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1 Introduction

The eglhmm package provides means of fitting hidden Markov models Rabiner
(1989) in contexts in which the data conform to generalised linear models or
slightly extended versions thereof. The package accomodates models in which
the observations (“emissions”) are assumed to arise from a number of dis-
tributions: Gaussian, Poisson, Binomial, Db (discretised beta, Turner 2021),
and Multinom. In the Poisson and Binomial cases the models are generalised
linear models. In the Gaussian and Db cases the models are “something like,
but not exactly” generalised linear models. In the case of the Multinom
(or “discnp” — discrete non-parametric) distribution the model in question
bears some relationship to a generalised linear model but is of a substantialy
different form. We shall use the expression “extended generalised hidden
Markov models”. to describe they collection of all models under considera-
tion, including those based on the Gaussian, Db and Multinom distributions.
The package fits the models in question by several different methods‘, namely
the EM algorithm Dempster et al. (1977), the Levenberg-Marquardt algo-
rithm Turner (2008), and “brute force” which use either the optim or the
nlm package to optimise the log likelihood. The Levenberg-Marquardt algo-
rithm, and in certain circumstances the “brute force” procedure, require the
analytic calculation of the gradient and Hessian of the log likelihood. The
calculation is intricate in the hidden Markov model context. (In fact simply
calculating the log likelihood is intricate.) Most of this vignette is devoted
to the calculation of the first and second derivatives of the log likelihood.
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2 Recursive calculations

The likelihood of a hidden Markov model may feasibly be calculated in terms
of the “forward” probabilities developed by Baum et al. (see Baum et al.
1970). These probabilities are calculated by means of a recursive proce-
dure which of course depends on the likelihoods of individual observations.
These likelihoods, which may be expressed in the form f(y,θ), may be either
probability density functions or probability mass functions. The symbol y
represents an observation (emission) and θ represents a vector of parameters
upon which the distribution in question depends. These parameters depend
in turn on the underlying state of the hidden Markov chain and in general
upon other predictors (in addition to “state”). The dependence of θ upon
the predictors will involve further parameters.
The derivatives of the log likelihood of the model must therefore, in turn be
calculated via recursive procedures. In order to effect these procedures, we
need to calculate the first and second derivatives, with respect to all of the
parameters that are involved, of the single observation likelihoods f(y,θ).
In the case of the Gaussian distribution θ = (µ, σ)> where µ is the mean and
σ is the standard deviation of the distribution. In the cases of the Poisson
and Binomial distributions θ is actually a scalar (which we consequently
write simply at θ). For the Poisson distribution θ is equal to λ, the Poisson
mean, and for the Binomial distribution θ is equal to p, the binomial success
probability. In the case of the Db distribution, θ is equal to (α, β)> the
vector of “shape” parameters of the distribution. In the case of the Multinom
distribution, the model (as indicated above) has a rather different structure.
Except in the Gaussian case we assume that θ is completely determined by
a vector x of predictor variables and a vector φ of predictor coefficients. We
need to determine the first and second derivatives, of the likelihood of a single
observation, with respect to the entries of φ. In the case of the Gaussian
distribution θ also includes the values of σ corresponding the different states.
In the current implementation of the package these σ values are not obtained
from the predictor coefficients φ.
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3 Derivatives specific to each of the distribu-

tions

We now provide the details of the calculation of these derivatives for each of
the five distributions in question.

3.1 The Gaussian distribution

We denote the vector of standard deviations by σ = (σ1, . . . , σK)> (where
K is the number of states). In the current development we assume that σi
depends only on the state i of the underlying hidden Markov chain (and not
on any other prectors included in x. It is thus convenient to make explicit the
dependence of the probability density functions upon the underlying state.
We write the probability density function corresponding to state i as

fi(y) =
1√

2πσi
exp

(
−(y − µ)2

2σ2
i

)
.

We model µ as µ = x>φ. Note that consequently µ depends, in general, upon
the state i although this dependence x is not made explicit in the foregoing
expression for fi(y). We need to differentiate fi(y) with respect to φ and σ.
It is straightforward, using logarithmic differentiation, to determine that:

∂fi(y)

∂µ
= fi(y)

(
y − µ
σ2
i

)
∂fi(y)

∂σj
=

{
fi(y)

(
(y−µ)2
σ2
i
− 1
)
/σi if j = i

0 if j 6= i

∂2fi(y)

∂µ2
= fi(y)

(
(y − µ)2

σ2
i

− 1

)
/σ2

i

∂2fi(y)

∂σi∂σj
=

 fi(y)

((
(y−µ)2
σ2
i
− 1
)2

+ 1− 3(y−µ)2
σ2
i

)
/σ2

i if j = i

0 if j 6= i

∂2fi(y)

∂µ∂σj
=

{
fi(y)

(
(y−µ)2
σ3 − 3

σ

)
(y − µ)/σ2 if j = i

0 if j 6= i
.

(1)

Recalling that µ = x>φ we see that

∂µ

∂φ
= x ,
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An application of the chain rule then gives:

∂fi(y)

∂φ
=
∂fi(y)

∂µ
x

The second derivatives of fi(y) with respect to φ are given by

∂2fi(y)

∂φ>∂φ
=

∂

∂φ>

(
∂fi(y)

∂µ
x

)
= x

(
∂2fi(y)

∂µ2

∂µ

∂φ>
+
∂2fi(y)

∂µ∂σi

∂σi

∂φ>

)
=

(
∂2fi(y)

∂µ2

)
xx>

since ∂σi/∂φ
> = 0.

The second derivatives of fi(y) with respect to φ and σ are given by

∂2fi(y)

∂φ>∂σj
=

{ (
∂2fi(y)
∂µ∂σj

)
x> if j = i

0> if j 6= i

∂2fi(y)

∂σj∂φ
=

{ (
∂2fi(y)
∂µ∂σj

)
x if j = i

0 if j 6= i
.

Note that
∂2fi(y)

∂σi∂σj

is provided in (1).
The structure of the first and second derivatives of fi(y) with respect to φ
and σ can be expressed concisely by letting

ψ =

[
σ
φ

]
and then writing

∂fi(y)

∂ψ
=

[
∂fi(y)
∂σ
∂fi(y)

∂φ

]

=

[
∂fi(y)
∂σi

δi
∂fi(y)
∂µ
x

]
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where δi is a vector of dimension K whose ith entry is 1 and whose other
entries are all 0, and

∂2fi(y)

∂ψ>∂ψ
=

 ∂2fi(y)

∂σ>∂σ
∂2fi(y)

∂σ>∂φ
∂2fi(y)

∂φ>∂σ
∂2fi(y)

∂φ>∂φ


=

[
∂2fi(y)

∂σ2
i
δiδ
>
i

∂2fi(y)
∂µ∂σi

δix
>

∂2fi(y)
∂µ∂σi

xδ>i
∂2fi(y)
∂µ2

xx>

]
.

Note that the first and second partial derivatives of fi(y) with respect to µ
and σi are provided in (1).

3.2 The Poisson distribution

The likelihood is the probability mass function

f(y) = e−λ
λy

y!

y = 0, 1, 2, . . .. Here θ is a scalar, θ = λ, and we model λ via λ = exp(x>φ),
where x is a vector of predictors and φ is a vector of predictor coefficients.
The first and second derivatives of f(y) with respect to λ are

∂f(y)

∂λ
= f(y)

(y
λ
− 1
)

∂2f(y)

∂λ2
= f(y)

((y
λ
− 1
)2
− y

λ2

)
Since λ = exp(x>φ) it follows readily that the first and second derivatives
of λ with respect to φ are lambdax and λxx>, respectively. Applying the
chain rule we get

∂f(y)

∂φ
=
∂f(y)

∂λ
λx

∂2f(y)

∂φ>∂φ
=

(
∂f(y)

∂λ
λ+

∂2f(y)

∂λ2
λ2
)
xx>
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3.3 The Binomial distribution

The likelihood is the probability mass function

f(y) =

(
n

y

)
py(1− p)n−y

y = 0, 1, 2, . . . , n, where n is the number of independent binomial trials on
which the success count y is based, and p is the probability of success. Here
θ is a scalar, θ = p, and we model p via p = h(u) where u = x>φ, where
x is a vector of predictors, φ is a vector of predictor coefficients and h(u) is
the logit function h(u) = (1 + e−u)−1.
In what follows we will need the first and second derivatives of the logit
function. These are given by

h′(u) =
e−u

(1 + e−u)2
and

h′′(u) =
e−u(e−u − 1)

(1 + e−u)3
.

(2)

The first and second derivatives of f(y) with respect to p are

∂f(y)

∂p
= f(y)

(
y

p
− n− y

1− p

)
∂2f(y)

∂p2
= f(y)

((
y

p
− n− y

1− p

)2

− y

p2
− n− y

(1− p)2

)
.

Since p = h(x>φ) we see that

∂p

∂φ
= h′(x>φ)x and

∂2p

∂φ>∂φ
= h′′(x>φ)xx>

Applying the chain rule we see that

∂f(y)

∂φ
=
∂f

∂p
h′(x>φ)x and

∂2f(y)

∂φ>∂φ
=

(
∂f(y)

∂p
h′′(x>φ) +

∂2f(y)

∂p2
(h′(x>φ)2

)
xx>

Recall that expressions for h′(·) and h′′(·) are given by (2).
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3.4 The Db distribution

The likelihood is the probability mass function which depends on a vector
of parameters θ = (α, β)> and is somewhat complicated to write down. In
order to obtain an expression for this probabilty mass function we need to
define

h0(y) = (y(1− y))−1

h(y) = h0((y − nbot + 1)/(ntop − nbot + 2))

T1(y) = log((y − nbot + 1)/(ntop − nbot + 2))

T2(y) = log((ntop − y + 1)/(ntop − nbot + 2))

A(α, β) = log

 ntop∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

Given these definitions, the probability mass function of the Db distribution
can be written as

f(y, α, β) = Pr(X = y | α, β) = h(y) exp{αT1(y) + βT2(y)− A(α, β)} .

We model α and β via

α = x>φ1

β = x>φ2

where x is a vector of predictors and φ1 and φ2 are vectors of predictor
coefficients. The vector φ, with respect to which we seek to differentiate the
likelihood, is the catenation of φ1 and φ2.
The first derivative of the likelihood with respect to φ is

∂f

∂φ
=
∂f

∂α

∂α

∂φ
+
∂f

∂β

∂β

∂φ

=
∂f

∂α

[
∂α

∂φ1

0

]
+
∂f

∂β

[
0
∂β

∂φ2

]

=
∂f

∂α

[
x
0

]
+
∂f

∂β

[
0
x

]
=

[ ∂f
∂α
x

∂f
∂β
x

]
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The second derivative is calculated as

∂2f

∂φ>∂φ
=

 ∂

∂φ>
(
∂f
∂α
x
)

∂

∂φ>

(
∂f
∂β
x
)  .

Taking this expression one row at a time we see that

∂

∂φ>

(
∂f

∂α

)
=
[

∂

∂φ>1

(
∂f
∂α

)
∂

∂φ>2

(
∂f
∂α

) ]
=
[

∂2f
∂α2

∂α

∂φ>1

∂2f
∂β∂α

∂β

∂φ>2

]
=
[

∂2f
∂α2x

> ∂2f
∂β∂α

x>
]

and likewise

∂

∂φ>

(
∂f

∂β

)
=
[

∂2f
∂β∂α

x> ∂2f
∂β2x

>
]
.

Combining the foregoing we get

∂2f

∂φ>∂φ
=

 ∂2f
∂α2xx

> ∂2f
∂β∂α

xx>

∂2f
∂β∂α

xx> ∂2f
∂β2xx

>

 .

As was the case for the three distributions for which θ is a scalar, it is
expedient to express the partial derivatives of f(y, α, β), with respect to the
parameters of the distribution, in terms of f(y, α, β) The required expressions
are as follows:

∂f

∂α
= f(y, α, β)

(
T1(y)− ∂A

∂α

)
∂f

∂β
= f(y, α, β)

(
T2(y)− ∂A

∂β

)
∂2f

∂α2
= f(y, α, β)

[(
T1(y)− ∂A

∂α

)2

− ∂2A

∂α2

]
∂2f

∂α∂β
= f(y, α, β)

[(
T1(y)− ∂A

∂α

)(
T2(y)− ∂A

∂β

)
− ∂2A

∂α∂β

]
∂2f

∂β2
= f(y, α, β)

[(
T2(y)− ∂A

∂β

)2

− ∂2A

∂β2

]
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It remains to provide expressions for the partial derivatives of A with respect
to α and β. Let

E = exp(A) =

ntop∑
i=nbot

h(i) exp{αT1(i) + βT2(i)} .

Clearly

∂A

∂α
=

1

E

∂E

∂α
∂A

∂β
=

1

E

∂E

∂β

∂2A

∂α2
=

1

E

∂2E

∂α2
− 1

E2

(
∂E

∂α

)2

∂2A

∂α∂β
=

1

E

∂2E

∂α∂β
− 1

E2

(
∂E

∂α

∂E

∂β

)
∂2A

∂β2
=

1

E

∂2E

∂β2
− 1

E2

(
∂E

∂β

)2

Finally, the relevant partial derivatives of E are:

∂E

∂α
=

ntop∑
i=nbot

h(i)T1(i) exp(αT1(i) + βT2(i))

∂E

∂β
=

ntop∑
i=nbot

h(i)T2(i) exp(αT1(i) + βT2(i))

∂2E

∂α2
=

ntop∑
i=nbot

h(i)T1(i)
2 exp(αT1(i) + βT2(i))

∂2E

∂α∂β
=

ntop∑
i=nbot

h(i)T1(i)T2(i) exp(αT1(i) + βT2(i))

∂2E

∂β2
=

ntop∑
i=nbot

h(i)T2(i)
2 exp(αT1(i) + βT2(i)) .

3.5 The Multinom distribution

This distribution is very different from those with which we have previously
dealt. It is defined effectively in terms of tables. In the hidden Markov model
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context, these tables take the form

Pr(Y = yi | S = k) = ρik

where Y is the emissions variate, its possible values or “levels” are y1, y2, . . . , ym,
and S denotes “state” which (wlog) takes values 1, 2, . . . , K. Of course
ρ·k = 1 for all k. We shall denote Pr(Y = y | S = k) = ρik by fk(y).
The maximisation of the likelihood with respect to the ρik is awkward, due
to the “sum-to-1” constraints that they must satisfy, and it is better to
impose this constraint “smoothly” via a logistic parameterisation. See Turner
(2008). Such a parameterisation allows us to express the dependence of the
emissions probabilities, upon “state”, in terms of linear predictors. This in
turn opens up the possibility of including other predictors, in addition to
those determined by “state”, in the model.
To this end we define vectors of parameters φi, i = 1, . . . ,m, corresponding
to each of the possible values of Y . For identifiability we take φm to be
identically 0. Each φi is a vector of length np, say, where np is the number
of predictors. If, in a K state model, there are no predictors other than those
determined by state, then np = K. In this case there are K × (m− 1) “free”
parameters, just as there should be (and just at there are in the original
parameterisation in terms of the ρik). Let the kth entry of φi be φik, k =
1, . . . , np. Let φ be the vector consisting of the catenation of all of the φij,
excluding the entries of φm which are all 0:

φ = (φ11, φ12, . . . , φ1,np, φ21, φ22, . . . , φ2,np, . . . , . . . , φm−1,1, φm−1,2, . . . , φm−1,np)
> .

Let x be a vector of predictors. In terms of the foregoing notation, fk(y) can
be written as

fk(y) =
ex
>φy

Z

where in turn

Z =
k∑
`=1

ex
>φ` .

The dependence of fk(y) upon the state k is implicit in the predictor vector
x which includes predictors indicating state. We now calculate the partial

10



derivatives of fk(y) with respect to φ. First note that ∂f

∂φ
can be written as


∂fk
∂φ1

∂fk
∂φ2

...
∂fk

∂φm−1

 .

Next we calculate
∂fk(y)

∂φi
, i = 1, . . . ,m− 1 .

Using logarithmic differentiation we see that

1

fk(y)

∂fk(y)

∂φi
= δyix−

1

Z
ex
>φix

so that
∂fk(y)

∂φi
= fk(y)

(
δyi −

ex
>φi

Z

)
which can be written as fk(y)(δyi − fk(i))x.
In summary we have

∂f

∂φ
= fk(y)


(δy1 − fk(1))x
(δy2 − fk(2))x

...
(δy,m−1 − fk(m− 1))x


The second derivatives of fk(y) with respect to φ are given by

∂2f

∂φ∂φ>
=



∂2f

∂φ1∂φ
>
1

∂2f

∂φ1∂φ
>
2

. . . ∂2f

∂φ1∂φ
>
m−1

∂2f

∂φ2∂φ
>
1

∂2f

∂φ2∂φ
>
2

. . . ∂2f

∂φ2∂φ
>
m−1

...
...

...
...

∂2f

∂φm−1∂φ
>
1

∂2f

∂φm−1∂φ
>
2

. . . ∂2f

∂φm−1∂φ
>
m−1


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The (i, j)th entry of ∂2f

∂φ∂φ>
, i.e. ∂2f

∂φi∂φ
>
j

, is given by

∂

∂φi

(
∂y

∂φ>j

)
=

∂

∂φi

(
fk(y)(δyj − fk(j)x>

)
= fk(y)(0− fk(j)(δij − fk(i))xx>) + fk(y)(δyi − fk(i))x(δyj − fk(j))x>

= fk(y)(−fk(j)(δij − fk(i)) + (δyj − fk(i))(δyj − fk(j)))xx>

= fk(y)(fk(i)(fk(j)− δijfk(j) + (δyi − fk(i))(δyj − fk(j)))xx>

At first glance this expression seems to be anomalously asymmetric in i and
j, but the asymmetry is illusory. Note that when i 6= j, δijfk(j) is 0, and
when i = j, δijfk(j) = fk(j) = fk(i).
In summary we see that

∂2f

∂φ∂φ>
=


a11xx

> a12xx
> . . . a1,m−1xx

>

a21xx
> a22xx

> . . . a2,m−1xx
>

...
...

...
...

am−1,1xx
> am−1,2xx

> . . . am−1,,m−1xx
>


where aij = fk(y)(fk(i)(fk(j) − δijfk(j) + (δyi − fk(i))(δyj − fk(j)), i, j =
1, . . . ,m− 1.
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