
Package ‘evsim’
May 7, 2025

Title Electric Vehicle Charging Sessions Simulation

Version 1.6.1

Maintainer Marc Cañigueral <marccanyigueral@gmail.com>

Description
Simulation of Electric Vehicles charging sessions using Gaussian models, together with time-
series power demand calculations.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports MASS, dplyr, lubridate, purrr, rlang, tidyr, jsonlite,
dygraphs, ggplot2

Suggests spelling, testthat (>= 3.0.0)

Depends R (>= 3.5)

URL https://github.com/resourcefully-dev/evsim/,

https://resourcefully-dev.github.io/evsim/

BugReports https://github.com/resourcefully-dev/evsim/issues

Language en-US

Config/testthat/edition 3

NeedsCompilation no

Author Marc Cañigueral [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9724-5829>)

Repository CRAN

Date/Publication 2025-05-07 12:30:12 UTC

1

https://github.com/resourcefully-dev/evsim/
https://resourcefully-dev.github.io/evsim/
https://github.com/resourcefully-dev/evsim/issues
https://orcid.org/0000-0001-9724-5829

2 adapt_charging_features

Contents

adapt_charging_features . 2
add_charging_infrastructure . 3
expand_sessions . 5
get_charging_rates_distribution . 6
get_custom_ev_model . 6
get_demand . 8
get_evmodel_parameters . 9
get_evmodel_summary . 10
get_occupancy . 11
get_user_profiles_distribution . 12
plot_occupancy_duration_curve . 13
plot_ts . 14
read_ev_model . 15
save_ev_model . 16
simulate_sessions . 16

Index 19

adapt_charging_features

Adapt charging features

Description

Calculate connection and charging times according to energy, power and time resolution

Usage

adapt_charging_features(
sessions,
time_resolution = 15,
power_resolution = 0.01

)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} package

time_resolution

integer, time resolution (in minutes) of the sessions’ datetime variables

power_resolution

numeric, power resolution (in kW) of the sessions’ power

add_charging_infrastructure 3

Details

All sessions’ Power must be higher than 0, to avoid NaN values from dividing by zero. The
ConnectionStartDateTime is first aligned to the desired time resolution, and the ConnectionEndDateTime
is calculated according to the ConnectionHours. The ChargingHours is recalculated with the
values of Energy and Power, limited by ConnectionHours. Finally, the charging times are also
calculated.

Value

tibble

Examples

suppressMessages(library(dplyr))

sessions <- head(evsim::california_ev_sessions, 10)

sessions %>%
select(ConnectionStartDateTime, ConnectionEndDateTime, Power)

adapt_charging_features(
sessions,
time_resolution = 60,
power_resolution = 0.01

) %>%
select(ConnectionStartDateTime, ConnectionEndDateTime, Power)

adapt_charging_features(
sessions,
time_resolution = 15,
power_resolution = 1

) %>%
select(ConnectionStartDateTime, ConnectionEndDateTime, Power)

add_charging_infrastructure

Assign a charging station to EV charging sessions

Description

Variable ChargingStation and Socketwill be assigned to the sessions tibble with a name pattern
being: names_prefix + "CHS" + number

4 add_charging_infrastructure

Usage

add_charging_infrastructure(
sessions,
resolution = 15,
min_stations = 0,
n_sockets = 2,
names_prefix = NULL,
duration_th = 0

)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} package

resolution integer, time resolution in minutes

min_stations integer, minimum number of charging stations to consider

n_sockets integer, number of sockets per charging station

names_prefix character, prefix of the charging station names (optional)

duration_th integer between 0 and 100, minimum share of time (in percentage) of the "occu-
pancy duration curve" (see function plot_occupancy_duration_curve). This
is used to avoid sizing a charging infrastructure to host for example 100 vehicles
when only 5% of time there are more than 80 vehicles connected. Then, setting
duration_th = 5 will ensure that we don’t over-size the charging infrastruc-
ture for the 100 vehicles. It is recommended to find this value through multiple
iterations.

Value

tibble

Examples

Assign a `ChargingStation` to every session according to the occupancy
sessions_infrastructure <- add_charging_infrastructure(

sessions = head(evsim::california_ev_sessions, 50),
resolution = 60

)
print(unique(sessions_infrastructure$ChargingStation))

Now without considering the occupancy values that only represent
a 10% of the time
sessions_infrastructure <- add_charging_infrastructure(

sessions = head(evsim::california_ev_sessions, 50),
resolution = 60, duration_th = 10

)
print(unique(sessions_infrastructure$ChargingStation))

expand_sessions 5

expand_sessions Expand sessions along time slots

Description

Every session in sessions is divided in multiple time slots with the corresponding Power consump-
tion, among other variables.

Usage

expand_sessions(sessions, resolution)

Arguments

sessions tibble, sessions data set in standard format marked by evprof package

resolution integer, time resolution (in minutes) of the time slots

Details

The Power value is calculated for every time slot according to the original required energy. The
columns PowerNominal, EnergyRequired and FlexibilityHours correspond to the values of the
original session, and not to the expanded session in every time slot. The column ID shows the
number of the time slot corresponding to the original session.

Value

tibble

Examples

library(dplyr)

sessions <- head(evsim::california_ev_sessions, 10)
expand_sessions(

sessions,
resolution = 60

)

6 get_custom_ev_model

get_charging_rates_distribution

Charging rates distribution

Description

Get charging rates distribution in percentages from a charging sessions data set

Usage

get_charging_rates_distribution(sessions, unit = "year", power_interval = NULL)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} packaget

unit character. Valid base units are second, minute, hour, day, week, month, bimonth,
quarter, season, halfyear and year. It corresponds to unit parameter in
lubridate::floor_date function.

power_interval numeric, interval of kW between power rates. It is used to round the Power
values into this interval resolution. It can also be NULL to use all the original
Power values.

Value

tibble

Examples

get_charging_rates_distribution(evsim::california_ev_sessions, unit = "year")

get_custom_ev_model Create the custom EV model

Description

Get the EV model object of class evmodel

get_custom_ev_model 7

Usage

get_custom_ev_model(
names,
months_lst = list(1:12, 1:12),
wdays_lst = list(1:5, 6:7),
parameters_lst,
connection_log,
energy_log,
data_tz

)

Arguments

names character vector with the given names of each time-cycle model

months_lst list of integer vectors with the corresponding months of the year for each time-
cycle model

wdays_lst list of integer vectors with the corresponding days of the week for each time-
cycle model (week start = 1)

parameters_lst list of tibbles corresponding to the GMM parameters of every time-cycle model

connection_log logical, true if connection models have logarithmic transformations

energy_log logical, true if energy models have logarithmic transformations

data_tz character, time zone of the original data (necessary to properly simulate new
sessions)

Value

object of class evmodel

Examples

For workdays time cycle
workdays_parameters <- dplyr::tibble(

profile = c("Worktime", "Visit"),
ratio = c(80, 20),
start_mean = c(9, 11),
start_sd = c(1, 4),
duration_mean = c(8, 4),
duration_sd = c(0.5, 2),
energy_mean = c(15, 6),
energy_sd = c(4, 3)

)

For weekends time cycle
weekends_parameters <- dplyr::tibble(

profile = "Visit",
ratio = 100,
start_mean = 12,
start_sd = 4,

8 get_demand

duration_mean = 3,
duration_sd = 2,
energy_mean = 4,
energy_sd = 4

)

parameters_lst <- list(workdays_parameters, weekends_parameters)

Get the whole model
ev_model <- get_custom_ev_model(

names = c("Workdays", "Weekends"),
months_lst = list(1:12, 1:12),
wdays_lst = list(1:5, 6:7),
parameters_lst = parameters_lst,
connection_log = FALSE,
energy_log = FALSE,
data_tz = "Europe/Amsterdam"

)

get_demand Time-series EV demand

Description

Obtain time-series of EV demand from sessions data set

Usage

get_demand(
sessions,
dttm_seq = NULL,
by = "Profile",
resolution = 15,
mc.cores = 1

)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} package
dttm_seq sequence of datetime values that will be the datetime variable of the returned

time-series data frame.
by character, being ’Profile’ or ’Session’. When by='Profile' each column cor-

responds to an EV user profile.
resolution integer, time resolution (in minutes) of the sessions datetime variables. If dttm_seq

is defined this parameter is ignored.
mc.cores integer, number of cores to use. Must be at least one, and parallelization requires

at least two cores.

get_evmodel_parameters 9

Details

Note that the time resolution of variables ConnectionStartDateTime and ChargingStartDateTime
must coincide with resolution parameter. For example, if a charging session in sessions starts
charging at 15:32 and resolution = 15, the load of this session won’t be computed. To solve
this, the function automatically aligns charging sessions’ start time according to resolution, so
following the previous example the session would start at 15:30.

Value

time-series tibble with first column of type datetime

Examples

suppressMessages(library(lubridate))
suppressMessages(library(dplyr))

Get demand with the complete datetime sequence from the sessions
sessions <- head(evsim::california_ev_sessions, 100)
demand <- get_demand(

sessions,
by = "Session",
resolution = 60

)
demand %>% plot_ts(ylab = "EV demand (kW)", legend_show = "onmouseover")

Get demand with a custom datetime sequence and resolution of 15 minutes
sessions <- head(evsim::california_ev_sessions_profiles, 100)
dttm_seq <- seq.POSIXt(

as_datetime(dmy(08102018)) %>% force_tz(tz(sessions$ConnectionStartDateTime)),
as_datetime(dmy(11102018)) %>% force_tz(tz(sessions$ConnectionStartDateTime)),
by = "15 mins"

)
demand <- get_demand(

sessions,
dttm_seq = dttm_seq,
by = "Profile",
resolution = 15

)
demand %>% plot_ts(ylab = "EV demand (kW)", legend_show = "onmouseover")

get_evmodel_parameters

Get evmodel parameters in a list

Description

Every time cycle is an element of the returned list, containing a list with the user profile as ele-
ments, each one containing the ratio and the corresponding tables with the statistic parameters of
connection and energy GMM.

10 get_evmodel_summary

Usage

get_evmodel_parameters(evmodel)

Arguments

evmodel object of class evmodel

Value

list

Examples

get_evmodel_parameters(evsim::california_ev_model)

get_evmodel_summary Get evmodel parameters in a list of summary tables

Description

Every time cycle is an element of the returned list, containing a table with a user profile in every row
and the mean and standard deviation values of the GMM variables (connection duration, connection
start time and energy). If the energy models were built by charging rate, the average mean and sd
are provided without taking into account different charging rates (this information is lost in this
summary).

Usage

get_evmodel_summary(evmodel)

Arguments

evmodel object of class evmodel

Value

list

Examples

get_evmodel_summary(evsim::california_ev_model)

get_occupancy 11

get_occupancy Time-series EV occupancy

Description

Obtain time-series of simultaneously connected EVs from sessions data set

Usage

get_occupancy(
sessions,
dttm_seq = NULL,
by = "Profile",
resolution = 15,
mc.cores = 1

)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} package

dttm_seq sequence of datetime values that will be the datetime variable of the returned
time-series data frame.

by character, being ’Profile’ or ’Session’. When by='Profile' each column cor-
responds to an EV user profile.

resolution integer, time resolution (in minutes) of the sessions datetime variables. If dttm_seq
is defined this parameter is ignored.

mc.cores integer, number of cores to use. Must be at least one, and parallelization requires
at least two cores.

Details

Note that the time resolution of variable ConnectionStartDateTime must coincide with resolution
parameter. For example, if a charging session in sessions starts charging at 15:32 and resolution
= 15, the load of this session won’t be computed. To solve this, the function automatically aligns
charging sessions’ start time according to resolution, so following the previous example the ses-
sion would start at 15:30.

Value

time-series tibble with first column of type datetime

Examples

library(lubridate)
library(dplyr)

Get occupancy with the complete datetime sequence from the sessions

12 get_user_profiles_distribution

sessions <- head(evsim::california_ev_sessions, 100)
connections <- get_occupancy(

sessions,
by = "ChargingStation",
resolution = 60

)
connections %>%

plot_ts(ylab = "Vehicles connected", legend_show = "onmouseover")

Get occupancy with a custom datetime sequence and resolution of 15 minutes
sessions <- head(evsim::california_ev_sessions_profiles, 100)
dttm_seq <- seq.POSIXt(

as_datetime(dmy(08102018)) %>% force_tz(tz(sessions$ConnectionStartDateTime)),
as_datetime(dmy(11102018)) %>% force_tz(tz(sessions$ConnectionStartDateTime)),
by = "15 mins"

)
connections <- get_occupancy(

sessions,
dttm_seq = dttm_seq,
by = "Profile"

)
connections %>%

plot_ts(ylab = "Vehicles connected", legend_show = "onmouseover")

get_user_profiles_distribution

User profiles distribution

Description

Get the user profiles distribution from the original data set used to build the model

Usage

get_user_profiles_distribution(evmodel)

Arguments

evmodel object of class evmodel

Value

tibble

Examples

get_user_profiles_distribution(evsim::california_ev_model)

plot_occupancy_duration_curve 13

plot_occupancy_duration_curve

Plot the occupancy duration curve

Description

This term is based on the "load duration curve" and is useful to see the behavior of occupancy over
the time in your charging installation. The steeper the curve, the shorter the duration that higher
number of connections are sustained. Conversely, the flatter the curve, the longer the duration that
higher number of connections are sustained. This information is crucial for various purposes, such
as infrastructure planning, capacity sizing, and resource allocation.

Usage

plot_occupancy_duration_curve(
sessions,
dttm_seq = NULL,
by = "Profile",
resolution = 15,
mc.cores = 1

)

Arguments

sessions tibble, sessions data set in standard format marked by {evprof} package

dttm_seq sequence of datetime values that will be the datetime variable of the returned
time-series data frame.

by character, being ’Profile’ or ’Session’. When by='Profile' each column cor-
responds to an EV user profile.

resolution integer, time resolution (in minutes) of the sessions datetime variables. If dttm_seq
is defined this parameter is ignored.

mc.cores integer, number of cores to use. Must be at least one, and parallelization requires
at least two cores.

Value

ggplot

Examples

library(dplyr)

sessions <- head(evsim::california_ev_sessions_profiles, 100)
plot_occupancy_duration_curve(

sessions,
by = "Profile",
resolution = 15

14 plot_ts

)

plot_ts Interactive plot for time-series tibbles

Description

First column of the df tibble must be a datetime or date variable. The rest of columns must be
numeric of the same units. This functions makes use of dygraphs package to generate an HTML
Dygraphs plot.

Usage

plot_ts(
df,
title = NULL,
xlab = NULL,
ylab = NULL,
legend_show = "auto",
legend_width = 250,
group = NULL,
width = NULL,
height = NULL,
...

)

Arguments

df data.frame or tibble, first column of name datetime being of class datetime and
rest of columns being numeric

title character, title of the plot (accepts HTML code)
xlab character, X axis label (accepts HTML code)
ylab character, Y axis label (accepts HTML code)
legend_show character, when to display the legend. Specify "always" to always show the

legend. Specify "onmouseover" to only display it when a user mouses over the
chart. Specify "follow" to have the legend show as overlay to the chart which
follows the mouse. The default behavior is "auto", which results in "always"
when more than one series is plotted and "onmouseover" when only a single
series is plotted.

legend_width integer, width (in pixels) of the div which shows the legend.
group character, dygraphs group to associate this plot with. The x-axis zoom level of

dygraphs plots within a group is automatically synchronized.
width Width in pixels (optional, defaults to automatic sizing)
height Height in pixels (optional, defaults to automatic sizing)
... extra arguments to pass to dygraphs::dyOptions function.

read_ev_model 15

Value

dygraph

Examples

suppressMessages(library(lubridate))
suppressMessages(library(dplyr))

Get demand with the complete datetime sequence from the sessions
sessions <- head(evsim::california_ev_sessions, 100)
demand <- get_demand(

sessions,
by = "Session",
resolution = 60

)
demand %>% plot_ts()

read_ev_model Read EV model

Description

Read an EV model JSON file and convert it to object of class evmodel

Usage

read_ev_model(file)

Arguments

file path to the JSON file

Value

object of class evmodel

Examples

ev_model <- california_ev_model # Model of example

save_ev_model(ev_model, file = file.path(tempdir(), "evmodel.json"))

read_ev_model(file = file.path(tempdir(), "evmodel.json"))

16 simulate_sessions

save_ev_model Save the EV model

Description

Save the EV model object of class evmodel to a JSON file

Usage

save_ev_model(evmodel, file)

Arguments

evmodel object of class evmodel

file character string with the path or name of the file

Value

nothing but saves the evmodel object in a JSON file

Examples

ev_model <- california_ev_model # Model of example

save_ev_model(ev_model, file = file.path(tempdir(), "evmodel.json"))

simulate_sessions Simulation of EV sessions

Description

Simulate EV charging sessions given the evmodel object and other contextual parameters.

Usage

simulate_sessions(
evmodel,
sessions_day,
user_profiles,
charging_powers,
dates,
resolution

)

simulate_sessions 17

Arguments

evmodel object of class evmodel built with {evprof}

sessions_day tibble with variables time_cycle (names corresponding to evmodel$models$time_cycle)
and n_sessions (number of daily sessions per day for each time-cycle model)

user_profiles tibble with variables time_cycle, profile, ratio and optionally power. It can
also be NULL to use the evmodel original user profiles distribution. The powers
must be in kW and the ratios between 0 and 1. The user profiles with a value of
power will be simulated with this specific charging power. If power is NA then it
is simulated according to the ratios of next parameter charging_powers.

charging_powers

tibble with variables power and ratio. The powers must be in kW and the ratios
between 0 and 1. This is used to simulate the charging power of user profiles
without a specific charging power in user_profiles parameter.

dates date sequence that will set the time frame of the simulated sessions

resolution integer, time resolution (in minutes) of the sessions datetime variables

Details

Some adaptations have been done to the output of the Gaussian models: the minimum simulated
energy is considered to be 1 kWh, while the minimum connection duration is 30 minutes.

Value

tibble

Examples

library(dplyr)
library(lubridate)

Get the example `evmodel`
ev_model <- evsim::california_ev_model

Simulate EV charging sessions, considering that the Worktime sessions
during Workdays have 11 kW, while all Visit sessions charge at 3.7kW or
11kW, with a distribution of 30% and 70% respectively.

simulate_sessions(
ev_model,
sessions_day = tibble(

time_cycle = c("Workday", "Weekend"),
n_sessions = c(15, 10)

),
user_profiles = tibble(

time_cycle = c("Workday", "Workday", "Weekend"),
profile = c("Visit", "Worktime", "Visit"),
ratio = c(0.5, 0.5, 1),
power = c(NA, 11, NA)

),

18 simulate_sessions

charging_powers = tibble(
power = c(3.7, 11),
ratio = c(0.3, 0.7)

),
dates = seq.Date(today(), today()+days(4), length.out = 4),
resolution = 15

)

Index

adapt_charging_features, 2
add_charging_infrastructure, 3

expand_sessions, 5

get_charging_rates_distribution, 6
get_custom_ev_model, 6
get_demand, 8
get_evmodel_parameters, 9
get_evmodel_summary, 10
get_occupancy, 11
get_user_profiles_distribution, 12

plot_occupancy_duration_curve, 13
plot_ts, 14

read_ev_model, 15

save_ev_model, 16
simulate_sessions, 16

19

	adapt_charging_features
	add_charging_infrastructure
	expand_sessions
	get_charging_rates_distribution
	get_custom_ev_model
	get_demand
	get_evmodel_parameters
	get_evmodel_summary
	get_occupancy
	get_user_profiles_distribution
	plot_occupancy_duration_curve
	plot_ts
	read_ev_model
	save_ev_model
	simulate_sessions
	Index

