
Package ‘funspotr’
November 22, 2023

Title Spot R Functions & Packages

Version 0.0.4

Description Helpers for parsing out the R functions
and packages used in R scripts and notebooks.

License MIT + file LICENSE

BugReports https://github.com/brshallo/funspotr/issues

Imports dplyr (>= 0.8.3), tidyr, purrr, stringr, glue, knitr, httr,
callr, readr, here, formatR, fs, tibble, utils, import (>=
1.3.0), lifecycle

Suggests remotes, visNetwork, igraph

Enhances blogdown

Encoding UTF-8

RoxygenNote 7.2.3

URL https://brshallo.github.io/funspotr/

Language en-US

NeedsCompilation no

Author Bryan Shalloway [aut, cre]

Maintainer Bryan Shalloway <brshallodev@gmail.com>

Repository CRAN

Date/Publication 2023-11-22 00:20:02 UTC

R topics documented:
check_pkgs_availability . 2
list_files_github_gists . 3
list_files_github_repo . 4
list_files_wd . 5
network_plot . 6
spot_funs . 7
spot_funs_custom . 8

1

https://github.com/brshallo/funspotr/issues
https://brshallo.github.io/funspotr/

2 check_pkgs_availability

spot_funs_files . 10
spot_pkgs . 11
spot_pkgs_used . 13
spot_tags . 14
unnest_results . 15

Index 17

check_pkgs_availability

Check Packages Availability

Description

Check whether packages are available in current library.

Usage

check_pkgs_availability(pkgs, quietly = TRUE)

Arguments

pkgs Character vector of package names. (Typically the output from spot_pkgs()).

quietly logical: should progress and error messages be suppressed?

Value

Named logical vector indicating whether each package is available on the machine.

Examples

library(funspotr)
library(dplyr)

file_lines <- "
library(dplyr)
require(tidyr)
library(madeUpPkg)

as_tibble(mpg) %>%
group_by(class) %>%
nest() %>%
mutate(stats = purrr::map(data,

~lm(cty ~ hwy, data = .x)))

made_up_fun()
"

file_output <- tempfile(fileext = ".R")
writeLines(file_lines, file_output)

list_files_github_gists 3

spot_pkgs(file_output) %>%
check_pkgs_availability()

list_files_github_gists

List Github Gists of User

Description

Given a username, return a dataframe with paths to all the gists by that user.

Usage

list_files_github_gists(
user,
pattern = stringr::regex("(r|rmd|rmarkdown|qmd)$", ignore_case = TRUE)

)

Arguments

user Character string of username whose github gists you want to pull.

pattern Regex pattern to keep only matching files. Default is stringr::regex("(r|rmd|rmarkdown|qmd)$",
ignore_case = TRUE) which will keep only R, Rmarkdown and Quarto docu-
ments. If you have a lot of .md gists that can be converted to .R files you may
want to edit this argument. To keep all files use ".".

Value

Dataframe with relative_paths and absolute_paths of file paths. Because gists do not exist in
a folder structure relative_paths will generally just be a file name. absolute_paths a url to the
raw file. See unnest_results() for helper to put into an easier to read format.

See Also

list_files_github_repo(), list_files_wd()

Examples

library(dplyr)
library(funspotr)

pulling and analyzing my R file github gists
gists_urls <- list_files_github_gists("brshallo", pattern = ".")

Will just parse the first 2 files/gists

4 list_files_github_repo

Note that is easy to hit the API limit if have lots of gists
contents <- filter(gists_urls, str_detect_r_docs(absolute_paths)) %>%

slice(1:2) %>%
spot_funs_files()

contents %>%
unnest_results()

list_files_github_repo

List Files in Github Repo

Description

Return a dataframe containing the paths of files in a github repostiory. Generally used prior to
spot_{funs/pkgs}_files().

Usage

list_files_github_repo(
repo,
branch = NULL,
pattern = stringr::regex("(r|rmd|rmarkdown|qmd)$", ignore_case = TRUE),
rmv_index = TRUE

)

Arguments

repo Github repository, e.g. "brshallo/feat-eng-lags-presentation"

branch Branch of github repository, default is "main".

pattern Regex pattern to keep only matching files. Default is stringr::regex("(r|rmd|rmarkdown|qmd)$",
ignore_case = TRUE) which will keep only R, Rmarkdown and Quarto docu-
ments. To keep all files use ".".

rmv_index Logical, most repos containing blogdown sites will have an index.R file at the
root. Change to FALSE if you don’t want this file removed.

Value

Dataframe with columns of relative_paths and absolute_paths for file path locations. absolute_paths
will be urls to raw files.

See Also

list_files_wd(), list_files_github_gists()

list_files_wd 5

Examples

library(dplyr)
library(funspotr)

pulling and analyzing my R file github gists
gh_urls <- list_files_github_repo("brshallo/feat-eng-lags-presentation", branch = "main")

Will just parse the first 2 files/gists
contents <- spot_funs_files(slice(gh_urls, 1:2))

contents %>%
unnest_results()

list_files_wd List Files in Working Directory

Description

Return a dataframe containing the paths of files in the working directory. Generally used prior to
spot_{funs/pkgs}_files().

Usage

list_files_wd(
path = ".",
pattern = stringr::regex("(r|rmd|rmarkdown|qmd)$", ignore_case = TRUE),
rmv_index = TRUE

)

Arguments

path Character vector or path. Default is "." which will set the starting location for
relative_paths.

pattern Regex pattern to keep only matching files. Default is stringr::regex("(r|rmd|rmarkdown|qmd)$",
ignore_case = TRUE) which will keep only R, Rmarkdown and Quarto docu-
ments. To keep all files use ".".

rmv_index Logical, most repos containing blogdown sites will have an index.R file at the
root. Change to FALSE if you don’t want this file removed.

Details

Can also be used outside of working directory if path is specified.

Value

Dataframe with columns of relative_paths and absolute_paths.

6 network_plot

See Also

list_files_github_repo(), list_files_github_gists()

Examples

library(dplyr)
library(funspotr)

pulling and analyzing my R file github gists
files_local <- list_files_wd()

Will just parse the first 2 files/gists
contents <- spot_funs_files(slice(files_local, 2:3))

contents %>%
unnest_results()

network_plot funspotr Network Plot

Description

Output simple network plot using visNetwork connecting either funs or pkgs to relative_paths/absolute_paths.

Usage

network_plot(df, to = .data$pkgs, show_each_use = FALSE)

Arguments

df Dataframe containing columns relative_paths, absolute_paths and either
funs or pkgs. Generally the output from running: github_spot_*() %>% unnest_results()

to funs or pkgs

show_each_use Binary, default is FALSE. If TRUE edge thickness will be based on the number of
times a package or function is used.

Value

visNetwork plot

https://github.com/datastorm-open/visNetwork

spot_funs 7

Examples

library(dplyr)
library(funspotr)

gh_ex_pkgs <- list_files_github_repo(
repo = "brshallo/feat-eng-lags-presentation",
branch = "main") %>%
spot_funs_files()

gh_ex_pkgs %>%
unnest_results() %>%
network_plot(to = pkgs)

spot_funs Spot Functions

Description

Given file_path extract all functions and their associated packages from specified file.

Usage

spot_funs(file_path, ...)

Arguments

file_path character vector of path to file.

... This allows you to pass additional arguments through to spot_funs_custom().

Details

spot_funs() uses spot_funs_custom() to run – it is a less verbose version and does not require
passing in the packages separately. See README and ?spot_funs_custom for details on how the
function works and arguments that can be passed through (via ...).

If code syntax is malformed and cannot be properly parsed, function will error.

Value

Given default arguments and no missing packages, a dataframe with the following columns is re-
turned:

funs: specifying functions in file. pkgs: the package a function came from. If funs is a custom
function or if it came from a package not installed on your machine, pkgs will return "(unknown)".

Note that any unused loaded packages / pkgs are dropped from output. Any functions without an
available package are returned with the value "(unknown)".

See README for further documentation.

8 spot_funs_custom

See Also

spot_funs_custom(), spot_funs_files()

Examples

library(funspotr)

file_lines <- "
library(dplyr)
require(tidyr)
library(madeUpPkg)

as_tibble(mpg) %>%
group_by(class) %>%
nest() %>%
mutate(stats = purrr::map(data,

~lm(cty ~ hwy, data = .x)))

made_up_fun()
"

file_output <- tempfile(fileext = ".R")
writeLines(file_lines, file_output)

spot_funs(file_output)

spot_funs_custom Spot Functions Custom

Description

Engine that runs spot_funs(). spot_funs_custom() has options for changing returned output
and for producing print statements and errors. It also requires you to provide a character vector for
pkgs rather than identifying these automatically via spot_pkgs().

Usage

spot_funs_custom(
pkgs,
file_path,
show_each_use = FALSE,
keep_search_list = FALSE,
copy_local = TRUE,
print_pkgs_load_status = FALSE,
error_if_missing_pkg = FALSE,
keep_in_multiple_pkgs = FALSE

)

spot_funs_custom 9

Arguments

pkgs Character vector of packages that are added to search space via require() or
import::from() so can be found by utils::find(). Generally will be the
returned value from spot_pkgs(file_path, show_explicit_funs = TRUE).

file_path character vector of path to file.
show_each_use Logical, default is FALSE. If changed to TRUE will return individual rows for each

time a function is used (rather than just once for the entire file).
keep_search_list

Logical, default is FALSE. If changed to TRUE will include entire search list for
function. May be helpful for debugging in cases where funspotr may not be
doing a good job of recreating the search list for identifying which packages
function(s) came from. This will print all packages in the search list for each
function.

copy_local Logical, if changed to FALSE will not copy to a local temporary folder prior to
doing analysis. Many functions require file to already be an .R file and for the
file to exist locally. This should generally not be set to TRUE unless these hold.

print_pkgs_load_status

Logical, default is FALSE. If set to TRUE will print a named vector of logicals
showing whether packages are on machine along with any warning messages
that come when running require(). Will continue on to produce output of
function.

error_if_missing_pkg

Logical, default is FALSE. If set to TRUE then print_pkgs_load_status = TRUE
automatically. If a package is not installed on the machine then will print load
status of individual pkgs and result in an error.

keep_in_multiple_pkgs

Logical, default is FALSE. If set to TRUE will include in the outputted dataframe
a column in_multiple_pkgs: logical, whether a function exists in multiple
packages loaded (i.e. on the search space of utils::find().

Details

spot_funs_custom() is also what you should use in cases where you don’t trust spot_pkgs() to
properly identify package dependencies from within the same file and instead want to pass in your
own character vector of packages.

See README for a description of how the function works.

If a package is not included in pkgs, any functions called that should come from that package will
be assigned a value of "(unknown)" in the pkgs column of the returned output. You can also use
the print_pkgs_load_status and error_if_missing_pkg arguments to alter how output works
in cases when not all packages are on the machine.

Explicit calls to unexported functions i.e. pkg:::fun() will have pkgs = "(unknown)" in the re-
turned dataframe.

Value

Given default arguments and no missing packages, a dataframe with the following columns is re-
turned:

10 spot_funs_files

funs: specifying functions in file. pkgs: the package a function came from. If funs is a custom
function or if it came from a package not installed on your machine, pkgs will return "(unknown)".

Note that any unused loaded packages / pkgs are dropped from output. Any functions without an
available package are returned with the value "(unknown)".

See README for further documentation.

See Also

spot_funs()

Examples

library(funspotr)

file_lines <- "
library(dplyr)
require(tidyr)
library(madeUpPkg)

as_tibble(mpg) %>%
group_by(class) %>%
nest() %>%
mutate(stats = purrr::map(data,

~lm(cty ~ hwy, data = .x)))

made_up_fun()
"

file_output <- tempfile(fileext = ".R")
writeLines(file_lines, file_output)

pkgs <- spot_pkgs(file_output)

spot_funs_custom(pkgs, file_output)

If you'd rather it error when a pkg doesn't exist e.g. for {madeUpPkg}
set`error_if_missing_pkg = TRUE`

spot_funs_files Spot Packages or Functions in dataframe of Paths

Description

spot_pkgs_files() : Spot all packages that show-up in R or Rmarkdown or quarto documents in
a dataframe of filepaths.

spot_funs_files() : Spot all functions and their corresponding packages that show-up in R or
Rmarkdown or quarto documents in a dataframe of filepaths.

spot_pkgs 11

Usage

spot_funs_files(df, ..., .progress = TRUE)

spot_pkgs_files(df, ..., .progress = TRUE)

Arguments

df Dataframe containing a column of absolute_paths.

... Arguments passed onto spot_{pkgs|funs}().

.progress Whether to show a progress bar. Use TRUE to a turn on a basic progress bar, use
a string to give it a name, or see progress_bars for more details.

Details

A purrr::safely() wrapper for mapping spot_pkgs() or spot_funs() across multiple filepaths.
I.e. even if some files fail to parse the function will continue on.

Default settings are meant for files where package libraries are referenced within the files them-
selves. See README for more details.

Value

Dataframe with relative_paths and absolute_paths of file paths along with a list-column spotted
containing purrr::safely() named list of "result" and "error" for each file parsed. Use unnest_results()
to unnest only the "result" values.

See Also

spot_pkgs(), spot_funs(), unnest_results()

Examples

library(funspotr)
library(dplyr)

list_files_github_repo("brshallo/feat-eng-lags-presentation", branch = "main") %>%
spot_funs_files()

spot_pkgs Spot Packages

Description

Extract all pkg called in either library(pkg), require(pkg) requireNamespace("pkg") or pkg::fun().
Will not identify packages loaded in other ways not typically done in interactive R scripts (e.g. re-
lying on a DESCRIPTION file for a pkg or something like source("lib-calls.R")). Inspiration:
blogdown#647.

https://github.com/rstudio/blogdown/issues/647

12 spot_pkgs

Usage

spot_pkgs(
file_path,
show_explicit_funs = FALSE,
copy_local = TRUE,
as_yaml_tags = FALSE

)

Arguments

file_path String of path to file of interest.
show_explicit_funs

In cases where a function is called explicitly, show both the package dependency
and the function together. For example a script containing dplyr::select() (as
opposed to library(dplyr); select()) would have spot_pkgs(show_explicit_funs
= TRUE) return the item as "dplyr::select" rather than just "dplyr")

copy_local Logical, default is TRUE. If changed to FALSE will not copy to a local temporary
folder prior to doing analysis. Many processes require file to already be a .R file
and for the file to exist locally, hence this should usually be set to TRUE.

as_yaml_tags Logical, default is FALSE. If set to TRUE flattens and puts into a format conve-
nient for pasting in "tags" section of YAML header of a Rmd document for a
blogdown post.

Details

In cases where show_explicit_funs = TRUE and there are explicit calls in the package, "pkg:fun"
is returned instead.

Packages are extracted solely based on text – not whether the package actually exists or not. Hence
even packages that you do not have installed on your machine but show-up in the script will be
returned in the character vector.

Value

Character vector of all packages loaded in file.

See Also

spot_pkgs_used(), spot_pkgs_from_description(), spot_pkgs_files(), renv::dependencies()

Examples

library(funspotr)

file_lines <- "
library(dplyr)
require(tidyr)
library(madeUpPkg)

as_tibble(mpg) %>%

spot_pkgs_used 13

group_by(class) %>%
nest() %>%
mutate(stats = purrr::map(data,

~lm(cty ~ hwy, data = .x)))

made_up_fun()
"

file_output <- tempfile(fileext = ".R")
writeLines(file_lines, file_output)

spot_pkgs(file_output)

To view `purrr::map` as an explicit call
spot_pkgs(file_output, show_explicit_funs = TRUE)

To output for blogdown post YAML header tags
cat(spot_pkgs(file_output, as_yaml_tags = TRUE))

spot_pkgs_used Spot Packages Used

Description

Primarily used for cases where you load metapackages like tidyverse or tidymodels but only
want to return those packages that have functions from the package that are actually called. E.g.
say you have a library(tidyverse) call but only end-up using functions that are in dplyr – in that
case spot_pkgs() would return "tidyverse" whereas spot_pkgs_used() would return "dplyr".

Usage

spot_pkgs_used(file_path, as_yaml_tags = FALSE)

Arguments

file_path String of path to file of interest.

as_yaml_tags Logical, default is FALSE. If set to TRUE flattens and puts into a format convenient
for pasting in "tags" section of a blogdown post Rmd document.

Details

Also does not return uninstalled packages or those loaded when R starts up.

Is essentially just calling spot_funs() |> with(unique(pkgs)) in the background. Does not have
as many options as spot_pkgs() though.

Value

Character vector of all packages with functions used in the file.

14 spot_tags

spot_tags Spot Tags

Description

Put quoted inline R function in your blogdown or quarto post’s YAML header to have the packages
be the packages used in your post (wrapper around funspotr::spot_pkgs()).

Usage

spot_tags(
file_path = knitr::current_input(),
used = FALSE,
drop_knitr = FALSE,
yaml_bullet = NULL,
...

)

Arguments

file_path Default is the file being knitted but can change to some other file (e.g. in cases
where the code for the post may reside in a different file).

used Default is FALSE. If TRUE will pass to show_pkgs_used() rather than show_pkgs().
(Mainly useful for showing actual packages used rather than meta-packages
being called like tidyverse or tidymodels. Also uses a more strict parsing
method.

drop_knitr Many blogdown posts have knitr::opts_chunk$set() in them and you may
not want this tag showing-up. Default is to keep this, but set to FALSE to drop
"knitr" from being tagged.

yaml_bullet Default is NULL meaning that file_path is read-in and correct format is guessed
based on "spot_tags" appearance with either a hyphen or bracket (corresponding
with bulleted or array format in the YAML header).
If it’s first occurrence happens on a line that contains a bracket the value becomes
FALSE else it becomes TRUE. If set to NULL and "spot_tags" is not detected at all in
file_path it will default to FALSE. yaml_bullet can also be specified directly
with either TRUE or FALSE. TRUE entails that spot_tags() is set in a YAML
bullet, FALSE indicates the user is inputting it in an array (see examples below).
See examples for how to hard-code.

... Any additional arguments to pass to spot_pkgs*().

Details

tags:
- "`r funspotr::spot_tags()`"

OR

unnest_results 15

tags: ["`r funspotr::spot_tags()`"]

OR

categories: ["`r funspotr::spot_tags()`"]

Thanks Yihui for the suggestions and for getting this working blogdown#647, blogdown#693.)

Value

Character vector in a format meant to be read while evaluating the YAML header when rendering.

See Also

spot_pkgs(), spot_pkgs_used()

Examples

To review input interactively from within rstudio you might also try:
Not run:
funspotr::spot_tags(rstudioapi::getSourceEditorContext()$path)

End(Not run)

unnest_results Unnest Results

Description

Run after running list_files_*() |> spot_{funs|pkgs}_files() to unnest the spotted list-
column.

Usage

unnest_results(df)

Arguments

df Dataframe outputted by spot_{funs|pkgs}_files() that contains a spotted
list-column.

Value

An unnested dataframe with what was in spotted moved to the front.

See Also

spot_funs_files(), spot_pkgs_files()

https://github.com/rstudio/blogdown/issues/647
https://github.com/rstudio/blogdown/issues/693

16 unnest_results

Examples

library(funspotr)
library(dplyr)

list_files_github_repo("brshallo/feat-eng-lags-presentation", branch = "main") %>%
spot_funs_files() %>%
unnest_results()

Index

check_pkgs_availability, 2

list_files_github_gists, 3
list_files_github_gists(), 4, 6
list_files_github_repo, 4
list_files_github_repo(), 3, 6
list_files_wd, 5
list_files_wd(), 3, 4

network_plot, 6

progress_bars, 11

spot_funs, 7
spot_funs(), 10, 11
spot_funs_custom, 8
spot_funs_custom(), 8
spot_funs_files, 10
spot_funs_files(), 8, 15
spot_pkgs, 11
spot_pkgs(), 11, 15
spot_pkgs_files (spot_funs_files), 10
spot_pkgs_files(), 12, 15
spot_pkgs_from_description(), 12
spot_pkgs_used, 13
spot_pkgs_used(), 12, 15
spot_tags, 14

unnest_results, 15
unnest_results(), 11

17

	check_pkgs_availability
	list_files_github_gists
	list_files_github_repo
	list_files_wd
	network_plot
	spot_funs
	spot_funs_custom
	spot_funs_files
	spot_pkgs
	spot_pkgs_used
	spot_tags
	unnest_results
	Index

