
fairadapt: Causal Reasoning for Fair Data

Preprocessing

Drago Plečko
ETH Zürich

Nicolas Bennett
ETH Zürich

Nicolai Meinshausen
ETH Zürich

Abstract

Machine learning algorithms are useful for various predictions tasks, but they can
also learn how to discriminate, based on gender, race or other sensitive attributes. This
realization gave rise to the field of fair machine learning, which aims to recognize, quantify
and ultimately mitigate such algorithmic bias. This manuscript describes the R-package
fairadapt, which implements a causal inference preprocessing method. By making use of
a causal graphical model alongside the observed data, the method can be used to address
hypothetical questions of the form “What would my salary have been, had I been of a
different gender/race?”. Such individual level counterfactual reasoning can help eliminate
discrimination and help justify fair decisions. We also discuss appropriate relaxations
which assume that certain causal pathways from the sensitive attribute to the outcome
are not discriminatory. This vignette can also be found in a standalone journal version
(Plecko, Bennett, and Meinshausen 2024).

Keywords: algorithmic fairness, causal inference, machine learning.

1. Introduction

As society transitions to an economy driven by artificial intelligence (AI), an increasing num-
ber of prediction tasks is delegated to AI tools. Sometimes these tasks are within socially
sensitive domains, such as determining credit-score ratings or predicting recidivism during
parole. In the process, it has been recognized that machine learning algorithms are capable of
learning societal biases, which we might not want them to learn, for example with respect to
race (Larson, Mattu, Kirchner, and Angwin 2016b) or gender (Lambrecht and Tucker 2019;
Blau and Kahn 2003). This realization seeded an important debate in the machine learning
community about fairness of algorithms and their impact on decision-making.

1.1. Definitions of fairness

The first step towards understanding algorithmic fairness is about providing a formal defini-
tion of what fairness (or discrimination) means. In light of this, existing intuitive notions have
been mathematically formalized, thereby also providing fairness metrics that can be used to
quantify discrimination. However, various different notions of fairness exist, and these are
sometimes mutually incompatible (Corbett-Davies and Goel 2018), meaning they cannot be
satisfied at the same time for a given predictor Ŷ . In fact, there is currently no consensus
on which notion of fairness is the correct one. Among the many proposal discussed in the

2 fairadapt: Fair Data Adaptation

literature, the most commonly considered ones include:

(1) Demographic parity (Darlington 1971), which requires the protected attribute A (gender,
race, religion etc.) to be independent of a constructed classifier or regressor Ŷ , written
as

Ŷ⊥⊥A.

(2) Equality of odds (Hardt, Price, Srebro et al. 2016), which requires equal false positive
and false negative rates of classifier Ŷ between different groups (females and males for
example) written as

Ŷ⊥⊥A | Y.

(3) Calibration (Chouldechova 2017), which requires the protected attribute to be indepen-
dent of the actual outcome given the prediction

Y⊥⊥A | Ŷ .

Intuitively, this means that the protected attribute A does not offer additional informa-
tion about the outcome Y once we know what the prediction Ŷ is.

1.2. Fairness tasks

Apart from choosing a notion of fairness most appropriate to the setting that is analyzed, it
is instructive to distinguish between two somewhat different tasks in fairness analysis. The
first, usually simpler task is that of bias quantification, or bias measurement. In this case, we
are interested in computing metrics from our dataset, in order to verify whether a definition
is satisfied or not. Concretely, suppose we have a dataset in which Ŷ is the predicted salary of
an employee and A is sex. If we are interested in demographic parity, Ŷ⊥⊥A, we can compute
the average difference in salary between the male/female groups, that is

❊[Ŷ | A = male]−❊[Ŷ | A = female].

Based on this quantity (which is known as total variation, or TV for short), we might decide
that either there is a disparity between sexes, or perhaps not. For other definitions of fairness,
different metrics would be appropriate.

Sometimes performing the first step of bias measurement is not the end goal. Suppose that
we found a large salary gap between sexes in the example above, raising issues about possible
discrimination. We then might be interested in correcting this bias, by computing new,
more fair predictions (in which, say, the salary gap is lower). This second task is that of
bias removal, or bias mitigation, in which we want to remove the undesired bias from our
predictions.

Different software tools can be used to perform the two fairness tasks described above. In
Figure 1 we provide a graphical overview of some of the available software in Python and
R, which are the languages most commonly used for fairness analysis. For a given task and
outcome/definition of fairness, we show the existing software packages that the reader might
want to use. Since calibration is often satisfied by fitting an unconstrained model, our focus
is on demographic parity and equality of odds.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 3

Classification Regression Classification Regression

E
O

D
P

D
P

&
E
O

B
ia
s
D
et
ec
ti
o
n

B
ia
s
R
em

o
v
a
l

R Python

aif360

fairlearn

ethicML

fairness

indicators

aif360

fairlearn

ethicML

aif360

fairlearn

ethicML

aif360

fairlearn

ethicML

fairml

fairness

fairmodels

fairmodels

fairml

fairadapt

fairmodels

fairml

fairadapt

Figure 1: Software options for fair data analysis in R and Python. In the left column, nodes
correspond to R-packages and in the right column to Python modules. DP stands for demo-
graphic parity, EO equality of odds.

The software landscape for fair ML in Python is more mature. Currently three well devel-
oped packages exist, capable of computing various fairness metrics. Also, these tools support
training predictors that satisfy either equality of odds or demographic parity. These reposito-
ries are aif360 (Bellamy, Dey, Hind, Hoffman, Houde, Kannan, Lohia, Martino, Mehta, Mo-
jsilovic, Nagar, Ramamurthy, Richards, Saha, Sattigeri, Singh, Varshney, and Zhang 2018)
maintained by IBM, fairlearn (Bird, Dudik, Edgar, Horn, Lutz, Milan, Sameki, Wallach, and
Walker 2020) maintained by Microsoft and EthicML (Thomas, Kehrenberg, Bartlett, and
Quadrianto 2018). A further package, fairness indicators (Shukla, Fang, and Jindal 2019), is
narrower in scope but suitable for computing fairness metrics on very large datasets.

For R, i.e., distributed via CRAN, there are fewer packages that relate to fair machine learning
(see Figure 1). Available packages include fairml (Scutari 2021), which implements the non-
convex method of Komiyama, Takeda, Honda, and Shimao (2018), as well as fairness (Kozodoi
and V. Varga 2021) and fairmodels (Wiśniewski and Biecek 2022), which serve as diagnostic
tools for measuring algorithmic bias and provide several pre- and post-processing methods
for bias mitigation. The fairadapt package described in this manuscript is a bias removal
method which is able to interpolate between demographic parity and calibration notions, and
is applicable to both regression and classification settings. In particular, fairadapt is the only
software in Figure 1 which is causally aware. This means that the bias removal performed
by fairadapt can be explained by and related to the causal mechanisms that generated the
discrimination in the first place.

1.3. A causal approach

The discussion on algorithmic fairness is, however, not restricted to the machine learning
domain. There are many legal and philosophical aspects that are paramount. For example, the

4 fairadapt: Fair Data Adaptation

legal distinction between the disparate impact and disparate treatment doctrines (McGinley
2011; Barocas and Selbst 2016) is important for assessing fairness from a legal standpoint.
This in turn emphasizes the importance of the interpretation behind the decision-making
process, which is often not the case with black-box machine learning algorithms. For this
reason, research in fairness through a causal inference lens gained attention.

A possible approach to fairness is the use of counterfactual reasoning (Galles and Pearl 1998),
which allows for arguing what might have happened under different circumstances that never
actually materialized, thereby providing a tool for understanding and quantifying discrim-
ination. For example, one might ask how a change in sex would affect the probability of
a specific candidate being accepted for a given job opening. This approach has motivated
another notion of fairness, termed counterfactual fairness (Kusner, Loftus, Russell, and Silva
2017), which states that the decision made, should remain fixed, even if, hypothetically, the
protected attribute such as race or gender were to be changed (this can be written succinctly
as Ŷi(a) = Ŷi(a

′) in the potential outcomes notation). Causal inference can also be used for
decomposing the total variation measure into its direct, mediated, and confounded contri-
butions (Zhang and Bareinboim 2018), yielding further insights into demographic parity as
a criterion. Furthermore, by introducing the notion of so-called resolving variables, Kilber-
tus, Carulla, Parascandolo, Hardt, Janzing, and Schölkopf (2017) described relaxations of
demographic parity, which can possibly be a prohibitively strong notion.

The following sections describe an implementation of the fair data adaptation method outlined
in Plecko and Meinshausen (2020), which combines the notions of counterfactual fairness and
resolving variables, and explicitly computes counterfactual instances for individuals. The
implementation is available as the R-package fairadapt from CRAN.

1.4. Novelty in the package

A first version of fairadapt was published with the original manuscript (Plecko and Mein-
shausen 2020). The software has since been developed further and novelty in the package
presented in this manuscript includes the following:

• The methodology has been extended from the Markovian to the Semi-Markovian case
(allowing noise variables to be correlated), which generalizes the scope of applications.

• Backdoor paths into the protected attribute A are now allowed, meaning that the at-
tribute A does not need to be a root node of the causal graph.

• The user is provided with functionality for uncertainty quantification of the estimates.
• Introduction of S3 classes fairadapt and fairadaptBoot, alongside associated meth-

ods, provides a more formalized implementation.
• More flexibility is allowed in the quantile learning step, including different algorithms

for quantile regression (linear, forest based, neural networks). Additionally, there is also
a possibility of specifying a custom quantile learning function (utilizing S3 dispatch).

• The user is provided with functionality for assessing the quality of the quantile regression
fit, which allows for tuning the hyperparameters of the more flexible algorithms.

The rest of the manuscript is organized as follows. In Section 2 we describe the methodology
behind fairadapt, together with reviewing some important concepts of causal inference. In
Section 3 we discuss implementation details and provide some general user guidance, followed
by Section 4 in which we discuss how to perform uncertainty quantification with fairadapt.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 5

A E T Y

Figure 2: A visual representation of the university admission example. A denotes gender, E

previous educational achievement, and T an admissions test score. The outcome Y represents
the final score used for the admission decision. The protected attribute A has a discriminatory
causal effect on variables E, T , and Y , which we wish to remove.

Section 5 illustrates the use of fairadapt through a large, real-world dataset and a hypothetical
fairness application. Finally, in Section 6 we elaborate on some extensions, such as Semi-
Markovian models and resolving variables.

2. Methodology

In this section, the intuition behind fairadapt is described using an example. This is followed
by a more rigorous mathematical formulation, based on Markovian structural causal models
(SCMs). Some relevant extensions, such as the Semi-Markovian case and the introduction of
resolving variables are discussed in Section 6.

2.1. University admission example

Consider for example a dataset about students applying for university admission. Let variable
A, gender, be the protected attribute (A = a corresponding to females and A = a′ to males).
Let E denote educational achievement (measured for example by grades achieved in school)
and T the result of an admissions test for further education. Finally, let Y be the outcome
of interest (final score) upon which admission to further education is decided. A visual
representation of how the variables affect each other is given in Figure 2.

Attribute A, gender, has a causal effect on variables E, T , and Y . We consider this effect dis-
criminatory and wish to eliminate it, in the following way. For each individual with observed
values (a, e, t, y) we want to find a mapping

(a, e, t, y) −→ (a(fp), e(fp), t(fp), y(fp)),

which represents the value the person would have obtained in an alternative world where
everyone was female. To construct such a mapping, we adapt (transform) the variables in
the dataset in order. Explicitly, to a male person with education value e, we assign the
transformed value e(fp), chosen such that

P(E ≥ e | A = a′) = P(E ≥ e(fp) | A = a).

The key idea is that the relative educational achievement within the subgroup remains pre-
served if the protected attribute gender is changed. If, for example, a male person has a
higher educational achievement value than 70% of males in the dataset, we assume that he

6 fairadapt: Fair Data Adaptation

10%-quantile
(Male)

10%-quantile
(Female)

70%-quantile
(Male)

70%-quantile
(Female)T | E = e,A = a′

T | E = e(fp), A = a

t

P(t)

Figure 3: A graphical visualization of the quantile matching procedure. Given a male with a
test score corresponding to the 70% quantile, we would hypothesize, that if the gender was
changed, the individual would have achieved a test score corresponding to the 70% quantile
of the female distribution.

would also be better than 70% of females, had he been female1. After computing transformed
educational achievement values corresponding to the female world (E(fp)), the transformed
test score values T (fp) can be calculated in a similar fashion, but conditional on educational
achievement. That is, a male with values (E, T) = (e, t) is assigned a test score t(fp) such
that

P(T ≥ t | E = e, A = a′) = P(T ≥ t(fp) | E = e(fp), A = a),

where the value e(fp) was obtained in the previous step. This step can be visualized as shown
in Figure 3.

In the final step, the outcome variable Y needs to be adjusted. The adaptation is based on
the same principle as above, using transformed values of both education and the test score.
The transformed value y(fp) of Y = y is chosen to satisfy

P(Y ≥ y | E = e, T = t, A = a′) = P(Y ≥ y(fp) | E = e(fp), T = t(fp), A = a).

The form of counterfactual correction described above is known as recursive substitution
(Pearl 2009, Chapter 7). We formalize this approach in the following sections. The reader
who is satisfied with the intuitive notion provided by the above example is encouraged to go
straight to Section 3.

2.2. Structural causal models

In order to describe the causal mechanisms of a system, a structural causal model (SCM)
can be hypothesized, which fully encodes the assumed data-generating process. An SCM is
represented by a 4-tuple 〈V, U,F ,P(u)〉, where

• V = {V1, . . . , Vn} is the set of observed (endogenous) variables.
• U = {U1, . . . , Un} are latent (exogenous) variables.

1This assumption of course is not empirically testable, as it is impossible to observe both a female and a
male version of the same individual.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 7

• F = {f1, . . . , fn} is the set of functions determining V , vi ← fi(pa(vi), ui), where
pa(Vi) ⊂ V, Ui ⊂ U are the functional arguments of fi and pa(Vi) denotes the parent
vertices of Vi.

• P(u) is a distribution over the exogenous variables U .

Any particular SCM is accompanied by a graphical model G (a directed acyclic graph, DAG).
The set of variables that are inputs of the mechanism fVi

are the parents of Vi denoted by
pa(Vi). Therefore, the graph encodes how variables affect one another. Furthermore, we also
write ch(Vi), de(Vi), an(Vi) for the children, descendants, and ancestors of Vi in the graph G.
We assume throughout, without loss of generality, that

(i) fi(pa(vi), ui) is increasing in ui for every fixed pa(vi).
(ii) Exogenous variables Ui are uniformly distributed on [0, 1].

Equipped with the notion of an SCM and the assumptions (i)-(ii), we can describe the adap-
tation procedure in the Markovian case, in which all exogenous variables Ui are mutually
independent (for the Semi-Markovian case, where variables Ui are allowed to share informa-
tion, see Section 6).

2.3. Markovian SCM formulation

Let Y be the outcome of interest, taking values in ❘. Let A be the binary protected attribute
taking two values a, a′. Denote by X the remaining covariates, and let V = (A, X, Y) denote
the observed variables. Our goal is to describe a preprocessing method which transforms
the observed variables V into their fair version V (fp). This is achieved by computing the
counterfactual values V (A = a), which would have been observed if the protected attribute
was fixed to a baseline value A = a for the entire sample.

More formally, going back to the university admission example above, we want to align the
distributions

Vi | pa(Vi), A = a and Vi | pa(Vi), A = a′,

meaning that the distribution of Vi conditional on pa(Vi) should be indistinguishable between
female and male groups (and this should hold for every variable Vi). Since each function
fi of the original SCM is reparametrized so that fi(pa(vi), ui) is increasing in ui for every
fixed pa(vi), and since variables Ui are uniformly distributed on [0, 1], the Ui values can be
interpreted as the latent quantiles associated with Vi. These latent quantiles are assumed to
be preserved when performing the adaptation procedure.

The fair data adaption algorithms starts by fixing A = a for all individuals. After this, the
algorithm iterates over descendants of the protected attribute A, in any valid topological
order (this topological order is inferred from the causal graph G, which is also an input of the
algorithm). For each Vi, the assignment function fi and the corresponding quantiles Ui are
inferred. Finally, transformed values Vi

(fp) are obtained by evaluating fi, using quantiles Ui

and the transformed parents pa(Vi)
(fp) (see Algorithm 1).

The assignment functions fi of the SCM are always assumed to be unknown, but are inferred
non-parametrically at each step. Algorithm 1 obtains the counterfactual values V (A = a)

8 fairadapt: Fair Data Adaptation

Algorithm 1: Fair Data Adaptation

Input: observed variables V , causal graph G
set A← a for everyone
for Vi ∈ de(A) in topological order do

learn function Vi ← fi(pa(Vi), Ui)
infer quantiles Ui associated with the variable Vi

transform values as Vi
(fp) ← fi(pa(Vi)

(fp), Ui)

end

return V (fp)

under the do(A = a) intervention for each individual, while keeping the latent quantiles U

fixed. In the case of continuous variables, the latent quantiles U can be determined exactly,
while for the discrete case, the situation is more subtle. A detailed discussion can be found
in Plecko and Meinshausen (2020, Section 5).

3. Implementation

The main function for data adaption in the fairadapt package is fairadapt(). This func-
tion returns an S3 classed object of class fairadapt. The fairadapt class has associated
implementations of the base R S3 generics print(), summary(), plot() and predict(). Fur-
thermore, methods are available for the autoplot() generic exported from ggplot2 (Wick-
ham 2016), as well as fairadapt-specific implementations of S3 generics visualizeGraph(),
adaptedData(), quantFit(), and fairTwins().

The following sections describe the intended use of fairadapt(), together with the associated
methods and their relations. The most important arguments of fairadapt() include:

• formula: Argument of type formula, specifying the dependent and explanatory vari-
ables.

• adj.mat: Argument of type matrix, encoding the adjacency matrix.
• train.data and test.data: Both of type data.frame, representing the respective

datasets.
• prot.attr: Scalar-valued argument of type character identifying the protected at-

tribute. Has to correspond to a column name in the train.data argument.

It is worth clarifying the possible data types that can be used in the train.data argument.
We note the following:

(i) Attribute A: the protected attribute is assumed to be binary. The prot.attr column
in train.data can be of any data type coercible to a factor, but can only take two
distinct values. Otherwise an error is thrown.

(ii) Outcome Y : the dependent variable specified on the left hand side of the formula

argument can be either a numeric, logical, integer (treated the same as an ordered
factor), factor, or a character2.

2Care needs to be taken when supplying unordered factor or character inputs since the adaptation

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 9

(iii) Remaining covariates X: all other variables do not have limitations. Unordered factor

or character inputs can also be used as covariates X.

As an example, we perform fair data adaption on the university admission dataset described
in Section 2. We load the uni_admission dataset provided by fairadapt (inspired by the
Berkeley admissions dataset (Bickel, Hammel, and O’Connell 1975)), consisting of synthetic
university admission data of 1000 students. We subset the data, using the first n_samp rows
as training data (uni_trn) and the following n_samp rows as testing data (uni_tst). Further-
more, we construct an adjacency matrix uni_adj with edges gender→ edu, gender→ test,
edu → test, edu → score, and test → score, corresponding to the causal graph from
Figure 2. We set gender as the protected attribute.

R> n_samp <- 500

R>

R> uni_dat <- data("uni_admission", package = "fairadapt")

R> uni_dat <- uni_admission[seq_len(2 * n_samp),]

R>

R> head(uni_dat)

gender edu test score

1 1 1.3499572 1.617739679 1.9501728

2 0 -1.9779234 -3.121796235 -2.3502495

3 1 0.6263626 0.530034686 0.6285619

4 1 0.8142112 0.004573003 0.7064857

5 1 1.8415242 1.193677123 0.3678313

6 1 -0.3252752 -2.004123561 -1.5993848

R> uni_trn <- head(uni_dat, n = n_samp)

R> uni_tst <- tail(uni_dat, n = n_samp)

R>

R> uni_dim <- c("gender", "edu", "test", "score")

R> uni_adj <- matrix(c(0, 1, 1, 0,

+ 0, 0, 1, 1,

+ 0, 0, 0, 1,

+ 0, 0, 0, 0),

+ ncol = length(uni_dim),

+ dimnames = rep(list(uni_dim), 2),

+ byrow = TRUE)

R>

R> set.seed(2022)

R> basic <- fairadapt(score ~ ., train.data = uni_trn,

+ test.data = uni_tst, adj.mat = uni_adj,

+ prot.attr = "gender")

R>

R> basic

procedure depends on the order of the levels of the outcome variable. For such inputs, the order of the levels
will be chosen automatically, so using an ordered factor for the outcome variable is the recommended option.

10 fairadapt: Fair Data Adaptation

Call:

fairadapt(formula = score ~ ., prot.attr = "gender", adj.mat = uni_adj,

train.data = uni_trn, test.data = uni_tst)

Adapting variables:

score, edu, test

Based on protected attribute gender

AND

Based on causal graph:

score gender edu test

score 0 0 0 0

gender 0 0 1 1

edu 1 0 0 1

test 1 0 0 0

The implicitly called print() method in the previous code block displays some informa-
tion about how fairadapt() was called. This information includes the variables that were
adapted, the protected attribute, and the causal graph used for the adaptation (printed as
an adjacency matrix). By additionally calling the summary() function, we can inspect the
number of training and test samples, and the total variation before and after adaptation,
written in our notation as

❊[Y | A = a]−❊[Y | A = a′] and ❊[Y (fp) | A = a]−❊[Y (fp) | A = a′],

respectively, shown below:

R> summary(basic)

Call:

fairadapt(formula = score ~ ., prot.attr = "gender", adj.mat = uni_adj,

train.data = uni_trn, test.data = uni_tst)

Protected attribute: gender

Protected attribute levels: 0, 1

Adapted variables: edu, test, score

Number of training samples: 500

Number of test samples: 500

Quantile method: rangerQuants

Total variation (before adaptation): -0.7045

Total variation (after adaptation): -0.066

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 11

The adapted train and test data can be obtained using the adaptedData() function and
passing the argument train = TRUE for the training data, and train = FALSE for the test
data:

R> head(adaptedData(basic, train = FALSE))

gender edu test

501 0 -2.2844949 -1.3101484

502 0 -0.2884019 -1.0954813

503 0 0.4161544 0.6885127

504 0 -0.6166185 -1.1286510

505 0 -0.1607580 -0.7841601

506 0 -0.2337741 -1.1327089

3.1. Specifying the graphical model

The algorithm used for fair data adaption in fairadapt() is based on graphical causal model
G (see Algorithm 1). To specify the causal graph, we pass the corresponding adjacency matrix
as the adj.mat argument. The convenience function graphModel() turns a graph specified as
an adjacency matrix into an annotated graph using the igraph package (Csardi and Nepusz
2006). Alternatively, by calling the S3 generic visualizeGraph() on a fairadapt object,
the user can also inspect the graphical model that was used for the data adaptation.

R> uni_graph <- graphModel(uni_adj)

Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2

3.4.0.

i Please use `linewidth` in the `default_aes` field and elsewhere

instead.

This warning is displayed once every 8 hours.

Call `lifecycle::last_lifecycle_warnings()` to see where this warning

was generated.

A visualization of the igraph object returned by graphModel() is shown in Figure 4. The
graph is the same as that in Figure 2. However, specifying the causal graph is not the only
option to perform the data adaptation. A possible alternative is to specify a valid topological
ordering over the observable variables V , and specify it as a character vector, using the
top.ord argument.

3.2. Quantile learning step

The most common and recommended usage of fairadapt() follows a typical machine learning
framework. We start by calling the fairadapt() function that performs the quantile learning
step and counterfactual correction, based on the train.data argument. Following this, we
can call the predict() function on the returned fairadapt S3 object, in order to perform
data adaption on new test data. In such a workflow, the adaptation of the training and

12 fairadapt: Fair Data Adaptation

gender

edu

test

score

Figure 4: The underlying graphical model corresponding to the university admission example
(also shown in Figure 2).

testing data is done separately. In specific situations, it might be desirable to input both
train.data and test.data arguments directly to fairadapt(), which then transforms both
the training and testing data jointly. This one-step procedure might be considered when the
proportion of test samples compared to train samples is large, and when the train.data has
a relatively small sample size. The benefit of this approach is that, even though the outcome
Y is not available, other attributes X of test.data can be used for quantile learning step.

The data frames passed as train.data and test.data are required to have column names
which also appear in the row and column names of the adjacency matrix. The protected
attribute A, passed as scalar-valued character vector prot.attr, should also appear in the
column names of train.data and test.data. The test.data argument defaults to NULL,
with the intention that test.data is specified as an input to the predict() function at a
later stage.

Quantile methods

The quantile learning step of Algorithm 1 can in principle be carried out by several methods,
three of which are implemented in fairadapt:

• Quantile Regression Forests (Meinshausen 2006; Wright and Ziegler 2017).
• Non-Crossing Quantile Neural Networks (Cannon 2018, 2015).
• Linear Quantile Regression (Koenker and Hallock 2001; Koenker, Portnoy, Ng, Zeileis,

Grosjean, and Ripley 2018).

Using linear quantile regression is the most efficient option in terms of runtime, while for
non-parametric models and mixed data, the random forest approach is well-suited, at the
expense of a slight increase in runtime. The neural network approach is substantially slower
when compared to linear and random forest estimators and consequently does not scale well
to large sample sizes. As default, the random forest based approach is used, due to its non-
parametric nature and computational speed. However, for smaller sample sizes, the neural
network approach can also demonstrate competitive performance. In Table 1 we provide a
quick summary outlining some differences between the three natively supported methods, and
also report runtimes on the uni_admission dataset with different sample sizes.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 13

Random forest Neural network Linear regression

R-package ranger qrnn quantreg

quant.method rangerQuants mcqrnnQuants linearQuants

Complexity O(np log n) O(npnepochs) O(p2n)

Default
parameters

ntrees = 500
mtry =

√
p

1 hidden layer
fully connected
feed-forward
network

"br" method of
Barrodale and
Roberts used for
fitting

Tuni(200) 0.4 37.7 0.2
Tuni(500) 0.9 96.8 0.4

Table 1: Summary table of different quantile regression methods. n is the number of samples,
p number of covariates, nepochs number of training epochs for the neural network. Tuni(n)
denotes the runtime of different methods on the university admission dataset, with n training
and n testing samples. The runtimes were obtained on a system with Intel Core i7-8750H CPU
@ 2.2GHz running MacOS Big Sur 11.6. The version of R was 4.2.0 "Vigorous Calisthenics"
with quantreg version 5.93, ranger version 0.13.1, and mcqrnn version 2.0.5.

Influencing the fit

The quantile methods shown in Table 1 make calls to specific functions that perform quan-
tile regression. These functions take varying arguments and for that reason, fairadapt()

forwards arguments passed as ... to the function specified as quant.method.

Computational speed An important consideration in choosing values for optional argu-
ments of specific quantile regression functions is computational speed. For example, the
function rangerQuants() internally calls the ranger() function (from ranger) and with re-
spect to computational speed, an important argument is num.trees, the number of trees used
when building the quantile regression forest. Clearly, choosing a smaller number of trees will
be faster, but at the same time will result in a fit with larger variance.

Similarly, mcqrnnQuants() internally calls mcqrnn.fit() (from qrnn), which has a number of
arguments that can be used for adapting the underlying neural network. In terms of computa-
tional speed, the most important arguments are n.trials (number of repeated initializations
used to avoid local minima) and iter.max (maximum number of iterations of the optimiza-
tion). Choosing smaller values will reduce the runtime. Lastly, function linearQuants()

internally calls rq() (from quantreg). This function is less flexible, since the model is linear.
However, its method argument can be used when the number of samples becomes large (using
method equal to "fn" or "pfn" utilizes the Frisch-Newton interior point method, which may
be preferable for large samples).

Fit quality Both rangerQuants() and mcqrnnQuants() expose flexible machine learning
tools with several parameters that impact fit quality. In order to optimize the fitting procedure
by tuning these parameters, we need a way of assessing the quality of our fit. In the context
of quantile regression we can estimate the expected τ -quantile loss function,

14 fairadapt: Fair Data Adaptation

❊[ρτ (Vi, µτ (pa(Vi)))], (1)

where µτ (pa(Vi)) is the function predicting the τ -quantile of variable Vi using the parents
pa(Vi) and ρτ is the asymmetric L1 loss function whose minimizer is the τ -quantile. The
function ρτ is given by

ρτ (x, y) =

{
τ(x− y), for x ≥ y

(1− τ)(y − x), for x < y.

A smaller empirical loss based on Equation 1 corresponds to better fit quality. For hyperpa-
rameter tuning we can perform cross-validation (fitting the quantile regression on separate
folds), which is directly available within the fairadapt() function. The argument eval.qfit

has a default value NULL, but if this argument is given a positive integer value, then it is used
as the number of folds for performing cross-validation.

We compute the average empirical loss ❊̂[ρτ (Vi, µτ (pa(Vi)))] for each variable Vi and τ =
0.25, 0.5, 0.75 (corresponding to 25%, 50% and 75% quantiles). The average of these three
values is reported at the end, and can be extracted from the resulting fairadapt object using
the quantFit() method:

R> set.seed(22)

R> fit_qual <- fairadapt(score ~ ., train.data = uni_trn,

+ adj.mat = uni_adj, prot.attr = "gender",

+ eval.qfit = 3L)

R>

R> quantFit(fit_qual)

edu test score

0.3405883 0.2803902 0.3457824

The function returns the quality of the quantile fit for each variable. A very reasonable
objective to minimize is the average of these values, by iterating over a grid of possible values
of the tuning parameters. The interesting parameters to optimize for the two methods include:

(i) for ranger(): parameters mtry (number of candidate variables considered for splitting
in each step), min.node.size (size of leaf nodes below which splitting is stopped) and
max.depth (maximum depth of each tree),

(ii) for mcqrnn(): parameters n.hidden, n.hidden2 (number of nodes in the first and
second hidden layers), Th (activation function), method (optimizer to be used), and a
range of other parameters that are fed to the chosen optimizer via ellipsis.

The quantile methods included in fairadapt have reasonable default values, that serve as a
good starting point. Optimizing the quantile fit should therefore be of interest mostly to
advanced users (and hence we do not perform parameter tuning here explicitly).

Extending to custom methods

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 15

The above-mentioned set of methods is not exhaustive. Further options are conceivable and
therefore fairadapt provides an extension mechanism to allow for custom quantile method
specified by the user. The fairadapt() argument quant.method expects a function to be
passed, a call to which will be constructed with three unnamed arguments:

1. A data.frame containing data to be used for quantile regression. This will either be
the data.frame passed as train.data, or if test.data was specified, a concatenated,
row-bound version of train.data and test.data.

2. A logical flag, indicating whether the protected attribute is the root node of the causal
graph. If the attribute A is a root node, we know that

P(X | do(A = a)) = P(X | A = a).

Therefore, the interventional and conditional distributions are in this case the same,
and we can leverage this knowledge in the quantile learning procedure, by splitting the
data into A = 0 and A = 1 groups.

3. A logical vector of length nrow(data), indicating which rows in the data.frame

passed as data correspond to samples with baseline values of the protected attribute.

Arguments passed as ... to fairadapt() will be forwarded to the function specified as
quant.method and passed after the first three fixed arguments listed above. The return
value of the function passed as quant.method is expected to be an S3-classed object. This
object should represent the conditional distribution Vi | pa(Vi) (see function rangerQuants()

for an example). Additionally, the object should have an implementation of the S3 generic
function computeQuants() available. For each row (vi, pa(vi)) of the data argument, the
computeQuants() function uses the S3 object to perform the following steps:

(i) Infer the quantile of vi | pa(vi).

(ii) Compute the counterfactual value v
(fp)
i under the change of protected attribute, us-

ing the counterfactual values of parents pa(v
(fp)
i) computed in previous steps (values

pa(v
(fp)
i) are contained in the newdata argument).

For an example, see the computeQuants.ranger() method for a ranger object, which can
be invoked by the computeQuants() generic.

3.3. Fair-twin inspection

We now turn to a useful property of fairadapt, which allows the user to explore counterfactual
instances for different individuals in the dataset. The university admission example presented
in Section 2 demonstrates how to compute counterfactual values for an individual while pre-
serving their relative educational achievement. Setting candidate gender as the protected
attribute and gender level female as baseline value, for a male student with values (a, e, t, y),
his fair-twin values (a(fp), e(fp), t(fp), y(fp)), i.e., the values the student would have obtained,
had he been female, are computed. These values can be retrieved from a fairadapt object
by calling the S3-generic function fairTwins() as:

R> ft_basic <- fairTwins(basic, train.id = seq_len(n_samp))

R> head(ft_basic, n = 3)

16 fairadapt: Fair Data Adaptation

Dtrain

graph G

fairadapt()

D̃train

fairadapt

S3-object

Dtest

predict()

D̃test

predict() Ŷ
fair
test

classifier()

regressor()
predictor S3-object

Figure 5: The typical workflow when using fairadapt. The shaded region represents the fair
preprocessing which happens within the fairadapt package. Often, this is followed by applying
a regressor or a classifier to the transformed data, in order to obtain fair predictions. The
latter part is up to the user and not included in fairadapt.

gender score score_adapted edu edu_adapted test

1 1 1.9501728 0.4274580 1.3499572 0.8144842 1.6177397

2 0 -2.3502495 -2.3502495 -1.9779234 -1.9779234 -3.1217962

3 1 0.6285619 0.1898589 0.6263626 0.1383595 0.5300347

test_adapted

1 0.86888027

2 -3.12179624

3 -0.03061109

In this example, we compute the values in a female world. Therefore, for female applicants,
the values remain fixed, while for male applicants the values are adapted, as can be seen
from the output. Having access to explicit counterfactual instances as above may help justify
fair decisions in practice or help guide the choice of the assumed causal model and resolving
variables (see Section 6 for resolving variables).

4. Uncertainty quantification

The user might naturally be interested in uncertainty quantification of the procedure per-
formed in fairadapt(). In order to explain how this can be achieved, we give a visualization
of the typical workflow when using fairadapt() (see Figure 5).

Such a workflow can be described as follows. We start from the training data Dtrain and the
causal graph G. These two arguments are used as inputs of the fairadapt() function, which
returns a fairadapt S3 object (which also contains the transformed test data D̃train). The
fairadapt object, together with the test data Dtest, is then used as a input to the predict()

function. The predict() function returns the transformed test data D̃test. Often, the end
goal is to obtain fair predictions on some new test data Dtest. To do so, we need to train a
classifier/regressor. Either the training data Dtrain or its transformed counterpart D̃train can
be used for building a predictor. The predictor then needs to be applied to the transformed
train data D̃test. Building on the graphical visualization in Figure 5, which serves as a mental

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 17

map of our workflow, we can now explain the distinct sources of uncertainty that can be
considered:

• Finite sample uncertainty: The first, commonly encountered source of uncertainty
is the one induced by finite sample size. The training data Dtrain has a finite size, and
for this reason inferences made using this data are imperfect. We wish to quantify the
uncertainty in the predictions Ŷ

fair
test introduced by the finite sample size of Dtrain. As

Figure 5 shows, the training data Dtrain affects the resulting fair predictions in two
ways. Firstly, it affects the value of the transformed test data D̃test (mediated by the

fairadapt S3 object). Secondly, it affects the predictions Ŷ
fair

test through the predictor
(since it is the input to the regressor/classifier). These finite sample uncertainties can
be analyzed using bootstrap (Efron and Tibshirani 1994). This means that we repeat
the procedure in Figure 5 many times, each time taking a different bootstrap sample of
the training data. Below we will show how this can be done with the fairadaptBoot()

function.

• Inherent uncertainty in the quantiles: A second source of uncertainty arises from
the uncertainty in quantile estimation and is specific to fairadapt. As described in
Section 2 (see also Figure 3), the fairadapt() procedure aims to preserve the relative
quantile of the variable, when computing the do(A = a) intervention. However, when
we are working with variables that are not continuous, defining a quantile becomes more
difficult3. Therefore, in presence of discrete variables, due to the imperfect estimation of
quantiles, the fairadapt() procedure has some inherent randomness. This randomness
would still persist even if we had infinite training samples in Dtrain. Importantly, to
achieve fair predictions, taking an expectation over this randomness is not feasible. For
a detailed discussion of why this is the case, refer to (Plecko and Meinshausen 2020,
Section 5).

For quantifying uncertainty, we use the fairadaptBoot() function, where the most important
arguments are:

• formula, prot.attr, adj.mat, and train.data arguments are the same as for the
fairadapt() function (see Section 3).

• test.data, a data.frame containing the test data, defaults to NULL. Whenever the test
data equals NULL, then keep.object must be TRUE.

• keep.object, a logical scalar, indicating whether all the fairadapt S3 objects built
in bootstrap repetitions should be kept in working memory. Default value is FALSE.

• rand.mode, a character scalar, taking values "finsamp", "quant", or "both", corre-
sponding to considering finite sample uncertainty, quantile uncertainty, or both.

The function fairadaptBoot() returns an S3 object of class fairadaptBoot. Calling this
function can be computationally expensive, both in terms of runtime and memory. Keep-
ing the default value of FALSE for the keep.object argument reduces the memory con-
sumption substantially, with the drawback that test.data has to be provided directly to

3For example in the case where we have a binary X ∈ {0, 1}, it is impossible to define what a 70% quantile
is, as opposed to the continuous case (of a Gaussian variable X for example), where no such challenge exists.

18 fairadapt: Fair Data Adaptation

fairadaptBoot(), and that the resulting fairadaptBoot object cannot be reused for mak-
ing predictions at a later stage. Passing TRUE to save.object, on the other hand, might
consume more memory, but then the object can be reused for transforming new test data.
This can be done by using the predict() function for the fairadaptBoot S3 object, to which
a newdata argument is available.

For illustration purposes, we now compute bootstrap repetitions for finite sample uncertainty
and quantile uncertainty on the COMPAS dataset (Larson, Mattu, Kirchner, and Angwin
2016a). We begin by loading the COMPAS dataset and constructing its causal graph:

R> cmp_dat <- data("compas", package = "fairadapt")

R> cmp_dat <- get(cmp_dat)

R>

R> cmp_mat <- matrix(0, nrow = ncol(cmp_dat), ncol = ncol(cmp_dat),

+ dimnames = list(names(cmp_dat), names(cmp_dat)))

R>

R> cmp_mat[c("race", "sex", "age"),

+ c("juv_fel_count", "juv_misd_count",

+ "juv_other_count", "priors_count",

+ "c_charge_degree", "two_year_recid")] <- 1

R> cmp_mat[c("juv_fel_count", "juv_misd_count", "juv_other_count"),

+ c("priors_count", "c_charge_degree", "two_year_recid")] <- 1

R> cmp_mat["priors_count", c("c_charge_degree", "two_year_recid")] <- 1

R> cmp_mat["c_charge_degree", "two_year_recid"] <- 1

R>

R> head(cmp_dat)

sex age race juv_fel_count juv_misd_count juv_other_count

1 Male 69 Non-White 0 0 0

2 Male 34 Non-White 0 0 0

3 Male 24 Non-White 0 0 1

4 Male 23 Non-White 0 1 0

5 Male 43 Non-White 0 0 0

6 Male 44 Non-White 0 0 0

priors_count c_charge_degree two_year_recid

1 0 F 0

2 0 F 1

3 4 F 1

4 1 F 0

5 2 F 0

6 0 M 0

The COMPAS dataset contains information on 7214 individuals from Broward County, Florida,
who were released on parole. The variables include race, sex, age, juvenile offense counts
(categories felony, misdemeanor, other), priors count and the degree of criminal charge. The
outcome of interest is recidivism within two years and the protected attribute is race (taking
values Non-White and White). A possible causal graph for the COMPAS dataset is given in
Figure 6.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 19

ZZZA

JJJ P D Y

Figure 6: The causal graph for the COMPAS dataset. Z are demographic features, A is race,
J juvenile offense counts, P count of prior offenses, D the degree of charge, and Y two year
recidivism.

After loading the dataset, we run the fairadaptBoot() function twice, with two different
values of the rand.mode argument. First, we consider only the finite sample uncertainty.

R> cmp_trn <- tail(cmp_dat, n = 6000L)

R> cmp_tst <- head(cmp_dat, n = 1214L)

R>

R> n_itr <- 50L

R>

R> set.seed(2022)

R> fa_boot_fin <- fairadaptBoot(two_year_recid ~ ., "race", cmp_mat,

+ cmp_trn, cmp_tst, rand.mode = "finsamp",

+ n.boot = n_itr)

Then, we re-run the bootstrap procedure, but by considering only the inherent quantile
uncertainty, by setting the rand.mode argument to "quant".

R> set.seed(2022)

R> fa_boot_quant <- fairadaptBoot(two_year_recid ~ ., "race", cmp_mat,

+ cmp_trn, cmp_tst, rand.mode = "quant",

+ n.boot = n_itr)

The returned objects are of class fairadaptBoot. The object stores different replicates of the
adapted test data (n.boot copies, the number of bootstrap repetitions) and some metadata.
To obtain predictions, we train a random forest classifier on different bootstrap samples of
train.data, and apply it to the transformed data bootstrap replicates. In doing so, we make
use of the boot.ind list, contained in the fairadaptBoot object, representing row indices of
all bootstrap repetitions.

R> fit_rf <- function(x) {

+ ranger(factor(two_year_recid) ~ ., cmp_trn[x,], probability = TRUE)

+ }

R>

R> extract_pred <- function(x) x$predictions[, 2L]

20 fairadapt: Fair Data Adaptation

R>

R> set.seed(2022)

R> cmp_rf <- lapply(fa_boot_fin$boot.ind, fit_rf)

R>

R> pred_fin <- Map(predict, cmp_rf, adaptedData(fa_boot_fin, train = FALSE))

R> pred_fin <- do.call(cbind, lapply(pred_fin, extract_pred))

R>

R> pred_quant <- Map(predict, cmp_rf, adaptedData(fa_boot_quant, train = FALSE))

R> pred_quant <- do.call(cbind, lapply(pred_quant, extract_pred))

4.1. Analyzing the uncertainty

In order to analyze the different sets of predictions Ŷ
fair

test , two slightly different perspectives
can be taken, and we elaborate on both in the following sections.

Decision-maker analysis

The first way to analyze the uncertainty of the predictions is from the viewpoint of the
decision-maker. By decision-maker, in this context we refer to the individual performing the
analysis and obtaining a set of fair predictions. For a decision-maker, it is important to
understand how sensitive the outcome of the classification is to uncertainties induced by both
finite sample size and the inherent uncertainty induced by discrete variables. Let pA be the
vector of predicted probabilities on the test.data, with length nrow(test.data). Denote
nrow(test.data) with ntest. Let pB be another vector of predicted probabilities (under a
different bootstrap repetition). We can consider the following four metrics of uncertainty:

1. For each threshold t ∈ [0, 1], we compute the decision sets DA, DB, which are obtained
by selecting all individuals for whom the value of pA ≥ t (and pB respectively). We can
then compute the Jaccard similarity of decision sets DA, DB, for each threshold t. By
comparing many pairs of bootstrap repetitions in this way (we use 100 repetitions as
an illustration), we can estimate what the average Jaccard similarity for each threshold
t is. In practice, we may consider values of t within a subset of [0, 1], i.e., between the
5% and 95% quantiles of the predicted test probabilities when the entire train data is
used:

R> jac_frm <- function(x, modes = "single") {

+

+ jac <- function(a, b) {

+ intersection <- length(intersect(a, b))

+ union <- length(a) + length(b) - intersection

+ intersection / union

+ }

+

+ res <- lapply(

+ seq(quantile(x[, 1L], 0.05), quantile(x[, 1L], 0.95), 0.01),

+ function(tsh) {

+

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 21

+ ret <- replicate(100L, {

+ col <- sample(ncol(x), 2L)

+ jac(which(x[, col[1L]] > tsh), which(x[, col[2L]] > tsh))

+ })

+

+ data.frame(tsh = tsh, y = mean(ret), sd = sd(ret),

+ mode = modes)

+ }

+)

+

+ do.call(rbind, res)

+ }

R>

R> jac_df <- rbind(jac_frm(pred_fin, "Finite Sample"),

+ jac_frm(pred_quant, "Quantiles"))

2. Consider two indices i, j of the vectors pA, pB such that i 6= j, corresponding to two
distinct individuals. For such pairs of individuals (i, j) we can analyze the probability
P

(
((pA)i − (pA)j) · ((pB)i − (pB)j) > 0

)
, where we can consider i, j to be drawn ran-

domly (for an illustration, we draw 5000 pairs at random), and pA, pB resulting from
two random bootstrap repetitions. This probability tells us how likely it is that two
randomly selected individuals appear in the same order in two repetitions.

R> ord_ind <- function(x, modes = "single") {

+

+ res <- replicate(5000L, {

+ row <- sample(nrow(x), 2)

+ ord <- mean(x[row[1],] > x[row[2],])

+ ord^2 + (1 - ord)^2

+ })

+

+ data.frame(res = res, mode = modes)

+ }

R>

R> ord_df <- rbind(ord_ind(pred_fin, "Finite Sample"),

+ ord_ind(pred_quant, "Quantiles"))

3. Another interesting metric is the inversion number. Notice that pA, pB define two per-
mutations of the ntest individuals, when we consider a ranking of individuals according
to their predicted probabilities. We can compute the inversion number of these two
permutations πA, πB, which is the total number of pairs of individuals whose ordering
is not the same in πA and πB. Notice that the maximum value of the inversion number
is

(ntest

2

)
. Hence, we normalize this quantity accordingly.

R> inv_frm <- function(x, modes = "single") {

+

+ gt <- function(x) x[1L] > x[2L]

22 fairadapt: Fair Data Adaptation

+

+ res <- replicate(100L, {

+ col <- sample(ncol(x), 2L)

+ prm <- order(x[, col[2L]][order(x[, col[1L]])])

+ sum(combn(prm, 2L, gt)) / choose(length(prm), 2L)

+ })

+

+ data.frame(res = res, mode = modes)

+ }

R>

R> inv_df <- rbind(inv_frm(pred_fin, "Finite Sample"),

+ inv_frm(pred_quant, "Quantiles"))

4. For each individual i, we can take the 5% and 95% quantiles of predicted probabilities
in all of the n.boot bootstrap repetitions. We analyze the width of this interval across
all individuals.

R> prb_frm <- function(x, modes = "single") {

+ qnt <- apply(x, 1L, quantile, probs = c(0.05, 0.95))

+ data.frame(width = qnt[2L,] - qnt[1L,], mode = modes)

+ }

R>

R> prb_df <- rbind(prb_frm(pred_fin, "Finite Sample"),

+ prb_frm(pred_quant, "Quantiles"))

The results of these four metrics applied to different bootstrap repetitions on the COMPAS
dataset are shown in Figure 7.

Individual analysis

The other point of view we can take in quantifying uncertainty is that of the individual
experiencing fair decisions. In this case, we are not so much interested in how much the
overall decision set changes (as was the case above), but rather how much variation there is
in the estimate for the specific individual. To this end, one might investigate the spread of
the predicted values for a specific individual. The spread of the predictions for the first three
individuals can be obtained as follows:

R> ind_prb <- data.frame(

+ prob = as.vector(t(pred_quant[seq_len(3),])),

+ individual = rep(c(1, 2, 3), each = fa_boot_quant$n.boot)

+)

This spread is visualized in Figure 8. While it might be tempting to take the mean of
the different individual predictions, to have more stable results, this should not be done, as
such an approach does not guarantee the fairness constraint fairadapt() aims to achieve.
Hence, in order to achieve the desired fairness criteria overall, we have to accept some level of
randomization at the level of individual predictions. It would be interesting for future work

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 23

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7

Decision threshold

J
a
c
c
a
rd

 s
im

ila
ri

ty

rand.mode

 "finsamp"

 "quant"

A

0.00

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8 0.9 1.0

Probability of preserving ordering

C
u
m

u
la

ti
ve

 p
ro

p
o
rt

io
n rand.mode

 "finsamp"

 "quant"

B

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25

Normalized inversion number

D
e
n
s
it
y

rand.mode

 "finsamp"

 "quant"

C

0.00

0.25

0.50

0.75

1.00

0.10.20.30.40.5

95% CI width

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty

rand.mode

 "finsamp"

 "quant"

D

Figure 7: Analyzing uncertainty of predictions in the COMPAS dataset from decision-maker’s
point of view. Panel A shows how the Jaccard similarity of two repetitions varies depending
on the decision threshold. Panel B shows the cumulative distribution of the random variable
that indicates whether two randomly selected individuals preserve order (in terms of predicted
probabilities) in bootstrap repetitions. Panel C shows the density of the normalized inver-
sion number of between predicted probabilities in bootstrap repetitions. Panel D shows the
cumulative distribution function of the 95% confidence interval (CI) width for the predicted
probability of different individuals.

24 fairadapt: Fair Data Adaptation

0

5

10

15

0.00 0.25 0.50 0.75 1.00

Probability Estimate

D
e
n
s
it
y

Individual

#1

#2

#3

Figure 8: Analyzing the spread of individual predictions in the COMPAS dataset, resulting
from different bootstrap repetitions.

to quantify and optimize explicitly the trade-off between the desired fairness criteria and the
necessary level of randomization.

5. Illustration

As a hypothetical real-world use of fairadapt, suppose that after a legislative change the US
government has decided to adjust the salary of all of its female employees in order to remove
both disparate treatment and disparate impact effects. To this end, the government wants to
compute the counterfactual salary values of all male employees, that is the salaries that male
employees would obtain, had they been female (i.e., the female group serves as the baseline).

To do this, the government is using data from the 2018 American Community Survey by the
US Census Bureau. This dataset is also available in pre-processed form as a package dataset
from fairadapt. Columns are grouped into demographic (dem, including age, race, origin,
citizenship, and economic region), familial (fam, including marital status, size of the family,
and number of children), educational (edu, including number of years spent in schooling and
the level of English proficiency) and occupational (occ, including the hours and week worked
every year, occupation category, and industry of employment) categories and finally, salary
is selected as response (res) and sex as the protected attribute (prt):

R> gov_dat <- data("gov_census", package = "fairadapt")

R> gov_dat <- get(gov_dat)

R>

R> dem <- c("age", "race", "hispanic_origin", "citizenship",

+ "nativity", "economic_region")

R> fam <- c("marital", "family_size", "children")

R> edu <- c("education_level", "english_level")

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 25

DA

F E W Y

Figure 9: The causal graph for the government-census dataset. D are demographic features,
A is gender, F represents marital and family information, E education, W work-related
information and Y the salary, which is also the outcome of interest. The bidirected edge
between A and D represents that the noise variables UA and UD share information.

R> occ <- c("hours_worked", "weeks_worked", "occupation",

+ "industry")

R>

R> prt <- "sex"

R> res <- "salary"

The hypothesized causal graph for the dataset is given in Figure 9. According to this, the
causal graph can be specified as an adjacency matrix gov_adj and as confounding matrix
gov_cfd:

R> cols <- c(dem, fam, edu, occ, prt, res)

R>

R> gov_adj <- matrix(0, nrow = length(cols), ncol = length(cols),

+ dimnames = rep(list(cols), 2))

R> gov_cfd <- gov_adj

R>

R> gov_adj[dem, c(fam, edu, occ, res)] <- 1

R> gov_adj[fam, c(edu, occ, res)] <- 1

R> gov_adj[edu, c(occ, res)] <- 1

R> gov_adj[occ, res] <- 1

R>

R> gov_adj[prt, c(fam, edu, occ, res)] <- 1

R>

R> gov_cfd[prt, dem] <- 1

R> gov_cfd[dem, prt] <- 1

R>

R> gov_grph <- graphModel(gov_adj, gov_cfd)

A visualization of the full graph using igraph is shown in Figure 10.

Before applying fairadapt(), we first log-transform the salaries to avoid dealing with a
possibly heavy-tailed distribution for which quantile estimation may be more difficult. We

26 fairadapt: Fair Data Adaptation

ag

ra

hi

ci

na

ec

ma

fa

ch

ed

en

ho

we

oc

in

se
sa

Grouping

demographic

educational

familial

occupational

protected

response

Figure 10: Full causal graph for the government census dataset, expanding the grouped view
presented in Figure 9. Demographic features include age (ag), race (ra), whether an employee
is of Hispanic origin (hi), is US citizen (ci), whether the citizenship is native (na), alongside
the corresponding economic region (ec). Familial features are marital status (ma), family
size (fa) and number of children (ch), educational features include education (ed) and English
language levels (en), and occupational features, weekly working hours (ho), yearly working
weeks (we), job (oc) and industry identifiers (in). Finally, the yearly salary (sa) is used as
the response variable and employee sex (se) as the protected attribute variable.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 27

0.0

0.2

0.4

0.6

4 6 8 10 12

salary

d
e
n
s
it
y

A

0.0

0.2

0.4

4 6 8 10 12

salary

d
e
n
s
it
y

B

sex female male

Figure 11: Visualization of salary densities grouped by employee sex, before (panel A) and
after adaptation (panel B). Panel A indicates a shift towards higher values for male employees.
In panel B, after the data is transformed, the gap between groups is reduced.

then inspect the densities of variable salary by sex group, as shown in Figure 11A. There
is a clear shift between the two distributions, indicating that male employees are better
compensated than female employees. We perform the adaptation by using n_samp samples
for training and n_pred samples for testing.

R> n_samp <- 30000

R> n_pred <- 5

R> gov_dat$salary <- log(gov_dat$salary)

R>

R> gov_trn <- head(gov_dat, n = n_samp)

R> gov_prd <- tail(gov_dat, n = n_pred)

R>

R> set.seed(22)

R> gov_ada <- fairadapt(salary ~ ., train.data = gov_trn,

+ adj.mat = gov_adj, cfd.mat = gov_cfd,

+ prot.attr = prt)

After adapting the data, we investigate whether the salary gap has become smaller. This can
be done by comparing distributions of variable salary using the ggplot2-exported S3 generic
function autoplot() (Figure 11B).

For adapting additional testing data, we use the base R S3 generic function predict() and
output a selection of columns:

R> set.seed(2022)

R> gov_prd_ada <- predict(gov_ada, newdata = gov_prd)

R> gov_prd_ada[, c("sex", "age", "education_level", "salary")]

sex age education_level salary

1: female 19 16 7.003065

28 fairadapt: Fair Data Adaptation

2: female 46 19 9.667765

3: female 24 16 10.126631

4: female 23 19 9.903488

5: female 50 19 11.472103

Finally, we can do fair-twin inspection using the fairTwins() function of fairadapt, to retrieve
counterfactual values of some features for different individuals:

R> fairTwins(gov_ada, train.id = 1:5,

+ cols = c("sex", "age", "salary"))

sex age age_adapted salary salary_adapted

1 male 64 64 10.66896 10.49606

2 female 54 54 10.71442 10.71442

3 male 38 38 11.50288 11.31447

4 female 41 41 11.05089 11.05089

5 female 40 40 10.71885 10.71885

Note that values remain unchanged for female individuals (as female was used as baseline
level). Variable age, which is not a descendant of the protected attribute sex (see Figure
10), also remains unchanged. However, variables education_level and salary do change
for males, since these variables are descendants of the protected attribute sex.

We conclude the section with a remark. Notice that the variable hours_worked is a descendant
of A. However, one might argue that this variable should not be adapted in the procedure,
i.e., it should remain the same, irrespective of employee sex. In other words, one might argue
it is acceptable to distinguish individuals based on this variable. This is the idea behind
resolving variables, which are discussed in Section 6.1. It is worth emphasizing that we are
not answering the question of how to choose which variables are resolving - this choice is left
to social scientists familiar with the context of the dataset.

6. Extensions

Several extensions to the basic Markovian SCM formulation introduced in Section 2.3 exist,
and these are outlined in the following sections.

6.1. Adding resolving variables

As we mentioned earlier, in some situations the protected attribute A might affect other
variables in a non-discriminatory way. For instance, in the Berkeley admissions dataset (Bickel
et al. 1975) we observe that females often apply for departments with lower admission rates
and consequently have a lower admission probability. However, we perhaps would not wish
to account for this difference in the adaptation procedure, if we were to argue that applying
to a certain department is a choice everybody is free to make. Such examples motivated the
idea of resolving variables by Kilbertus et al. (2017). A variable R is called resolving if

(i) R ∈ de(A), where de(A) are the descendants of A in the causal graph G.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 29

(ii) The causal effect of A on R is considered to be non-discriminatory.

In presence of resolving variables, computation of the counterfactual is carried out under the
more involved intervention do(A = a, R = R(a′)). The potential outcome value V (A = a, R =
R(a′)) is obtained by setting A = a and computing the counterfactual while keeping the values
of resolving variables to those they attained naturally. This is a nested counterfactual and
the difference in Algorithm 1 is simply that resolving variables R are skipped in the for-
loop. In order to perform fair data adaptation with the variable test being resolving in the
uni_admission dataset used in Section 3, the string "test" can be passed as res.vars to
fairadapt().

R> res_basic <- fairadapt(score ~ ., train.data = uni_trn,

+ test.data = uni_tst, adj.mat = uni_adj,

+ prot.attr = "gender", res.vars = "test")

R> summary(res_basic)

Call:

fairadapt(formula = score ~ ., prot.attr = "gender", adj.mat = uni_adj,

train.data = uni_trn, test.data = uni_tst, res.vars = "test")

Protected attribute: gender

Protected attribute levels: 0, 1

Adapted variables: edu, score

Resolving variables: test

Number of training samples: 500

Number of test samples: 500

Quantile method: rangerQuants

Total variation (before adaptation): -0.7045

Total variation (after adaptation): -0.2977

As can be seen from the respective model summary outputs, the total variation after adap-
tation, in this case, is larger than in the example from Section 3, with no resolving variables.
The intuitive reasoning here is that resolving variables allow for some discrimination, so we
expect to see a larger total variation between the groups.

R> uni_res <- graphModel(uni_adj, res.vars = "test")

A visualization of the corresponding graph is available from Figure 12, which highlights the
resolving variable test in red, but the underlying graphical model remains the same.

6.2. Semi-Markovian and topological ordering variant

In Section 2 we focused on the Markovian case, which assumes that all exogenous variables
Ui are mutually independent. However, in practice, this requirement is often not satisfied.

30 fairadapt: Fair Data Adaptation

gender

edu

test

score

Figure 12: Visualization of the causal graph corresponding to the university admissions exam-
ple introduced in Section 2 with the variable test chosen as a resolving variable and therefore
highlighted in red.

A E T Y

Figure 13: Causal graphical model corresponding to a Semi-Markovian variant of the uni-
versity admissions example, introduced in Section 2. Here, we allow for the possibility of a
mutual dependency between the latent variables corresponding to variables ‘test‘ and ‘score‘.

If a mutual dependency structure between variables Ui exists, we are speaking about Semi-
Markovian models. In the university admission example, we might have that Utest 6⊥⊥ Uscore.
That is, latent variables corresponding to variables test and final score being correlated. Such
dependencies between latent variables can be represented by dashed, bidirected arrows in the
causal diagram, as shown in Figures 13 and 14.

There is an important difference in the adaptation procedure for the Semi-Markovian case:
when inferring the latent quantiles Ui of variable Vi, in the Markovian case, only the direct
parents pa(Vi) are needed. In the Semi-Markovian case, due to correlation of latent variables,
using only the pa(Vi) can lead to biased estimates of the Ui. Instead, the set of direct parents
needs to be extended, as described in more detail by Tian and Pearl (2002). A brief sketch
of the argument goes as follows: Let the C-components be a partition of the set V , such that
each C-component contains a set of variables which are mutually connected by bidirected
edges. Let C(Vi) denote the entire C-component of variable Vi. We then define the set of
extended parents as

Pa(Vi) := (C(Vi) ∪ pa(C(Vi))) ∩ an(Vi),

where an(Vi) is the set of ancestors of Vi. The adaptation procedure in the Semi-Markovian
case in principle remains the same as outlined in Algorithm 1, with the difference that the
set of direct parents pa(Vi) is replaced by Pa(Vi) at each step.

To include the bidirected edges in the adaptation, we can pass a matrix as cfd.mat argument
to fairadapt() such that:

• cfd.mat has the same dimension, column and row names as adj.mat.

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 31

score

gender

edu

test

Figure 14: Visualization of the causal graphical model also shown in Figure 13, obtained when
passing a confounding matrix indicating a bidirected edge between vertices test and score

to fairadapt(). The resulting Semi-Markovian model can also be handled by fairadapt(),
extending the basic Markovian formulation introduced in Section 2.3.

• cfd.mat is symmetric.
• As with the adjacency matrix adj.mat, an entry cfd.mat[i, j] == 1 indicates that

there is a bidirected edge between variables i and j.

The following code performs fair data adaptation of the Semi-Markovian university admission
variant with a mutual dependency between the variables representing test and final scores. For
this, we create a matrix uni_cfd with the same attributes as the adjacency matrix uni_adj

and set the entries representing the bidirected edge between vertices test and score to 1.
Finally, we can pass this confounding matrix as cfd.mat to fairadapt(). A visualization of
the resulting causal graph is available from Figure 14.

R> uni_cfd <- matrix(0, nrow = nrow(uni_adj), ncol = ncol(uni_adj),

+ dimnames = dimnames(uni_adj))

R>

R> uni_cfd["test", "score"] <- 1

R> uni_cfd["score", "test"] <- 1

R>

R> semi <- fairadapt(score ~ ., train.data = uni_trn,

+ test.data = uni_tst, adj.mat = uni_adj,

+ cfd.mat = uni_cfd, prot.attr = "gender")

Alternatively, instead of using the extended parent set Pa(Vi), we could also use the entire
set of ancestors an(Vi). This approach is implemented as well, and available by specify-
ing a topological ordering. This is achieved by passing a character vector, containing the
correct ordering of the names appearing in names(train.data) as top.ord argument to
fairadapt(). The benefit of using this option is that the specific edges of the causal model
G need not be specified. However, in the linear case, specifying the edges of the graph, so
that the quantiles are inferred using only the set of parents, will in principle have better
performance. The topological variant can be invoked as follows:

R> set.seed(2022)

R> top_ord <- fairadapt(score ~ ., train.data = uni_trn, test.data = uni_tst,

32 fairadapt: Fair Data Adaptation

+ top.ord = c("gender", "edu", "test", "score"),

+ prot.attr = "gender")

R>

R> summary(top_ord)

Call:

fairadapt(formula = score ~ ., prot.attr = "gender", train.data = uni_trn,

test.data = uni_tst, top.ord = c("gender", "edu", "test",

"score"))

Protected attribute: gender

Protected attribute levels: 0, 1

Adapted variables: edu, test, score

Number of training samples: 500

Number of test samples: 500

Quantile method: rangerQuants

Total variation (before adaptation): -0.7045

Total variation (after adaptation): -0.00599

Note that the topological variant for the university admissions dataset is the same as supplying
the adjacency matrix, since the causal graph has no missing edges.

6.3. Questions of identifiability

So far we did not discuss whether it is always possible to carry out the counterfactual inference
described in Section 2. In the causal literature, an intervention is termed identifiable if it can
be computed uniquely using the data and the assumptions encoded in the graphical model
G. An important result by Tian and Pearl (2002) states that an intervention do(X = x) on
a variable X is identifiable if there is no bidirected path between X and ch(X). Therefore,
our intervention of interest is identifiable if one of the two following conditions are met:

• The model is Markovian.
• The model is Semi-Markovian and,

(i) there is no bidirected path between A and ch(A) and,
(ii) there is no bidirected path between Ri and ch(Ri) for any resolving variable Ri.

Based on this, the fairadapt() function might return an error, if the specified intervention
is not possible to compute. An additional limitation is that fairadapt currently does not
support front-door identification (Pearl 2009, Chapter 3), meaning that certain special cases,
which are in principle identifiable, are currently not handled.

6.4. Future avenues to be explored

We conclude with a brief look at the possible extensions of the fairadapt package, which we
hope to consider in future work:

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 33

1. Spurious pathways: the fairadapt package allows for correcting discrimination along
causal pathways from the protected attribute A to outcome Y . However, it is also
possible that A and Y are associated through a confounding mechanism, and correcting
for such spurious association poses an interesting methodological and practical challenge.

2. General identification: as discussed above, there are certain cases of causal graphs in
which our do(A = a, R = R(a′)) intervention is identifiable, but the fairadapt() func-
tion currently does not support doing so. One of such examples is front-door identifica-
tion, mentioned above. In a future version of fairadapt, we hope to cover all scenarios
in which identification is possible.

3. Path-specific effects: when using resolving variables (Section 6.1), the user decides to
label these variables as “non-discriminatory”, that is, the algorithm is free to distinguish
between groups based on these variables. In full generality, a user might be interested in
considering all path-specific effects (Avin, Shpitser, and Pearl 2005). Such an approach
would offer even more flexibility in modeling, since for every attribute-outcome path
A→ ...→ Y , the user could decide whether it is fair or not.

4. Selection bias: a commonly considered problem in causal inference is that of selection
bias (Hernán, Hernández-Díaz, and Robins 2004), when inclusion of individuals into
the dataset depends on the observed variables in the dataset. In fairness applications,
the presence of selection bias could invalidate our conclusions about discrimination and
make our fair predictions biased. Recovering from selection bias algorithmically would
therefore be a desirable feature in the fairadapt package.

5. Non-binary attribute A: one assumption used currently is that the protected attribute
A is binary. When considering possible protected attributes as socioeconomic status or
education, this assumption may need to be relaxed. We hope to address this in future
work.

References

Avin C, Shpitser I, Pearl J (2005). “Identifiability of Path-Specific Effects.” IJCAI’05, p.
357–363.

Barocas S, Selbst AD (2016). “Big Data’s Disparate Impact.” Calif. L. Rev., 104, 671.

Bellamy RKE, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J,
Mehta S, Mojsilovic A, Nagar S, Ramamurthy KN, Richards J, Saha D, Sattigeri P, Singh
M, Varshney KR, Zhang Y (2018). “AI Fairness 360: An Extensible Toolkit for Detecting,
Understanding, and Mitigating Unwanted Algorithmic Bias.” URL https://arxiv.org/

abs/1810.01943.

Bickel PJ, Hammel EA, O’Connell JW (1975). “Sex Bias in Graduate Admissions: Data
From Berkeley.” Science, 187(4175), 398–404. doi:10.1126/science.187.4175.398. URL
https://doi.org/10.1126/science.187.4175.398.

https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1810.01943
https://doi.org/10.1126/science.187.4175.398
https://doi.org/10.1126/science.187.4175.398

34 fairadapt: Fair Data Adaptation

Bird S, Dudik M, Edgar R, Horn B, Lutz R, Milan V, Sameki M, Wal-
lach H, Walker K (2020). “Fairlearn: A Toolkit for Assessing and
Improving Fairness in AI.” Technical Report MSR-TR-2020-32, Mi-
crosoft. URL https://www.microsoft.com/en-us/research/publication/

fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

Blau FD, Kahn LM (2003). “Understanding International Differences in the Gender Pay
Gap.” Journal of Labor Economics, 21(1), 106–144. doi:10.3386/w8200. URL https:

//doi.org/10.3386/w8200.

Cannon AJ (2015). qrnn: Quantile Regression Neural Network. R package version 2.0.5, URL
https://cran.r-project.org/web/packages/qrnn.

Cannon AJ (2018). “Non-Crossing Nonlinear Regression Quantiles by Monotone Composite
Quantile Regression Neural Network, With Application to Rainfall Extremes.” Stochastic
Environmental Research and Risk Assessment, 32(11), 3207–3225. doi:10.31223/osf.io/

wg7sn. URL https://doi.org/10.31223/osf.io/wg7sn.

Chouldechova A (2017). “Fair Prediction With Disparate Impact: A Study of Bias in Re-
cidivism Prediction Instruments.” Big data, 5(2), 153–163. doi:10.1089/big.2016.0047.
URL https://doi.org/10.1089/big.2016.0047.

Corbett-Davies S, Goel S (2018). “The Measure and Mismeasure of Fairness: A Critical
Review of Fair Machine Learning.” arXiv preprint arXiv:1808.00023.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. URL https://igraph.org.

Darlington RB (1971). “Another Look at Cultural Fairness.” Journal of Educational
Measurement, 8(2), 71–82. doi:10.1111/j.1745-3984.1971.tb00908.x. URL https:

//doi.org/10.1111/j.1745-3984.1971.tb00908.x.

Efron B, Tibshirani RJ (1994). An Introduction to the Bootstrap. CRC press. doi:10.1201/

9780429246593. URL https://doi.org/10.1201/9780429246593.

Galles D, Pearl J (1998). “An Axiomatic Characterization of Causal Counterfactuals.” Foun-
dations of Science, 3(1), 151–182.

Hardt M, Price E, Srebro N, et al. (2016). “Equality of Opportunity in Supervised Learning.”
In Advances in neural information processing systems, pp. 3315–3323.

Hernán MA, Hernández-Díaz S, Robins JM (2004). “A Structural Approach to Selection
Bias.” Epidemiology, pp. 615–625. doi:10.1097/01.ede.0000135174.63482.43. URL
https://doi.org/10.1097/01.ede.0000135174.63482.43.

Kilbertus N, Carulla MR, Parascandolo G, Hardt M, Janzing D, Schölkopf B (2017). “Avoiding
Discrimination Through Causal Reasoning.” In Advances in Neural Information Processing
Systems, pp. 656–666.

Koenker R, Hallock KF (2001). “Quantile Regression.” Journal of Economic Perspectives,
15(4), 143–156. doi:10.1257/jep.15.4.143. URL https://doi.org/10.1257/jep.15.

4.143.

https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://doi.org/10.3386/w8200
https://doi.org/10.3386/w8200
https://doi.org/10.3386/w8200
https://cran.r-project.org/web/packages/qrnn
https://doi.org/10.31223/osf.io/wg7sn
https://doi.org/10.31223/osf.io/wg7sn
https://doi.org/10.31223/osf.io/wg7sn
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047
https://igraph.org
https://doi.org/10.1111/j.1745-3984.1971.tb00908.x
https://doi.org/10.1111/j.1745-3984.1971.tb00908.x
https://doi.org/10.1111/j.1745-3984.1971.tb00908.x
https://doi.org/10.1201/9780429246593
https://doi.org/10.1201/9780429246593
https://doi.org/10.1201/9780429246593
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1257/jep.15.4.143
https://doi.org/10.1257/jep.15.4.143
https://doi.org/10.1257/jep.15.4.143

Drago Plečko, Nicolas Bennett, Nicolai Meinshausen 35

Koenker R, Portnoy S, Ng PT, Zeileis A, Grosjean P, Ripley BD (2018). quantreg: Quantile
Regression. R package version 5.86.

Komiyama J, Takeda A, Honda J, Shimao H (2018). “Nonconvex Optimization for Regression
With Fairness Constraints.” In International Conference on Machine Learning, pp. 2737–
2746. PMLR.

Kozodoi N, V Varga T (2021). fairness: Algorithmic Fairness Metrics. R package version
1.2.2, URL https://CRAN.R-project.org/package=fairness.

Kusner MJ, Loftus J, Russell C, Silva R (2017). “Counterfactual Fairness.” In Advances in
Neural Information Processing Systems, pp. 4066–4076.

Lambrecht A, Tucker C (2019). “Algorithmic Bias? An Empirical Study of Apparent
Gender-Based Discrimination in the Display of STEM Career Ads.” Management Sci-
ence, 65(7), 2966–2981. doi:10.2139/ssrn.2852260. URL https://doi.org/10.2139/

ssrn.2852260.

Larson J, Mattu S, Kirchner L, Angwin J (2016a). https://github.com/propublica/

compas-analysis.

Larson J, Mattu S, Kirchner L, Angwin J (2016b). “How We Analyzed the COMPAS Recidi-
vism Algorithm.” ProPublica (5 2016), 9.

McGinley AC (2011). “Ricci v. DeStefano: Diluting Disparate Impact and Redefining Dis-
parate Treatment.” Scholarly Works, 646.

Meinshausen N (2006). “Quantile Regression Forests.” Journal of Machine Learning Research,
7(Jun), 983–999.

Pearl J (2009). Causality. Cambridge University Press. doi:10.4288/kisoron.39.2_109.
URL https://doi.org/10.4288/kisoron.39.2_109.

Plecko D, Bennett N, Meinshausen N (2024). “fairadapt: Causal Reasoning for Fair Data
Preprocessing.” Journal of Statistical Software, 110(4). doi:10.18637/jss.v110.i04.
URL https://www.jstatsoft.org/v110/i04.

Plecko D, Meinshausen N (2020). “Fair Data Adaptation With Quantile Preservation.” Jour-
nal of Machine Learning Research, 21, 1–44.

Scutari M (2021). fairml: Fair Models in Machine Learning. R package version 0.6, URL
https://CRAN.R-project.org/package=fairml.

Shukla K, Fang H, Jindal S (2019). “Tensorflow’s Fairness Evaluation and Visualization
Toolkit.” URL https://github.com/tensorflow/fairness-indicators.

Thomas O, Kehrenberg T, Bartlett M, Quadrianto N (2018). “EthicML: A Fea-
tureful Framework for Developing Fair Algorithms.” URL https://github.com/

predictive-analytics-lab/EthicML.

Tian J, Pearl J (2002). “A General Identification Condition for Causal Effects.” In Eigh-
teenth National Conference on Artificial Intelligence, pp. 567–573. American Association
for Artificial Intelligence, USA.

https://CRAN.R-project.org/package=fairness
https://doi.org/10.2139/ssrn.2852260
https://doi.org/10.2139/ssrn.2852260
https://doi.org/10.2139/ssrn.2852260
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://doi.org/10.4288/kisoron.39.2_109
https://doi.org/10.4288/kisoron.39.2_109
https://doi.org/10.18637/jss.v110.i04
https://www.jstatsoft.org/v110/i04
https://CRAN.R-project.org/package=fairml
https://github.com/tensorflow/fairness-indicators
https://github.com/predictive-analytics-lab/EthicML
https://github.com/predictive-analytics-lab/EthicML

36 fairadapt: Fair Data Adaptation

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.

Wiśniewski J, Biecek P (2022). “fairmodels: a Flexible Tool for Bias Detection, Visualization,
and Mitigation in Binary Classification Models.” The R Journal, 14, 227–243. doi:10.

32614/RJ-2022-019. URL https://rj.urbanek.nz/articles/RJ-2022-019/.

Wright MN, Ziegler A (2017). “ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1). doi:10.18637/

jss.v077.i01. URL https://doi.org/10.18637/jss.v077.i01.

Zhang J, Bareinboim E (2018). “Fairness in Decision-Making: The Causal Explana-
tion Formula.” In Thirty-Second National Conference on Artificial Intelligence. Ameri-
can Association for Artificial Intelligence, USA. doi:10.1609/aaai.v32i1.11564. URL
https://doi.org/10.1609/aaai.v32i1.11564.

Affiliation:

Drago Plečko
ETH Zürich
Seminar for Statistics Rämistrasse 101 CH-8092 Zurich
E-mail: drago.plecko@stat.math.ethz.ch

Nicolas Bennett
ETH Zürich
Seminar for Statistics Rämistrasse 101 CH-8092 Zurich
E-mail: nicolas.bennett@stat.math.ethz.ch

Nicolai Meinshausen
ETH Zürich
Seminar for Statistics Rämistrasse 101 CH-8092 Zurich
E-mail: meinshausen@stat.math.ethz.ch

https://ggplot2.tidyverse.org
https://doi.org/10.32614/RJ-2022-019
https://doi.org/10.32614/RJ-2022-019
https://rj.urbanek.nz/articles/RJ-2022-019/
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1609/aaai.v32i1.11564
https://doi.org/10.1609/aaai.v32i1.11564
mailto:drago.plecko@stat.math.ethz.ch
mailto:nicolas.bennett@stat.math.ethz.ch
mailto:meinshausen@stat.math.ethz.ch

	Introduction
	Definitions of fairness
	Fairness tasks
	A causal approach
	Novelty in the package

	Methodology
	University admission example
	Structural causal models
	Markovian SCM formulation

	Implementation
	Specifying the graphical model
	Quantile learning step
	Quantile methods
	Influencing the fit
	Extending to custom methods

	Fair-twin inspection

	Uncertainty quantification
	Analyzing the uncertainty
	Decision-maker analysis
	Individual analysis

	Illustration
	Extensions
	Adding resolving variables
	Semi-Markovian and topological ordering variant
	Questions of identifiability
	Future avenues to be explored

