## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 10, fig.height = 6 ) ## ----setup-------------------------------------------------------------------- library(ervissexplore) library(ggplot2) ## ----plot-positivity, eval=FALSE---------------------------------------------- # data <- get_sentineltests_positivity( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-06-30"), # pathogen = "SARS-CoV-2", # countries = c("France", "Germany") # ) # # plot_erviss_positivity(data, date_breaks = "1 month") ## ----plot-variants, eval=FALSE------------------------------------------------ # data <- get_erviss_variants( # date_min = as.Date("2025-06-01"), # date_max = as.Date("2025-12-31"), # variant = c("XFG"), # countries = c("France", "Belgium") # ) # # plot_erviss_variants(data, date_breaks = "1 month") ## ----plot-ili, eval=FALSE----------------------------------------------------- # data <- get_ili_ari_rates( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # indicator = "ILIconsultationrate", # countries = c("France") # ) # # plot_ili_ari_rates(data, date_breaks = "1 month") ## ----plot-sari-rates, eval=FALSE---------------------------------------------- # data <- get_sari_rates( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # countries = c("Belgium") # ) # # plot_sari_rates(data, date_breaks = "1 month") ## ----plot-sari-positivity, eval=FALSE----------------------------------------- # data <- get_sari_positivity( # date_min = as.Date("2025-01-01"), # date_max = as.Date("2025-12-31"), # pathogen = "Influenza", # indicator = "positivity", # countries = c("Belgium") # ) # # plot_sari_positivity(data, date_breaks = "1 month") ## ----plot-severity, eval=FALSE------------------------------------------------ # data <- get_nonsentinel_severity( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # pathogen = "SARS-CoV-2", # indicator = "hospitaladmissions", # countries = c("EU/EEA"), # age = "total" # ) # # plot_nonsentinel_severity(data, date_breaks = "1 month") ## ----plot-nonsentinel-tests, eval=FALSE--------------------------------------- # data <- get_nonsentinel_tests( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # pathogen = "Influenza", # indicator = "detections", # countries = c("France", "Germany") # ) # # plot_nonsentinel_tests(data, date_breaks = "1 month") ## ----quick-plot, eval=FALSE--------------------------------------------------- # # One-liner for ILI rates # quick_plot_ili_ari_rates( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # indicator = "ILIconsultationrate", # countries = c("France"), # date_breaks = "1 month" # ) ## ----quick-plot-generic, eval=FALSE------------------------------------------- # quick_plot_erviss_data( # type = "nonsentinel_severity", # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # pathogen = "SARS-CoV-2", # indicator = "hospitaladmissions", # countries = c("France", "Spain"), # date_breaks = "1 month" # ) ## ----generic-plot, eval=FALSE------------------------------------------------- # data <- get_erviss_data( # type = "sari_rates", # date_min = as.Date("2025-01-01"), # date_max = as.Date("2025-12-31"), # countries = "Spain" # ) # # plot_erviss_data(data, type = "sari_rates", date_breaks = "1 month") ## ----generic-plot-positivity, eval=FALSE-------------------------------------- # data <- get_erviss_data( # type = "positivity", # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-06-30"), # pathogen = "SARS-CoV-2", # countries = "EU/EEA", # indicator = "positivity" # ) # # plot_erviss_data(data, type = "positivity") ## ----custom-theme, eval=FALSE------------------------------------------------- # data <- get_sentineltests_positivity( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-06-30"), # pathogen = "SARS-CoV-2", # countries = c("France", "Germany") # ) # # plot_erviss_positivity(data) + # theme_bw() + # theme( # legend.position = "top", # strip.background = element_rect(fill = "steelblue"), # strip.text = element_text(color = "white", face = "bold") # ) ## ----custom-axes, eval=FALSE-------------------------------------------------- # plot_erviss_positivity(data) + # scale_x_date( # date_breaks = "1 month", # date_labels = "%d/%m/%Y" # ) + # scale_y_continuous( # limits = c(0, 50), # breaks = seq(0, 50, 10) # ) + # ylab("Positivity (%)") ## ----custom-title, eval=FALSE------------------------------------------------- # plot_erviss_positivity(data) + # labs( # title = "My custom title", # subtitle = "SARS-CoV-2 positivity in France and Germany", # caption = "Source: ERVISS / EU-ECDC" # ) ## ----custom-colors, eval=FALSE------------------------------------------------ # data <- get_ili_ari_rates( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # indicator = "ILIconsultationrate", # countries = "France" # ) # # plot_ili_ari_rates(data) + # scale_colour_brewer(palette = "Set1", name = "Age group") ## ----custom-full, eval=FALSE-------------------------------------------------- # data <- get_nonsentinel_severity( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # pathogen = "SARS-CoV-2", # indicator = c("hospitaladmissions", "ICUadmissions"), # age = "total", # countries = c("France", "Spain") # ) # # ggplot(data, aes(x = date, y = value, fill = indicator)) + # geom_col(position = "dodge") + # facet_wrap(~countryname, scales = "free_y") + # scale_fill_manual( # values = c("hospitaladmissions" = "#E69F00", "ICUadmissions" = "#D55E00"), # labels = c("Hospital admissions", "ICU admissions"), # name = "" # ) + # labs( # title = "SARS-CoV-2 severity indicators", # x = NULL, # y = "Count", # caption = "Source: ERVISS / EU-ECDC" # ) + # theme_minimal() + # theme(legend.position = "top") ## ----custom-heatmap, eval=FALSE----------------------------------------------- # data <- get_ili_ari_rates( # date_min = as.Date("2024-01-01"), # date_max = as.Date("2024-12-31"), # indicator = "ILIconsultationrate", # age = "total", # countries = c("Spain", "Austria", "Greece") # ) # # ggplot(data, aes(x = date, y = countryname, fill = value)) + # geom_tile() + # scale_fill_viridis_c(name = "ILI rate") + # scale_x_date(date_breaks = "1 month", date_labels = "%b") + # labs(title = "ILI consultation rates across Europe", x = NULL, y = NULL) + # theme_minimal() + # theme(axis.text.x = element_text(angle = 45, hjust = 1))