## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(dplyr.summarise.inform = FALSE, rmarkdown.html_vignette.check_title = FALSE) eval <- TRUE tryCatch(expr = { download.file("https://github.com/ffverse/ffscrapr-tests/archive/1.4.7.zip","f.zip") unzip('f.zip', exdir = ".") httptest::.mockPaths(new = "ffscrapr-tests-1.4.7")}, warning = function(e) eval <<- FALSE, error = function(e) eval <<- FALSE) httptest::use_mock_api() ## ----setup, message=FALSE, eval = eval---------------------------------------- library(ffscrapr) library(dplyr) library(tidyr) ## ----eval = eval-------------------------------------------------------------- aaa <- fleaflicker_connect(season = 2020, league_id = 312861) aaa ## ----eval = eval-------------------------------------------------------------- aaa_summary <- ff_league(aaa) str(aaa_summary) ## ----eval = eval-------------------------------------------------------------- aaa_rosters <- ff_rosters(aaa) head(aaa_rosters) ## ----eval = eval-------------------------------------------------------------- player_values <- dp_values("values-players.csv") # The values are stored by fantasypros ID since that's where the data comes from. # To join it to our rosters, we'll need playerID mappings. player_ids <- dp_playerids() %>% select(sportradar_id,fantasypros_id) %>% filter(!is.na(sportradar_id),!is.na(fantasypros_id)) # We'll be joining it onto rosters, so we can trim down the values dataframe # to just IDs, age, and values player_values <- player_values %>% left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% select(sportradar_id,age,ecr_2qb,ecr_pos,value_2qb) # ff_rosters() will return the sportradar_id, which we can then match to our player values! aaa_values <- aaa_rosters %>% left_join(player_values, by = c("sportradar_id"="sportradar_id")) %>% arrange(franchise_id,desc(value_2qb)) head(aaa_values) ## ----eval = eval-------------------------------------------------------------- value_summary <- aaa_values %>% group_by(franchise_id,franchise_name,pos) %>% summarise(total_value = sum(value_2qb,na.rm = TRUE)) %>% ungroup() %>% group_by(franchise_id,franchise_name) %>% mutate(team_value = sum(total_value)) %>% ungroup() %>% pivot_wider(names_from = pos, values_from = total_value) %>% arrange(desc(team_value)) %>% select(franchise_id,franchise_name,team_value,QB,RB,WR,TE) value_summary ## ----eval = eval-------------------------------------------------------------- value_summary_pct <- value_summary %>% mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% mutate_at(c("team_value","QB","RB","WR","TE"),round, 3) value_summary_pct ## ----eval = eval-------------------------------------------------------------- age_summary <- aaa_values %>% filter(pos %in% c("QB","RB","WR","TE")) %>% group_by(franchise_id,pos) %>% mutate(position_value = sum(value_2qb,na.rm=TRUE)) %>% ungroup() %>% mutate(weighted_age = age*value_2qb/position_value, weighted_age = round(weighted_age, 1)) %>% group_by(franchise_id,franchise_name,pos) %>% summarise(count = n(), age = sum(weighted_age,na.rm = TRUE)) %>% pivot_wider(names_from = pos, values_from = c(age,count)) age_summary ## ----include = FALSE---------------------------------------------------------- httptest::stop_mocking() unlink(c("ffscrapr-tests-1.4.7","f.zip"), recursive = TRUE, force = TRUE)