Package ‘fastadi’

May 2, 2025
Type Package
Title Self-Tuning Data Adaptive Matrix Imputation
Version 0.1.2

Description Implements the Adaptivelmpute matrix completion
algorithm of 'Intelligent Initialization and Adaptive Thresholding for
Iterative Matrix Completion' <doi:10.1080/10618600.2018.1518238> as
well as the specialized variant of 'Co-Factor Analysis of
Citation Networks' <doi:10.1080/10618600.2024.2394464>.
Adaptivelmpute is useful for embedding sparsely observed matrices,
often out performs competing matrix completion algorithms, and
self-tunes its hyperparameter, making usage easy.

License MIT + file LICENSE

URL https://rohelab.github.io/fastadi/,
https://github.com/RohelLab/fastadi

BugReports https://github.com/RoheLab/fastadi/issues
Depends LRMF3, Matrix, R (>=3.1)

Imports glue, logger, methods, Repp, rlang, RSpectra,

Suggests invertiforms, covr, knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp, ReppArmadillo

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation yes

Author Alex Hayes [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-4985-5160>),
Juhee Cho [aut],
Donggyu Kim [aut],
Karl Rohe [aut]

Maintainer Alex Hayes <alexpghayes@gmail.com>
Repository CRAN
Date/Publication 2025-05-02 16:00:02 UTC

https://doi.org/10.1080/10618600.2018.1518238
https://doi.org/10.1080/10618600.2024.2394464
https://rohelab.github.io/fastadi/
https://github.com/RoheLab/fastadi
https://github.com/RoheLab/fastadi/issues
https://orcid.org/0000-0002-4985-5160

2 adaptive_impute

Contents
adaptive_imputation e e e e e 2
adaptive_impute L. e 2
adaptive_initialize L 5
CItAtION_IMPULE o ot o ot e e e e e e e e e e 6
Citation_impute2 L. e e e 8
Index 12

adaptive_imputation Create an Adaptive Imputation object

Description

adaptive_imputation objects are a subclass of LRMF3::svd_like(), with an additional field
alpha.

Usage

adaptive_imputation(u, d, v, alpha, ...)
Arguments

u A matrix "left singular-ish" vectors.

d A vector of "singular-ish" values.

v A matrix of "right singular-ish" vectors.

alpha Value of alpha after final iteration.

Optional additional items to pass to the constructor.

Value

An adaptive_imputation object.

adaptive_impute Adaptivelmpute

Description

An implementation of the AdaptiveImpute algorithm for matrix completion for sparse matrices.

adaptive_impute 3

Usage

adaptive_impute(
X,
rank,
initialization = c("svd”, "adaptive-initialize"”, "approximate”),
max_iter = 200L,
check_interval = 1L,
epsilon = 1e-07,
additional = NULL
)

S3 method for class 'sparseMatrix'
adaptive_impute(

X,

rank,

initialization = c("svd"”, "adaptive-initialize"”, "approximate"”),
additional = NULL

S3 method for class 'LRMF'
adaptive_impute(
X,
rank,
epsilon = 1e-07,
max_iter = 200L,
check_interval = 1L

)
Arguments
X A sparse matrix of Matrix: :sparseMatrix() class.
rank Desired rank (integer) to use in the low rank approximation. Must be at least 2L

and at most the rank of X. Note that the rank of X is typically unobserved and
computations may be unstable or even fail when rank is near or exceeds this
threshold.

Unused additional arguments.
initialization How to initialize the low rank approximation. Options are:
e "svd" (default). In the initialization step, this treats unobserved values as
zeroes.

e "adaptive-initialize". In the initialization step, this treats unobserved
values as actually unobserved. However, the current AdaptiveInitialize
implementation relies on dense matrix computations that are only suitable
for relatively small matrices.

4 adaptive_impute

e "approximate”. An approximate variant of AdaptiveInitialize that is
less computationally expensive. See adaptive_initialize for details.

Note that initialization matters as AdaptiveImpute optimizes a non-convex ob-
jective. The current theory shows that initializing with AdaptiveInitialize
leads to a consistent estimator, but it isn’t know if this is the case for SVD
initialization. Empirically we have found that SVD initialization works well
nonetheless.

max_iter Maximum number of iterations to perform (integer). Defaults to 200L. In prac-
tice 10 or so iterations will get you a decent approximation to use in exploratory
analysis, and and 50-100 will get you most of the way to convergence. Must be
at least 1L.

check_interval Integer specifying how often to perform convergence checks. Defaults to 1L. In
practice, check for convergence requires a norm calculation that is expensive for
large matrices and decreasing the frequency of convergence checks will reduce
computation time. Can also be set to NULL, which case max_iter iterations of
the algorithm will occur with no possibility of stopping due to small relative
change in the imputed matrix. In this case delta will be reported as Inf.

epsilon Convergence criteria, measured in terms of relative change in Frobenius norm
of the full imputed matrix. Defaults to 1e-7.

additional Ignored except when alpha_method = "approximate” in which case it controls
the precise of the approximation to alpha. The approximate computation of
alpha will always understand alpha, but the approximation will be better for
larger values of additional. We recommend making additional as large as
computationally tolerable.

Value

A low rank matrix factorization represented by an adaptive_imputation() object.

References

1. Cho, Juhee, Donggyu Kim, and Karl Rohe. “Asymptotic Theory for Estimating the Singular
Vectors and Values of a Partially-Observed Low Rank Matrix with Noise.” Statistica Sinica,
2018. https://doi.org/10.5705/s5.202016.0205.

. “Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion:
Some Statistical and Algorithmic Theory for Adaptive-Impute.” Journal of Computational and
Graphical Statistics 28, no. 2 (April 3,2019): 323-33. https://doi.org/10.1080/10618600.2018.1518238.

Examples

mf <- adaptive_impute(ml100k, rank = 3L, max_iter = 5L, check_interval = NULL)
mf

adaptive_initialize 5

adaptive_initialize Adaptivelnitialize

Description

An implementation of the AdaptiveInitialize algorithm for matrix imputation for sparse ma-
trices. At the moment the implementation is only suitable for small matrices with on the order of
thousands of rows and columns at most.

Usage
adaptive_initialize(
X,
rank,
p_hat = NULL,
alpha_method = c("exact”, "approximate"),
additional = NULL

S3 method for class 'sparseMatrix'
adaptive_initialize(

X,
rank,
p_hat = NULL,
alpha_method = c("exact"”, "approximate"),
additional = NULL
)
Arguments
X A sparse matrix of sparseMatrix class. Explicit (observed) zeroes in X can be
dropped for
rank Desired rank (integer) to use in the low rank approximation. Must be at least 2L
and at most the rank of X.
Ignored.
p_hat The portion of X that is observed. Defaults to NULL, in which case p_hat is set to

the number of observed elements of X. Primarily for internal use in citation_impute()
or advanced users.

alpha_method Either "exact"” or "approximate”, defaulting to "exact”. "exact"” is com-
putationally expensive and requires taking a complete SVD of matrix of size
nrow(X) x nrow(X), and matches the AdaptiveInitialize algorithm exactly.
"approximate” departs from the AdaptiveInitialization algorithm to com-
pute a truncated SVD of rank rank + additional instead of a complete SVD.
This reduces computational burden, but the resulting estimates of singular-ish
values will not be penalized as much as in the AdaptivelInitialize algorithm.

6 citation_impute

additional Ignored except when alpha_method = "approximate” in which case it controls
the precise of the approximation to alpha. The approximate computation of
alpha will always understand alpha, but the approximation will be better for
larger values of additional. We recommend making additional as large as
computationally tolerable.

Value

A low rank matrix factorization represented by an adaptive_imputation() object.

Examples

mf <- adaptive_initialize(
ml100k,
rank = 3,
alpha_method
additional =

= "approximate”,
2

mf

citation_impute Citationlmpute

Description

An implementation of the AdaptiveImpute algorithm using efficient sparse matrix computations,
specialized for the case when missing values in the upper triangle are taken to be explicitly ob-
served zeros, as opposed to missing values. This is primarily useful for spectral decompositions of
adjacency matrices of graphs with (near) tree structure, such as citation networks.

Usage

citation_impute(
X,
rank,
initialization = c("svd"”, "adaptive-initialize"”, "approximate"”),
max_iter = 200L,
check_interval = 1L,
epsilon = 1e-07,
additional = NULL

S3 method for class 'sparseMatrix'
citation_impute(
X,

citation_impute 7

rank,
initialization = c("svd”, "adaptive-initialize"”, "approximate”),
additional = NULL

S3 method for class 'LRMF'
citation_impute(
X,
rank,
epsilon = 1e-07,
max_iter = 200L,
check_interval = 1L

)
Arguments
X A square sparse matrix of Matrix: :sparseMatrix() class. Implicit zeros in
the upper triangle of this matrix are considered observed and predictions on
these elements contribute to the objective function minimized by AdaptiveImpute.
rank Desired rank (integer) to use in the low rank approximation. Must be at least 2L

and at most the rank of X. Note that the rank of X is typically unobserved and
computations may be unstable or even fail when rank is near or exceeds this
threshold.

Unused additional arguments.
initialization How to initialize the low rank approximation. Options are:

e "svd" (default). In the initialization step, this treats unobserved values as
Zeroes.

* "adaptive-initialize". In the initialization step, this treats unobserved
values as actually unobserved. However, the current AdaptiveInitialize
implementation relies on dense matrix computations that are only suitable
for relatively small matrices.

* "approximate”. An approximate variant of AdaptiveInitialize that is
less computationally expensive. See adaptive_initialize for details.

Note that initialization matters as AdaptiveImpute optimizes a non-convex ob-
jective. The current theory shows that initializing with AdaptiveInitialize
leads to a consistent estimator, but it isn’t know if this is the case for SVD
initialization. Empirically we have found that SVD initialization works well
nonetheless.

max_iter Maximum number of iterations to perform (integer). Defaults to 200L. In prac-
tice 10 or so iterations will get you a decent approximation to use in exploratory
analysis, and and 50-100 will get you most of the way to convergence. Must be
at least 1L.

check_interval Integer specifying how often to perform convergence checks. Defaults to 1L. In
practice, check for convergence requires a norm calculation that is expensive for

8 citation_impute2

large matrices and decreasing the frequency of convergence checks will reduce
computation time. Can also be set to NULL, which case max_iter iterations of
the algorithm will occur with no possibility of stopping due to small relative
change in the imputed matrix. In this case delta will be reported as Inf.

epsilon Convergence criteria, measured in terms of relative change in Frobenius norm
of the full imputed matrix. Defaults to 1e-7.

additional Ignored except when alpha_method = "approximate” in which case it controls
the precise of the approximation to alpha. The approximate computation of
alpha will always understand alpha, but the approximation will be better for
larger values of additional. We recommend making additional as large as
computationally tolerable.

Details

If OpenMP is available, citation_impute will automatically use getOption("Ncpus”, 1L) OpenMP
threads to parallelize some key computations. Note that some computations are performed with the
Armadillo C++ linear algebra library and may also be parallelized dependent on your BLAS and
LAPACK installations and configurations.

Value

A low rank matrix factorization represented by an adaptive_imputation() object.

Examples

create a (binary) square sparse matrix to demonstrate on
set.seed(887)

n<-10
A <- rsparsematrix(n, n, 0.1, rand.x = NULL)

mf <- citation_impute(A, rank = 3L, max_iter = 1L, check_interval = NULL)
mf

citation_impute?2 Citationlmpute

Description

An implementation of the AdaptiveImpute algorithm using efficient sparse matrix computations,
specialized for the case when missing values in the upper triangle are taken to be explicitly ob-
served zeros, as opposed to missing values. This is primarily useful for spectral decompositions of
adjacency matrices of graphs with (near) tree structure, such as citation networks.

citation_impute2 9

Usage

citation_impute2(
X,
rank,
initialization = c("svd”, "adaptive-initialize"”, "approximate”),
max_iter = 200L,
check_interval = 1L,
epsilon = 1e-07,
additional = NULL
)

S3 method for class 'sparseMatrix'
citation_impute2(

X,

rank,

initialization = c("svd"”, "adaptive-initialize"”, "approximate"”),
additional = NULL

S3 method for class 'LRMF'
citation_impute2(
X,
rank,
epsilon = 1e-07,
max_iter = 200L,
check_interval = 1L

)
Arguments
X A square sparse matrix of Matrix: :sparseMatrix() class. Implicit zeros in
the upper triangle of this matrix are considered observed and predictions on
these elements contribute to the objective function minimized by AdaptiveImpute.
rank Desired rank (integer) to use in the low rank approximation. Must be at least 2L

and at most the rank of X. Note that the rank of X is typically unobserved and
computations may be unstable or even fail when rank is near or exceeds this
threshold.

Unused additional arguments.
initialization How to initialize the low rank approximation. Options are:

e "svd” (default). In the initialization step, this treats unobserved values as
Zeroes.

* "adaptive-initialize". In the initialization step, this treats unobserved
values as actually unobserved. However, the current AdaptiveInitialize

10 citation_impute2

implementation relies on dense matrix computations that are only suitable
for relatively small matrices.

* "approximate"”. An approximate variant of AdaptiveInitialize that is
less computationally expensive. See adaptive_initialize for details.

Note that initialization matters as AdaptiveImpute optimizes a non-convex ob-
jective. The current theory shows that initializing with AdaptiveInitialize
leads to a consistent estimator, but it isn’t know if this is the case for SVD
initialization. Empirically we have found that SVD initialization works well
nonetheless.

max_iter Maximum number of iterations to perform (integer). Defaults to 200L. In prac-
tice 10 or so iterations will get you a decent approximation to use in exploratory
analysis, and and 50-100 will get you most of the way to convergence. Must be
at least 1L.

check_interval Integer specifying how often to perform convergence checks. Defaults to 1L. In
practice, check for convergence requires a norm calculation that is expensive for
large matrices and decreasing the frequency of convergence checks will reduce
computation time. Can also be set to NULL, which case max_iter iterations of
the algorithm will occur with no possibility of stopping due to small relative
change in the imputed matrix. In this case delta will be reported as Inf.

epsilon Convergence criteria, measured in terms of relative change in Frobenius norm
of the full imputed matrix. Defaults to 1e-7.

additional Ignored except when alpha_method = "approximate” in which case it controls
the precise of the approximation to alpha. The approximate computation of
alpha will always understand alpha, but the approximation will be better for
larger values of additional. We recommend making additional as large as
computationally tolerable.

Details

If OpenMP is available, citation_impute will automatically use getOption("Ncpus”, 1L) OpenMP
threads to parallelize some key computations. Note that some computations are performed with the
Armadillo C++ linear algebra library and may also be parallelized dependent on your BLAS and
LAPACK installations and configurations.

Value

A low rank matrix factorization represented by an adaptive_imputation() object.

Examples
create a (binary) square sparse matrix to demonstrate on
set.seed(887)
n <- 100

A <- rsparsematrix(n, n, 0.1, rand.x = NULL) * 1
A <- as(triu(A), "generalMatrix")

citation_impute2

mf <- citation_impute(A, rank = 5, max_iter = 5L, check_interval = NULL)
mf

mf2 <- citation_impute2(A, rank = 5L, max_iter = 5L, check_interval = NULL)
mf2

11

Index

adaptive_imputation, 2
adaptive_imputation(), 4,6, 8, 10
adaptive_impute, 2
adaptive_initialize, 5

citation_impute, 6
citation_impute(), 5
citation_impute2, 8

LRMF3::svd_like(), 2

Matrix::sparseMatrix(), 3,7,9

12

	adaptive_imputation
	adaptive_impute
	adaptive_initialize
	citation_impute
	citation_impute2
	Index

