Addresses tasks along the pipeline from raw
    data to analysis and visualization for eye-tracking data. Offers several
    popular types of analyses, including linear and growth curve time analyses,
    onset-contingent reaction time analyses, as well as several non-parametric
    bootstrapping approaches. For references to the approach see Mirman, 
    Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and
    Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
| Version: | 0.2.2 | 
| Depends: | R (≥ 3.2.0), dplyr (≥ 0.7.4) | 
| Imports: | broom (≥ 0.3.7), broom.mixed, ggplot2 (≥ 2.0), lazyeval (≥
0.1.10), rlang, zoo (≥ 1.7-12), tidyr (≥ 0.3.1), purrr (≥
0.2.4) | 
| Suggests: | pbapply, knitr, lme4 (≥ 1.1-10), glmmTMB, MASS, Matrix, testthat, rmarkdown, doMC, foreach | 
| Published: | 2025-06-18 | 
| DOI: | 10.32614/CRAN.package.eyetrackingR | 
| Author: | Samuel Forbes [aut, cre],
  Jacob Dink [aut],
  Brock Ferguson [aut] | 
| Maintainer: | Samuel Forbes  <samuel.h.forbes at gmail.com> | 
| BugReports: | https://github.com/samhforbes/eyetrackingR/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://samforbes.me/eyetrackingR/ | 
| NeedsCompilation: | no | 
| Citation: | eyetrackingR citation info | 
| Materials: | README, NEWS | 
| In views: | Tracking | 
| CRAN checks: | eyetrackingR results |