Package ‘freqdom’

April 7, 2024
Type Package
Title Frequency Domain Based Analysis: Dynamic PCA
Version 2.0.5
Date 2024-04-03
Author Hormann S., Kidzinski L.
Maintainer Kidzinski L. <lukasz.kidzinski@stanford.edu>

Description Implementation of dynamic principal component
analysis (DPCA), simulation of VAR and VMA processes and frequency domain tools.
These frequency domain methods for dimensionality reduction of multivariate time series
were introduced by David Brillinger in his book Time Series (1974). We follow implementation
guidelines as described in Hormann, Kidzinski and Hallin (2016),
Dynamic Functional Principal Component <doi:10.1111/rssb.12076>.

License GPL-3

Depends R (>=2.15.0), mvtnorm, stats, graphics, base, matrixcalc,
utils

Suggests fda, MASS, MARSS, testthat (>= 3.0.0)
RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-06 22:03:00 UTC

R topics documented:

freqdom-package
COV.SITUCIUIE oot e e e
dpca . . . e e
dpcafilters
dpca.KLexpansion e
dpca.sCores e e e e e
dpcavaro e e e e

https://doi.org/10.1111/rssb.12076

2 freqdom-package

fIltEr.ProCess o o e e e e e e e e e e 9
fourierdnverse L L. e e e e 10
fourier.transform L 11
freqdom 12
freqdom.eigen 13
isfreqdomo L e e e 14
istimedom L L e e e e e e 15
1 15
10V 16
spectral.density 17
timedom L e e e e e e e e e 19
tMEdOML.NOIMS o v ot v e e e e e e e e e e e e e e e 20
timedomLtrunc L. L e e e e e e 21

Index 22

fregdom-package Frequency domain basde analysis: dynamic PCA
Description

Implementation of dynamic principle component analysis (DPCA), simulation of VAR and VMA
processes and frequency domain tools. The package also provides a toolset for developers simpli-
fying construction of new frequency domain based methods for multivariate signals.

Details

freqdom package allows you to manipulate time series objects in both time and frequency domains.
We implement dynamic principal component analysis methods, enabling spectral decomposition of
a stationary vector time series into uncorrelated components.

Dynamic principal component analysis enables estimation of temporal filters which transform a
vector time series into another vector time series with uncorrelated components, maximizing the
long run variance explained. There are two key differnces between classical PCA and dynamic
PCA:

» Components returned by the dynamic procedure are uncorrelated in time, i.e. for any i # j
and [€ Z,Y;(t) and Y;(t;) are uncorrelated,

* The mapping maximizes the long run variance, which, in case of stationary vector time series,
means that the process reconstructed from and d > 0 first dynamic principal components bet-
ter approximates your vector time series process than the first d classic principal components.

For details, please refer to literature below and to help pages of functions dpca for estimating the
components, dpca.scores for estimating scores and dpca.KLexpansion for retrieving the signal
from components.

Apart from frequency domain techniques for stationary vector time series, freqdom provides a
toolset of operators such as the vector Fourier Transform (fourier.transform) or a vector spec-
tral density operator (spectral.density) as well as simulation of vector time series models rar,
rma generating vector autoregressive and moving average respectively. These functions enable de-
veloping new techniques based on the Frequency domain analysis.

cov.structure 3

References

Hormann Siegfried, Kidzinski Lukasz and Hallin Marc. Dynamic functional principal components.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Hormann Siegfried, Kidzinski Lukasz and Kokoszka Piotr. Estimation in functional lagged regres-
sion. Journal of Time Series Analysis 36.4 (2015): 541-561.

Hormann Siegfried and Kidzinski Lukasz. A note on estimation in Hilbertian linear models. Scan-
dinavian journal of statistics 42.1 (2015): 43-62.

cov.structure Estimate cross-covariances of two stationary multivariate time series

Description
This function computes the empirical cross-covariance of two stationary multivariate time series. If
only one time series is provided it determines the empirical autocovariance function.

Usage

cov.structure(X, Y = X, lags = 0)

Arguments
X vector or matrix. If matrix, then each row corresponds to a timepoint of a vector
time series.
Y vector or matrix. If matrix, then each row corresponds to a timepoint of a vector
time series.
lags an integer-valued vector (¢4, ..., k) containing the lags for which covariances
are calculated.
Details
Let [X1,...,X7] beaT x dy matrix and [Y7,...,Y7]) be aT x dp matrix. We stack the vectors

and assume that (X/,Y/)’ is a stationary multivariate time series of dimension d; + dy. This
function determines empirical lagged covariances between the series (X;) and (Y;). More precisely
it determines CXY (h) for h € lags, where GXY(h) is the empirical version of Cov(X}, Yp). For a
sample of size T we set i = £ ZtT:1 Xyand ¥ = £ Zthl Y; and

T—h
A 1 . .
C*Y(h) = T E (Xepn — %) (Y = ")
t=1
and for h < 0
T
. 1 . .
CXV(h) =2 D (Kewn — i) (¥e =¥’
t=|h|+1

4 dpca

Value
An object of class timedom. The list contains

* operators an array. Element [, , k] contains the covariance matrix related to lag ¢j,.

* lags returns the lags vector from the arguments.

dpca Compute Dynamic Principal Components and dynamic Karhunen Lo-
eve extepansion

Description

Dynamic principal component analysis (DPCA) decomposes multivariate time series into uncor-
related components. Compared to classical principal components, DPCA decomposition outputs
components which are uncorrelated in time, allowing simpler modeling of the processes and maxi-
mizing long run variance of the projection.

Usage
dpca(X, g = 30, freq = (-1000:1000/1000) * pi, Ndpc = dim(X)[2])

Arguments
X a vector time series given as a (T x d)-matix. Each row corresponds to a time-
point.
q window size for the kernel estimator, i.e. a positive integer.
freq a vector containing frequencies in [—7, 7] on which the spectral density should
be evaluated.
Ndpc is the number of principal component filters to compute as in dpca.filters
Details

This convenience function applies the DPCA methodology and returns filters (dpca.filters),

scores (dpca. scores), the spectral density (spectral.density), variances (dpca. var) and Karhunen-

Leove expansion (dpca.KLexpansion).

See the example for understanding usage, and help pages for details on individual functions.

Value
A list containing

e scores DPCA scores (dpca.scores)
e filters DPCA filters (dpca.filters)
* spec.density spectral density of X (spectral.density)

* var amount of variance explained by dynamic principal components (dpca. var)

* Xhat Karhunen-Loeve expansion using Ndpc dynamic principal components (dpca.KLexpansion)

dpca.filters 5

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R., and Stoffer, D. Time series analysis and its applications: with R examples (2010),
Springer Science & Business Media

Examples

X = rar(100,3)

Compute DPCA with only one component
res.dpca = dpca(X, g = 5, Ndpc = 1)

Compute PCA with only one component
res.pca = prcomp(X, center = TRUE)
res.pca$x[,-1]1 = @

Reconstruct the data
var.dpca = (1 - sum((res.dpca$Xhat - X)**2) / sum(X*%2))*100
var.pca = (1 - sum((res.pca$x %*% t(res.pca$rotation) - X)**2) / sum(X**2))*100

cat("Variance explained by DPCA:\t"”,6var.dpca,"%\n")
cat("Variance explained by PCA:\t",6var.pca,"%\n")

dpca.filters Compute DPCA filter coefficients

Description

For a given spectral density matrix dynamic principal component filter sequences are computed.

Usage

dpca.filters(F, Ndpc = dim(F$operators)[1], q = 30)

Arguments
F (d x d) spectral density matrix, provided as an object of class freqdom.
Ndpc an integer € {1,...,d}. It is the number of dynamic principal components to
be computed. By default it is set equal to d.
q a non-negative integer. DPCA filter coefficients at lags |h| < q will be com-

puted.

6 dpca.KLexpansion

Details

Dynamic principal components are linear filters (¢ : k € Z), 1 < ¢ < d. They are defined as the
Fourier coefficients of the dynamic eigenvector ¢, (w) of a spectral density matrix J,:

1 4 .
Dok 1= o /_Tr wr(w) exp(—ikw)dw.

The index ¢ is referring to the ¢-th #’largest dynamic eigenvalue. Since the ¢, are real, we have
/ * 1 T * .
o = G = o ¢y exp(ikw)dw.

—T

For a given spectral density (provided as on object of class freqgdom) the function dpca.filters()
computes (¢g) for [k] < gand 1 < ¢ < Ndpc.

For more details we refer to Chapter 9 in Brillinger (2001), Chapter 7.8 in Shumway and Stoffer
(2006) and to Hormann et al. (2015).
Value

An object of class timedom. The list has the following components:

* operators an array. Each matrix in this array has dimension Ndpc xd and is assigned to a
certain lag. For a given lag k, the rows of the matrix correpsond to ¢gy.

* lags avector with the lags of the filter coefficients.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R.H., and Stoffer, D.S. Time Series Analysis and Its Applications (2006), Springer, New
York.

See Also

dpca.var, dpca.scores, dpca.KLexpansion

dpca.KLexpansion Dynamic KL expansion

Description

Computes the dynamic Karhunen-Loeve expansion of a vector time series up to a given order.

Usage

dpca.KLexpansion(X, dpcs)

dpca.scores 7

Arguments
X a vector time series given as a (T x d)-matix. Each row corresponds to a time-
point.
dpcs an object of class timedom, representing the dpca filters obtained from the sam-
ple X. If dpsc = NULL, then dpcs =dpca.filter(spectral.density(X)) is
used.
Details

We obtain the dynamic Karhnunen-Loeve expansion of order L, 1 < L < d. It is defined as

L
Z Z Yo i4rdek,

(=1 keZ

where ¢g, are the dynamic PC filters as explained in dpca. filters and Yy are dynamic scores as
explained in dpca.scores. For the sample version the sum in k extends over the range of lags for
which the ¢y, are defined.

For more details we refer to Chapter 9 in Brillinger (2001), Chapter 7.8 in Shumway and Stoffer
(2006) and to Hormann et al. (2015).

Value

A (T x d)-matix. The ¢-th column contains the ¢-th data point.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R.H., and Stoffer, D.S. Time Series Analysis and Its Applications (2006), Springer, New
York.

See Also

dpca.filters, filter.process, dpca.scores

dpca.scores Obtain dynamic principal components scores

Description

Computes dynamic principal component score vectors of a vector time series.

Usage
dpca.scores(X, dpcs = dpca.filters(spectral.density(X)))

8 dpca.var

Arguments
X a vector time series given as a (T x d)-matix. Each row corresponds to a time-
point.
dpcs an object of class timedom, representing the dpca filters obtained from the sam-
ple X. If dpsc = NULL, then dpcs =dpca.filter(spectral.density(X)) is
used.
Details

The ¢-th dynamic principal components score sequence is defined by

Yo=Y opXen, 1<€<d,
keZ

where ¢y, are the dynamic PC filters as explained in dpca.filters. For the sample version the
sum extends over the range of lags for which the ¢y are defined. The actual operation carried out
is filter.process(X, A =dpcs).

We for more details we refer to Chapter 9 in Brillinger (2001), Chapter 7.8 in Shumway and Stoffer
(2006) and to Hormann et al. (2015).

Value

A T'x Ndpc-matix with Ndpc = dim(dpcs$operators)[1]. The ¢-th column contains the ¢-th dy-
namic principal component score sequence.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R.H., and Stoffer, D.S. Time Series Analysis and Its Applications (2006), Springer, New
York.

See Also

dpca.filters, dpca.KLexpansion, dpca.var

dpca.var Proportion of variance explained

Description

Computes the proportion of variance explained by a given dynamic principal component.

Usage
dpca.var(F)

filter.process 9

Arguments
F (d x d) spectral density matrix, provided as an object of class freqdom. To guar-
antee accuracy of numerical integration it is important that F$freq is a dense
grid of frequencies in [—, 7].
Details

Consider a spectral density matrix F,, and let Ay(w) by the ¢-th dynamic eigenvalue. The proportion
of variance described by the /-th dynamic principal component is given as

vy = Ae(w)dw/ tr(F,)dw.

—T —T

This function numerically computes the vectors (ve: 1 < £ < d).

For more details we refer to Chapter 9 in Brillinger (2001), Chapter 7.8 in Shumway and Stoffer
(2006) and to Hormann et al. (2015).
Value

A d-dimensional vector containing the vy.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R.H., and Stoffer, D.S. Time Series Analysis and Its Applications (2006), Springer, New
York.

See Also

dpca.filters, dpca.KLexpansion, dpca.scores

filter.process Convolute (filter) a multivariate time series using a time-domain filter

Description

This function applies a linear filter to some vector time series.

Usage

filter.process(X, A)

X %C%h A

10 fourier.inverse

Arguments
vector time series given in matrix form. Each row corresponds to a timepoint.
A an object of class timedom.
Details
Let [X1,...,X7]) beaT x d matrix corresponding to a vector series X1, ..., X7. This time series
is transformed to the series Y7, ..., Yy, where

P
Y=) MXeg tefp+l....T—q}
k=—q

The index k of Ay is determined by the lags defined for the time domain object. When index t — k
falls outside the domain {1,...,T} we set X; = + Zzzl Xp.
Value

A matrix. Row ¢ corresponds to Y;.

Functions

e filter.process(): Multivariate convolution (filter) in the time domain

* X %c% A: Convenience operator for filter.process function

See Also

timedom

fourier.inverse Coefficients of a discrete Fourier transform

Description

Computes Fourier coefficients of some functional represented by an object of class freqdom.

Usage

fourier.inverse(F, lags = 0)

Arguments

F an object of class freqdom which is corresponding to a function with values
in C% >4z To guarantee accuracy of inversion it is important that F$freq is a
dense grid of frequencies in [—, 7].

lags lags of the Fourier coefficients to be computed.

fourier.transform 11

Details
Consider a function F': [, 7] — C%*%_ts k-th Fourier coefficient is given as
L F(w) exp(ikw)dw.
2 J_,
We represent the function £’ by an object of class freqdom and approximate the integral via

! Z F(w) exp(ikw),

|F$f7‘€q‘ weFS$freq

for k € lags.

Value
An object of class timedom. The list has the following components:

* operators an array. The k-th matrix in this array corresponds to the k-th Fourier coeffi-
cient.

* lags the lags of the corresponding Fourier coefficients.

See Also

fourier.transform, freqdom

Examples

Y = rar(100)
grid = c(pi*(1:2000) / 1000 - pi) #a dense grid on -pi, pi
fourier.inverse(spectral.density(Y, g=2, freg=grid))

compare this to
cov.structure(Y)

fourier.transform Computes the Fourier transformation of a filter given as timedom ob-
ject

Description

Computes the frequency response function of a linear filter and returns it as a freqdom object.

Usage
fourier.transform(A, freq = pi * -100:100/100)

Arguments

A an object of class timedom.

freq a vector of frequencies € [—, 7].

12 freqdom

Details

Consider a filter (a sequence of vectors or matrices) (A) e Asiags- Then this function computes

Z Ake—ikw

keAS$lags

for all frequencies w listed in the vector freq.

Value

An object of class freqdom.

See Also

fourier.inverse

Examples
We compute the discrete Fourier transform (DFT) of a time series X_1,..., X_T
X = rar(100)
T=dim(X)[1]
tdX = timedom(X/sqrt(T),lags=1:T)
DFT = fourier.transform(tdX, freq= pi*-1000:1000/1000)
freqdom Create an object corresponding to a frequency domain functional

Description
Creates an object of class freqdom. This object corresponds to a functional with domain [—, 7]
and some complex vector space as codomain.

Usage

freqdom(F, freq)

Arguments

F a vector, a matrix or an array. For vectors F[k],1 < k < K are complex
numbers. For matrices F'[k,] are complex vectors. For arrays the elements
FJ,, k], are complex valued (d; x dg) matrices (all of same dimension).

freq a vector of dimension K containing frequencies in [—, 7].

freqdom.eigen 13

Details

This class is used to describe a frequency domain functional (like a spectral density matrix, a dis-
crete Fourier transform, an impulse response function, etc.) on selected frequencies. Formally we
consider a collection [F1,. .., Fik] of complex-valued matrices F}, all of which have the same di-
mension d; X da. Moreover, we consider frequencies {w1,...,wx} C [—m,«|. The object this
function creates corresponds to the mapping f : freq — C%* % where wy, — Fj.

Consider, for example, the discrete Fourier transform of a vector time series Xi,..., Xp:. Itis
defined as

T
1 .
Dr(w) = N E Xiem ™ we -7, 7.
t=1

We may choose wy, = 27k/K — w and Fy, = Dr(wy). Then, the object freqdom creates, is
corresponding to the function which associates wy and D (wy).

Value

Returns an object of class freqdom. An object of class freqdom is a list containing the following
components:

* operators the array F as given in the argument.

* freq the vector freq as given in the argument.

See Also

fourier.transform

Examples

i = complex(imaginary=1)

OP = array(@, c(2, 2, 3))
OP[,,1] = diag(2) * exp(i)/2
OP[,,2] = diag(2)

OP[,,3] = diag(2) * exp(-i)/2
freq = c(-pi/3, 0, pi/3)

A = freqdom(OP, freq)

freqdom.eigen Eigendecompose a frequency domain operator at each frequency

Description

Gives the eigendecomposition of objects of class freqdom.

Usage
fregdom.eigen(F)

14 is.freqdom

Arguments
F an object of class freqdom. The matrices F\$operator[, ,k] are required to be
square matrices, say d X d.
Details

This function makes an eigendecomposition for each of the matrices F\$operator[, ,k].

Value

Returns a list. The list is containing the following components:

e vectors an array containing d matrices. The i-th matrix contains in its k-th row the con-
jugate transpose eigenvector belonging to the k-th largest eigenvalue of F\$operator([,,i].

e values matrix containing in k-th column the eigenvalues of F\$operator[, ,k].

* freq vector of frequencies defining the object F.

See Also

freqgdom

is.freqdom Checks if an object belongs to the class freqdom

Description

Checks if an object belongs to the class freqdom.

Usage

is.freqdom(X)

Arguments

X some object

Value

TRUE if X is of type freqdom, FALSE otherwise

See Also

freqgdom, timedom, is. timedom

is.timedom

15

is.timedom Checks if an object belongs to the class timedom

Description

Checks if an object belongs to the class timedom.

Usage

is.timedom(X)

Arguments

X some object

Value

TRUE if X is of type timedom, FALSE otherwise

See Also

freqgdom, timedom, is. freqdom

rar Simulate a multivariate autoregressive time series

Description

Generates a zero mean vector autoregressive process of a given order.

Usage

rar(
n,
d =2,
Psi = NULL,
burnin = 10,
noise = c("mnormal”, "mt"),
sigma = NULL,
df = 4

16 rma

Arguments
n number of observations to generate.
d dimension of the time series.
Psi array of p > 1 coefficient matrices. Psi[,,k] is the k-th coefficient. If no
value is set then we generate a vector autoregressive process of order 1. Then,
Psil,,1] is proportional to exp(—(i + j): 1 < 4,5 < d) and such that the
spectral radius of Psi[,,1]is 1/2.
burnin an integer > 0. It specifies a number of initial observations to be trashed to
achieve stationarity.
noise mnormal for multivariate normal noise or mt for multivariate student t noise. If
not specified mnormal is chosen.
sigma covariance or scale matrix of the innovations. By default the identity matrix.
df degrees of freedom if noise = "mt".
Details

We simulate a vector autoregressive process

p
X, = Z\I/kxt,k+gt, 1<t<n.
k=1

The innovation process ¢; is either multivariate normal or multivariate ¢ with a predefined covari-
ance/scale matrix sigma and zero mean. The noise is generated with the package mvtnorm. For
Gaussian noise we use rmvnorm. For Student-t noise we use rmvt. The parameters sigma and
df are imported as arguments, otherwise we use default settings. To initialise the process we set
[X1-ps--.,Xo] = [e1-p,---,€0]. When burnin is set equal to K then, n+XK observations are
generated and the first /& will be trashed.

Value

A matrix with d columns and n rows. Each row corresponds to one time point.

See Also

rma

rma Moving average process

Description

Generates a zero mean vector moving average process.

Usage

rma(n, d = 2, Psi = NULL, noise = c("mnormal”, "mt"), sigma = NULL, df = 4)

spectral.density 17

Arguments

n number of observations to generate.

d dimension of the time series.

Psi a timedom object with operators Psi$operators, where Psi$operatorsl[, ,k]
is the operator on thelag lags[k]. If no value is set then we generate a vector
moving average process of order 1. Then, Psi$lags = ¢(1) and Psi$operators[,,1]
is proportional to exp(—(¢ + j): 1 <4, j < d) and such that the spectral radius
of Psi[,,1]is 1/2.

noise mnormal for multivariate normal noise or mt for multivariate ¢ noise. If not
specified mnormal is chosen.

sigma covariance or scale matrix of the innovations. If NULL then the identity matrix
is used.

df degrees of freedom if noise = "mt".

Details

This simulates a vector moving average process

Xi=ei+ > Upep, 1<t<n
k€lags

The innovation process ¢; is either multivariate normal or multivarite ¢ with a predefined covari-
ance/scale matrix sigma and zero mean. The noise is generated with the package mvtnorm. For
Gaussian noise we use rmvnorm. For Student-t noise we use rmvt. The parameters sigma and df
are imported as arguments, otherwise we use default settings.

Value

A matrix with d columns and n rows. Each row corresponds to one time point.

See Also

rar

spectral.density Compute empirical spectral density

Description

Estimates the spectral density and cross spectral density of vector time series.

18 spectral.density
Usage
spectral.density(
X,
Y =X,
freq = (-1000:1000/1000) * pi,
g = max(1, floor(dim(X)[11*(1/3))),
weights = c("Bartlett”, "trunc”, "Tukey", "Parzen", "Bohman", "Daniell",
"ParzenCogburnDavis")
)
Arguments
X a vector or a vector time series given in matrix form. Each row corresponds to a
timepoint.
Y a vector or vector time series given in matrix form. Each row corresponds to a
timepoint.
freq a vector containing frequencies in [—7, 7] on which the spectral density should
be evaluated.
q window size for the kernel estimator, i.e. a positive integer.
weights kernel used in the spectral smoothing. By default the Bartlett kernel is chosen.
Details
Let [Xy,...,X7|"beaT x dy matrix and [Y7,...,Yr] be aT x do matrix. We stack the vectors
and assume that (X/,Y}/)’ is a stationary multivariate time series of dimension d; + do. The cross-
spectral density between the two time series (X;) and (Y3) is defined as
Z Cov(Xp, Yo)e e,
heZ
The function spectral.density determines the empirical cross-spectral density between the two
time series (X;) and (Y;). The estimator is of form
FYw) = Y w(lkl/g)CXY (e,
|h|<q
with éXY(h) defined in cov.structure Here w is a kernel of the specified type and ¢ is the
window size. By default the Bartlett kernel w(x) = 1 — || is used.
See, e.g., Chapter 10 and 11 in Brockwell and Davis (1991) for details.
Value

Returns an object of class freqdom. The list is containing the following components:

* operators anarray. The k-th matrix in this array corresponds to the spectral density matrix
evaluated at the k-th frequency listed in freg.

* freq returns argument vector freq.

timedom 19

References

Peter J. Brockwell and Richard A. Davis Time Series: Theory and Methods Springer Series in
Statistics, 2009

timedom Defines a linear filter

Description

Creates an object of class timedom. This object corresponds to a multivariate linear filter.

Usage

timedom(A, lags)

Arguments
A a vector, matrix or array. If array, the elements A[,,k],1 < k < K, are real
valued (d; x d2) matrices (all of same dimension). If A is a matrix, the k-th
row is treated as A[, , k]. Same for the k-th element of a vector. These matrices,
vectors or scalars define a linear filter.
lags a vector of increasing integers. It corresponds to the time lags of the filter.
Details

This class is used to describe a linear filter, i.e. a sequence of matrices, each of which correspond
to a certain lag. Filters can, for example, be used to transform a sequence (X;) into a new sequence
(Y}) by defining

Y, = Z ApXi g
%

See filter.process(). Formally we consider a collection [A1, ..., Ax] of complex-valued ma-
trices Ay, all of which have the same dimension d; X ds. Moreover, we consider lags {1 < {5 <
-+- < lg. The object this function creates corresponds to the mapping f : lags — R *92 where
ék — Ak.

Value

Returns an object of class timedom. An object of class timedom is a list containing the following
components:

* operators returns the array A as given in the argument.

* lags returns the vector lags as given in the argument.

See Also

freqgdom, is.timedom

20 timedom.norms

Examples

In this example we apply the difference operator: Delta X_t= X_t-X_{t-1} to a time series
X = rar(20)

OP = array(0,c(2,2,2))

OP[,,1] = diag(2)

OP[,,2] = -diag(2)

A = timedom(OP, lags = c(0,1))

filter.process(X, A)

timedom.norms Compute operator norms of elements of a filter

Description

This function determines the norms of the matrices defining some linear filter.

Usage

timedom.norms(A, type = "2")

Arguments

A an object of class timedom

type matrix norm to be used as in norm
Details

Computes || Ay || for h in the set of lags belonging to the object A. When type is 2 then || A|| is the
spectral radius of A. When type is F then || A|| is the Frobenius norm (or the Hilbert-Schmidt norm,
or Schatten 2-norm) of A. Same options as for the function norm as in base package.

Value
A list which contains the following components:

e lags a vector containing the lags of A.

* norms a vector containing the norms of the matrices defining A.

Examples

d=2

A = array(0,c(d,d,2))
A[1,,]1 = 2 % diag(d:1)/d
Al2,,] = 1.5 * diag(d:1)/d
OP = timedom(A,c(-2,1))
timedom.norms(OP)

timedom.trunc 21

timedom. trunc Choose lags of an object of class timedom

Description

This function removes lags from a linear filter.

Usage

timedom. trunc(A, lags)

Arguments
A an object of class timedom.
lags a vector which contains a set of lags. These lags must be a subset of the lags
defined for timedom object A. Only those lags will be kept, the other lags are
removed.
Value

An object of class timedom.

Index

* DPCA fourier.transform, 2, 11,11, 13
dpca, 4 freqdom, 10, 11,12, 13-15, 18, 19
dpca.filters, 5 freqdom-package, 2
dpca.KLexpansion, 6 freqdom.eigen, 13
dpca.scores, 7
dpca.var, 8 is.freqdom, 14, 15

« classes is.timedom, /4, 15, 19
freqdom, 12
is.freqdom, 14 rar, 2,15, 17
is.timedom, 15 rma, 2, 16, 16
timedom, 19 rmvnorm, 16, 17

+ dpca rmvt, 16, 17

spectral.density, 17
* frequency.domain

fourier.inverse, 10 timedom, 4, 10, 11, 14, 15,17, 19
fourier.transform, 11 timedom.norms, 20

freqdom.eigen, 13 timedom. trunc, 21
+ simulations
rar, 15
rma, 16
* time.domain
cov.structure, 3
filter.process,9
fourier.inverse, 10
fourier.transform, 11
timedom.norms, 20
timedom. trunc, 21
%C% (filter.process), 9
_PACKAGE (freqdom-package), 2

spectral.density, 2,4, 17

cov.structure, 3

dpca, 2,4
dpca.filters, 4,5, 7-9
dpca.KLexpansion, 2,4, 6,6, 8, 9
dpca.scores, 2,4,6,7,7,9
dpca.var,4,6,8, 8

filter.process, 7,9
fourier.inverse, 10, /12

22

	freqdom-package
	cov.structure
	dpca
	dpca.filters
	dpca.KLexpansion
	dpca.scores
	dpca.var
	filter.process
	fourier.inverse
	fourier.transform
	freqdom
	freqdom.eigen
	is.freqdom
	is.timedom
	rar
	rma
	spectral.density
	timedom
	timedom.norms
	timedom.trunc
	Index

