
Computing Moments with fromo

Steven E. Pav ∗

November 29, 2024

Abstract

The fromo package provides fast robust summation using the Welford-
Terriberry method. The update formula used therein is described, as well
as the output produced by various functions.

1 The update formula

Let A be a set of indices over the data xi and corresponding weights wi > 0. The
weights are replication weights, and are intended to simulate having observed
multiple identical, though independent, values of xi. In the standard setting
the weights are identically 1.

Define the total elements, sum of weights, and (weighted) mean over A via

nA = |A| ,

WA =
∑
i∈A

wi,

µA =

∑
i∈A wixi

WA
.

Then go on to define the kth centered weighted sum via

SA,k =
∑
i∈A

wi (xi − µA)
k
.

Note that we have

SA,0 = WA, and SA,1 = 0.

When A consists of a single observation, that is when nA = 1, we have µA = xa

for the unique a ∈ A, and SA,k = 0 for all k ≥ 1.
Let B and C be sets of indices with the restriction that A ∩ B = ∅, C ⊆ A,

and define
D = A ∪ B \ C.

Thus D is A ‘plus’ B ‘minus’ C. Consider how to compute WD, µD, and SD,k

from the sums of weights, weighted means, and centered sums over the sets A,

∗shabbychef@gmail.com

1

mailto:shabbychef@gmail.com

B, and C. [1, 2, 4] We have:

nD = nA + nB − nC ,

WD = WA +WB −WC ,

µD =
WAµA +WBµB −WCµC

WD
,

= µA +
WB (µB − µA)−WC (µC − µA)

WD
,

and

SD,k =
∑
i∈D

wi (xi − µD)
k
,

=
∑
i∈A

wi (xi − µD)
k
+
∑
i∈B

wi (xi − µD)
k −

∑
i∈C

wi (xi − µD)
k
,

=
∑
i∈A

wi (xi − µA + µA − µD)
k
+

∑
i∈B

wi (xi − µB + µB − µD)
k −

∑
i∈C

wi (xi − µC + µC − µD)
k
,

=
∑
i∈A

∑
0≤j≤k

(
k

j

)
wi (xi − µA)

j
(µA − µD)

k−j

+
∑
i∈B

∑
0≤j≤k

(
k

j

)
wi (xi − µB)

j
(µB − µD)

k−j

−
∑
i∈C

∑
0≤j≤k

(
k

j

)
wi (xi − µC)

j
(µC − µD)

k−j
,

=
∑

0≤j≤k

(
k

j

){
SA,j (µA − µD)

k−j
+ SB,j (µB − µD)

k−j − SC,j (µC − µD)
k−j

}
,

= SA,k + SB,k − SC,k +WA (µA − µD)
k
+WB (µB − µD)

k −WC (µC − µD)
k

+
∑

2≤j<k

(
k

j

){
SA,j (µA − µD)

k−j
+ SB,j (µB − µD)

k−j − SC,j (µC − µD)
k−j

}
.

Note that if the centered sums are to be computed in place, that is, over-
writing the vector of SA,j with values of SD,j , then they should be computed
in decreasing order, as updates to higher order sums require the old values of
lower order sums.

It should also be noted that we did not use the restriction that wi > 0.
True, negative values of wi can cause WD to be zero, and therefore µD is not
defined, nor is SD,k. Negative weights also make no sense for most statistical
uses. However, notice what happens when we subsitute every wc with −wc for
c ∈ C. If we compute the total weight, WC , its sign has flipped, as has that of
SC,k, but not of µC . In this case, using the negative weights we have

SD,k = SA,k + SB,k + S̃C,k +WA (µA − µD)
k
+WB (µB − µD)

k
+ W̃C (µ̃C − µD)

k

+
∑

2≤j<k

(
k

j

){
SA,j (µA − µD)

k−j
+ SB,j (µB − µD)

k−j
+ S̃C,j (µ̃C − µD)

k−j
}
,

where the W̃C , µ̃C , and S̃C,j denote that they are computed with negative
weights. Now the update formula for removing C from A looks just like that for
adding B, except negative weights are used.

2

1.1 Adding a single observation

We now consider the special case where C is empty, and B consists of the single
index b. We then have WD = WA + wb,

µD =
WAµA + wbxb

WA + wb
,

= µA + wb
xb − µA

WA + wb
,

= µA + wb
xb − µA

WD
.

So then

µA − µD = −wb
xb − µA

WD
.

Also

xb − µD = xb − µA + µA − µD,

= xb − µA − wb
xb − µA

WD
,

= WA
xb − µA

WD
.

Since B is a single index, SB,k = 0 for k > 0, then we have

SD,k = SA,k +WA

(
−wb

xb − µA

WD

)k

+ wb

(
WA

xb − µA

WD

)k

+
∑

2≤j<k

(
k

j

)
SA,j

(
−wb

xb − µA

WD

)k−j

,

= SA,k + wb (xb − µD)
k

[
1 +

(
−wb

WA

)k−1
]

+
∑

2≤j<k

(
k

j

)
SA,j (µA − µD)

k−j
,

= SA,k +WA (µA − µD)
k

[
1−

(
WA

−wb

)k−1
]

+
∑

2≤j<k

(
k

j

)
SA,j (µA − µD)

k−j
.

For the k = 2 case this further simplifies to

SD,2 = SA,2 +
WAwb

WD
(xb − µA)

2
,

= SA,2 +
WDwb

WA
(xb − µD)

2
,

= SA,2 +WD (xb − µD) (µD − µA) .

Note that the quantity WD (µD − µA) = wb (xb − µA) is computed as an in-
termediary in updating the weighted mean, resulting in some computational
savings.

3

1.2 Removing a single observation

As noted above, removing a single observation should look just like adding a
single observation, except signs on the weights and weighted sums are flipped.
Let c be the single index in C. We then have WD = WA − wc, and

µD = µA − wc
xc − µA

WD
.

The centered sum update formula is

SD,k = SA,k − wc (xc − µD)
k

[
1 +

(
wc

WA

)k−1
]

+
∑

2≤j<k

(
k

j

)
SA,j (µA − µD)

k−j
,

= SA,k +WA (µA − µD)
k

[
1−

(
WA

wc

)k−1
]

+
∑

2≤j<k

(
k

j

)
SA,j (µA − µD)

k−j
.

For the k = 2 case this further simplifies to

SD,2 = SA,2 −
WAwc

WD
(xc − µA)

2
,

= SA,2 −
WDwc

WA
(xc − µD)

2
,

= SA,2 +WD (xc − µD) (µD − µA) .

1.3 Adding and removing a single observation

Consider the case of adding a single b ∈ B and removing a single c ∈ C. The
total number elements, nA, is unchanged, of course. We have

WD = WA + wb − wc,

µD = µA +
wb (xb − µA)− wc (xc − µA)

WD
.

The update formula for SD,k is

SD,k = SA,k + SB,k − SC,k +WA (µA − µD)
k
+ wb (xb − µD)

k − wc (xc − µD)
k

+
∑

2≤j<k

(
k

j

){
SA,j (µA − µD)

k−j
+ SB,j (xb − µD)

k−j − SC,j (xc − µD)
k−j

}
.

In the k = 2 case this simplifies to

SD,2 = SA,2 +WA (µA − µD)
2
+ wb (xb − µD)

2 − wc (xc − µD)
2
,

= SA,2 + (µA − µD)
2
(WA −WD) + wb (xb − µD) (xb − µA)− wc (xc − µD) (xc − µA) ,

= SA,2 +
WAwb (xb − µA)

2 −WDwc (xc − µD)
2

WA + wb
.

4

Further simplifications are possible when wb = wc (as occurs in the vanilla case
of equal weighted moments), and we arrive at

µD = µA +
wb (xb − xc)

WD
,

SD,2 = SA,2 + wb (xb + xc − µA − µD) (xb − xc) .

2 Vector Moments

Consider now the case where the data are a m dimensional vector, that is we
observe x1,x2, and so on. Moments will be expressed in terms of the Kronecker
product. While defined for general matrices, we use the Kronecker product only
on vectors. Given vectors a and b, we write

a⊗ b =


a1b
a2b
a3b
...

akb

 .

If a,b are both m-dimensional then a⊗ b is an m2-dimensional vector.
Note that the Kronecker product is not commutative. However, there is a

special matrix, the Commutation matrix, Km,m, that performs commutation [3]:

a⊗ b = Km,m (b⊗ a) .

The subscript refers to the number of columns of the vectors in the Kronecker
product, here m and m, but the matrix Km,m is m2 ×m2. The Commutation
matrix is involutary, that is K2

m,m = I.
We use special notation to denote the repeated application of Kronecker

product to the same vector:

a⊗n =

n⊗
i=1

a = a⊗ a⊗ . . .a︸ ︷︷ ︸
n times

.

If a is m-dimensional, then a⊗n is mn-dimensional.
We can now quote a binomial expansion for Kronecker products.

(a+ b)
⊗k

=

k∑
j

Cj,ka
⊗j ⊗ b⊗k−j ,

for some binomial coefficient matrices, Cj,k. These matrices are mk ×mk ma-
trices when a,b are m-dimensional vectors. We have the following base and
recurrence relationships between the coefficient matrices:

C0,k = Ck,k = Imk ,

Cj,k = Im ⊗Cj−1,k−1 +Kmk−1,m (Cj,k−1 ⊗ Im) , for 0 < j < k.

5

Thus in particular,

(a+ b)
⊗2

= Im2a⊗2 + (Im2 +Km,m)a⊗ b+ Im2b⊗2,

(a+ b)
⊗3

= Im3a⊗3 +
(
Im3 +Km2,m +Km2,m (Km,m ⊗ Im)

)
a⊗2 ⊗ b

+
(
Im3 + Im ⊗Km,m +Km2,m

)
a⊗ b⊗2 + Im3b⊗3,

and so on. Notice how the coefficent matrices generalize the scalar binomial
coefficients. For example,

C1,3a⊗ b⊗2 = a⊗ b⊗ b+ b⊗ a⊗ b+ b⊗ b⊗ a.

2.1 Update Formula for Vector Moments

We can now proceed as in Section 1. Let A be a set of indices over the data
xi and corresponding weights wi > 0 Define the total elements, sum of weights,
and (weighted) mean over A via

nA = |A| ,

WA =
∑
i∈A

wi,

µA =

∑
i∈A wixi

WA
.

Then go on to define the kth centered weighted sum via

SA,k =
∑
i∈A

wi(xi − µA)
⊗k

.

Again, SA,0 = WA, and SA,1 = 0.
Let B and C be sets of indices with the restriction that A ∩ B = ∅, C ⊆ A,

and define
D = A ∪ B \ C.

We have:

nD = nA + nB − nC ,

WD = WA +WB −WC ,

µD =
WAµA +WBµB −WCµC

WD
,

= µA +
WB (µB − µA)−WC (µC − µA)

WD
,

and

SD,k =
∑
i∈D

wi(xi − µD)
⊗k

,

= SA,k + SB,k − SC,k

+WA(µA − µD)
⊗k

+WB(µB − µD)
⊗k −WC(µC − µD)

⊗k

+
∑

2≤j<k

Cj,k

{
SA,j ⊗ (µA − µD)

⊗k−j
+ SB,j ⊗ (µB − µD)

⊗k−j
}

−
∑

2≤j<k

Cj,k

{
SC,j ⊗ (µC − µD)

⊗k−j
}
.

6

This formula is a bit unweildy for the general case. Moreover, the number
of elements in SD,k quickly grows in k, even when accounting for symmetry.

The case k = 2 is of the highest interest. The matrix binomial coefficients
do not enter into the computation, and we merely have:

SD,2 = SA,2 + SB,2 − SC,2

+WA(µA − µD)
⊗2

+WB(µB − µD)
⊗2 −WC(µC − µD)

⊗2
.

2.2 Adding a single observation

We now consider the special case where C is empty, and B consists of the single
index b. We then have

WD = WA + wb,

µD = µA + wb
xb − µA
WD

.

For the k = 2 case the centered moment is updated as

SD,2 = SA,2 +
WAwb

WD
(xb − µA)

⊗2
,

= SA,2 +WD (xb − µD)⊗ (µD − µA) .

Note that the quantity WD (µD − µA) = wb (xb − µA) is computed as an in-
termediary in updating the weighted mean, resulting in some computational
savings.

2.3 Removing a single observation

As noted above, removing a single observation should look just like adding a
single observation, except signs on the weights and weighted sums are flipped.
Let c be the single index in C. We then have WD = WA − wc, and

µD = µA − wc
xc − µA
WD

.

For the k = 2 case the centered sum computation simplifies to

SD,2 = SA,2 +WD (xc − µD)⊗ (µD − µA) .

2.4 Adding and removing a single observation

Consider the case of adding a single b ∈ B and removing a single c ∈ C. We
have

WD = WA + wb − wc,

µD = µA +
wb (xb − µA)− wc (xc − µA)

WD
.

The update formula for SD,2 is

SD,2 = SA,2 +
WAwb(xb − µA)

⊗2 −WDwc(xc − µD)
⊗2

WA + wb
.

7

Because Kronecer products are not commutative, the trick to simplify this ex-
pression in the case where wb = wc, involving completing the square, cannot be
easily applied.

3 The output

Several kinds of output are produced by the fromo package. We describe them
in more detail here.

mean The (weighted) mean over the index set A is simply µA.

standard deviation The standard deviation over the index set A is

σA =

√
SA,2

WA − ν
,

where ν are the ‘consumed degrees of freedom’, and is typically set to 1.
When the normalization flag is set to true, however, it is intended that
the weights be normalized to have mean value 1. In this case the standard
deviation over A is defined as

σA =

√
SA,2

WA

nA

nA − ν
.

When ν = 0, these are identical.

centered moment The kth centered moment is defined as

MA,k =
SA,k

WA
.

Note that for k > 2 we do not support consumed degrees of freedom, and
so normalization of weights has no effect. The first centered moment is
zero: MA,1 = 0.

standardized moment The kth standardized (and centered) moment is defined as

YA,k =
MA,k

σk
A

.

Normalization and consumed degrees of freedom affect the computation
of σk

A, and so affect the standardized moments.

centered value For a given index i and some fixed set A, the centered version of xi is
merely xi − µA.

standardized value For a given index i and some fixed set A, the standardized version of xi

is merely xi/σA. It is affected by normalization and consumed degrees of
freedom.

z-scored value For a given index i and some fixed set A, the z-scored version of xi is
(xi − µA) /σA. It is affected by normalization and consumed degrees of
freedom.

8

Cumulants Sometimes called “centered cumulants” in the package, though this is re-
dundant and not common usage. Cumulants are defined from the centered
moments by the recursive formula: [5]

KA,r = MA,r −
r−2∑
j=1

(
r − 1

j

)
MA,jKA,r−j . (1)

Note that the sum is over an empty index for r = 2, and that MA,1 = 0,
so we have

KA,2 = MA,2,

KA,3 = MA,3,

KA,4 = MA,4 − 3MA,2
2,

KA,5 = MA,5 − 10MA,3MA,2,

and so on.

Standardized Cumulants These are the regular cumulants normalized by the computed standard
deviation:

GA,r =
KA,r

σr
A

. (2)

3.1 Output for Bivariate Input

Consider now the case where the user provides input xi and yi. We denote the
(weighted) mean over the index set A of the xi as µA,x, and similarly µA,y is
the (weighted) mean of the yi. Write SA,x,x, SA,x,y, and SA,y,y for the weighted
sums of centered second power terms:

SA,x,x =
∑
i∈A

wi (xi − µA,x)
2
,

SA,x,y =
∑
i∈A

wi (xi − µA,x) (yi − µA,y) ,

SA,y,y =
∑
i∈A

wi (yi − µA,y)
2
.

We then have the following output:

correlation The correlation is computed as

SA,x,y√
SA,x,xSA,y,y

.

regression slope We consider the ordinary least squares regression of yi against xi. The
data are supposed to follow yi = β0+β1xi, and this computation estimates
β1. This has the value

SA,x,y

SA,x,x
.

9

regression intercept We again consider the OLS regression of yi against xi and return an esti-
mate of β0 taking value

µA,y − µA,x
SA,x,y

SA,x,x
.

regression standard error We again consider the OLS regression of yi against xi. We write σ2 to
denote the variance of yi − (β0 + β1yi). The “regression standard error”
is an estimate of σ. It is computed as√

SA,y,y − S2
A,x,y/SA,x,x

nA − ν
,

where ν are the ‘consumed degrees of freedom’. When ν = 0 this quantity
is often denoted as σ̂2; when ν = 2 it is often written as s2.

regression slope standard error This estimates the standard error of the estimate of β1 in the regression.
It is computed as √

s2

SA,x,x
,

where s2 is the regression standard error computed with ν = 2.

regression intercept std. err. This estimates the standard error of the estimate of β0 in the regression.
It is computed as √√√√s2

(
SA,x,x/nA + µ2

A,x

)
SA,x,x

,

where s2 is the regression standard error computed with ν = 2.

covariance We estimate the covariance of yi and xi by computing

SA,x,y

nA − ν
,

where ν are the ‘consumed degrees of freedom’, typically set to 2.

covariance 3 We estimate the full covariance matrix of yi and xi by computing the
lower triangle of the matrix

1

nA − ν

[
SA,x,x SA,x,y

SA,x,y SA,y,y

]
,

where ν are the ‘consumed degrees of freedom’, typically set to 2.

4 Running Moments

The fromo package can also perform running1 computations of moments, cen-
tered moments, centered values, standardized values, z-scored values and so on.

1Variously known also as rolling, boxcar, or finite impulse response computations.

10

Given an integral window, W , and data and weights vectors xi, wi, we com-
pute output yi as follows: let D be the set of j with i − W < j ≤ i. Then
compute the desired moment over D, and return it as yi. The ‘comparison’
operations (computed centered, standardized, or z-scored versions of a variable)
admit a lookahead parameter, l. In this case, we let D be the set of j with
i − W + l < j ≤ i + l, then compute the moments over D and normalize xi

with respect to those moments. When l > 0, we are using future information
to compute yi. That is, yi will depend on xj with j > i. This is not the case
for the typical moments computations or for the case where the lookahead is
non-positive.

We also support a time (or other counter) based running computation. Here
the input are the data, and weights vectors, xi, wi, but also a vector of time
indices, say ti which are non-decreasing: t1 ≤ t2 ≤ It is assumed that t0
is essentially −∞. The window, W is now a time-based window. The output
yi is defined in terms of the moments computations over the set D which are
all j such that ti −W < tj ≤ ti. For comparison functions, we again admit a
lookahead so that D are all j such that ti −W + l < tj ≤ ti + l. Obviously if
we let ti = i, we recover the ‘vanilla’ running moments computations. We also
support supplying the ti implicitly as the sum of positive deltas: let vector di
of strictly positive elements be given. Then we assume

ti =
∑

1≤j≤i

dj ,

and then perform the time-based running computation. We also support the
case where the di are actually just the wi.

References

[1] J. Bennett, R. Grout, P. Pebay, D. Roe, and D. Thompson. Numerically
stable, single-pass, parallel statistics algorithms. In 2009 IEEE International
Conference on Cluster Computing and Workshops, pages 1–8, Aug 2009. doi:
10.1109/CLUSTR.2009.5289161.

[2] John D. Cook. Accurately computing running variance. URL http://www.

johndcook.com/standard_deviation.html.

[3] Jan R. Magnus and H. Neudecker. The commutation matrix: Some prop-
erties and applications. Ann. Statist., 7(2):381–394, 03 1979. doi: 10.1214/
aos/1176344621. URL https://doi.org/10.1214/aos/1176344621.

[4] Timothy B. Terriberry. Computing higher-order moments online, 2008. URL
http://people.xiph.org/~tterribe/notes/homs.html.

[5] R. Willink. Relationships between central moments and cumulants,
with formulæ for the central moments of Gamma distributions. Com-
munications in Statistics - Theory and Methods, 32(4):701–704, 2003.
doi: https://doi.org/10.1081/STA-120018823. URL https://doi.org/10.

1081/STA-120018823.

11

http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
https://doi.org/10.1214/aos/1176344621
http://people.xiph.org/~tterribe/notes/homs.html
https://doi.org/10.1081/STA-120018823
https://doi.org/10.1081/STA-120018823

	The update formula
	Adding a single observation
	Removing a single observation
	Adding and removing a single observation

	Vector Moments
	Update Formula for Vector Moments
	Adding a single observation
	Removing a single observation
	Adding and removing a single observation

	The output
	Output for Bivariate Input

	Running Moments

