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fdaSP-package Sparse Functional Data Analysis Methods

Description

Provides algorithms to fit linear regression models under several popular penalization techniques
and functional linear regression models based on Majorizing-Minimizing (MM) and Alternating Di-
rection Method of Multipliers (ADMM) techniques. See Boyd et al (2010) <doi:10.1561/2200000016>
for complete introduction to the method.

Package Content

Index of help topics:

confband Function to plot the confidence bands
f2fSP Overlap Group Least Absolute Shrinkage and

Selection Operator for function-on-function
regression model

f2fSP_cv Cross-validation for Overlap Group Least
Absolute Shrinkage and Selection Operator for
function-on-function regression model

f2sSP Overlap Group Least Absolute Shrinkage and
Selection Operator for scalar-on-function
regression model

f2sSP_cv Cross-validation for Overlap Group Least
Absolute Shrinkage and Selection Operator on
scalar-on-function regression model

fdaSP-package Sparse Functional Data Analysis Methods
lmSP Sparse Adaptive Overlap Group Least Absolute

Shrinkage and Selection Operator
lmSP_cv Cross-validation for Sparse Adaptive Overlap

Group Least Absolute Shrinkage and Selection
Operator

softhresh Function to solve the soft thresholding problem

Maintainer

Mauro Bernardi <mauro.bernardi@unipd.it>
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Author(s)

Mauro Bernardi [aut, cre], Marco Stefanucci [aut], Antonio Canale [ctb]

confband Function to plot the confidence bands

Description

Function to plot the confidence bands

Usage

confband(xV, yVmin, yVmax)

Arguments

xV the values for the x-axis.
yVmin the minimum values for the y-axis.
yVmax the maximum values for the y-axis.

Value

a polygon.

f2fSP Overlap Group Least Absolute Shrinkage and Selection Operator for
function-on-function regression model

Description

Overlap Group-LASSO for function-on-function regression model solves the following optimiza-
tion problem

minψ
1

2

n∑
i=1

∫ (
yi(s)−

∫
xi(t)ψ(t, s)dt

)2

ds+ λ

G∑
g=1

‖SgTψ‖2

to obtain a sparse coefficient vector ψ = vec(Ψ) ∈ RML for the functional penalized predictor
x(t), where the coefficient matrix Ψ ∈ RM×L, the regression function ψ(t, s) = ϕ(t)ᵀΨθ(s), ϕ(t)
and θ(s) are two B-splines bases of order d and dimension M and L, respectively. For each group
g, each row of the matrix Sg ∈ Rd×ML has non-zero entries only for those bases belonging to
that group. These values are provided by the arguments groups and group_weights (see below).
Each basis function belongs to more than one group. The diagonal matrix T ∈ RML×ML contains
the basis-specific weights. These values are provided by the argument var_weights (see below).
The regularization path is computed for the overlap group-LASSO penalty at a grid of values for
the regularization parameter λ using the alternating direction method of multipliers (ADMM). See
Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.
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Usage

f2fSP(
mY,
mX,
L,
M,
group_weights = NULL,
var_weights = NULL,
standardize.data = TRUE,
splOrd = 4,
lambda = NULL,
lambda.min.ratio = NULL,
nlambda = 30,
overall.group = FALSE,
control = list()

)

Arguments

mY an (n× ry) matrix of observations of the functional response variable.

mX an (n× rx) matrix of observations of the functional covariate.

L number of elements of the B-spline basis vector θ(s).

M number of elements of the B-spline basis vector ϕ(t).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Bernardi et al. (2022).

var_weights a vector of length ML containing basis-specific weights. The default is a vector
where each entry is the reciprocal of the number of groups including that basis.
See Bernardi et al. (2022) for details.

standardize.data

logical. Should data be standardized?

splOrd the order d of the spline basis.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.

lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If nry >
LM , the default is 0.0001, and if nry < LM , the default is 0.01.

nlambda the number of lambda values - default is 30.

overall.group logical. If it is TRUE, an overall group including all penalized covariates is
added.

control a list of control parameters for the ADMM algorithm. See ‘Details’.



f2fSP 5

Value

A named list containing

sp.coefficients an (M × L) solution matrix for the parameters Ψ, which corresponds to the mini-
mum in-sample MSE.

sp.coef.path an (nλ ×M × L) array of estimated Ψ coefficients for each lambda.

sp.fun an (rx × ry) matrix providing the estimated functional coefficient for ψ(t, s).

sp.fun.path an (nλ × rx × ry) array providing the estimated functional coefficients for ψ(t, s) for
each lambda.

lambda sequence of lambda.

lambda.min value of lambda that attains the minimum in-sample MSE.

mse in-sample mean squared error.

min.mse minimum value of the in-sample MSE for the sequence of lambda.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

When you run the algorithm, output returns not only the solution, but also the iteration history
recording following fields over iterates,

objval objective function value.

r_norm norm of primal residual.

s_norm norm of dual residual.

eps_pri feasibility tolerance for primal feasibility condition.

eps_dual feasibility tolerance for dual feasibility condition.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.

Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.

rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.
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Examples

## generate sample data
set.seed(4321)
s <- seq(0, 1, length.out = 100)
t <- seq(0, 1, length.out = 100)
p1 <- 5
p2 <- 6
r <- 10
n <- 50

beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta

data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X

x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
fdaSP::softhresh, 1.5) # regression coefficients

x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)

fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)

## set the hyper-parameters
maxit <- 1000
rho_adaptation <- FALSE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

## fit functional regression model
mod <- f2fSP(mY = b, mX = fun_data, L = p1, M = p2,

group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
lambda = NULL, nlambda = 30, lambda.min.ratio = NULL,
control = list("abstol" = abstol,

https://doi.org/10.1080/10618600.2022.2130926
https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/978-981-16-9840-8
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"reltol" = reltol,
"maxit" = maxit,
"adaptation" = rho_adaptation,
rho = rho,

"print.out" = FALSE))

mycol <- function (n) {
palette <- colorRampPalette(RColorBrewer::brewer.pal(11, "Spectral"))
palette(n)
}
cols <- mycol(1000)

oldpar <- par(mfrow = c(1, 2))
image(x_0, col = cols)
image(mod$sp.coefficients, col = cols)
par(oldpar)

oldpar <- par(mfrow = c(1, 2))
image(x_fun, col = cols)
contour(x_fun, add = TRUE)
image(beta_basis2 %*% mod$sp.coefficients %*% t(beta_basis1), col = cols)
contour(beta_basis2 %*% mod$sp.coefficients %*% t(beta_basis1), add = TRUE)
par(oldpar)

f2fSP_cv Cross-validation for Overlap Group Least Absolute Shrinkage and Se-
lection Operator for function-on-function regression model

Description

Overlap Group-LASSO for function-on-function regression model solves the following optimiza-
tion problem

minψ
1

2

n∑
i=1

∫ (
yi(s)−

∫
xi(t)ψ(t, s)dt

)2

ds+ λ

G∑
g=1

‖SgTψ‖2

to obtain a sparse coefficient vector ψ = vec(Ψ) ∈ RML for the functional penalized predictor
x(t), where the coefficient matrix Ψ ∈ RM×L, the regression function ψ(t, s) = ϕ(t)ᵀΨθ(s), ϕ(t)
and θ(s) are two B-splines bases of order d and dimension M and L, respectively. For each group
g, each row of the matrix Sg ∈ Rd×ML has non-zero entries only for those bases belonging to
that group. These values are provided by the arguments groups and group_weights (see below).
Each basis function belongs to more than one group. The diagonal matrix T ∈ RML×ML contains
the basis-specific weights. These values are provided by the argument var_weights (see below).
The regularization path is computed for the overlap group-LASSO penalty at a grid of values for
the regularization parameter λ using the alternating direction method of multipliers (ADMM). See
Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.
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Usage

f2fSP_cv(
mY,
mX,
L,
M,
group_weights = NULL,
var_weights = NULL,
standardize.data = FALSE,
splOrd = 4,
lambda = NULL,
lambda.min.ratio = NULL,
nlambda = NULL,
cv.fold = 5,
overall.group = FALSE,
control = list()

)

Arguments

mY an (n× ry) matrix of observations of the functional response variable.

mX an (n× rx) matrix of observations of the functional covariate.

L number of elements of the B-spline basis vector θ(s).

M number of elements of the B-spline basis vector ϕ(t).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Bernardi et al. (2022).

var_weights a vector of length ML containing basis-specific weights. The default is a vector
where each entry is the reciprocal of the number of groups including that basis.
See Bernardi et al. (2022) for details.

standardize.data

logical. Should data be standardized?

splOrd the order d of the spline basis.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.

lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If nry >
LM , the default is 0.0001, and if nry < LM , the default is 0.01.

nlambda the number of lambda values - default is 30.

cv.fold the number of folds - default is 5.

overall.group logical. If it is TRUE, an overall group including all penalized covariates is
added.

control a list of control parameters for the ADMM algorithm. See ‘Details’.
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Value

A named list containing

sp.coefficients an (M × L) solution matrix for the parameters Ψ, which corresponds to the mini-
mum cross-validated MSE.

sp.fun an (rx× ry) matrix providing the estimated functional coefficient for ψ(t, s) corresponding
to the minimum cross-validated MSE.

lambda sequence of lambda.

lambda.min value of lambda that attains the cross-validated minimum mean squared error.

indi.min.mse index of the lambda sequence corresponding to lambda.min.

mse cross-validated mean squared error.

min.mse minimum value of the cross-validated MSE for the sequence of lambda.

mse.sd standard deviation of the cross-validated mean squared error.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.

Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.

rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). “Locally Sparse Function-on-Function Regression.”
Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926,
https://doi.org/10.1080/10618600.2022.2130926.

https://doi.org/10.1080/10618600.2022.2130926
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Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends® in Ma-
chine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/
10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). “Structured variable selection with sparsity-inducing norms.”
J. Mach. Learn. Res., 12, 2777–2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning.
Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408,
With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

## generate sample data
set.seed(4321)
s <- seq(0, 1, length.out = 100)
t <- seq(0, 1, length.out = 100)
p1 <- 5
p2 <- 6
r <- 10
n <- 50

beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta

data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X

x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
fdaSP::softhresh, 1.5) # regression coefficients

x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)

fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)

## set the hyper-parameters
maxit <- 1000
rho_adaptation <- FALSE
rho <- 0.01
reltol <- 1e-5
abstol <- 1e-5

## fit functional regression model
mod_cv <- f2fSP_cv(mY = b, mX = fun_data, L = p1, M = p2,

group_weights = NULL, var_weights = NULL,
standardize.data = FALSE, splOrd = 4,
lambda = NULL, nlambda = 30, cv.fold = 5,
lambda.min.ratio = NULL,
control = list("abstol" = abstol,

"reltol" = reltol,
"maxit" = maxit,
"adaptation" = rho_adaptation,

https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/978-981-16-9840-8
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"rho" = rho,
"print.out" = FALSE))

### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",

xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
main = "Cross-validated Prediction Error")

fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
yVmax = mod_cv$mse + mod_cv$mse.sd)

abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]), col = "red", lwd = 1.0)

### comparison with oracle error
mod <- f2fSP(mY = b, mX = fun_data, L = p1, M = p2,

group_weights = NULL, var_weights = NULL,
standardize.data = FALSE, splOrd = 4,
lambda = NULL, nlambda = 30, lambda.min.ratio = NULL,
control = list("abstol" = abstol,

"reltol" = reltol,
"maxit" = maxit,
"adaptation" = rho_adaptation,
"rho" = rho,
"print.out" = FALSE))

err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - x_0)^2))
plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,

xlab = latex2exp::TeX("$\\log(\\lambda)$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")

abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),

col = "red", lwd = 1.0, lty = 2)

f2sSP Overlap Group Least Absolute Shrinkage and Selection Operator for
scalar-on-function regression model

Description

Overlap Group-LASSO for scalar-on-function regression model solves the following optimization
problem

minψ,γ
1

2

n∑
i=1

(
yi −

∫
xi(t)ψ(t)dt− zᵀi γ

)2

+ λ

G∑
g=1

‖SgTψ‖2

to obtain a sparse coefficient vector ψ ∈ RM for the functional penalized predictor x(t) and a
coefficient vector γ ∈ Rq for the unpenalized scalar predictors z1, . . . , zq . The regression function
is ψ(t) = ϕ(t)ᵀψ where ϕ(t) is a B-spline basis of order d and dimension M . For each group
g, each row of the matrix Sg ∈ Rd×M has non-zero entries only for those bases belonging to
that group. These values are provided by the arguments groups and group_weights (see below).
Each basis function belongs to more than one group. The diagonal matrix T ∈ RM×M contains



12 f2sSP

the basis-specific weights. These values are provided by the argument var_weights (see below).
The regularization path is computed for the overlap group-LASSO penalty at a grid of values for
the regularization parameter λ using the alternating direction method of multipliers (ADMM). See
Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

Usage

f2sSP(
vY,
mX,
mZ = NULL,
M,
group_weights = NULL,
var_weights = NULL,
standardize.data = TRUE,
splOrd = 4,
lambda = NULL,
nlambda = 30,
lambda.min.ratio = NULL,
intercept = FALSE,
overall.group = FALSE,
control = list()

)

Arguments

vY a length-n vector of observations of the scalar response variable.

mX a (n× r) matrix of observations of the functional covariate.

mZ an (n× q) full column rank matrix of scalar predictors that are not penalized.

M number of elements of the B-spline basis vector ϕ(t).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Bernardi et al. (2022).

var_weights a vector of length M containing basis-specific weights. The default is a vector
where each entry is the reciprocal of the number of groups including that basis.
See Bernardi et al. (2022) for details.

standardize.data

logical. Should data be standardized?

splOrd the order d of the spline basis.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.

nlambda the number of lambda values - default is 30.
lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If n >
M , the default is 0.0001, and if n < M , the default is 0.01.

intercept logical. If it is TRUE, a column of ones is added to the design matrix.
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overall.group logical. If it is TRUE, an overall group including all penalized covariates is
added.

control a list of control parameters for the ADMM algorithm. See ‘Details’.

Value

A named list containing

sp.coefficients a length-M solution vector for the parameters ψ, which corresponds to the mini-
mum in-sample MSE.

sp.coef.path an (nλ ×M) matrix of estimated ψ coefficients for each lambda.

sp.fun a length-r vector providing the estimated functional coefficient for ψ(t).

sp.fun.path an (nλ × r) matrix providing the estimated functional coefficients for ψ(t) for each
lambda.

coefficients a length-q solution vector for the parameters γ, which corresponds to the minimum
in-sample MSE. It is provided only when either the matrix Z in input is not NULL or the
intercept is set to TRUE.

coef.path an (nλ× q) matrix of estimated γ coefficients for each lambda. It is provided only when
either the matrix Z in input is not NULL or the intercept is set to TRUE.

lambda sequence of lambda.

lambda.min value of lambda that attains the minimum in-sample MSE.

mse in-sample mean squared error.

min.mse minimum value of the in-sample MSE for the sequence of lambda.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

When you run the algorithm, output returns not only the solution, but also the iteration history
recording following fields over iterates,

objval objective function value.

r_norm norm of primal residual.

s_norm norm of dual residual.

eps_pri feasibility tolerance for primal feasibility condition.

eps_dual feasibility tolerance for dual feasibility condition.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.

Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.
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rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). “Locally Sparse Function-on-Function Regression.”
Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926,
https://doi.org/10.1080/10618600.2022.2130926.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends® in Ma-
chine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/
10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). “Structured variable selection with sparsity-inducing norms.”
J. Mach. Learn. Res., 12, 2777–2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning.
Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408,
With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

## generate sample data
set.seed(1)
n <- 40
p <- 18 # number of basis to GENERATE beta
r <- 100
s <- seq(0, 1, length.out = r)

beta_basis <- splines::bs(s, df = p, intercept = TRUE) # basis
coef_data <- matrix(rnorm(n*floor(p/2)), n, floor(p/2))
fun_data <- coef_data %*% t(splines::bs(s, df = floor(p/2), intercept = TRUE))

x_0 <- apply(matrix(rnorm(p, sd=1),p,1), 1, fdaSP::softhresh, 1) # regression coefficients
x_fun <- beta_basis %*% x_0

b <- fun_data %*% x_fun + rnorm(n, sd = sqrt(crossprod(fun_data %*% x_fun ))/10)
l <- 10^seq(2, -4, length.out = 30)
maxit <- 1000

https://doi.org/10.1080/10618600.2022.2130926
https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/978-981-16-9840-8
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## set the hyper-parameters
maxit <- 1000
rho_adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

mod <- f2sSP(vY = b, mX = fun_data, M = p,
group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,

lambda = NULL, nlambda = 30, lambda.min = NULL, overall.group = FALSE,
control = list("abstol" = abstol,

"reltol" = reltol,
"adaptation" = rho_adaptation,
"rho" = rho,
"print.out" = FALSE))

# plot coefficiente path
matplot(log(mod$lambda), mod$sp.coef.path, type = "l",

xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "", bty = "n", lwd = 1.2)

f2sSP_cv Cross-validation for Overlap Group Least Absolute Shrinkage and Se-
lection Operator on scalar-on-function regression model

Description

Overlap Group-LASSO for scalar-on-function regression model solves the following optimization
problem

minψ,γ
1

2

n∑
i=1

(
yi −

∫
xi(t)ψ(t)dt− zᵀi γ

)2

+ λ

G∑
g=1

‖SgTψ‖2

to obtain a sparse coefficient vector ψ ∈ RM for the functional penalized predictor x(t) and a
coefficient vector γ ∈ Rq for the unpenalized scalar predictors z1, . . . , zq . The regression function
is ψ(t) = ϕ(t)ᵀψ where ϕ(t) is a B-spline basis of order d and dimension M . For each group
g, each row of the matrix Sg ∈ Rd×M has non-zero entries only for those bases belonging to
that group. These values are provided by the arguments groups and group_weights (see below).
Each basis function belongs to more than one group. The diagonal matrix T ∈ RM×M contains
the basis specific weights. These values are provided by the argument var_weights (see below).
The regularization path is computed for the overlap group-LASSO penalty at a grid of values for
the regularization parameter λ using the alternating direction method of multipliers (ADMM). See
Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

Usage

f2sSP_cv(
vY,
mX,
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mZ = NULL,
M,
group_weights = NULL,
var_weights = NULL,
standardize.data = FALSE,
splOrd = 4,
lambda = NULL,
lambda.min.ratio = NULL,
nlambda = NULL,
cv.fold = 5,
intercept = FALSE,
overall.group = FALSE,
control = list()

)

Arguments

vY a length-n vector of observations of the scalar response variable.

mX a (n× r) matrix of observations of the functional covariate.

mZ an (n× q) full column rank matrix of scalar predictors that are not penalized.

M number of elements of the B-spline basis vector ϕ(t).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Bernardi et al. (2022).

var_weights a vector of length M containing basis-specific weights. The default is a vector
where each entry is the reciprocal of the number of groups including that basis.
See Bernardi et al. (2022) for details.

standardize.data

logical. Should data be standardized?

splOrd the order d of the spline basis.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.

lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If n >
M , the default is 0.0001, and if n < M , the default is 0.01.

nlambda the number of lambda values - default is 30.

cv.fold the number of folds - default is 5.

intercept logical. If it is TRUE, a column of ones is added to the design matrix.

overall.group logical. If it is TRUE, an overall group including all penalized covariates is
added.

control a list of control parameters for the ADMM algorithm. See ‘Details’.
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Value

A named list containing

sp.coefficients a length-M solution vector solution vector for the parameters ψ, which corresponds
to the minimum cross-validated MSE.

sp.fun a length-r vector providing the estimated functional coefficient for ψ(t) corresponding to
the minimum cross-validated MSE.

coefficients a length-q solution vector for the parameters γ, which corresponds to the minimum
cross-validated MSE. It is provided only when either the matrix Z in input is not NULL or the
intercept is set to TRUE.

lambda sequence of lambda.

lambda.min value of lambda that attains the minimum cross-validated MSE.

mse cross-validated mean squared error.

min.mse minimum value of the cross-validated MSE for the sequence of lambda.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.

Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.

rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). “Locally Sparse Function-on-Function Regression.”
Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926,
https://doi.org/10.1080/10618600.2022.2130926.
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Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends® in Ma-
chine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/
10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). “Structured variable selection with sparsity-inducing norms.”
J. Mach. Learn. Res., 12, 2777–2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning.
Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408,
With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

## generate sample data and functional coefficients
set.seed(1)
n <- 40
p <- 18
r <- 100
s <- seq(0, 1, length.out = r)

beta_basis <- splines::bs(s, df = p, intercept = TRUE) # basis
coef_data <- matrix(rnorm(n*floor(p/2)), n, floor(p/2))
fun_data <- coef_data %*% t(splines::bs(s, df = floor(p/2), intercept = TRUE))

x_0 <- apply(matrix(rnorm(p, sd=1),p,1), 1, fdaSP::softhresh, 1)
x_fun <- beta_basis %*% x_0

b <- fun_data %*% x_fun + rnorm(n, sd = sqrt(crossprod(fun_data %*% x_fun ))/10)
l <- 10^seq(2, -4, length.out = 30)
maxit <- 1000

## set the hyper-parameters
maxit <- 1000
rho_adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

## run cross-validation
mod_cv <- f2sSP_cv(vY = b, mX = fun_data, M = p,

group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
lambda = NULL, lambda.min = 1e-5, nlambda = 30, cv.fold = 5, intercept = FALSE,

control = list("abstol" = abstol,
"reltol" = reltol,
"adaptation" = rho_adaptation,
"rho" = rho,
"print.out" = FALSE))

### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",

https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/978-981-16-9840-8
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xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
main = "Cross-validated Prediction Error")

fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
yVmax = mod_cv$mse + mod_cv$mse.sd)

abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
col = "red", lwd = 1.0)

### comparison with oracle error
mod <- f2sSP(vY = b, mX = fun_data, M = p,

group_weights = NULL, var_weights = NULL,
standardize.data = FALSE, splOrd = 4,
lambda = NULL, nlambda = 30,
lambda.min = 1e-5, intercept = FALSE,
control = list("abstol" = abstol,

"reltol" = reltol,
"adaptation" = rho_adaptation,
"rho" = rho,
"print.out" = FALSE))

err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - x_0)^2))
plot(log(mod$lambda), err_mod, type = "l", col = "blue",

lwd = 2, xlab = latex2exp::TeX("$\\log(\\lambda)$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")

abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),

col = "red", lwd = 1.0, lty = 2)

lmSP Sparse Adaptive Overlap Group Least Absolute Shrinkage and Selec-
tion Operator

Description

Sparse Adaptive overlap group-LASSO, or sparse adaptive group L2-regularized regression, solves
the following optimization problem

minβ,γ
1

2
‖y −Xβ − Zγ‖22 + λ

[
(1− α)

G∑
g=1

‖SgTβ‖2 + α‖T1β‖1
]

to obtain a sparse coefficient vector β ∈ Rp for the matrix of penalized predictors X and a co-
efficient vector γ ∈ Rq for the matrix of unpenalized predictors Z. For each group g, each row
of the matrix Sg ∈ Rng×p has non-zero entries only for those variables belonging to that group.
These values are provided by the arguments groups and group_weights (see below). Each variable
can belong to more than one group. The diagonal matrix T ∈ Rp×p contains the variable-specific
weights. These values are provided by the argument var_weights (see below). The diagonal matrix
T1 ∈ Rp×p contains the variable-specific L1 weights. These values are provided by the argument
var_weights_L1 (see below). The regularization path is computed for the sparse adaptive overlap
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group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating
direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details
on the ADMM method. The regularization is a combination of L2 and L1 simultaneous constraints.
Different specifications of the penalty argument lead to different models choice:

LASSO The classical Lasso regularization (Tibshirani, 1996) can be obtained by specifying α = 1
and the matrix T1 as the p× p identity matrix. An adaptive version of this model (Zou, 2006)
can be obtained if T1 is a p × p diagonal matrix of adaptive weights. See also Hastie et al.
(2015) for further details.

GLASSO The group-Lasso regularization (Yuan and Lin, 2006) can be obtained by specifying
α = 0, non-overlapping groups in Sg and by setting the matrix T equal to the p × p identity
matrix. An adaptive version of this model can be obtained if the matrix T is a p× p diagonal
matrix of adaptive weights. See also Hastie et al. (2015) for further details.

spGLASSO The sparse group-Lasso regularization (Simon et al., 2011) can be obtained by speci-
fying α ∈ (0, 1), non-overlapping groups in Sg and by setting the matrices T and T1 equal to
the p× p identity matrix. An adaptive version of this model can be obtained if the matrices T
and T1 are p× p diagonal matrices of adaptive weights.

OVGLASSO The overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by
specifying α = 0, overlapping groups in Sg and by setting the matrix T equal to the p × p
identity matrix. An adaptive version of this model can be obtained if the matrix T is a p × p
diagonal matrix of adaptive weights.

spOVGLASSO The sparse overlap group-Lasso regularization (Jenatton et al., 2011) can be ob-
tained by specifying α ∈ (0, 1), overlapping groups in Sg and by setting the matrices T and
T1 equal to the p× p identity matrix. An adaptive version of this model can be obtained if the
matrices T and T1 are p× p diagonal matrices of adaptive weights.

Usage

lmSP(
X,
Z = NULL,
y,
penalty = c("LASSO", "GLASSO", "spGLASSO", "OVGLASSO", "spOVGLASSO"),
groups,
group_weights = NULL,
var_weights = NULL,
var_weights_L1 = NULL,
standardize.data = TRUE,
intercept = FALSE,
overall.group = FALSE,
lambda = NULL,
alpha = NULL,
lambda.min.ratio = NULL,
nlambda = 30,
control = list()

)
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Arguments

X an (n× p) matrix of penalized predictors.

Z an (n× q) full column rank matrix of predictors that are not penalized.

y a length-n response vector.

penalty choose one from the following options: ’LASSO’, for the or adaptive-Lasso
penalties, ’GLASSO’, for the group-Lasso penalty, ’spGLASSO’, for the sparse
group-Lasso penalty, ’OVGLASSO’, for the overlap group-Lasso penalty and
’spOVGLASSO’, for the sparse overlap group-Lasso penalty.

groups either a vector of length p of consecutive integers describing the grouping of the
coefficients, or a list with two elements: the first element is a vector of length∑G
g=1 ng containing the variables belonging to each group, where ng is the

cardinality of the g-th group, while the second element is a vector of length G
containing the group lengths (see example below).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Yuan and Lin (2006).

var_weights a vector of length p containing variable-specific weights. The default is a vector
of ones.

var_weights_L1 a vector of length p containing variable-specific weights for the L1 penalty. The
default is a vector of ones.

standardize.data

logical. Should data be standardized?

intercept logical. If it is TRUE, a column of ones is added to the design matrix.

overall.group logical. This setting is only available for the overlap group-LASSO and the
sparse overlap group-LASSO penalties, otherwise it is set to NULL. If it is
TRUE, an overall group including all penalized covariates is added.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.

alpha the sparse overlap group-LASSO mixing parameter, with 0 ≤ α ≤ 1. This
setting is only available for the sparse group-LASSO and the sparse overlap
group-LASSO penalties, otherwise it is set to NULL. The LASSO and group-
LASSO penalties are obtained by specifying α = 1 and α = 0, respectively.

lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If n > p,
the default is 0.0001, and if n < p, the default is 0.01.

nlambda the number of lambda values - default is 30.

control a list of control parameters for the ADMM algorithm. See ‘Details’.

Value

A named list containing

sp.coefficients a length-p solution vector for the parameters β. If nλ > 1 then the provided vector
corresponds to the minimum in-sample MSE.
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coefficients a length-q solution vector for the parameters γ. If nλ > 1 then the provided vector
corresponds to the minimum in-sample MSE. It is provided only when either the matrix Z in
input is not NULL or the intercept is set to TRUE.

sp.coef.path an (nλ × p) matrix of estimated β coefficients for each lambda of the provided se-
quence.

coef.path an (nλ×q) matrix of estimated γ coefficients for each lambda of the provided sequence.
It is provided only when either the matrix Z in input is not NULL or the intercept is set to
TRUE.

lambda sequence of lambda.

lambda.min value of lambda that attains the minimum in sample MSE.

mse in-sample mean squared error.

min.mse minimum value of the in-sample MSE for the sequence of lambda.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

When you run the algorithm, output returns not only the solution, but also the iteration history
recording following fields over iterates:

objval objective function value

r_norm norm of primal residual

s_norm norm of dual residual

eps_pri feasibility tolerance for primal feasibility condition

eps_dual feasibility tolerance for dual feasibility condition.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.

Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.

rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.
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Examples

### generate sample data
set.seed(2023)
n <- 50
p <- 30
X <- matrix(rnorm(n*p), n, p)

### Example 1, LASSO penalty

beta <- apply(matrix(rnorm(p, sd = 1), p, 1), 1, fdaSP::softhresh, 1.5)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)

### set regularization parameter grid
lam <- 10^seq(0, -2, length.out = 30)

### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

### run example
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mod <- lmSP(X = X, y = y, penalty = "LASSO", standardize.data = FALSE, intercept = FALSE,
lambda = lam, control = list("adaptation" = adaptation, "rho" = rho,

"maxit" = maxit, "reltol" = reltol,
"abstol" = abstol, "print.out" = FALSE))

### graphical presentation
matplot(log(lam), mod$sp.coef.path, type = "l", main = "Lasso solution path",

bty = "n", xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "")

### Example 2, sparse group-LASSO penalty

beta <- c(rep(4, 12), rep(0, p - 13), -2)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)

### define groups of dimension 3 each
group1 <- rep(1:10, each = 3)

### set regularization parameter grid
lam <- 10^seq(1, -2, length.out = 30)

### set the alpha parameter
alpha <- 0.5

### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

### run example
mod <- lmSP(X = X, y = y, penalty = "spGLASSO", groups = group1, standardize.data = FALSE,

intercept = FALSE, lambda = lam, alpha = 0.5,
control = list("adaptation" = adaptation, "rho" = rho,

"maxit" = maxit, "reltol" = reltol, "abstol" = abstol,
"print.out" = FALSE))

### graphical presentation
matplot(log(lam), mod$sp.coef.path, type = "l", main = "Sparse Group Lasso solution path",

bty = "n", xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "")

lmSP_cv Cross-validation for Sparse Adaptive Overlap Group Least Absolute
Shrinkage and Selection Operator
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Description

Sparse Adaptive overlap group-LASSO, or sparse adaptive group L2-regularized regression, solves
the following optimization problem

minβ,γ
1

2
‖y −Xβ − Zγ‖22 + λ

[
(1− α)

G∑
g=1

‖SgTβ‖2 + α‖T1β‖1
]

to obtain a sparse coefficient vector β ∈ Rp for the matrix of penalized predictors X and a co-
efficient vector γ ∈ Rq for the matrix of unpenalized predictors Z. For each group g, each row
of the matrix Sg ∈ Rng×p has non-zero entries only for those variables belonging to that group.
These values are provided by the arguments groups and group_weights (see below). Each variable
can belong to more than one group. The diagonal matrix T ∈ Rp×p contains the variable-specific
weights. These values are provided by the argument var_weights (see below). The diagonal matrix
T1 ∈ Rp×p contains the variable-specific L1 weights. These values are provided by the argument
var_weights_L1 (see below). The regularization path is computed for the sparse adaptive overlap
group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating
direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details
on the ADMM method. The regularization is a combination of L2 and L1 simultaneous constraints.
Different specifications of the penalty argument lead to different models choice:

LASSO The classical Lasso regularization (Tibshirani, 1996) can be obtained by specifying α = 1
and the matrix T1 as the p× p identity matrix. An adaptive version of this model (Zou, 2006)
can be obtained if T1 is a p × p diagonal matrix of adaptive weights. See also Hastie et al.
(2015) for further details.

GLASSO The group-Lasso regularization (Yuan and Lin, 2006) can be obtained by specifying
α = 0, non-overlapping groups in Sg and by setting the matrix T equal to the p × p identity
matrix. An adaptive version of this model can be obtained if the matrix T is a p× p diagonal
matrix of adaptive weights. See also Hastie et al. (2015) for further details.

spGLASSO The sparse group-Lasso regularization (Simon et al., 2011) can be obtained by speci-
fying α ∈ (0, 1), non-overlapping groups in Sg and by setting the matrices T and T1 equal to
the p× p identity matrix. An adaptive version of this model can be obtained if the matrices T
and T1 are p× p diagonal matrices of adaptive weights.

OVGLASSO The overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by
specifying α = 0, overlapping groups in Sg and by setting the matrix T equal to the p × p
identity matrix. An adaptive version of this model can be obtained if the matrix T is a p × p
diagonal matrix of adaptive weights.

spOVGLASSO The sparse overlap group-Lasso regularization (Jenatton et al., 2011) can be ob-
tained by specifying α ∈ (0, 1), overlapping groups in Sg and by setting the matrices T and
T1 equal to the p× p identity matrix. An adaptive version of this model can be obtained if the
matrices T and T1 are p× p diagonal matrices of adaptive weights.

Usage

lmSP_cv(
X,
Z = NULL,
y,
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penalty = c("LASSO", "GLASSO", "spGLASSO", "OVGLASSO", "spOVGLASSO"),
groups,
group_weights = NULL,
var_weights = NULL,
var_weights_L1 = NULL,
cv.fold = 5,
standardize.data = TRUE,
intercept = FALSE,
overall.group = FALSE,
lambda = NULL,
alpha = NULL,
lambda.min.ratio = NULL,
nlambda = 30,
control = list()

)

Arguments

X an (n× p) matrix of penalized predictors.

Z an (n× q) full column rank matrix of predictors that are not penalized.

y a length-n response vector.

penalty choose one from the following options: ’LASSO’, for the or adaptive-Lasso
penalties, ’GLASSO’, for the group-Lasso penalty, ’spGLASSO’, for the sparse
group-Lasso penalty, ’OVGLASSO’, for the overlap group-Lasso penalty and
’spOVGLASSO’, for the sparse overlap group-Lasso penalty.

groups either a vector of length p of consecutive integers describing the grouping of the
coefficients, or a list with two elements: the first element is a vector of length∑G
g=1 ng containing the variables belonging to each group, where ng is the

cardinality of the g-th group, while the second element is a vector of length G
containing the group lengths (see example below).

group_weights a vector of length G containing group-specific weights. The default is square
root of the group cardinality, see Yuan and Lin (2006).

var_weights a vector of length p containing variable-specific weights. The default is a vector
of ones.

var_weights_L1 a vector of length p containing variable-specific weights for the L1 penalty. The
default is a vector of ones.

cv.fold the number of folds - default is 5.
standardize.data

logical. Should data be standardized?

intercept logical. If it is TRUE, a column of ones is added to the design matrix.

overall.group logical. This setting is only available for the overlap group-LASSO and the
sparse overlap group-LASSO penalties, otherwise it is set to NULL. If it is
TRUE, an overall group including all penalized covariates is added.

lambda either a regularization parameter or a vector of regularization parameters. In this
latter case the routine computes the whole path. If it is NULL values for lambda
are provided by the routine.
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alpha the sparse overlap group-LASSO mixing parameter, with 0 ≤ α ≤ 1. This
setting is only available for the sparse group-LASSO and the sparse overlap
group-LASSO penalties, otherwise it is set to NULL. The LASSO and group-
LASSO penalties are obtained by specifying α = 1 and α = 0, respectively.

lambda.min.ratio

smallest value for lambda, as a fraction of the maximum lambda value. If n > p,
the default is 0.0001, and if n < p, the default is 0.01.

nlambda the number of lambda values - default is 30.

control a list of control parameters for the ADMM algorithm. See ‘Details’.

Value

A named list containing

sp.coefficients a length-p solution vector for the parameters β. If nλ > 1 then the provided vector
corresponds to the minimum cross-validated MSE.

coefficients a length-q solution vector for the parameters γ. If nλ > 1 then the provided vector
corresponds to the minimum cross-validated MSE. It is provided only when either the matrix
Z in input is not NULL or the intercept is set to TRUE.

sp.coef.path an (nλ × p) matrix of estimated β coefficients for each lambda of the provided se-
quence.

coef.path an (nλ×q) matrix of estimated γ coefficients for each lambda of the provided sequence.
It is provided only when either the matrix Z in input is not NULL or the intercept is set to
TRUE.

lambda sequence of lambda.

lambda.min value of lambda that attains the minimum cross-validated MSE.

mse cross-validated mean squared error.

min.mse minimum value of the cross-validated MSE for the sequence of lambda.

convergence logical. 1 denotes achieved convergence.

elapsedTime elapsed time in seconds.

iternum number of iterations.

When you run the algorithm, output returns not only the solution, but also the iteration history
recording following fields over iterates:

objval objective function value

r_norm norm of primal residual

s_norm norm of dual residual

eps_pri feasibility tolerance for primal feasibility condition

eps_dual feasibility tolerance for dual feasibility condition.

Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual,
respectively.
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Details

The control argument is a list that can supply any of the following components:

adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is
TRUE. See Boyd et al. (2011) for details.

rho an augmented Lagrangian parameter. The default value is 1.

tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 2. See Boyd et al. (2011) for details.

mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default
value is 10. See Boyd et al. (2011) for details.

abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).

reltol relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).

maxit maximum number of iterations. The default value is 100.

print.out logical. If it is TRUE, a message about the procedure is printed. The default value is
TRUE.
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set.seed(2023)
n <- 50
p <- 30
X <- matrix(rnorm(n * p), n, p)

### Example 1, LASSO penalty

beta <- apply(matrix(rnorm(p, sd = 1), p, 1), 1, fdaSP::softhresh, 1.5)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)

### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

### run cross-validation
mod_cv <- lmSP_cv(X = X, y = y, penalty = "LASSO",

standardize.data = FALSE, intercept = FALSE,
cv.fold = 5, nlambda = 30,
control = list("adaptation" = adaptation,

"rho" = rho,
"maxit" = maxit, "reltol" = reltol,
"abstol" = abstol,
"print.out" = FALSE))

### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",

xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
main = "Cross-validated Prediction Error")

fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
yVmax = mod_cv$mse + mod_cv$mse.sd)

abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
col = "red", lwd = 1.0)

### comparison with oracle error
mod <- lmSP(X = X, y = y, penalty = "LASSO",

standardize.data = FALSE,
intercept = FALSE,
nlambda = 30,
control = list("adaptation" = adaptation,

"rho" = rho,
"maxit" = maxit, "reltol" = reltol,
"abstol" = abstol,
"print.out" = FALSE))

err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - beta)^2))
plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,

xlab = latex2exp::TeX("$\\log(\\lambda)$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")

abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
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abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
col = "red", lwd = 1.0, lty = 2)

### Example 2, sparse group-LASSO penalty

beta <- c(rep(4, 12), rep(0, p - 13), -2)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)

### define groups of dimension 3 each
group1 <- rep(1:10, each = 3)

### set regularization parameter grid
lam <- 10^seq(1, -2, length.out = 30)

### set the alpha parameter
alpha <- 0.5

### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5

### run cross-validation
mod_cv <- lmSP_cv(X = X, y = y, penalty = "spGLASSO",

groups = group1, cv.fold = 5,
standardize.data = FALSE, intercept = FALSE,
lambda = lam, alpha = 0.5,
control = list("adaptation" = adaptation,

"rho" = rho,
"maxit" = maxit, "reltol" = reltol,
"abstol" = abstol,
"print.out" = FALSE))

### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",

xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
main = "Cross-validated Prediction Error")

fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
yVmax = mod_cv$mse + mod_cv$mse.sd)

abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
col = "red", lwd = 1.0)

### comparison with oracle error
mod <- lmSP(X = X, y = y,

penalty = "spGLASSO",
groups = group1,
standardize.data = FALSE,
intercept = FALSE,
lambda = lam,
alpha = 0.5,
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control = list("adaptation" = adaptation, "rho" = rho,
"maxit" = maxit, "reltol" = reltol, "abstol" = abstol,
"print.out" = FALSE))

err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - beta)^2))
plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,

xlab = latex2exp::TeX("$\\log(\\lambda)$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")

abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),

col = "red", lwd = 1.0, lty = 2)

softhresh Function to solve the soft thresholding problem

Description

Function to solve the soft thresholding problem

Usage

softhresh(x, lambda)

Arguments

x the data value.

lambda the lambda value.

Value

the solution to the soft thresholding operator.
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