
Package ‘elixir’
September 24, 2025

Type Package

Title Transmutation of Languages

Version 0.1.0

Description Tools for transforming 'R' expressions. Provides functions for
finding, extracting, and replacing patterns in 'R' language objects, similarly
to how regular expressions can be used to find, extract, and replace patterns
in text. Also provides functions for generating code using specially-formatted
template files and for translating 'R' expressions into similar expressions in
other programming languages. The package may be helpful for advanced uses of
'R' expressions, such as developing domain-specific languages.

URL https://github.com/nicholasdavies/elixir,

https://nicholasdavies.github.io/elixir/

BugReports https://github.com/nicholasdavies/elixir/issues

License MIT + file LICENSE

Encoding UTF-8

Imports methods, rlang, data.table, stringr, glue

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Nicholas Davies [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0002-1740-1412>)

Maintainer Nicholas Davies <nicholas.davies@lshtm.ac.uk>

Repository CRAN

Date/Publication 2025-09-24 08:20:07 UTC

1

https://github.com/nicholasdavies/elixir
https://nicholasdavies.github.io/elixir/
https://github.com/nicholasdavies/elixir/issues
https://orcid.org/0000-0002-1740-1412

2 elixir

Contents
elixir . 2
elixir-expression . 3
elixir-rules . 5
expr_apply . 5
expr_list . 6
expr_match . 8
expr_replace . 11
expr_sub . 12
lang2str . 14
meld . 14
reindent . 16
translate . 18

Index 20

elixir elixir: Transmutation of languages

Description

elixir is a set of tools for transforming R expressions, including into other programming lan-
guages.

Details

One of the neat features of R is that you can use the language to inspect itself. Expressions, func-
tions, indeed entire R scripts can be examined and manipulated just like any list, data.frame, or
other R object.

However, the syntax for manipulating R language objects is a little tricky. Packages such as rlang
help to make this task easier. elixir makes a few extra shortcuts available, and is geared for
advanced R users.

elixir provides functions for finding, extracting, and replacing patterns in ’R’ language objects,
similarly to how regular expressions can be used to find, extract, and replace patterns in text. It also
provides functions for generating code using specially-formatted template files and for translating
’R’ expressions into similar expressions in other programming languages.

The package may be helpful for advanced uses of ’R’ expressions, such as developing domain-
specific languages.

Find and replace for language objects

Sometimes you want to detect certain patterns within an expression or list of expressions, or easily
replace a certain pattern with another. When working with strings, regular expressions are a handy
way of accomplishing such tasks. elixir provides a sort of "regular expressions for R expressions"
functionality through the functions expr_match(), expr_replace(), and the "shortcut" functions
expr_count(), expr_detect(), expr_extract(), and expr_locate().

elixir-expression 3

Other elixir features

The function expr_apply() allows you to transform and extract information from nested list struc-
tures which contain expressions, so if you have a big structure and you want to check all the variable
names or make certain replacements, this may be useful.

expr_sub() offers an interface for extracting or replacing part of an expression; the one advantage
this has over [[is that it allows you to use NULL as the index, which gives back the whole expression.

lang2str() does the opposite of base::str2lang(); it is like deparse1() which is new since R
4.0.0, but with collapse = "" instead of collapse = " ".

Finally, meld(), translate(), and reindent() are various experimental functions for construct-
ing code using R.

elixir-expression Expressions in elixir

Description

elixir is primarily a package for working with what it calls "expressions", in the sense of any R
object for which rlang::is_expression() returns TRUE. This includes calls, like the results of
evaluating quote(f(x)) or quote(a:b), symbols like quote(z), and syntactic literals like 2.5,
"hello", NULL, FALSE, and so on.

This is not to be confused with the built-in type base::expression, which is essentially a special
way of storing a vector of multiple "expressions". elixir does not use this type; see expr_list()
instead.

Usage

expr_list(number = { `.A:numeric` } ? { `.A:integer` },
string = { `.A:character` }, symbol = { `.A:name` })

expr_match({ 1 * 2 }, ~{ .A * .B })
expr_match({ 1 * 2 }, { `.A:numeric` })
expr_replace({ y = a*x^3 + b*x^2 + c*x^1 + d*x^0 },

{ ..X ^ ..N }, { pow(..X, ..N) })

Specifying expressions in elixir

The elixir package functions starting with expr_ work with expressions. These functions all
accept a special (optional) syntax for specifying expressions which involves the symbols {}, ?, and
~, as well as the rlang injection operator, !! and splice operator, !!!).

With base R, if you want to store an expression such as x + y in a variable or pass it to a function,
you need to use base::quote() or rlang::expr(), but any Elixir expr_ function will also accept
an "expression literal" wrapped in braces, {}.

So, for example, rather than

translate(quote(x ^ y), "C++")

you can write

4 elixir-expression

translate({ x ^ y }, "C++").

This only works if the braces are provided "directly"; that is, in
expr <- quote({ x ^ y }); translate(expr, "C++"),

the braces are not interpreted in any special way.

Anything between the braces essentially gets put through rlang::expr(), so you can use !! (i.e.
rlang::injection-operator) and !!! (i.e. rlang::splice-operator). There is an env parameter to all
relevant elixir functions, defaulting to parent.frame(), in which these injection operations are
evaluated.

Special syntax for patterns and replacements

Additionally, some functions (expr_match(), expr_count(), expr_detect(), expr_extract(),
expr_locate(), and expr_replace()) take pattern and/or replacement arguments to specify
patterns to match to an expression and/or replacement expressions to replace those matches with.

For both pattern and replacement arguments, you can use the question mark operator ? to specify
alternatives. For example, to match either the token cat or dog, you can use

expr_match(expr, { cat } ? { dog }).

You can chain together as many alternatives as are needed. Alternatively, if you have a list of
expressions z, you can use a single question mark before the name of the list, like so:

expr_match(expr, ?z)

and elixir will treat the list as a set of alternatives. When using expr_replace() with a set
of alternatives as the pattern, the replacement needs to be either a single expression, or a set of
alternative expressions which has the same number of alternatives as in the pattern.

You can also use the tilde operator ~ to specify that a given pattern should be "anchored" at the top
level of an expression, and will not "recurse into" the expression. For example, in

exprs = expr_list(2, 5, {1 + 4})
expr_match(exprs, ~{ `.A:numeric` })

only the numbers 2 and 5 will match. However, in

exprs = expr_list(2, 5, {1 + 4})
expr_match(exprs, { `.A:numeric` })

all numbers 2, 5, 1 and 4 will match, because the pattern can recurse into the third expression 1 +
4.

elixir-rules 5

elixir-rules Rules for understanding languages

Description

Several elixir functions – namely meld(), reindent(), and translate() – take an argument
rules which assists those functions in interpreting their arguments.

Details

In all cases, rules can either be a character string identifying a set of built-in rules for a specific
language or purpose – currently, elixir accepts "C", "C++", "Lua", or "R" – or a list with elements
required for interpretation.

elixir:::ruleset contains the built-in rules. Passing an empty list() as the rules argument to
an elixir function will cause it to complain about the missing components, which is one way of
discerning what is needed for a given function, but usually these error messages do not quite cover
all details of what is needed.

expr_apply Apply a function over expressions

Description

Recursively apply a function over an expression, or any expression elements of a list, and optionally
the subexpressions within any expressions.

Usage

expr_apply(
x,
f,
depth = Inf,
into = FALSE,
order = c("pre", "post"),
how = c("replace", "unlist", "unique"),
env = parent.frame()

)

Arguments

x The R object; can an expression, or a list of arbitrary nestedness potentially
containing expressions.

f Function to apply to all expressions within x; takes 1 to 3 arguments.

depth How many levels to recurse into lists; default is Inf.

6 expr_list

into Whether to recurse into expressions. Can be TRUE to visit all subexpressions,
FALSE to not recurse, or "leaves" to recurse and only apply f to terminal nodes
of expressions (i.e. the symbols and syntactic literals comprising the expres-
sions).

order Whether a parent node is visited before ("pre") or after ("post") its children (the
terminology comes from pre-order and post-order depth-first search). This only
has an effect if into == TRUE.

how How to structure the result.

env Environment for injections in x (see expression).

Details

The function f can take one to three arguments. The first argument is the expression itself for f to
apply to, and f should return some kind of replacement for, or modified version of, this argument.

The second argument is a list with information about the name of the expression in the list x and of
its parents. Specifically, the first element of the list is the name of the expression, the second element
of the list is the name of the "parent" of the expression, and so on. If any elements in this chain are
unnamed, an integer is provided as the name. If the expression is within another expression (which
only happens with into = TRUE), this is signalled as a NULL at the top of the list, one for each level
of recursion into the expression.

The third argument is an integer vector, the index into x where f is currently operating. This is
suitable for use with expr_sub().

Value

If how = "replace" (the default), the original object x with f applied to expressions within it. If
how = "unlist", the same but with unlist() applied to it. If how = "unique", first unlist() then
unique() are applied.

Examples

expr_apply(list(quote(a + b), quote(c)), function(x) all.vars(x), how = "unlist")

expr_list Make a list of expressions

Description

Constructs a list of expressions, with support for elixir’s special expression syntax (expression
literals with {} or ~{}, and alternatives with ?).

expr_list 7

Usage

expr_list(..., env = parent.frame())

S3 method for class 'expr_list'
xl[i]

S3 replacement method for class 'expr_list'
xl[i] <- value

Arguments

... Expressions to include in the list. If the arguments are named, these will be
passed on to the returned list.

env Environment for injections in ... (see expression).

xl An expr_list.

i Index for subsetting the expr_list; an integer, numeric, logical, or character
vector (for named expr_lists) interpreted in the usual R way.

value Replacement; an expr_list, an expression, or a list of expressions.

Details

Be aware that using the [[indexing operator on an object of class expr_list discards infor-
mation about whether that element of the list is marked as anchored. In other words, if xl <-
expr_list({.A}, ~{.A}), then xl[[1]] and xl[[2]] are both equal to the "bare" symbol .A, so
the information that the second element of the list is anchored has been lost. Consequently, in e.g.
expr_match(expr, xl[[2]]), it will be as though the tilde isn’t there, and xl[[2]] will not just
match with the top level of expr as was probably intended. Use the [operator instead, which retains
anchoring information; expr_match(expr, xl[2]) will work as expected.

Note that when you replace part of an expr_list with another expr_list, the anchoring informa-
tion from the "replacement" expr_list is copied over, while replacing part of an expr_list with
an expression or a "plain" list of expressions retains the existing anchoring information.

Value

A list of expressions, of class expr_list.

Examples

expr_list(
~{ 1 + 1 = 2 } ? ~{ 2 + 2 = 4 },
~{ y = a * x + b },
{ .A }

)

There is support for rlang's injection operators.
var = as.name("myvar")
expr_list({ 1 }, { !!var }, { (!!var)^2 })

8 expr_match

expr_match Find patterns in expressions

Description

Match and extract patterns in an expression or a list of expressions.

Usage

expr_match(expr, pattern, n = Inf,
dotnames = FALSE, env = parent.frame())

expr_count(expr, pattern, n = Inf, env = parent.frame())
expr_detect(expr, pattern, n = Inf, env = parent.frame())
expr_extract(expr, pattern, what = "match", n = Inf,

dotnames = FALSE, gather = FALSE, env = parent.frame())
expr_locate(expr, pattern, n = Inf, gather = FALSE,

env = parent.frame())

Arguments

expr Input. An expression, expr_list, or list() of expressions.

pattern Pattern to look for. An expression, a length-one expr_list, or a length-one list of
expressions. The question mark syntax (see expression) can be used to specify
alternatives.

n Maximum number of matches to make in each expression; default is Inf.

dotnames Normally, patterns like .A, ..B, ...C, etc, are named just A, B, C, etc., in the
returned matches, without the dot(s) before each name. With dotnames = TRUE,
the dots are kept.

env Environment for injections in expr, pattern (see expression).

what (expr_extract only) Name of the pattern to extract (or "match", the default, to
extract the entire match).

gather (expr_extract and expr_locate only) Whether to only return the successful
matches, in a single unnested list.

Value

expr_match returns, for each expression in expr, either NULL if there is no match, or an object
of class expr_match if there is a match. If expr is a single expression, just a single NULL or
expr_match object will be returned, but if expr is a list of expressions, then a list of all results will
be returned.

An expr_match object is a list containing the elements alt (if the pattern contains several alter-
natives), match, loc, and further elements corresponding to the capture tokens in pattern (see
below).

For return values of expr_count, expr_detect, expr_extract, and expr_locate, see below.

expr_match 9

Details

All of these functions are used to check whether an expression matches a specific pattern, and if
it does, retrieve the details of the match. These functions are inspired by similar functions in the
stringr package.

Details for expr_match

expr_match is the most general of the bunch. As an example, suppose you had an expression
containing the sum of two numbers (e.g. 3.14159 + 2.71828) and you wanted to extract the two
numbers. You could use the pattern { .A + .B } to extract the match:

expr_match({ 3.14159 + 2.71828 }, { .A + .B })

This gives you a list containing all the matches found. In this case, there is one match, the details of
which are contained in an object of class expr_match. This object contains the following elements:

• match = quote(3.14159 + 2.71828), the entire match;

• loc = NULL, the location of the match within the expression;

• A = 3.14159, the part of the match corresponding to the capture token .A;

• B = 2.71828, the part of the match corresponding to the capture token .B.

We can also use a list of expressions for expr, as in:

ex <- expr_list({ x + y }, { kappa + lambda }, { p * z })
expr_match(ex, { .A + .B })

This returns a list with one entry for each element of the list ex; for the expressions that match
(ex[[1]] and ex[[2]]) an expr_match object is returned, while for the expression that does not
match (ex[[3]]), NULL is returned.

Pattern syntax

The pattern expression (e.g. {.A + .B} in the above) follows a special syntax.

Capture tokens:
First, these patterns can contain capture tokens, which are names starting with one to three periods
and match to the following:

• .A matches any single token
• ..A matches any sub-expression
• ...A matches any number of function arguments

Above, "A" can be any name consisting of an alphabetical character (a-z, A-Z) followed by any
number of alphanumeric characters (a-z, A-Z, 0-9), underscores (_), or dots (.). This is the
name given to the match in the returned list. Alternatively, it can be any name starting with an
underscore (e.g. so the entire token could be ._ or ..._1), in which case the match is made but
the capture is discarded.
Additionally, the single-token pattern (e.g. .A) can be extended as follows:

10 expr_match

• Use `.A:classname` to require that the class of the object be "classname" (or contain "class-
name" if the object has multiple classes); so e.g. `.A:name` matches a single name (i.e.
symbol).

• Use `.A/regexp` to require a regular expression match regexp; so e.g. `.A:name/ee` will
match symbols with two consecutive lowercase letter ’e’s;

• Use `.A|test` to require that the expression test evaluates to TRUE, where . can be used
as a stand-in for the matched token; so e.g. `.A:numeric|.>5` will match numbers greater
than 5.

The regexp and test specifiers cannot be used together, and have to come after the classname
specifier if one appears. These special syntaxes require the whole symbol to be wrapped in back-
ticks, as in the examples above, so that they parse as symbols.

Matching function arguments:
If you wish to match a single, unnamed function argument, you can use a capture token of the
form .A (single-token argument) or ..B (expression argument). To match all arguments, including
named ones, use a capture token of the form ...C. For example, these all match:

expr_match({ myfunc() }, { .F() })
expr_match({ myfunc(1) }, { .F(.X) })
expr_match({ myfunc(1 + 1) }, { myfunc(..X) })
expr_match({ myfunc(1, 2) }, { .F(.X, .Y) })
expr_match({ myfunc() }, { myfunc(...A) })
expr_match({ myfunc(1) }, { .F(...A) })
expr_match({ myfunc(2, c = 3) }, { myfunc(...A) })

but these do not:

expr_match({ myfunc() }, { .F(.X) })
expr_match({ myfunc() }, { .F(..X) })
expr_match({ myfunc(a = 1) }, { .F(.X) })
expr_match({ myfunc(a = 1 + 1) }, { .F(..X) })
expr_match({ myfunc(1,2) }, { .F(..X) })
expr_match({ myfunc(a = 1, b = 2) }, { .F(...X, ...Y) })

There may be support for named arguments in patterns in the future, e.g. a pattern such as { f(a
= .X) } that would match an expression like { f(a = 1) }, but that is currently not supported. So
currently you can only match named function arguments using the ...X syntax.

Anchoring versus recursing into expressions:
If you want your anchor your pattern, i.e. ensure that the pattern will only match at the "outer
level" of your expression(s), without matching to any sub-expressions within, use a tilde (~) out-
side the braces (see expression for details). For example, expr_match({1 + 2 + 3 + 4}, ~{..A
+ .B}) only gives one match, to the addition at the outermost level of 1 + 2 + 3 plus 4, but
expr_match({1 + 2 + 3 + 4}, {..A + .B}) also matches to the inner additions of 1 + 2 plus 3
and 1 plus 2.

Alternatives:
Finally, pattern can be a series of alternatives, using the operator ? for specifying alternatives
(see expression for details). Results from the first matching pattern among these alternatives will
be returned, and the returned expr_match object will include a special element named "alt" giving
the index of the matching alternative (see examples).

expr_replace 11

Details for expr_count, expr_detect, expr_extract, and expr_locate

These shortcut functions return only some of the information given by expr_match, but often in a
more convenient format.

expr_count returns an integer vector with one element for every expression in expr, each element
giving the number of matches of pattern found.

expr_detect returns a logical vector with one element for every expression in expr, each element
giving whether at least one match of pattern was found.

expr_extract returns, for each expression in expr, a list of all the complete matches. Or, by
specifing a capture token name in the argument which, those can be extracted instead. For example:

expr_extract(expr_list({(a+b)+(x+y)},
{"H"*"I"}, {3+4}), {.A + .B}, "A")

gives list(list(quote(a), quote(x)), NULL, list(3)).

Using gather = TRUE with expr_extract returns only the succesful matches in a single, unnested
list; so the above call to expr_extract with gather = TRUE would give list(quote(a), quote(x),
3).

Finally, expr_locate is similar to expr_extract but it returns the location within expr of each
successful match.

See Also

expr_replace() to replace patterns in expressions.

Examples

expr_match({ 1 + 2 }, { .A + .B })

match to one of several alternatives
expr_match({ 5 - 1 }, { .A + .B } ? { .A - .B })

expr_replace Replace patterns within expressions

Description

Match and replace elements of patterns in an expression or a list of expressions.

Usage

expr_replace(expr, ..., patterns, replacements,
n = Inf, env = parent.frame())

12 expr_sub

Arguments

expr Input. An expression, expr_list, or list() of expressions.

... Alternating series of patterns and replacements, each a single expression (though
alternatives can be specified with ?).

patterns Patterns to look for. An expression, expr_list, or list() of expressions.

replacements Replacements, one for each pattern.

n Maximum number of times for each expression to make each replacement; de-
fault is Inf.

env Environment for injections in expr, pattern (see expression).

Details

Patterns follow the syntax for expr_match().

Value

The input expression(s) with any replacements made.

See Also

expr_match() to find patterns in expressions, and its cousins expr_count(), expr_detect(),
expr_extract(), and expr_locate().

Examples

Example with alternating patterns and replacements
expr_replace({ 1 + 2 }, {1}, {one}, {2}, {two})

Example with patterns and replacements in a list
expr_replace({ 1 + 2 }, patterns = expr_list({1}, {2}),

replacements = expr_list({one}, {two}))

Replace with captures
expr_replace({ 1 + 2 }, ~{ .A + .B }, { .A - .B })

expr_sub Get or set a subexpression

Description

These functions allow you to extract and/or modify a subexpression within an expression.

Usage

expr_sub(expr, idx, env = parent.frame())

expr_sub(expr, idx, env = parent.frame()) <- value

expr_sub 13

Arguments

expr The expression to select from. Can also be a list of expressions, in which case
the first element of index selects the expression from the list.

idx A valid index: NULL or an integer vector.

env Environment for any injections in expr (see expression).

value Replacement; an expression.

Details

The elixir functions expr_match() and expr_locate() find matching "subexpressions" within
expressions and return indices that allow accessing these subexpressions. For example, the expres-
sion 1 + 2 + 3 contains all the following subexpressions:

index subexpression accessed with R code
NULL 1+2+3 expr
1 + expr[[1]]
2 1+2 expr[[2]]
3 3 expr[[3]]
c(2,1) + expr[[2]][[1]] or expr[[c(2, 1)]]
c(2,2) 1 expr[[2]][[2]] or expr[[c(2, 2)]]
c(2,3) 2 expr[[2]][[3]] or expr[[c(2, 3)]]

Any index returned by expr_match() or expr_locate() will either be NULL (meaning the whole
expression / expression list) or an integer vector (e.g. 1 or c(2,3) in the table above).

Suppose you have an index, idx. If idx is an integer vector, you can just use expr[[idx]] to access
the subexpression. But in the case where idx is NULL, R will complain that you are trying to select
less than one element. The sole purpose of expr_sub() is to get around that issue and allow you to
pass either NULL or an integer vector as the index you want for an expression or list of expressions.

Value

The element of the expression selected by idx.

See Also

expr_match(), expr_locate() which return indices to subexpressions.

Examples

expr = quote(y == a * x + b)
expr_sub(expr, NULL)
expr_sub(expr, 3)
expr_sub(expr, c(3, 3))

expr_sub(expr, c(3, 3)) <- quote(q)
print(expr)

14 meld

lang2str Convert an expression into a string

Description

The opposite of str2lang(), lang2str() converts an expression into a character string. Note that
lang2str() does not support the normal expression syntax for elixir, so just expects an already-
parsed expression.

Usage

lang2str(x)

Arguments

x Expression to convert to a string.

Details

This function is essentially identical to deparse1(), which has been available since R 4.0.0, except
with collapse = "" instead of collapse = " ".

Value

A character string suitable for printing.

Examples

lang2str(quote(a + b + c))

meld Code generation from template file

Description

meld reads a specially-formatted file from filename file or as lines of text passed via unnamed
arguments and returns these lines of text after performing substitutions of R code.

This function is experimental.

meld 15

Usage

meld(
...,
file = NULL,
rules = NULL,
reindent = TRUE,
ipath = ".",
env = rlang::env_clone(parent.frame())

)

Arguments

... Lines to be interpreted as the text. If there are any embedded newlines in a line,
the line is split into multiple lines.

file File to be read in as the text.

rules Which rules to follow. You can pass a string from among "C", "C++", "Lua", or
"R", or a list with elements:

• comment Character vector for comments (used when backticked lines are
skipped); either NA for no comments, one string for end-of-line comments
or two strings for delimited comments.

• indent_more Character vector of tokens which increase the indent level.
• indent_less Character vector of tokens which decrease the indent level.
• indent_both Character vector of tokens which decrease, then increase the

indent level (see reindent()).
• ignore Comment and string literal delimiters (see reindent()).

If NULL, the default, either guess rules from the file extension, or if that is not
possible, do not put in ’skipped’ comments and do not reindent the result. NA to
not try to guess.

reindent If TRUE, the default, reindent according to rules. If FALSE, do not reindent.

ipath Path to search for #included files

env Environment in which to evaluate R expressions. The default is rlang::env_clone(parent.frame()),
and it is best to clone the environment so that new declarations do not pollute
the environment in question.

Details

As meld works through each line of the text, any blocks of text starting with the delimiter /***R
and ending with */ are run as R code.

Outside these blocks, any substrings in the text delimited by `backticks` are interpreted as R
expressions to be substituted into the line. If any of the backticked expressions are length 0, the line
is commented out (with the message "[skipped]" appended) using the comment element of rules.
If any of the backticked expressions are length L > 1, the entire interpreted line is repeated L times,
separated by newlines and with elements of the expression in sequence.

There are some special sequences:

• `^expr` subs in expr only on the first line of a multi-line expansion

16 reindent

• `!^expr` subs in expr on all but the first line of a multi-line expansion

• `$expr`subs in expr only on the last line of a multi-line expansion

• `!$expr` subs in expr on all but the last line of a multi-line expansion

• `#include file` interprets file as an R expression resolving to a filename, runs that file
through meld, and pastes in the result

The #include command must appear by itself on a line, and searches for files in the path ipath.

The function tries to guess rules from the file extension if that is possible. If the file extension is .c,
then "C" is guessed; for .h, .hpp, or .cpp, "C++" is guessed; for .R, "R" is guessed; for .lua, "Lua"
is guessed. Case is ignored for file extensions.

R blocks are evaluated immediately prior to the next-occurring backticked line, so variables modi-
fied in an R block are available to any backticked expression following the R block. Any remaining
R blocks are run after remaining lines are interpreted.

If any line from the text ends with a single backslash \, the next line is concatenated to it. If any
line from the text ends with a double backslash \\, the next line is concatenated to it with a newline
as a separator. This allows backticked expressions to apply over multiple lines.

Value

The interpreted text as a single character string.

Examples

meld(
"/***R",
"names = c('a', 'b', 'c');",
"dontdothis = NULL;",
"*/",
"double foo()",
"{",
" double `names` = `1:3`;",
" double `dontdothis` = this_doesnt_matter;",
" return `paste(names, sep = ' + ')`;",
"}")

reindent Reindent some lines of code

Description

Using some fairly unsophisticated metrics, reindent() will take some lines of code and, according
to its understanding of the rules for that language, reindent those lines. This is intended to help
prettify automatically generated code.

This function is experimental.

reindent 17

Usage

reindent(lines, rules, tab = " ", start = 0L)

Arguments

lines Character vector with lines of text; can have internal newlines.

rules Which rules to follow. You can pass a string from among "C", "C++", "Lua", or
"R", or a list with elements:

• indent_more Character vector of tokens which increase the indent level.
• indent_less Character vector of tokens which decrease the indent level.
• indent_both Character vector of tokens which decrease, then increase the

indent level (see Details).
• ignore Comment and string literal delimiters (see Details).

tab Character string; what to use as an indent.

start Indent level to start at.

Details

Conceptually, the function first ignores any comments or string literals. Then, line by line, reindent
looks for tokens that signal either an increase in the indent level, a decrease in the indent level, or
both at the same time. For example, in this Lua code:

if x == 1 then
print 'one'

else
print 'not one'

end

the if keyword increases the indent level, the else keyword both decreases and increases the indent
level, and the end keyword decreases the indent level.

If provided, the ignore element of rules should be a list of character vectors. A character vector
of length one is assumed to start a comment that runs to the end of the line (e.g. "#" in R). If length
two, the two symbols are assumed to start and end a comment or string (e.g. "/*" and "*/" in C).
If length three, then the first two symbols are start and end delimiters of a comment or string, while
the third symbol is an "escape" character that escapes the end delimiter (and can also escape itself).
This is typically a backslash.

reindent() supports "raw strings" in R, C, C++, and Lua code but only in limited cases. In R,
when using raw character constants you must use an uppercase R, the double quote symbol and zero
to two hyphens. In C/C++, when using raw string literals you must use the prefix R, and zero to two
hyphens as the delimiter char sequence (plus parentheses). In Lua, you can use long brackets with
zero to two equals signs. Any other attempt to use raw strings will probably break reindent().

Other unusual character sequences may also break reindent().

Value

Reindented lines as a character vector.

https://en.cppreference.com/w/cpp/language/string_literal.html
https://www.lua.org/manual/5.2/manual.html#3.1

18 translate

Examples

reindent(
c(

"if x == 1 then",
"print 'one'",
"else",
"print 'not one'",
"end"

),
rules = "Lua")

translate Translate an R expression

Description

Takes an R expression (in the sense of rlang::is_expression()) and translates it into a character
string giving the equivalent expression in another programming language, according to the supplied
rules.

This function is experimental.

Usage

translate(expr, rules, env = parent.frame())

Arguments

expr Expression or list of expressions to be translated.

rules Which rules to follow. You can pass a string from among "C", "C++", "Lua", or
"R", or a list with translation rules (see Details).

env Environment for injections in expr (see expression).

Details

The parameter rules can be a character string naming a "built-in" ruleset. Otherwise, rules should
be a list with the following elements:

• ops: an unnamed list of operator definitions, each of which should be a list with four elements:

– arity the number of operands
– prec the precedence of the operator (lower numbers equal higher precedence)
– assoc the associativity of the operator, either "LTR", "RTL", or anything else for no asso-

ciativity
– str a glue::glue() format string with {A[1]}, {A[2]}, etc., standing in for the first,

second, etc. operands.

translate 19

– nopar a numeric vector with indices of arguments to the operator which should never be
enclosed in parentheses. The default and usual value is integer(0), but (for example) it
can be 2 for the [operator, as parentheses within the second argument (the content of the
brackets) are redundant.

The function elixir:::op can help to assemble such lists.

• paren a glue::glue() format string with {x} standing in for the enclosed expression. De-
scribes how parentheses are expressed in the target language. Example: "({x})" is correct
for virtually all programming languages.

• symbol: a function which takes a symbol and returns a character string, representing the name
of that symbol in the target language. This could just be equal to base::as.character, but it can
be changed to something else in case you want name mangling, or e.g. some processing to
replace . in symbols with some other character (as . are often not allowed as part of symbols
in popular languages).

• literal: a named list in which the name refers to the class of the operand to translate, and
the value should be a function of a single argument (the operand) returning a character string.

It may be helpful to inspect elixir:::ruleset to clarify the above format.

There are some important shortcomings to translate(). Here are some potential pitfalls:

• Named arguments are not supported, because we cannot translate an R function call like
mean(x, na.rm = TRUE) without knowing which parameter of mean matches to na.rm.

• Division: An R expression like 1/3 gets translated into 1./3. in C/C++, as numeric literals
are coerced to type double. So both of these evaluate to 0.333. However, the R expression
1L/3L will get translated into 1/3 in C/C++, which evaluates to 0 (as it is integer division).

• Modulo: R uses "Knuth’s modulo", where a %% b has the same sign as b. Lua also uses
Knuth’s modulo, but C/C++ use "truncated modulo", where a % b has the same sign as a.
(see Wikipedia for details). So when converting a modulo expression from R to C/C++, a
call to the function kmod is generated in the C/C++ expression. This is not a standard li-
brary function, so you will have to provide a definition yourself. A workable definition is:
double kmod(double x, double y) { double r = fmod(x, y); return r && r < 0 != y < 0 ? r + y : r; }
(R) or a % b (Lua)

• Types: In R, the type of a %% b and of a %/% b depends on the type of a and b (if both are
integers, the result is an integer; if at least one is numeric, the result is numeric).

• Chained assignment does not work in Lua.

Value

The translated expression as a single character string.

Examples

translate({x ^ y}, "C++")

https://en.wikipedia.org/wiki/Modulo#Variants_of_the_definition

Index

[.expr_list (expr_list), 6
[<-.expr_list (expr_list), 6

base::as.character, 19
base::expression, 3
base::quote(), 3
base::str2lang(), 3

deparse1(), 14

elixir, 2
elixir-expression, 3
elixir-rules, 5
expr_apply, 5
expr_apply(), 3
expr_count (expr_match), 8
expr_count(), 2, 4, 12
expr_detect (expr_match), 8
expr_detect(), 2, 4, 12
expr_extract (expr_match), 8
expr_extract(), 2, 4, 12
expr_list, 6, 8, 12
expr_list(), 3
expr_locate (expr_match), 8
expr_locate(), 2, 4, 12, 13
expr_match, 8
expr_match(), 2, 4, 12, 13
expr_replace, 11
expr_replace(), 2, 4, 11
expr_sub, 12
expr_sub(), 3, 6, 13
expr_sub<- (expr_sub), 12
Expression, 18
expression, 5–14, 18
expressions, 18

glue::glue(), 18, 19

lang2str, 14
lang2str(), 3, 14
list, 8

list(), 8, 12

meld, 14
meld(), 3, 5

raw character constants, 17
reindent, 16
reindent(), 3, 5, 15–17
rlang::expr(), 3, 4
rlang::injection-operator, 4
rlang::is_expression(), 3, 18
rlang::splice-operator, 4
rules, 15, 17, 18
ruleset, 18

str2lang(), 14

translate, 18
translate(), 3, 5, 19

unique(), 6
unlist(), 6

20

	elixir
	elixir-expression
	elixir-rules
	expr_apply
	expr_list
	expr_match
	expr_replace
	expr_sub
	lang2str
	meld
	reindent
	translate
	Index

