fairGNN: Fairness-Aware Gated Neural Networks

Tools for training and analysing fairness-aware gated neural networks for subgroup-aware prediction and interpretation in clinical datasets. Methods draw on prior work in mixture-of-experts neural networks by Jordan and Jacobs (1994) <doi:10.1007/978-1-4471-2097-1_113>, fairness-aware learning by Hardt, Price, and Srebro (2016) <doi:10.48550/arXiv.1610.02413>, and personalised treatment prediction for depression by Iniesta, Stahl, and McGuffin (2016) <doi:10.1016/j.jpsychires.2016.03.016>.

Version: 0.1.0
Depends: R (≥ 4.1.0)
Imports: dplyr, tibble, ggplot2, readr, pROC, magrittr, tidyr, purrr, utils, stats, ggalluvial, tidyselect
Suggests: knitr, torch, testthat, readxl, rmarkdown
Published: 2025-10-26
DOI: 10.32614/CRAN.package.fairGNN (may not be active yet)
Author: Rhys Holland [aut, cre]
Maintainer: Rhys Holland <rhys.holland at icloud.com>
BugReports: https://github.com/rhysholland/fairGNN/issues
License: MIT + file LICENSE
URL: https://github.com/rhysholland/fairGNN
NeedsCompilation: no
SystemRequirements: Optional 'LibTorch' backend; install via torch::install_torch().
CRAN checks: fairGNN results

Documentation:

Reference manual: fairGNN.html , fairGNN.pdf
Vignettes: Introduction to fairGNN (source, R code)

Downloads:

Package source: fairGNN_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: fairGNN_0.1.0.zip
macOS binaries: r-release (arm64): fairGNN_0.1.0.tgz, r-oldrel (arm64): fairGNN_0.1.0.tgz, r-release (x86_64): fairGNN_0.1.0.tgz, r-oldrel (x86_64): fairGNN_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fairGNN to link to this page.