the GDAL API.

190 vsi_get_fs_prefixes

Usage

vsi_get_fs_options(filename, as_list = TRUE)

Arguments
filename Filename, or prefix of a virtual file system handler.
as_list Logical scalar. If TRUE (the default), the XML string returned by GDAL will be
coerced to list. FALSE to return the configuration options as a serialized XML
string.
Value

An XML string, or empty string ("") if no options are declared. If as_list = TRUE (the default),
the XML string will be coerced to list with xm12::as_list().

See Also

set_config_option(), vsi_get_fs_prefixes()

https://gdal.org/en/stable/user/virtual_file_systems.html

Examples

vsi_get_fs_options("/vsimem/")
vsi_get_fs_options("/vsizip/")

vsi_get_fs_options("/vsizip/", as_list = FALSE)

vsi_get_fs_prefixes Return the list of virtual file system handlers currently registered

Description

vsi_get_fs_prefixes() returns the list of prefixes for virtual file system handlers currently regis-
tered (e.g., "/vsimem/", "/vsicurl/", etc). Wrapper for VSIGetFileSystemsPrefixes() in the
GDAL APIL

Usage

vsi_get_fs_prefixes()

Value

Character vector containing prefixes of the virtual file system handlers.

https://gdal.org/en/stable/user/virtual_file_systems.html

vsi_get_signed_url 191

See Also

vsi_get_fs_options()
https://gdal.org/en/stable/user/virtual_file_systems.html

Examples

vsi_get_fs_prefixes()

vsi_get_signed_url Returns a signed URL for a supplied VSI filename

Description

vsi_get_signed_url() Returns a signed URL of a supplied filename. Currently only returns
a non-NULL value for /vsis3/, /vsigs/, /vsiaz/ and /vsioss/ For example "/vsis3/bucket/filename"
will be expanded as "https://bucket.s3.amazon.com/filename?X-Amz-Algorithm=AWS4-HMAC-
SHA256..." Configuration options that apply for file opening (typically to provide credentials), and

are returned by vsi_get_fs_options(), are also valid in that context. Wrapper for VSIGetSignedURL ()

in the GDAL API.

Usage

vsi_get_signed_url(filename, options = NULL)

Arguments
filename Character string containing a /vsiPREFIX/ filename.
options Character vector of NAME=VALUE pairs (see Details).
Details

The options argument accepts a character vector of name=value pairs. For /vsis3/, /vsigs/, /vsiaz/
and /vsioss/, the following options are supported:

e START_DATE=YYMMDDTHHMMSSZ: date and time in UTC following ISO 8601 standard, corre-
sponding to the start of validity of the URL. If not specified, current date time.

e EXPIRATION_DELAY=number_of_seconds: number between 1 and 604800 (seven days) for
the validity of the signed URL. Defaults to 3600 (one hour).

e VERB=GET/HEAD/DELETE/PUT/POST: HTTP VERB for which the request will be used. De-
faults to GET.

/vsiaz/ supports additional options:

* SIGNEDIDENTIFIER=value: to relate the given shared access signature to a corresponding
stored access policy.

e SIGNEDPERMISSIONS=r |w: permissions associated with the shared access signature. Normally
deduced from VERB.

https://gdal.org/en/stable/user/virtual_file_systems.html

192 vsi_is_local

Value

Character string containing the signed URL, or NULL if filename is not a network-based virtual file
system.

See Also

vsi_get_actual_url()

Examples

Not run:

f <- "/vsiaz/items/io-lulc-9-class.parquet”

set_config_option(”"AZURE_STORAGE_ACCOUNT", "pcstacitems")

token obtained from:

https://planetarycomputer.microsoft.com/api/sas/v1/token/pcstacitems/items
set_config_option(”"AZURE_STORAGE_SAS_TOKEN", "<token>")

vsi_get_actual_url(f)

#> [1] "https://pcstacitems.blob.core.windows.net/items/io-lulc-9-class.parquet”
vsi_get_signed_url(f)

#> [1] "https://pcstacitems.blob.core.windows.net/items/io-1lulc-9-class.parquet?<token>"

End(Not run)

vsi_is_local Returns if the file/filesystem is "local".

Description

vsi_is_local() returns whether the file/filesystem is "local". Wrapper for VSIIsLocal() in the
GDAL API. Requires GDAL >= 3.6.

Usage

vsi_is_local(filename)

Arguments

filename Character string. The path of the filesystem object to be tested.

Value

Logical scalar. TRUE if if the input file path is local.

Note

The concept of local is mostly by opposition with a network / remote file system whose access time
can be long.

/vsimem/ is considered to be a local file system, although a non-persistent one.

vsi_mkdir 193

Examples

Requires GDAL >= 3.6
if (gdal_version_num() >= gdal_compute_version(3, 6, 0))
print(vsi_is_local("/vsimem/test-mem-file.tif"))

vsi_mkdir Create a directory

Description

vsi_mkdir() creates a new directory with the indicated mode. For POSIX-style systems, the mode
is modified by the file creation mask (umask). However, some file systems and platforms may not
use umask, or they may ignore the mode completely. So a reasonable cross-platform default mode
value is @755. With recursive = TRUE, creates a directory and all its ancestors. This function is a
wrapper for VSIMkdir () and VSIMkdirRecursive() in the GDAL Common Portability Library.

Usage

vsi_mkdir(path, mode = "@755", recursive = FALSE)

Arguments
path Character string. The path to the directory to create.
mode Character string. The permissions mode in octal with prefix 0, e.g., "0755" (the
default).
recursive Logical scalar. TRUE to create the directory and its ancestors. Defaults to FALSE.
Value

@ on success or -1 on an error.

See Also

vsi_read_dir(), vsi_rmdir()

Examples

new_dir <- file.path(tempdir(), "newdir")
vsi_mkdir(new_dir)

vsi_stat(new_dir, "type")
vsi_rmdir(new_dir)

194 vsi_read_dir

vsi_read_dir Read names in a directory

Description

vsi_read_dir() abstracts access to directory contents. It returns a character vector containing
the names of files and directories in this directory. With recursive = TRUE, reads the list of en-
tries in the directory and subdirectories. This function is a wrapper for VSIReadDirEx() and
VSIReadDirRecursive() in the GDAL Common Portability Library.

Usage
vsi_read_dir(path, max_files = OL, recursive = FALSE, all_files = FALSE)

Arguments
path Character string. The relative or absolute path of a directory to read.
max_files Integer scalar. The maximum number of files after which to stop, or 0 for no
limit (see Note). Ignored if recursive = TRUE.
recursive Logical scalar. TRUE to read the directory and its subdirectories. Defaults to
FALSE.
all_files Logical scalar. If FALSE (the default), only the names of visible files are returned
(following Unix-style visibility, that is files whose name does not start with a
dot). If TRUE, all file names will be returned.
Value

A character vector containing the names of files and directories in the directory given by path. The

listing is in alphabetical order, and does not include the special entries *.” and ’..” even if they are
present in the directory. An empty string ("") is returned if path does not exist.

Note

If max_files is set to a positive number, directory listing will stop after that limit has been reached.
Note that to indicate truncation, at least one element more than the max_files limit will be returned.
If the length of the returned character vector is lesser or equal to max_files, then no truncation
occurred. The max_files parameter is ignored when recursive = TRUE.

See Also

vsi_mkdir(), vsi_rmdir(), vsi_stat(), vsi_sync()

Examples

regular file system for illustration
data_dir <- system.file("extdata”, package="gdalraster"”)
vsi_read_dir(data_dir)

VSi_rename 195

vsi_rename Rename a file

Description

vsi_rename() renames a file object in the file system. The GDAL documentation states it should be
possible to rename a file onto a new filesystem, but it is safest if this function is only used to rename
files that remain in the same directory. This function goes through the GDAL VSIFileHandler vir-
tualization and may work on unusual filesystems such as in memory. Itis a wrapper for VSIRename ()
in the GDAL Common Portability Library. Analog of the POSIX rename () function.

Usage

vsi_rename(oldpath, newpath)

Arguments
oldpath Character string. The name of the file to be renamed.
newpath Character string. The name the file should be given.
Value

@ on success or -1 on an error.

See Also

renameDataset (), vsi_copy_file()

Examples

regular file system for illustration

elev_file <- system.file("extdata/storml_elev.tif", package="gdalraster")
tmp_file <- tempfile(fileext = ".tif")

file.copy(elev_file, tmp_file)

new_file <- file.path(dirname(tmp_file), "storml_elev_copy.tif")
vsi_rename(tmp_file, new_file)

vsi_stat(new_file)

vsi_unlink(new_file)

196 vsi_rmdir

vsi_rmdir Delete a directory

Description

vsi_rmdir() deletes a directory object from the file system. On some systems the directory must
be empty before it can be deleted. With recursive = TRUE, deletes a directory object and its con-
tent from the file system. This function goes through the GDAL VSIFileHandler virtualization
and may work on unusual filesystems such as in memory. It is a wrapper for VSIRmdir () and
VSIRmdirRecursive() in the GDAL Common Portability Library.

Usage

vsi_rmdir(path, recursive = FALSE)

Arguments

path Character string. The path to the directory to be deleted.

recursive Logical scalar. TRUE to delete the directory and its content. Defaults to FALSE.
Value

@ on success or -1 on an error.

Note

/vsis3/ has an efficient implementation for deleting recursively. Starting with GDAL 3.4, /vsigs/ has
an efficient implementation for deleting recursively, provided that OAuth2 authentication is used.

See Also

deleteDataset(), vsi_mkdir(), vsi_read_dir(), vsi_unlink()

Examples

new_dir <- file.path(tempdir(), "newdir")
vsi_mkdir(new_dir)
vsi_rmdir(new_dir)

vsi_set_path_option 197

vsi_set_path_option Set a path specific option for a given path prefix

Description

vsi_set_path_option() sets a path specific option for a given path prefix. Such an option is typi-
cally, but not limited to, setting credentials for a virtual file system. Wrapper for VSISetPathSpecificOption()
in the GDAL Common Portability Library. Requires GDAL >= 3.6.

Usage

vsi_set_path_option(path_prefix, key, value)

Arguments

path_prefix Character string. A path prefix of a virtual file system handler. Typically of the
form /vsiXXX/bucket.
key Character string. Option key.

nn

value Character string. Option value. Passing value = "" (empty string) will unset a

value previously set by vsi_set_path_option().

Details

Options may also be set with set_config_option(), but vsi_set_path_option() allows spec-
ifying them with a granularity at the level of a file path. This makes it easier if using the same
virtual file system but with different credentials (e.g., different credentials for buckets "/vsis3/foo"
and "/vsis3/bar"). This is supported for the following virtual file systems: /vsis3/, /vsigs/, /vsiaz/,
/vsioss/, /vsiwebhdfs, /vsiswift.

Value

No return value, called for side effect.

Note

Setting options for a path starting with /vsiXXX/ will also apply for /vsiXXX_streaming/ requests.
No particular care is taken to store options in RAM in a secure way. So they might accidentally
hit persistent storage if swapping occurs, or someone with access to the memory allocated by the
process may be able to read them.

See Also

set_config_option(), vsi_clear_path_options()

198 vsi_stat

vsi_stat Get filesystem object info

Description

vsi_stat() fetches status information about a filesystem object (file, directory, etc). This function
goes through the GDAL VSIFileHandler virtualization and may work on unusual filesystems such
as in memory. It is a wrapper for VSIStatExL () in the GDAL Common Portability Library. Analog
of the POSIX stat () function.

Usage
vsi_stat(filename, info = "exists")
Arguments
filename Character string. The path of the filesystem object to be queried.
info Character string. The type of information to fetch, one of "exists” (the de-
fault), "type"” or "size".
Value

If info = "exists", returns logical TRUE if the file system object exists, otherwise FALSE. If info

= "type", returns a character string with one of "file" (regular file), "dir" (directory), "symlink"
(symbolic link), or empty string (""). If info = "size", returns the file size in bytes (as bit64: :integer64
type), or -1 if an error occurs.

Note

For portability, vsi_stat() supports a subset of stat()-type information for filesystem objects.
This function is primarily intended for use with GDAL virtual file systems (e.g., URLSs, cloud stor-
age systems, ZIP/GZip/7z/RAR archives, in-memory files). The base R functionutils::file_test()
could be used instead for file tests on regular local filesystems.

See Also

GDAL Virtual File Systems:
https://gdal.org/en/stable/user/virtual_file_systems.html

Examples

data_dir <- system.file("extdata"”, package="gdalraster")
vsi_stat(data_dir)

vsi_stat(data_dir, "type")

stat() on a directory doesn't return the sum of the file sizes in it,
but rather how much space is used by the directory entry
vsi_stat(data_dir, "size")

https://gdal.org/en/stable/user/virtual_file_systems.html

vsi_supports_rnd_write 199

elev_file <- file.path(data_dir, "storml_elev.tif")
vsi_stat(elev_file)

vsi_stat(elev_file, "type")

vsi_stat(elev_file, "size")

nonexistent <- file.path(data_dir, "nonexistent.tif")
vsi_stat(nonexistent)

vsi_stat(nonexistent, "type")

vsi_stat(nonexistent, "size")

/vsicurl/ file system handler

base_url <- "https://raw.githubusercontent.com/usdaforestservice/"

f <- "gdalraster/main/sample-data/landsat_c2ard_sr_mt_hood_jul2022_utm.tif"
url_file <- paste@("/vsicurl/", base_url, f)

try to be CRAN-compliant for the example:
set_config_option("GDAL_HTTP_CONNECTTIMEOUT", "1@")
set_config_option("GDAL_HTTP_TIMEOUT", "10@")

vsi_stat(url_file)
vsi_stat(url_file, "type")
vsi_stat(url_file, "size")

vsi_supports_rnd_write
Return whether the filesystem supports random write

Description
vsi_supports_rnd_write() returns whether the filesystem supports random write. Wrapper for
VSISupportsRandomWrite() in the GDAL API.

Usage

vsi_supports_rnd_write(filename, allow_local_tmpfile)

Arguments

filename Character string. The path of the filesystem object to be tested.
allow_local_tmpfile
Logical scalar. TRUE if the filesystem is allowed to use a local temporary file
before uploading to the target location.

Value

Logical scalar. TRUE if random write is supported.

Note

The location GDAL uses for temporary files can be forced via the CPL_TMPDIR configuration option.

200 Vsi_supports_seq_write

See Also

vsi_supports_seq_write()

Examples

Requires GDAL >= 3.6
if (gdal_version_num() >= gdal_compute_version(3, 6, 0))
vsi_supports_rnd_write("/vsimem/test-mem-file.gpkg", TRUE)

vsi_supports_seq_write
Return whether the filesystem supports sequential write

Description
vsi_supports_seq_write() returns whether the filesystem supports sequential write. Wrapper
for VSISupportsSequentialWrite() in the GDAL APIL

Usage

vsi_supports_seqg_write(filename, allow_local_tmpfile)

Arguments

filename Character string. The path of the filesystem object to be tested.
allow_local_tmpfile
Logical scalar. TRUE if the filesystem is allowed to use a local temporary file
before uploading to the target location.

Value

Logical scalar. TRUE if sequential write is supported.

Note

The location GDAL uses for temporary files can be forced via the CPL_TMPDIR configuration option.

See Also

vsi_supports_rnd_write()

Examples

Requires GDAL >= 3.6
if (gdal_version_num() >= gdal_compute_version(3, 6, 0))
vsi_supports_seq_write("/vsimem/test-mem-file.gpkg", TRUE)

vsi_sync 201

vsi_sync Synchronize a source file/directory with a target file/directory

Description

vsi_sync() is a wrapper for VSISync() in the GDAL Common Portability Library. The GDAL
documentation is given in Details.

Usage

vsi_sync(src, target, show_progress = FALSE, options = NULL)

Arguments
src Character string. Source file or directory.
target Character string. Target file or directory.

show_progress Logical scalar. If TRUE, a progress bar will be displayed. Defaults to FALSE.
options Character vector of NAME=VALUE pairs (see Details).

Details

VSISync() is an analog of the Linux rsync utility. In the current implementation, rsync would
be more efficient for local file copying, but VSISync() main interest is when the source or target
is a remote file system like /vsis3/ or /vsigs/, in which case it can take into account the timestamps
of the files (or optionally the ETag/MD5Sum) to avoid unneeded copy operations. This is only
implemented efficiently for:

* local filesystem <—> remote filesystem

* remote filesystem <—> remote filesystem (starting with GDAL 3.1)
Where the source and target remote filesystems are the same and one of /vsis3/, /vsigs/ or
/vsiaz/. Or when the target is /vsiaz/ and the source is /vsis3/, /vsigs/, /vsiadls/ or /vsicurl/
(starting with GDAL 3.8)

Similarly to rsync behavior, if the source filename ends with a slash, it means that the content of the
directory must be copied, but not the directory name. For example, assuming "/home/even/foo" con-

tains a file "bar", VSISync("/home/even/foo/", "/mnt/media”, ...) will create a "/mnt/media/bar’

file. Whereas VSISync("/home/even/foo”, "/mnt/media"”, ...) will create a "/mnt/media/foo"
directory which contains a bar file.

The options argument accepts a character vector of name=value pairs. Currently accepted options
are:

* RECURSIVE=NO (the default is YES)

202

Value

vsi_sync

¢ SYNC_STRATEGY=TIMESTAMP/ETAG/OVERWRITE. Determines which criterion is used to deter-

mine if a target file must be replaced when it already exists and has the same file size as
the source. Only applies for a source or target being a network filesystem. The default is
TIMESTAMP (similarly to how aws s3 sync’ works), that is to say that for an upload operation,
a remote file is replaced if it has a different size or if it is older than the source. For a down-
load operation, a local file is replaced if it has a different size or if it is newer than the remote
file. The ETAG strategy assumes that the ETag metadata of the remote file is the MD5Sum of
the file content, which is only true in the case of /vsis3/ for files not using KMS server side
encryption and uploaded in a single PUT operation (so smaller than 50 MB given the default
used by GDAL). Only to be used for /vsis3/, /vsigs/ or other filesystems using a MD5Sum as
ETAG. The OVERWRITE strategy (GDAL >= 3.2) will always overwrite the target file with the
source one.

NUM_THREADS=integer. Number of threads to use for parallel file copying. Only use for when
/vsis3/, Ivsigs/, /vsiaz/ or /vsiadls/ is in source or target. The default is 10 since GDAL 3.3.

CHUNK_SIZE=integer. Maximum size of chunk (in bytes) to use to split large objects when
downloading them from /vsis3/, /vsigs/, /vsiaz/ or /vsiadls/ to local file system, or for upload to
/vsis3/, /vsiaz/ or /vsiadls/ from local file system. Only used if NUM_THREADS > 1. For upload
to /vsis3/, this chunk size must be set at least to 5 MB. The default is 8 MB since GDAL 3.3.

x-amz-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsis3/ object.
x-goog-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsigs/ object.

x-ms-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsiaz/ or /vsi-
adls/ object.

Logical scalar, TRUE on success or FALSE on an error.

See Also

copyDatasetFiles(), vsi_copy_file()

Examples

Not run:

sample-data is a directory in the git repository for gdalraster that is
not included in the R package:

https://github.com/USDAForestService/gdalraster/tree/main/sample-data

A copy of sample-data in an AWS S3 bucket, and a partial copy in an

Azure Blob container, were used to generate the example below.

src <- "/vsis3/gdalraster-sample-data/"

s3://gdalraster-sample-data is not public, set credentials
set_config_option(”"AWS_ACCESS_KEY_ID", "XXXXXXXXXXXXXX"
set_config_option(”"AWS_SECRET_ACCESS_KEY", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX")

vsi_unlink 203

vsi_read_dir(src)

#> [1] "README.md"

#> [2] "bl_mrbl_ng_jul2004_rgh_720x360.tif"

#> [3] "blue_marble_ng_neo_metadata.xml”

#> [4] "landsat_c2ard_sr_mt_hood_jul2022_utm. json"
#> [5] "landsat_c2ard_sr_mt_hood_jul2022_utm.tif"
#> [6] "1f_elev_220_metadata.html”

#> [7] "1f_elev_220_mt_hood_utm.tif"

#> [8] "1f_fbfm40_220_metadata.html”

#> [9] "1f_fbfm40_220_mt_hood_utm.tif"

dst <- "/vsiaz/sampledata”

set_config_option("AZURE_STORAGE_CONNECTION_STRING",
"<connection_string_for_gdalraster_account>")

vsi_read_dir(dst)

#> [1] "1f_elev_220_metadata.html” "1f_elev_220_mt_hood_utm.tif"

GDAL VSISync() supports direct copy for /vsis3/ -> /vsiaz/ (GDAL >= 3.8)
result <- vsi_sync(src, dst, show_progress = TRUE)
#>0...10...20...30...40...50...60...70...80...90...100 - done.
print(result)

#> [1] TRUE

vsi_read_dir(dst)

#> [1] "README.md"

#> [2] "bl_mrbl_ng_jul2004_rgbh_720x360.tif"

#> [3] "blue_marble_ng_neo_metadata.xml”

#> [4] "landsat_c2ard_sr_mt_hood_jul2022_utm. json”

#> [5] "landsat_c2ard_sr_mt_hood_jul2022_utm.tif"

#> [6] "1f_elev_220_metadata.html”

#> [7] "1f_elev_220_mt_hood_utm.tif"

#> [8] "1f_fbfm40_220_metadata.html”

#> [9] "1f_fbfm40_220_mt_hood_utm.tif"

End(Not run)

vsi_unlink Delete a file

Description

vsi_unlink() deletes a file object from the file system. This function goes through the GDAL
VSIFileHandler virtualization and may work on unusual filesystems such as in memory. It is
a wrapper for VSIUnlink() in the GDAL Common Portability Library. Analog of the POSIX
unlink() function.

Usage

vsi_unlink(filename)

204 vsi_unlink_batch

Arguments

filename Character string. The path of the file to be deleted.

Value

@ on success or -1 on an error.

See Also

deleteDataset(), vsi_rmdir(), vsi_unlink_batch()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
mem_file <- file.path("/vsimem”, "tmp.tif")

copyDatasetFiles(mem_file, elev_file)

vsi_read_dir("/vsimem")

vsi_unlink(mem_file)

vsi_read_dir("/vsimem")

vsi_unlink_batch Delete several files in a batch

Description

vsi_unlink_batch() deletes a list of files passed in a character vector. All files should belong to
the same file system handler. This is implemented efficiently for /vsis3/ and /vsigs/ (provided for
/vsigs/ that OAuth2 authentication is used). This function is a wrapper for VSIUnlinkBatch() in
the GDAL Common Portability Library.

Usage

vsi_unlink_batch(filenames)

Arguments

filenames Character vector. The list of files to delete.

Value

Logical vector of length(filenames) with values depending on the success of deletion of the
corresponding file. NULL might be returned in case of a more general error (for example, files
belonging to different file system handlers).

See Also

deleteDataset(), vsi_rmdir(), vsi_unlink()

warp 205

Examples

regular file system for illustration
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
tcc_file <- system.file("extdata/storml_tcc.tif"”, package="gdalraster")

tmp_elev <- file.path(tempdir(), "tmp_elev.tif")
file.copy(elev_file, tmp_elev)

tmp_tcc <- file.path(tempdir(), "tmp_tcc.tif")
file.copy(tcc_file, tmp_tcc)
vsi_unlink_batch(c(tmp_elev, tmp_tcc))

warp Raster reprojection and mosaicing

Description

warp() is a wrapper of the gdalwarp command-line utility for raster reprojection and warping (see
https://gdal.org/en/stable/programs/gdalwarp.html). The function can reproject to any
supported spatial reference system (SRS). It can also be used to crop, mosaic, resample, and op-
tionally write output to a different raster format. See Details for a list of commonly used processing
options that can be passed as arguments to warp().

Usage
warp(src_files, dst_filename, t_srs, cl_arg = NULL, quiet = FALSE)

Arguments

src_files Either a character vector of source filenames(s) to be reprojected, or a GDALRaster
object or list of GDALRaster objects for the source data.

dst_filename Either a character string giving the filename of the output dataset, or an object
of class GDALRaster for the output.

t_srs Character string. Target spatial reference system. Usually an EPSG code ("EPSG:#####")
or a well known text (WKT) SRS definition. Can be set to empty string " and
the spatial reference of src_files[1] will be used unless the destination raster
already exists (see Note).

cl_arg Optional character vector of command-line arguments to gdalwarp in addition
to —t_srs (see Details).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Details

Several processing options can be performed in one call to warp() by passing the necessary command-
line arguments. The following list describes several commonly used arguments. Note that gdalwarp
supports a large number of arguments that enable a variety of different processing options. Users
are encouraged to review the original source documentation provided by the GDAL project at the
URL above for the full list.

https://gdal.org/en/stable/programs/gdalwarp.html

206

warp

-te <xmin> <ymin> <xmax> <ymax>
Georeferenced extents of output file to be created (in target SRS by default).

-te_srs <srs_def>
SRS in which to interpret the coordinates given with -te (if different than t_srs).

-tr <xres> <yres>
Output pixel resolution (in target georeferenced units).

-tap

(target aligned pixels) align the coordinates of the extent of the output file to the values of the
-tr, such that the aligned extent includes the minimum extent. Alignment means that xmin /
resx, ymin / resy, xmax / resx and ymax / resy are integer values.

-ovr <level>|AUTO|AUTO-<n>|NONE

Specify which overview level of source files must be used. The default choice, AUTO, will
select the overview level whose resolution is the closest to the target resolution. Specify an
integer value (0-based, i.e., O=1st overview level) to select a particular level. Specify AUTO-n
where n is an integer greater or equal to 1, to select an overview level below the AUTO one.
Or specify NONE to force the base resolution to be used (can be useful if overviews have been
generated with a low quality resampling method, and the warping is done using a higher
quality resampling method).

-wo <NAME>=<VALUE>
Set a warp option as described in the GDAL documentation for GDALWarpOptions Multiple
-wo may be given. See also -multi below.

-ot <type>

Force the output raster bands to have a specific data type supported by the format, which
may be one of the following: Byte, Int8, UInt16, Int16, UInt32, Int32, UInt64, Int64,
Float32, Float64, CInt16, CInt32, CFloat32 or CFloat64.

-r <resampling_method>

Resampling method to use. Available methods are: near (nearest neighbour, the default),
bilinear, cubic, cubicspline, lanczos, average, rms (root mean square, GDAL >= 3.3),
mode, max, min, med, g1 (first quartile), 3 (third quartile), sum (GDAL >= 3.1).

-srcnodata "<value>[<value>]..."

Set nodata masking values for input bands (different values can be supplied for each band). If
more than one value is supplied all values should be quoted to keep them together as a single
operating system argument. Masked values will not be used in interpolation. Use a value of
None to ignore intrinsic nodata settings on the source dataset. If -srcnodata is not explicitly
set, but the source dataset has nodata values, they will be taken into account by default.

-dstnodata "<value>[<value>]..."

Set nodata values for output bands (different values can be supplied for each band). If more
than one value is supplied all values should be quoted to keep them together as a single op-
erating system argument. New files will be initialized to this value and if possible the nodata
value will be recorded in the output file. Use a value of "None” to ensure that nodata is not
defined. If this argument is not used then nodata values will be copied from the source dataset.

-srcband <n>

(GDAL >= 3.7) Specify an input band number to warp (between 1 and the number of bands
of the source dataset). This option is used to warp a subset of the input bands. All input bands
are used when it is not specified. This option may be repeated multiple times to select several
input bands. The order in which bands are specified will be the order in which they appear in

https://gdal.org/en/stable/api/gdalwarp_cpp.html#_CPPv415GDALWarpOptions

warp

207

the output dataset (unless -dstband is specified). The alpha band should not be specified in
the list, as it will be automatically retrieved (unless -nosrcalpha is specified).

-dstband <n>

(GDAL >= 3.7) Specify the output band number in which to warp. In practice, this option is
only useful when updating an existing dataset, e.g to warp one band at at time. If -srcband is
specified, there must be as many occurrences of -dstband as there are of -srcband.

If -dstband is not specified, then:

c("-dstband”, "1", "-dstband”, "2", ... "-dstband”, "N")

is assumed where N is the number of input bands (implicitly, or specified explicitly with
-srcband). The alpha band should not be specified in the list, as it will be automatically
retrieved (unless -nosrcalpha is specified).

-wm <memory_in_mb>

Set the amount of memory that the warp API is allowed to use for caching. The value is inter-
preted as being in megabytes if the value is <10000. For values >=10000, this is interpreted as
bytes. The warper will total up the memory required to hold the input and output image arrays
and any auxiliary masking arrays and if they are larger than the "warp memory" allowed it will
subdivide the chunk into smaller chunks and try again. If the -wm value is very small there is
some extra overhead in doing many small chunks so setting it larger is better but it is a matter
of diminishing returns.

-multi

Use multithreaded warping implementation. Two threads will be used to process chunks of
image and perform input/output operation simultaneously. Note that computation is not mul-
tithreaded itself. To do that, you can use the -wo NUM_THREADS=val/ALL_CPUS option, which
can be combined with -multi.

-of <format> Set the output raster format. Will be guessed from the extension if not specified.
Use the short format name (e.g., "GTiff").

-co <NAME>=<VALUE>

Set one or more format specific creation options for the output dataset. For example, the
GeoTIFF driver supports creation options to control compression, and whether the file should
be tiled. getCreationOptions() can be used to look up available creation options, but the
GDAL Raster drivers documentation is the definitive reference for format specific options.
Multiple -co may be given, e.g.,

c("-co”, "COMPRESS=LZW", "-co”, "BIGTIFF=YES")

-overwrite

Overwrite the target dataset if it already exists. Overwriting means deleting and recreating the
file from scratch. Note that if this option is not specified and the output file already exists, it
will be updated in place.

The documentation for gdalwarp describes additional command-line options related to spatial ref-
erence systems, alpha bands, masking with polygon cutlines including blending, and more.

Mosaicing into an existing output file is supported if the output file already exists. The spatial extent
of the existing file will not be modified to accommodate new data, so you may have to remove it in
that case, or use the —overwrite option.

Command-line options are passed to warp() as a character vector. The elements of the vector are
the individual options followed by their individual values, e.g.,

Cl_arg - C(”_tr”, 1:301:’ ::3011’ n_r,n’ "bi].inear”)>

https://gdal.org/en/stable/drivers/raster/index.html
https://gdal.org/en/stable/programs/gdalwarp.html

208

warp

to set the target pixel resolution to 30 x 30 in target georeferenced units and use bilinear resampling.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

warp() can be used to reproject and also perform other processing such as crop, resample, and
mosaic. This processing is generally done with a single function call by passing arguments for the
output ("target") pixel resolution, extent, resampling method, nodata value, format, and so forth.

nn

If warp() is called with t_srs ="" and the output raster does not already exist, the target spatial
reference will be set to that of src_files[1]. In that case, the processing options given in c1_arg
will be performed without reprojecting (if there is one source raster or multiple sources that all use
the same spatial reference system, otherwise would reproject inputs to the SRS of src_files[1]
where they are different). If t_srs ="" and the destination raster already exists, the output SRS
will be the projection of the destination dataset.

See Also

GDALRaster-class, srs_to_wkt(), translate()

Examples

reproject the elevation raster to NAD83 / CONUS Albers (EPSG:5070)
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

command-line arguments for gdalwarp

resample to 90-m resolution and keep pixels aligned:
args <- c("-tr", "90", "90", "-r", "cubic"”, "-tap")

write to Erdas Imagine format (HFA) with compression:
args <- c(args, "-of", "HFA", "-co", "COMPRESSED=YES")

alb83_file <- file.path(tempdir(), "storml_elev_alb83.img")
warp(elev_file, alb83_file, t_srs="EPSG:5070", cl_arg = args)

ds <- new(GDALRaster, alb83_file)
ds$getDriverLongName ()

ds$getProjectionRef ()

ds$res()

ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

Index

+ datasets
DEFAULT_DEM_PROC, 40
DEFAULT_NODATA, 41
vsi_constants, 184

addFilesInZip, 8
addFilesInZip(), 6, 189
apply_geotransform, 10
apply_geotransform(), 5, 53
autoCreateWarpedVRT, 11
autoCreateWarpedVRT(), 5

bandCopyWholeRaster, 12
bandCopyWholeRaster(), 6, 149
bbox_from_wkt, 14
bbox_from_wkt(), 6, 15-17, 155
bbox_intersect, 15
bbox_intersect(), 6
bbox_to_wkt, 16
bbox_to_wkt(), 6, 14, 15
bbox_transform, 17
bbox_transform(), 6, 105
bbox_union (bbox_intersect), 15
bbox_union(), 6

buildRAT, 18
buildRAT(), 5, 31,44, 59
buildVRT, 22
buildVRTQ), 5, 153, 155

calc, 23

calc(), 6, 31

CmbTable (CmbTable-class), 27

CmbTable-class, 27

combine, 29

combine(), 6, 25

copyDatasetFiles, 32

copyDatasetFiles(), 6, 42, 135, 161, 185,
202

create, 33

create(), 5, 13,32, 37,42, 82, 149, 161, 178

createColorRamp, 34

createCopy, 36

createCopy(), 5, 13, 32, 34,42, 82, 149, 161,
178

data_type_helpers, 38

DEFAULT_DEM_PROC, 40, 43

DEFAULT_NODATA, 41

deleteDataset, 41

deleteDataset(), 6, 32, 161, 196, 204

dem_proc, 42

dem_proc(), 5, 40

displayRAT, 43

displayRAT(), 5, 20

dt_find (data_type_helpers), 38

dt_find(), 5

dt_find_for_value (data_type_helpers),
38

dt_find_for_value(), 5

dt_is_complex (data_type_helpers), 38

dt_is_complex(), 5

dt_is_floating (data_type_helpers), 38

dt_is_floating(), 5

dt_is_integer (data_type_helpers), 38

dt_is_integer(), 5

dt_is_signed (data_type_helpers), 38

dt_is_signed(), 5

dt_size (data_type_helpers), 38

dt_size(), 5

dt_union (data_type_helpers), 38

dt_union(), 5

dt_union_with_value
(data_type_helpers), 38

dt_union_with_value(), 5

dump_open_datasets, 44

dump_open_datasets(), 6

epsg_to_wkt (srs_convert), 168
epsg_to_wkt(), 169

210

fillNodata, 45
fillNodata(), 5
footprint, 46
footprint(), 5

g_add_geom (g_factory), 93
g_area (g_measures), 97
g_binary_op, 6, 87
g_binary_pred, 6, 89

g_buffer, 91

g_buffer(), 6, 16

g_centroid (g_measures), 97
g_contains (g_binary_pred), 89
g_coords, 92

g_coords(), 6

g_create (g_factory), 93
g_crosses (g_binary_pred), 89
g_difference (g_binary_op), 87
g_disjoint (g_binary_pred), 89
g_distance (g_measures), 97
g_envelope, 93

g_envelope(), 6

g_equals (g_binary_pred), 89
g_factory, 6, 93

g_geodesic_area (g_measures), 97
g_geodesic_length (g_measures), 97
g_intersection (g_binary_op), 87
g_intersects (g_binary_pred), 89
g_is_3D (g_query), 99

g_is_empty (g_query), 99
g_is_measured (g_query), 99
g_is_valid (g_query), 99
g_length (g_measures), 97
g_make_valid, 95
g_make_valid(), 6
g_measures, 6, 97

g_name (g_query), 99

g_overlaps (g_binary_pred), 89
g_query, 6, 99

g_simplify, 101

g_simplify(), 6

g_summary (g_query), 99
g_swap_xy, 103

g_swap_xy(), 6

g_sym_difference (g_binary_op), 87
g_touches (g_binary_pred), 89
g_transform, 104
g_transform(), 6, 17

g_union (g_binary_op), 87

INDEX

g_within (g_binary_pred), 89
g_wk2wk, 106
g_wk2wk(), 6
gdal_compute_version, 78
gdal_compute_version(), 6
gdal_formats, 79
gdal_formats(), 6, 110, 111
gdal_version, 6, 80
gdal_version(), 81, 147
gdal_version_num(gdal_version), 80
gdal_version_num(), 78
GDALRaster, 33, 37
GDALRaster (GDALRaster-class), 47
gdalraster (gdalraster-package), 5
GDALRaster-class, 47
gdalraster-package, 5
GDALRaster$getChecksum(), 5
GDALRaster$getColorTable(), 35
GDALRaster$getDataTypeName(), 39
GDALRaster$getDefaultRAT(), 5, 20, 44
GDALRasters$getGeoTransform(), 10, 86,
111
GDALRaster$getPalettelnterp(), 35
GDALRaster$read(), 140, 160
GDALRaster$setColorTable(), 34
GDALRaster$setDefaultRAT(), 5, 20
GDALVector, 122, 124, 127, 128, 130, 133
GDALVector (GDALVector-class), 62
GDALVector-class, 62
geos_version, 80
geos_version(), 6, 147
get_cache_max, 82
get_cache_max(), 6, 84, 165
get_cache_used, 83
get_cache_used(), 6, 83, 165
get_config_option, 84
get_config_option(), 6, 83, 165
get_num_cpus, 85
get_num_cpus(), 6
get_pixel_line, 85
get_pixel_line(), 5, 10,53, 111
get_usable_physical_ram, 86
get_usable_physical_ram(), 6, 83
getCreationOptions, 81

getCreationOptions(), 5, 34, 37, 178, 207

has_geos, 107
has_spatialite, 107
has_spatialite(), 6

INDEX

http_enabled, 108
http_enabled(), 6

identifyDriver, 109
identifyDriver(), 6, 111
inspectDataset, 110
inspectDataset(), 6
inv_geotransform, 111
inv_geotransform(), 5, 86
inv_project, 112
inv_project(), 6, 176

ogr2ogr, 113

ogr2ogr(), 6,73,116, 133,176
ogr_def_field (ogr_define), 117
ogr_def_field(), 123
ogr_def_geom_field (ogr_define), 117
ogr_def_geom_field(), 123
ogr_def_layer (ogr_define), 117
ogr_define, 6,68, 73, 117, 122, 124, 130
ogr_ds_create (ogr_manage), 120
ogr_ds_create(), 119, 129
ogr_ds_exists (ogr_manage), 120
ogr_ds_format (ogr_manage), 120
ogr_ds_layer_count (ogr_manage), 120
ogr_ds_layer_names (ogr_manage), 120
ogr_ds_test_cap (ogr_manage), 120
ogr_execute_sql (ogr_manage), 120
ogr_execute_sql(), 108
ogr_field_create (ogr_manage), 120
ogr_field_create(), 119, 129
ogr_field_delete (ogr_manage), 120
ogr_field_index (ogr_manage), 120
ogr_field_rename (ogr_manage), 120
ogr_geom_field_create (ogr_manage), 120
ogr_layer_create (ogr_manage), 120
ogr_layer_create(), 119, 129
ogr_layer_delete (ogr_manage), 120
ogr_layer_exists (ogr_manage), 120
ogr_layer_field_names (ogr_manage), 120
ogr_layer_rename (ogr_manage), 120
ogr_layer_test_cap (ogr_manage), 120
ogr_manage, 6, 73, 114, 116, 120, 129, 130
ogr_proc, 127

ogr_proc(), 6

ogr_reproject, 131
ogr_reproject(), 6

ogrinfo, 115
ogrinfo(), 6, 67,73, 108, 114, 125

211

pixel_extract, 134
pixel_extract(), 5
plot.OGRFeature, 136
plot.OGRFeatureSet, 137
plot_raster, 137
plot_raster(), 6, 158
polygonize, 141
polygonize(), 5,47, 153
pop_error_handler, 144
pop_error_handler(), 6, 148
print.OGRFeature, 145
print.OGRFeatureSet, 145
proj_networking, 146
proj_networking(), 6, 147
proj_search_paths, 146
proj_search_paths(), 6, 146, 147
proj_version, 147
proj_version(), 6, 81, 146, 147
push_error_handler, 148
push_error_handler(), 6, 144

rasterFromRaster, 149
rasterFromRaster(), 5, 13, 34,37, 176
rasterize, 150
rasterize(), 5, 144
rasterToVRT, 153
rasterToVRT(), 5, 22, 25, 31
Rcpp_CmbTable (CmbTable-class), 27
Rcpp_CmbTable-class (CmbTable-class), 27
Rcpp_GDALRaster (GDALRaster-class), 47
Rcpp_GDALRaster-class
(GDALRaster-class), 47
Rcpp_GDALVector (GDALVector-class), 62
Rcpp_GDALVector-class
(GDALVector-class), 62
Rcpp_RunningStats (RunningStats-class),
161
Rcpp_RunningStats-class
(RunningStats-class), 161
Rcpp_VSIFile (VSIFile-class), 178
Rcpp_VSIFile-class (VSIFile-class), 178
read_ds, 158
read_ds(), 51, 60, 138, 140
renameDataset, 160
renameDataset(), 6, 32, 42, 195
RunningStats (RunningStats-class), 161
RunningStats-class, 161

SEEK_CUR (vsi_constants), 184

212

SEEK_END (vsi_constants), 184
SEEK_SET (vsi_constants), 184
set_cache_max, 164
set_cache_max(), 6, 83, 84
set_config_option, 165
set_config_option(), 6, 9, 54, 60, 83, 84,
140, 169, 190, 197
sieveFilter, 166
sieveFilter(), 5
srs_convert, 6, 168, 172
srs_find_epsg (srs_query), 169
srs_get_angular_units (srs_query), 169
srs_get_axis_mapping_strategy
(srs_query), 169
srs_get_coord_epoch (srs_query), 169
srs_get_linear_units (srs_query), 169
srs_get_name (srs_query), 169
srs_get_utm_zone (srs_query), 169
srs_is_compound (srs_query), 169
srs_is_derived_gcs (srs_query), 169
srs_is_dynamic (srs_query), 169
srs_is_geocentric (srs_query), 169
srs_is_geographic (srs_query), 169
srs_is_local (srs_query), 169
srs_is_projected (srs_query), 169
srs_is_same (srs_query), 169
srs_is_vertical (srs_query), 169
srs_query, 6, 169, 169
srs_to_wkt (srs_convert), 168
srs_to_wkt(), 17,98, 104, 112, 118, 122,
132,135, 159, 169, 170, 174-176,
208

transform_bounds, 173
transform_bounds(), 6, 17, 105
transform_xy, 175
transform_xy(), 6, 113
translate, 176
translate(), 5, 37, 82, 114, 149, 208

validateCreationOptions, 177
validateCreationOptions(), 5, 82
vsi_clear_path_options, 183
vsi_clear_path_options(), 6, 197
vsi_constants, 184

vsi_copy_file, 185
vsi_copy_file(), 6, 32, 135, 181, 195, 202
vsi_curl_clear_cache, 186
vsi_curl_clear_cache(), 6

INDEX

vsi_get_actual_url, 187
vsi_get_actual_url(), 192
vsi_get_disk_free_space, 188
vsi_get_disk_free_space(), 6
vsi_get_file_metadata, 188
vsi_get_file_metadata(), 6,9
vsi_get_fs_options, 189
vsi_get_fs_options(), 6, 191
vsi_get_fs_prefixes, 190
vsi_get_fs_prefixes(), 6, 190
vsi_get_signed_url, 191
vsi_get_signed_url(), 187
vsi_is_local, 192
vsi_is_local(), 6, 135
vsi_mkdir, 193
vsi_mkdir(), 6, 194, 196
vsi_read_dir, 194
vsi_read_dir(), 6, 181, 193, 196
vsi_rename, 195
vsi_rename(), 6

vsi_rmdir, 196
vsi_rmdir(), 6, 193, 194, 204
vsi_set_path_option, 197
vsi_set_path_option(), 6, 184
vsi_stat, 198
vsi_stat(), 6, 135, 181, 185, 189, 194
vsi_supports_rnd_write, 199
vsi_supports_rnd_write(), 6, 200
vsi_supports_seq_write, 200
vsi_supports_seq_write(), 6, 200
vsi_sync, 201
vsi_sync(), 6, 185, 194
vsi_unlink, 203
vsi_unlink(), 6, 181, 196, 204
vsi_unlink_batch, 204
vsi_unlink_batch(), 6, 204
VSIFile (VSIFile-class), 178
VSIFile-class, 178

warp, 205
warp(), 5, 82, 133,155,176

	gdalraster-package
	addFilesInZip
	apply_geotransform
	autoCreateWarpedVRT
	bandCopyWholeRaster
	bbox_from_wkt
	bbox_intersect
	bbox_to_wkt
	bbox_transform
	buildRAT
	buildVRT
	calc
	CmbTable-class
	combine
	copyDatasetFiles
	create
	createColorRamp
	createCopy
	data_type_helpers
	DEFAULT_DEM_PROC
	DEFAULT_NODATA
	deleteDataset
	dem_proc
	displayRAT
	dump_open_datasets
	fillNodata
	footprint
	GDALRaster-class
	GDALVector-class
	gdal_compute_version
	gdal_formats
	gdal_version
	geos_version
	getCreationOptions
	get_cache_max
	get_cache_used
	get_config_option
	get_num_cpus
	get_pixel_line
	get_usable_physical_ram
	g_binary_op
	g_binary_pred
	g_buffer
	g_coords
	g_envelope
	g_factory
	g_make_valid
	g_measures
	g_query
	g_simplify
	g_swap_xy
	g_transform
	g_wk2wk
	has_geos
	has_spatialite
	http_enabled
	identifyDriver
	inspectDataset
	inv_geotransform
	inv_project
	ogr2ogr
	ogrinfo
	ogr_define
	ogr_manage
	ogr_proc
	ogr_reproject
	pixel_extract
	plot.OGRFeature
	plot.OGRFeatureSet
	plot_raster
	polygonize
	pop_error_handler
	print.OGRFeature
	print.OGRFeatureSet
	proj_networking
	proj_search_paths
	proj_version
	push_error_handler
	rasterFromRaster
	rasterize
	rasterToVRT
	read_ds
	renameDataset
	RunningStats-class
	set_cache_max
	set_config_option
	sieveFilter
	srs_convert
	srs_query
	transform_bounds
	transform_xy
	translate
	validateCreationOptions
	VSIFile-class
	vsi_clear_path_options
	vsi_constants
	vsi_copy_file
	vsi_curl_clear_cache
	vsi_get_actual_url
	vsi_get_disk_free_space
	vsi_get_file_metadata
	vsi_get_fs_options
	vsi_get_fs_prefixes
	vsi_get_signed_url
	vsi_is_local
	vsi_mkdir
	vsi_read_dir
	vsi_rename
	vsi_rmdir
	vsi_set_path_option
	vsi_stat
	vsi_supports_rnd_write
	vsi_supports_seq_write
	vsi_sync
	vsi_unlink
	vsi_unlink_batch
	warp
	Index

