
Package ‘dynaTree’
August 22, 2024

Title Dynamic Trees for Learning and Design

Version 1.2-17

Date 2024-08-21

Depends R (>= 2.14.0), methods

Suggests interp, tgp, plgp, MASS

Description Inference by sequential Monte Carlo for
dynamic tree regression and classification models
with hooks provided for sequential design and optimization,
fully online learning with drift, variable selection, and
sensitivity analysis of inputs. Illustrative
examples from the original dynamic trees paper
(Gramacy, Taddy & Polson (2011); <doi:10.1198/jasa.2011.ap09769>) are facilitated
by demos in the package; see demo(package=``dynaTree'').

Maintainer Robert B. Gramacy <rbg@vt.edu>

License LGPL

URL https://bobby.gramacy.com/r_packages/dynaTree/

NeedsCompilation yes

Author Robert B. Gramacy [aut, cre],
Matt A. Taddy [aut],
Christoforos Anagnostopoulos [aut]

Repository CRAN

Date/Publication 2024-08-22 05:40:02 UTC

Contents
dynaTree-package . 2
alcX.dynaTree . 3
dynaTree-class . 5
dynaTrees . 6
elec2 . 12
getBF . 14

1

https://doi.org/10.1198/jasa.2011.ap09769
https://bobby.gramacy.com/r_packages/dynaTree/

2 dynaTree-package

plot.dynaTree . 15
predict.dynaTree . 17
rejuvenate.dynaTree . 19
relevance.dynaTree . 20
retire.dynaTree . 22
sens.dynaTree . 24
update.dynaTree . 28
varpropuse . 30

Index 33

dynaTree-package Dynamic trees for learning and design

Description

Inference by sequential Monte Carlo for dynamic tree regression and classification models with
hooks provided for sequential design and optimization, fully online learning with drift, variable
selection, and sensitivity analysis of inputs. Illustrative examples from the original dynamic trees
paper are facilitated by demos in the package; see demo(package="dynaTree")

Details

For a fuller overview including a complete list of functions, and demos, please use help(package="dynaTree").

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

plgp, tgp

https://bobby.gramacy.com/r_packages/dynaTree/

alcX.dynaTree 3

alcX.dynaTree Calculate the ALC or predictive entropy statistic at the X locations, or
ALC at new XX predictive locations

Description

Uses analytic integration (at the leaves) to calculate the (regression) ALC statistic, or calculates the
predictive (class) entropy at the input (X) locations; or calculate ALC at new predictive locations
either analytically or numerically

Usage

S3 method for class 'dynaTree'
alcX(object, rect = NULL, categ = NULL,

approx = FALSE, verb = 0)
S3 method for class 'dynaTree'
entropyX(object, verb = 0)
S3 method for class 'dynaTree'
alc(object, XX, rect = NULL, categ = NULL,

approx = FALSE, Xref = NULL, probs = NULL, verb = 0)

Arguments

object a "dynaTree"-class object built by dynaTree

rect for alcX, a matrix with two columns and ncol(object$X) rows describing
the bounding rectangle for the ALC integration; the default that is used when
rect = NULL is the bounding rectangle obtained by applying range to each col-
umn of object$X (taking care to remove the first/intercept column of object$X
if icept = "augmented"; only applies to regression models (object$model !=
"class"); for alc, rect must be a scalar logical: see Xref below

categ A vector of logicals of length ncol(object$X) indicating which, if any, dimen-
sions of the input space should be treated as categorical; this input is used to help
with the analytic integrals from a rect-based calculation, which means it should
not specified along with Xref; the default categ argument is NULL meaning that
the categorical inputs are derived from object$X in a sensible way

approx a scalar logical that, when TRUE, causes the number of data points in a node/leaf
to be used as a proxy for its area in the analytic calculations

XX a design matrix of predictive locations (where ncol(XX) == ncol(X); only
used by alc

Xref Xref input can be optionally used to specify a grid of reference locations for
the numerical ALC calculation - a matrix with ncol(X) columns. If NULL, the
default, then the XX is taken as both candidate and reference locations.

probs weights for the reference locations to be used in a Monte Carlo approximation;
usually these weights are class probabilities for response surfaces under con-
straints

4 alcX.dynaTree

verb a positive scalar integer indicating how many predictive locations (iterations)
after which a progress statement should be printed to the console; a (default)
value of verb = 0 is quiet

Details

This function is most useful for selecting object$X locations to remove from the analysis, perhaps
in an online inference setting. See retire.dynaTree for more details. The output is the same as
using predict.dynaTree using XX = object$X, alc = "rect", and Xref = rect

entropyX only apples to classification models (object$model != "class"), and alcX applies (only)
to the other, regression, models

The alc function is more generic and allows ALC calculations at new, predictive, XX locations.
This functionality used to be part of the predict.dynaTree function, but were separated out for
computational reasons. The previous version was Monte Carlo-based (using Xref) whereas the new
version also allows analytic calculation (now the default, via rect)

Value

The entire object is returned with a new entry called alcX containing a vector of length nrow(X)
with the ALC values, or entropyX containing the entropy values, or alc if general ALC calculations
at new XX locations

Author(s)

Robert B. Gramacy <rbg@vt>,
Matt Taddy, and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Anagnostopoulos, C., Gramacy, R.B. (2013) “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510-5535; arXiv:1201.5568

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, predict.dynaTree, and retire.dynaTree

Examples

fit the model to the parabola data
n <- 100
Xp <- runif(n,-3,3)
Yp <- Xp + Xp^2 + rnorm(n, 0, .2)
rect <- c(-3,3)
out <- dynaTree(Xp, Yp, model="linear", icept="augmented")

calculate the alcX

https://bobby.gramacy.com/r_packages/dynaTree/

dynaTree-class 5

out <- alcX(out, rect=rect)

to compare to analytic
out <- alc(out, XX=out$X[,-1], rect=rect)

plot comparison between alcX and predict-ALC
plot(out$X[,-1], out$alcX)
o <- order(out$X[,2])
lines(out$X[o,-1], out$alc[o], col=2, lty=2)

now compare to approximate analytic
(which writes over out$alc)
out <- alc(out, XX=out$X[,-1], rect=rect, approx=TRUE)
lines(out$X[o,-1], out$alc[o], col=3, lty=3)

clean up
deletecloud(out)

similarly with entropyX for classification models

see demo("design") for more iterations and
design under other active learning heuristics
like ALC, and EI for optimization; also see
demo("online") for an online learning example where
ALC is used for retirement

dynaTree-class Class "dynaTree"

Description

A stub for class dynaTree and its custom generic methods

Details

This is just a stub file. See sens.dynaTree and retire.dynaTree for more information on the
generic methods used in this package

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

retire signature(object = "dynaTree"): ...

sens signature(object = "dynaTree"): ...

copy signature(object = "dynaTree"): ...

alc signature(object = "dynaTree"): ...

6 dynaTrees

alcX signature(object = "dynaTree"): ...

entropyX signature(object = "dynaTree"): ...

ieci signature(object = "dynaTree"): ...

classprobs signature(object = "dynaTree"): ...

rejuvenate signature(object = "dynaTree"): ...

relevance signature(object = "dynaTree"): ...

varpropuse signature(object = "dynaTree"): ...

varproptotal signature(object = "dynaTree"): ...

treestats signature(object = "dynaTree"): ...

sameleaf signature(object = "dynaTree"): ...

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, predict.dynaTree, update.dynaTree, retire.dynaTree, sens.dynaTree, alcX.dynaTree

Examples

showClass("dynaTree")

dynaTrees Fitting Dynamic Tree Models

Description

A function to initialize and fit dynamic tree models to regression and classification data by the
sequential Monte Carlo (SMC) method of particle learning (PL)

https://bobby.gramacy.com/r_packages/dynaTree/

dynaTrees 7

Usage

dynaTree(X, y, N = 1000, model = c("constant", "linear", "class", "prior"),
nu0s20 = c(0,0), ab = c(0.95, 2), minp = NULL, sb = NULL,

nstart = minp, icept = c("implicit", "augmented", "none"),
rprop = c("luvar", "luall", "reject"), verb = round(length(y)/10))

dynaTrees(X, y, N = 1000, R = 10, sub = length(y),
model = c("constant", "linear", "class", "prior"), nu0s20 = c(0,0),
ab=c(0.95, 2), minp = NULL, sb = NULL, nstart = minp,
icept = c("implicit", "augmented", "none"),
rprop = c("luvar", "luall", "reject"), XX = NULL, yy = NULL,

varstats = FALSE, lhs = NULL, plotit = FALSE, proj = 1,
rorder = TRUE, verb = round(sub/10), pverb=round(N/10), ...)

Arguments

X A design matrix of real-valued predictors

y A vector of length nrow(X) containing real-valued responses (for regression) or
positive integer-valued class labels (for classification)

N a positive scalar integer indicating the number of particles to be used

R a scalar integer >= 2 indicating the number of “repeats” or passes through the
data, as facilitated by dynaTrees; see details below

sub Optional argument allowing only a subset of the length(y) X-y pairs to be used
in each repeat of dynaTrees; each repeat will use a different random subset of
size sub

model indicates the type of model to be used at the leaves of the tree; "constant"
and "linear" apply to regression, and "class" to multinomial classification;
finally "prior" was recently added to explore sampled without data

nu0s20 a two-vector indicating Inverse Gamma prior parameters c(nu0, sigma20) for
the variance in each leaf node, σ2. A c(0,0) setting indicates a default, scale-
invariant, prior; does not apply to the "class" model

ab tree prior parameter c(alpha, beta); see details below

minp a positive scalar integer describing the smallest allowable region in the treed
partition; if NULL (default) a suitable minimum is calculated based on dim(X)
and the type of model being fit

sb an optional two-vector of positive integers indicating c(splitmin, basemax)
for the "linear" model. It gives the first column of X on which treed partition-
ing is allowed, and the last column of X to use as covariates in the linear model
at the leaves, respectively

nstart a positive scalar integer >= minp indicating the time index at which treed parti-
tioning is allowed to start

icept indicates the type of intertcept term used (only applies to model="linear").
The default, "implicit" causes the inputs X to be centered so the intercept can
be implied as an afterthought; "augmented" causes the inputs X to automatically
gain a leading column of ones in a way that is transparent to the user; and "none"
assumes that no intercept is being used, or that the user has pre-treated X to have

8 dynaTrees

a column of ones. The main advantage of "implicit" over "augmented" is
that the former can default to a constant model fit if leaf design matrices become
rank deficient. The latter defaults to the zero-model in such cases

XX a design matrix of predictive locations (where ncol(XX) == ncol(X)) for dynaTrees;
also see predict.dynaTree and some explanation in the details below

yy an optional vector of “true” responses at the XX predictive locations at which the
log posterior probability are to be reported

varstats if TRUE causes the varpropuse, varproptotal, and relevance.dynaTree func-
tions to be called on after each repetition to collect the usage proportions of each
input variable (column of X); see those documentation files for more details

lhs an optional lhs argument to sens.dynaTree if a sensitivity analysis step is
desired after each restart (XX="sens")

plotit a scalar logical indicating if the fit should be plotted after each of the R repeats;
only applies to 1-d data and dynaTrees

proj when ncol(x$X) > 1 and plotit = TRUE this argument is passed to plot.dynaTree
to make a 1-d projection using x$X[,proj]

rorder a scalar logical indicating if the rows of X (and corresponding components of
y) should be randomly re-ordered for repeats 2:R in order to assess the how
the time-ordering of the SMC effects the Monte Carlo error; only applies to
dynaTrees. Alternatively, one can specify an nrow(X)-by-(R-1) matrix of or-
derings (permutations of 1:nrow(X))

rprop indicates the scheme used to construct a grow proposal. The best setting, "luall"
uses the lower (L) and upper (U) rectangle method based on minp (above) as de-
scribed in the seminal reference in which the growing location and dimension is
sampled uniformly. It can be computationally intensive for large input spaces.
A thriftier option (the default) in this case is "luvar" which uniformly chooses
the splitting variable first and then uses the LU method marginally. Thriftier still
is "reject" which just proposes uniformly in the bounding leaf rectangle and
rejects subsequent grows that lead to partitions with too few data points; (see the
minp argument)

verb a positive scalar integer indicating how many time steps (iterations) should pass
before a progress statement is printed to the console; a value of verb = 0 is quiet

pverb a positive scalar integer indicating after many particles should be processed for
prediction before a progress statement is printed to the console; a value of pverb
= 0 is quiet

... extra arguments to predict.dynaTree passed from dynaTrees

Details

The dynaTree function processes the X and y pairs serially via PL. It builds up a particle cloud which
is stored as an object in C. A “pointer” to that object is the primary return value. The dynaTrees
function fits several (R) different dynamic tree models on different time-orderings of the data indices
and also obtains samples from the posterior predictive distribution at new XX locations. These
predictions can be averaged over each repeat, or used to assess the Monte Carlo predictive error.

Three different leaf models are supported: two for regression and one for classification. If model
== "class" then the y values must contain representatives from every class (1:max(y)). For details

dynaTrees 9

of these models and the complete description of their use at the leaves of the dynamic trees, see the
Taddy, et al., (2009) reference, below.

The tree prior is specified by ab=c(alpha, beta) via the and minp. It was originally described by
Chipman et al., (1998, 2002)

psplit(η, T) = α ∗ (1 + η)β

and subsequently augmented to enforce a minimum number of points (minp) in each region.

Once a "dynaTree"-class object has been built (by dynaTree), predictions and estimates of sequen-
tial design and optimization criteria can be obtained via predict.dynaTree, a generic prediction
method. These values can be used to augment the design, and the update.dynaTree function can
be used to quickly update the fit with the augmenting data

Value

Both functions return an object of class "dynaTree", which is a list containing the following fields

m ncol(X)

T nrow(X)

N the number of particles used

X a copy of the design matrix X

y a copy of the responses y

model a copy of the specified leaf model

params a vector containing c(nu0s20, alpha, beta, minp, sb, icept, rprop), where
the latter two are in integer form

verb a copy of the verbosity argument

lpred a vector of log posterior probabilities for each observation, conditional on the
ones previous, for all time (2*minp):T; see getBF for calculating Bayes factors
from these

icept a copy of the intercept argument

time the total computing time used to build the particle cloud

num a “pointer” to the C-side particle cloud; see the note below

-
The dynaTrees function can obtain predictive samples (via predict.dynaTree) at each of the R
repeats. Therefore, the "dynaTree" object returned contains extra fields collecting these predic-
tive samples, primarily comprising of R columns of information for each of the fields returned by
predict.dynaTree; see that function for more details. Likewise, when varstats = TRUE the re-
turned object also contains vpu, vpt and parde[fields whose columns contain the varpropuse and
varproptotal outputs.

Likewise, dynaTrees, can provide variable usage summaries if varstats = TRUE, in which case the
output includes vpu and vpt fields; See varpropuse and varproptotal for more details

The dynaTrees function does not return num since it does not leave any allocated particle clouds on
the C-side

10 dynaTrees

Note

As mentioned in the details section, above, the dynaTree function returns a pointer to a particle
cloud allocated in C. This pointer is used for prediction, via predict.dynaTree and for later up-
dating/augmentation of data, via update.dynaTree. This information will not be “freed” unless
the user specifically calls deletecloud(num) or deleteclouds(). Failing to call one of these
functions (when done with the corresponding object(s)) could result in a memory leak; see their
documentation for more details.

The C-side memory cannot be saved in the workspace, so they cannot persist across R sessions

To copy a "dynaTree"-class object, use copy.dynaTree, which will also copy the C-side memory
allocated to the object

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing”.
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

Chipman, H., George, E., & McCulloch, R. (1998). Bayesian CART model search (with discussion).
Journal of the American Statistical Association, 93, 935–960.

Chipman, H., George, E., & McCulloch, R. (2002). Bayesian treed models. Machine Learning, 48,
303–324.

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

predict.dynaTree, update.dynaTree, plot.dynaTree, deletecloud, copy.dynaTree, getBF,
varpropuse, varproptotal, sens.dynaTree, relevance.dynaTree

Examples

simple parabolic data
n <- 100
Xp <- sort(runif(n,-3,3))
Yp <- Xp + Xp^2 + rnorm(n, 0, .2)

fit a piece-wise linear model
parab.fit <- dynaTree(Xp, Yp, model="linear")

obtain predictions at a new set of locations
and plot

https://bobby.gramacy.com/r_packages/dynaTree/

dynaTrees 11

parab.fit <- predict(parab.fit, XX=seq(-3, 3, length=100))
plot(parab.fit)

try duplicating the object
parab.fit.copy <- copy(parab.fit)

must delete the cloud or memory may leak
deletecloud(parab.fit); parab.fit$num <- NULL
to delete all clouds, do:
deleteclouds()

for more examples of dynaTree see update.dynaTree

Motorcycle accident data
if(require("MASS")) {

data(mcycle)
Xm <- mcycle[,1]
Ym <- mcycle[,2]
XXm <- seq(min(mcycle[,1]), max(mcycle[,1]), length=100)

R <- 2 ## use R >= 10 for better results
small R is for faster CRAN checks
fit constant model with R=2 repeats and predictions
moto.fit <- dynaTrees(Xm, Ym, XX=XXm, R=R, plotit=TRUE)

plot the averages
plot(moto.fit, ptype="mean")

clouds automatically deleted by dynaTrees
}

Not run:
2-d/3-class classification data
library(plgp)
library(tgp)
xx <- seq(-2, 2, length=20)
XX <- expand.grid(xx, xx)
X <- dopt.gp(125, Xcand=XX)$XX
C <- exp2d.C(X)

fit a classification model with R=10 repeats,
class.fit <- dynaTrees(X, C, XX=XX, model="class")

for plot the output (no generic plotting available)
cols <- c(gray(0.85), gray(0.625), gray(0.4))
par(mfrow=c(1,2))
library(interp)

plot R-averaged predicted class
mclass <- apply(class.fit$p, 1, which.max)
image(interp(XX[,1], XX[,2], mclass), col=cols,

xlab="x1", ylab="x2", main="repeated class mean")
points(X)

12 elec2

plot R-averaged entropy
ment <- apply(class.fit$entropy, 1, mean)
image(interp(XX[,1], XX[,2], ment),

xlab="x1", ylab="x2", main="repeated entropy mean")

End(Not run)

elec2 The ELEC2 Data Set

Description

Electricity Pricing Data Set Exhibiting Concept Drift

Usage

data(elec2)

Format

A data frame with 27552 observations on the following 5 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

x4 a numeric vector

y class label

Details

This data has become a benchmark of sorts in streaming classification. It was first described by
Harries (1999) and used thereafter for several performance comparisons [e.g., Baena-Garcia et al.
(2006); Kuncheva and Plumpton, (2008)]. It holds information for the Australian New South Wales
(NSW) Electricity Market, containing 27552 records dated from May 1996 to December 1998,
each referring to a period of 30 minutes subsampled as the completely observed portion of 45312
total records with missing values. These records have seven fields: a binary class label, two time
stamp indicators (day of week, time), and four covariates capturing aspects of electricity demand
and supply.

An appealing property of this dataset is that it is expected to contain drifting data distributions
since, during the recording period, the electricity market was expanded to include adjacent areas.
This allowed for the production surplus of one region to be sold in the adjacent region, which in
turn dampened price levels.

Source

M. Harries. “Splice-2 Comparative Evaluation: Electricity Pricing”. University of New South
Wales, School of Computer Science and Engineering technical report (1999)

elec2 13

References

Anagnostopoulos, C., Gramacy, R.B. (2013) “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510-5535; arXiv:1201.5568

M. Baena-Garcia, J. del Campo-Avila, R., Fidalgo, A. Bifet, R. Gavalda and R. Morales-Bueno.
“Early drift detection method”. ECML PKDD 2006 Workshop on Knowledge Discovery from Data
Streams, pp. 77-86 (2006)

L.I. Kuncheva C.O. and Plumpton. “Adaptive Learning Rate for Online Linear Discriminant Clas-
sifiers”. SSPR and SPR 2008, Lecture Notes in Computer Science (LNCS), 5342, pp. 510-519
(2008)

Examples

this is a snipet from the "elec2" demo; see that demo
for a full comparison to dynaTree models which can
cope with drifting concepts

set up data
data(elec2)
X <- elec2[,1:4]
y <- drop(elec2[,5])

predictive likelihood for repated trials
T <- 200 ## use nrow(X) for a longer version,
short T is for faster CRAN checks
hits <- rep(NA, T)

fit the initial model
n <- 25; N <- 1000
fit <- dynaTree(X[1:n,], y[1:n], N=N, model="class")

w <- 1
for(t in (n+1):T) {

predict the next data point
full model
fit <- predict(fit, XX=X[t,], yy=y[t])
hits[t] <- which.max(fit$p) == y[t]

sanity check retiring index
if(any(fit$X[w,] != X[t-n,])) stop("bad retiring")

retire
fit <- retire(fit, w)
update retiring index
w <- w + 1; if(w >= n) w <- 1

update with new point
fit <- update(fit, X[t,], y[t], verb=100)

}

free C-side memory

14 getBF

deleteclouds()

plotting a moving window of hit rates over time
rhits <- rep(0, length(hits))
for(i in (n+1):length(hits)) {

rhits[i] <- 0.05*as.numeric(hits[i]) + 0.95*rhits[i-1]
}

plot moving window of hit rates
plot(rhits, type="l", main="moving window of hit rates",

ylab="hit rates", xlab="t")

getBF Extract a Path of (log) Bayes Factors

Description

Extract a path (log) Bayes factors (BFs) from the log marginal posterior probabilities of two "dynaTree"-
class objects

Usage

getBF(obj1, obj2)

Arguments

obj1 a "dynaTree"-class object built by dynaTree

obj2 another "dynaTree"-class object built by dynaTree

Details

Simply calculates a difference in log marginal posterior probabilities, setting BFs to zero for initial
elements of the path where one of the objects has more zero marginal probabilities than the other.
The BF is for the model in obj1 over obj2. If the objects are the output of repeated fits as obtained
from dynaTrees, then multiple traces are returned

Value

Returns a vector or matrix of a trace(s) of Bayes factors that can be plotted; see examples below

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

plot.dynaTree 15

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, update.dynaTree, link{logpost}

Examples

parabola data
n <- 100
Xp <- sort(runif(n,-3,3))
Yp <- Xp + Xp^2 + rnorm(n, 0, .2)
XXp <- seq(-3,3,length=100)

comparison by log Bayes Factor
R <- 2 ## use R >= 10 for better results
small R is for faster CRAN checks
o <- apply(matrix(runif(n*(R-1)), ncol=R-1), 2, order)
lpc.p <- dynaTrees(Xp, Yp, R=R, rorder=o, verb=0)
lpl.p <- dynaTrees(Xp, Yp, model="linear", R=R, rorder=o, verb=0)
bf.p <- getBF(lpl.p, lpc.p)

plot the log Bayes factors
matplot(bf.p, type="l", lty=1, col="gray", main="parabola",

xlab="time", ylab="log Bayes factor")

see demo("reg1d") for further examples

plot.dynaTree Plotting Predictive Distributions of Dynamic Tree models

Description

Plotting predictive distributions constructed from dynamic tree (regression) models for 1-d data –
provided primarily for use in our 1-d examples and for illustrative purposes

Usage

S3 method for class 'dynaTree'
plot(x, proj = 1, add = FALSE, ylim = NULL,

col = 2, lwd = 1, ptype = c("each", "mean"), ...)

https://bobby.gramacy.com/r_packages/dynaTree/

16 plot.dynaTree

Arguments

x a "dynaTree"-class object built by dynaTree

add a scalar logical indicating if the lines/points should be “added” to an existing
plot

proj when ncol(x$X) > 1 this argument can be used to plot a 1-d projection by spec-
ifying which column of x$X should be used to make the plot

ylim user-specified y-axis limits values; see plot

col user-specified color value; see plot

lwd user-specified line-width value; see plot

ptype type of plot used to visualize several predictive samples obtained from dynaTrees:
"each" shows each surface with its own set of three lines, and "mean" shows
the three lines obtained by averaging

... other arguments to the generic plot method

Details

This plotting function only handles the predictive output from 1-dimensional regression dynaTree
models as obtained by first calling dynaTree and then predict.dynaTree on the resulting output
at new XX locations. It is provided to help make the illustration of our 1-d examples easier and to
serve as an aid in a user’s development of custom plotting functions in higher dimensions

Value

The only output of this function is a pretty plot

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

predict.dynaTree, dynaTree, update.dynaTree

Examples

see dynaTree, dynaTrees and update.dynaTree for examples
which use this plot function

https://bobby.gramacy.com/r_packages/dynaTree/

predict.dynaTree 17

predict.dynaTree Prediction for Dynamic Tree Models

Description

Predicting and calculating sequential design and optimization statistics at new design points (i.e.,
active learning heuristics) for dynamic tree models

Usage

S3 method for class 'dynaTree'
predict(object, XX, yy = NULL, quants = TRUE,

ei = FALSE, verb = 0, ...)
S3 method for class 'dynaTree'
coef(object, XX, verb = 0, ...)

Arguments

object a "dynaTree"-class object built by dynaTree

XX a design matrix of predictive locations (where ncol(XX) == ncol(X))

yy an optional vector of “true” responses at the XX predictive locations at which the
log posterior probability are to be reported

quants a scalar logical indicating if predictive quantiles are desired (useful for visu-
alization, but less so for active learning); calculating predictive quantiles is ex-
pensive and should be turned off if prediction is not being used for visualization,
e.g., if used for active learning

ei a scalar logical indicating if the expected improvement statistic (for optimiza-
tion) should be calculated and returned

verb a positive scalar integer indicating how many predictive locations (iterations)
after which a progress statement should be printed to the console; a (default)
value of verb = 0 is quiet

... to comply with the generic predict method – currently unused

Details

predict returns predictive summary statistics by averaging over the samples from the posterior
predictive distribution obtained from each of the particles in the cloud pointed to by the object
(object)

coef returns a matrix of regression coefficients used in linear model leaves (model = "linear")
leaves, averaged over all particles, for each XX location. For other models it prints a warning and
defaults to predict.

The value(s) calculated are appended to object; the new fields are described below

Note that ALC calculations have been moved to the alc.dynaTree function(s)

18 predict.dynaTree

Value

The object returned is of class "dynaTree", which includes a copy of the list elements from the
object passed in, with the following (predictive) additions depending on whether object$model
is for regression ("constant" or "linear") or classification ("class").

For regression:

mean a vector containing an estimate of the predictive mean at the XX locations

vmean a vector containing an estimate of the variance of predictive mean at the XX
locations

var a vector containing an estimate of the predictive variance (average variance plus
variance of mean) at the XX locations

df a vector containing the average degrees of freedom at the XX locations

q1 a vector containing an estimate of the 5% quantile of the predictive distribution
at the XX locations, unless quants = FALSE

q2 a vector containing an estimate of the 95% quantile of the predictive distribution
at the XX locations, unless quants = FALSE

yypred if yy != NULL then this contains the predictive probability of the true yy values
at the XX locations

ei a vector containing an estimate of the EI statistic, unless ei = FALSE

;

For classification:

p a nrow(XX)-by-max(object$y) matrix of mean class probabilities for each of
max(object$y) classes at the predictive data locations

entropy a nrow(XX) vector of predictive entropys at the predictive data locations

;

For coef a new XXc field is created so as not to trample on XXs that may have been used in a previous
predict, plus

coef a nrow(XX)-by-m+icept

matrix of particle- averaged regression coefficients.

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

https://bobby.gramacy.com/r_packages/dynaTree/

https://bobby.gramacy.com/r_packages/dynaTree/

rejuvenate.dynaTree 19

See Also

dynaTree, update.dynaTree, plot.dynaTree, alc.dynaTree, entropyX.dynaTree

Examples

see the example(s) section(s) of dynaTree and
update.dynaTree and the demos (demo(package=dynaTree))

rejuvenate.dynaTree Rejuvenate particles from the dynaTree posterior

Description

Re-pass the X-y pairs in the object in a random (or specified) order to temporarily double the size
of the particle set

Usage

S3 method for class 'dynaTree'
rejuvenate(object, odr = order(runif(length(object$y))),

verb = round(length(object$y)/10))

Arguments

object a "dynaTree"-class object built by dynaTree

odr an integer vector of length(object$y) specifying the order in which the object$X-
object$y paris should be processed for the rejuvenated particles

verb a positive scalar integer indicating how many time steps (iterations) should pass
before a progress statement is printed to the console; a value of verb = 0 is quiet

Details

The rejuvenate function causes the particle set to temporarily double, to have size 2 * object$N.
The new object$N particles represent a discrete approximation to the dynaTree posterior under the
ordering specified by odr, which may be random. Subsequent calls to update.dynaTree cause the
particle set to revert back to object$N particles as only that many are obtained from the particle
learning resample step.

This function can be particularly useful in online learning contexts, where retire.dynaTree is
used to retain information on discarded data, especially when the data is discarded historically
to deal with drifting concepts. Since the new, rejuvenated, particles are based only on the active
data, object$X-object$y pairs (and not the retired data via informative leaf priors), subsequent
update.dynaTree steps allow the data to dictate if old (informative prior) or new (default prior)
particles are best for the new concept

20 relevance.dynaTree

Value

The returned list is the same as dynaTree – i.e., a "dynaTree"-class object but with 2 * object$N
particles. Note that object$N is not updated to reflect this fact, but the C-side object will indeed
have a double particle set. Repeated calls to rejuvenate will cause the particle set to double again.

Note

The object (object) must contain a pointer to a particle cloud (object$num) which has not been
deleted by deletecloud. In particular, it cannot be an object returned from dynaTrees

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Anagnostopoulos, C., Gramacy, R.B. (2013) “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510-5535; arXiv:1201.5568

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing”.
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, alcX.dynaTree, entropyX.dynaTree, update.dynaTree, retire.dynaTree

Examples

see retire.dynaTree for a combined example
illustrating rejuvenation

relevance.dynaTree Calculate relevance statistics for input coordinates

Description

Computes relevance statistics for each input coordinate by calculating their particle-averaged mean
reduction in variance each time that coordinate is used as a splitting variable in (an internal node
of) the tree(s)

Usage

relevance.dynaTree(object, rect = NULL, categ = NULL,
approx = FALSE, verb = 0)

https://bobby.gramacy.com/r_packages/dynaTree/

relevance.dynaTree 21

Arguments

object a "dynaTree"-class object built by dynaTree

rect an optional matrix with two columns and ncol(object$X) rows describing the
bounding rectangle for the ALC integration; the default that is used when rect
= NULL is the bounding rectangle obtained by applying range to each column
of object$X (taking care to remove the first/intercept column of object$X if
icept = "augmented"

categ A vector of logicals of length ncol(object$X) indicating which, if any, di-
mensions of the input space should be treated as categorical; the default categ
argument is NULL meaning that the categorical inputs are derived from object$X
in a sensible way

approx a scalar logical indicating if the count of the number of data points in the leaf
should be used in place of its area; this can help with numerical accuracy in high
dimensional input spaces

verb a positive scalar integer indicating how many particles should be processed (iter-
ations) before a progress statement should be printed to the console; a (default)
value of verb = 0 is quiet

Details

Each binary split in the tree (in each particle) emits a reduction in variance (for regression models) or
a reduction in entropy (for classification). This function calculates these reductions and attributes
them to the variable(s) involved in the split(s). Those with the largest relevances are the most
useful for prediction. A sensible variable selection rule based on these relevances is to discard those
variables whose median relevance is not positive. See the Gramacy, Taddy, & Wild (2011) reference
below for more details.

The new set of particles is appended to the old set. However after a subsequent update.dynaTree
call the total number of particles reverts to the original amount.

Note that this does not work well with dynaTree objects which were built with model="linear".
Rather, a full sensitivity analysis (sens.dynaTree) is needed. Usually it is best to first do model="constant"
and then use relevance.dynaTree. Bayes factors (getBF) can be used to back up any variable se-
lections implied by the relevance. Then, if desired, one can re-fit on the new (possibly reduced) set
of predictors with model="linear".

There are no caveats with model="class"

Value

The entire object is returned with a new entry called relevance containing a matrix with ncol(X)
columns. Each row contains the sample from the relevance of each input, and there is a row for each
particle

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

22 retire.dynaTree

References

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, sens.dynaTree, predict.dynaTree varpropuse, varproptotal

Examples

see the examples in sens.dynaTree for the relevances;
Also see varpropuse and the class2d demo via
demo("class2d")

retire.dynaTree Retire (i.e. remove) data from the a dynaTree model

Description

Allows the removal (or “retireing” of X-y pairs from a "dynaTree"-class object to facilitate online
learning; “retireed” pairs ar absorbed into the leaf prior(s)

Usage

S3 method for class 'dynaTree'
retire(object, indices, lambda = 1, verb = 0)

Arguments

object a "dynaTree"-class object built by dynaTree

indices a vector of positive integers in 1:nrow(object$X) indicating which X-y pairs to
“retire”; must have length(indices) <= nrow(object$X)

lambda a scalar proportion (forgetting factor) used to downweight the previous prior
summary statistics

verb a nonzero scalar causes info about the “retireed” indices, i.e., their X-y values,
to be printed to the screen as they are “retireed”

Details

Primarily for use in online learning contexts. After “retireing” the predictive distribution remains
unchanged, because the sufficient statistics of the removed pairs enters the prior in the leaves of
the tree of each particle. Further update.dynaTree calls (adding data) may cause changes to the
posterior predictive as grow moves cannot keep the “retires”; see a forthcoming paper for more
details. In many ways, retire.dynaTree is the opposite of update.dynaTree except that the loss
of information upon “retireing” is not complete.

https://bobby.gramacy.com/r_packages/dynaTree/

retire.dynaTree 23

Drifting regression or classification relationships may be modeled with a forgetting factor lambda
< 1

The alcX.dynaTree provides a good, and computationally efficient, heuristic for choosing which
points to “retire” for regression models, and likewise link{entropyX.dynaTree} for classification
models.

Note that classification models (model = "class") are not supported, and implicit intercepts (icept
= "implicit") with linear models (model = "linear") are not supported at this time

Value

returns a "dynaTree"-class object with updated attributes

Note

In order to use model = "linear" with dynaTree and retirement one must also specify icept =
"augmented" which automatically augments an extra column of ones onto the input X design ma-
trix/matrices. The retire function only supports this icept case

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Anagnostopoulos, C., Gramacy, R.B. (2013) “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510-5535; arXiv:1201.5568

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, alcX.dynaTree, entropyX.dynaTree, update.dynaTree, rejuvenate.dynaTree

Examples

n <- 100
Xp <- runif(n,-3,3)
XX <- seq(-3,3, length=200)
Yp <- Xp + Xp^2 + rnorm(n, 0, .2)
rect <- c(-3,3)
out <- dynaTree(Xp, Yp, model="linear", icept="augmented")

predict and plot
out <- predict(out, XX)
plot(out, main="parabola data", lwd=2)

randomly remove half of the data points
out <- retire(out, sample(1:n, n/2, replace=FALSE))

predict and add to plot -- shouldn't change anything

https://bobby.gramacy.com/r_packages/dynaTree/

24 sens.dynaTree

out <- predict(out, XX)
plot(out, add=TRUE, col=3)
points(out$X[,-1], out$y, col=3)

now illustrating rejuvenation, which should result
in a change to the predictive surface
out <- rejuvenate(out)
out <- predict(out, XX)
plot(out, add=TRUE, col=4)
legend("top", c("original", "retired", "rejuvenated"),

col=2:4, lty=1)

clean up
deletecloud(out)

see demo("online") for an online learning example
where ALC is used for retirement

sens.dynaTree Monte Carlo Sensitivity Analysis for dynaTree Models

Description

A Monte Carlo sensitivity analysis using random Latin hypercube samples (LHSs) or bootstrap
resamples for each particle to estimate main effects as well as 1st order and total sensitivity indices

Usage

S3 method for class 'dynaTree'
sens(object, class = NULL, nns = 1000, nME = 100,

span = 0.3, method = c("lhs", "boot"),
lhs = NULL, categ = NULL, verb = 0)

Arguments

object a "dynaTree"-class object built by dynaTree

class only valid for object$model = "class", allows the user to specify the subset of
class labels in unique(object$y) for which sensitivity indices are calculated.
The implementation loops over the vector of labels provided. The default of
NULL results in class = unique(object$y)

nns A positive integer scalar indicating the size of each LHS or bootstrap drawn for
use in the Monte Carlo integration scheme underlying the sensitivity analysis;
the total number of locations is nn.lhs*(ncol(X)+2)

nME A positive integer scalar indicating number of grid points, in each input dimen-
sion, upon which main effects will be estimated

sens.dynaTree 25

span A positive real-valued scalar giving the smoothing parameter for main effects
integration: the fraction of nns points that will be included in a moving average
window that is used to estimate main effects at the nME locations in each input
dimension

method indicates whether LHS or bootstrap should be used

lhs if method = "lhs" then this argument should be a list with entries rect, shape
and mode describing the marginal distributions of the Latin Hypercube; specify
NULL for a default specification for method = "boot". The fields should have the
following format(s):

• rect: Optional rectangle describing the domain of the uncertainty distribu-
tion with respect to which the sensitivity is to be determined. This defines
the domain from which the LH sample is to be taken. The rectangle should
be a matrix or data.frame with ncol(rect) = 2, and number of rows
equal to the dimension of the domain. For 1-d data, a vector of length 2 is
allowed. The default is the input data range of each column of (object$X).

• shape: Optional vector of shape parameters for Beta marginal distribu-
tions having length ncol(object$X) and elements > 1, i.e., concave Beta
distributions. If specified, the uncertainty distribution (i.e. the LHS) is pro-
portional to a joint pdf formed by independent Beta distributions in each di-
mension of the domain, scaled and shifted to have support defined by rect.
If unspecified, the uncertainty distribution is uniform over rect. The spec-
ification shape[i]=0 instructs sens to treat the i’th dimension as a binary
variable. In this case, mode[i] is the probability parameter for a bernoulli
uncertainty distribution, and we must also have rect[i,]=c(0,1).

• mode: Optional vector of mode values for the Beta uncertainty distribution.
Vector of length equal to the dimension of the domain, with elements within
the support defined by rect. If shape is specified, but this is not, then the
scaled Beta distributions will be symmetric.

categ A vector of logicals of length ncol(object$X) indicating which, if any, dimen-
sions of the input space should be treated as categorical; this input is used to
help set the default lhs$shape argument if not specified; the default categ ar-
gument is NULL meaning that the categorical inputs are derived from object$X
in a sensible way

verb a positive scalar integer indicating how many predictive locations (iterations)
after which a progress statement should be printed to the console; a (default)
value of verb = 0 is quiet

Details

Saltelli (2002) describes a Latin Hypercube sampling based method for estimation of the ’Sobol’
sensitivity indices:

1st Order for input i,
S(i) = Var(E[f |xi])/Var(f),

where xi is the i-th input.

Total Effect for input i,
T (i) = E[Var(f |x−i)]/Var(f),

26 sens.dynaTree

where x−i is all inputs except for the i-th.

All moments are with respect to the appropriate marginals of the uncertainty distribution U – that
is, the probability distribution on the inputs with respect to which sensitivity is being investigated.
Under this approach, the integrals involved are approximated through averages over properly chosen
samples based on two LH samples proportional to U. If nns is the sample size for the Monte Carlo
estimate, this scheme requires nns*(ncol(X)+2) function evaluations.

The sens.dynaTree function implements the method for unknown functions f , through prediction
via one of the tgp regression models conditional on an observed set of X locations. For each particle,
treated as sample from the dynaTree model posterior, the nns*(ncol(X)+2) locations are drawn
randomly from the LHS scheme and realizations of the sensitivity indices are calculated. Thus
we obtain a posterior sample of the indices, incorporating variability from both the Monte Carlo
estimation and uncertainty about the function output. Since a subset of the predictive locations are
actually an LHS proportional to the uncertainty distribution, we can also estimate the main effects
through simple non-parametric regression (a moving average).

See the Gramacy, Taddy, & Wild (2011) reference below for more details.

If method = "boot" is used then simply replace LHS above with a bootstrap resample of the object$X
locations.

As with prediction, the dynaTrees function enables repeated calls to sens.dynaTree

Value

The object returned is of class "dynaTree", which includes a copy of the list elements from the
object passed in, with the following (sensitivity-analysis specific) additions.

MEgrid An nME-by-ncol(object$X) matrix containing the main effects predictive grid
at which the following MEmean, MEq1, and MEq2 quantities were obtained

MEmean A matrix with ncol(object$X) columns and nME rows containing the mean
main effects for each input dimension

MEq1 same as MEmean but containing the 5% quantiles

MEq2 same as MEmean but containing the 95% quantiles

S An object$N-row and ncol(object$X) matrix containing the posterior (sam-
ples) of the 1st Order Sobol sensitivity indices

T same as S but containing the Total Effect indices

In the case of object$model = "class" the entries listed above will themselves be lists with an
entry for each class specified on input, or all classes as is the default

Note

The quality of sensitivity analysis is dependent on the size of the LHSs used for integral approx-
imation; as with any Monte Carlo integration scheme, the sample size (nns) must increase with
the dimensionality of the problem. The total sensitivity indices T are forced non-negative, and if
negative values occur it is necessary to increase nnd. Postprocessing replaces negative values with
NA

sens.dynaTree 27

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Saltelli, A. (2002) Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145, 280-297.

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, predict.dynaTree, relevance.dynaTree, varpropuse, varproptotal

Examples

friedman data
if(require("tgp")) {

f <- friedman.1.data(1000)
X <- f[,1:6]
Z <- f$Y

fit the model and do the sensitivity analysis
N <- 100 ## use N >= 1000 for better results
small N is for fast CRAN checks
out <- dynaTree(X=X, y=Z, N=N, ab=c(0.01,2))
also try with model="linear"

gather relevance statistics
out <- relevance(out)
boxplot(out$relevance)
abline(h=0, col=2, lty=2)
relevance stats are not as useful when model="linear"
since it will appear that x4 and x5 not helpful; these
interact linearly with the response

full simulation-based sensitivity analysis, the dynaTree::
part is only needed if the tgp package is loaded
out <- dynaTree::sens(out, verb=100)

plot the main effects
r <- range(rbind(c(out$MEmean, out$MEq1, out$MEq2)))
par(mfrow=c(1,ncol(out$X)), mar=c(5,3,2,1))
plot(out$MEgrid[,1], out$MEmean[,1], type="l", ylim=r, lwd=2,

ylab="", xlab=colnames(out$MEmean)[1])
lines(out$MEgrid[,1], out$MEq1[,1], lty=2, lwd=2)
lines(out$MEgrid[,1], out$MEq2[,1], lty=2, lwd=2)
if(ncol(out$X) > 1) {

for(d in 2:ncol(out$X)) {

https://bobby.gramacy.com/r_packages/dynaTree/

28 update.dynaTree

plot(out$MEgrid[,d], out$MEmean[,d], col=d, type="l", ylim=r,
lwd=2, xlab=colnames(out$MEmean)[d], ylab="")

lines(out$MEgrid[,d], out$MEq1[,d], col=d, lty=2)
lines(out$MEgrid[,d], out$MEq2[,d], col=d, lty=2)

}
}

Sobol indices
par(mfrow=c(1,2), mar=c(5,4,4,2))
boxplot(out$S, main="first order indices", xlab="inputs")
boxplot(out$T, main="total indices", xlab="inputs")
these look better when model="linear"

clean up
deletecloud(out)

for a classification example using the sensitivity hooks
in the dynaTrees function, see the class2d demo
i.e., demo("class2d")
}

update.dynaTree Updating a Dynamic Tree Model With New Data

Description

Updating an already-initialized dynamic tree model with new input/output pairs, primarily to facil-
itate sequential design and optimization applications

Usage

S3 method for class 'dynaTree'
update(object, X, y, verb = round(length(y)/10), ...)

Arguments

object a "dynaTree"-class object built by dynaTree

X an augmenting design matrix of real-valued predictors with ncol(X) = object$m

y an augmenting vector of real-valued responses or integer categories with length(y)
= nrow(X)

verb a positive scalar integer indicating how many time steps (iterations) after which
a progress statement should be printed to the console; a value of verb = 0 is
quiet

... to comply with the generic predict method – currently unused

update.dynaTree 29

Details

This function updates the dynaTree fit with new (X,y) pairs by the Particle Learning (PL) algo-
rithm. The updated fit will be for data combined as rbind(object$X, X) and c(object$y, y).

The primary use of this function is to facilitate sequential design by optimization and active learn-
ing. Typically one would use predict.dynaTree to estimate active learning statistics at candidate
location. These are used to pick new (X,y) locations to add to the design – the new fit being
facilitated by this function; see the examples below

Value

The returned list is the same as dynaTree – i.e., a "dynaTree"-class object

Note

The object (object) must contain a pointer to a particle cloud (object$num) which has not been
deleted by deletecloud. In particular, it cannot be an object returned from dynaTrees

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Taddy, M.A., Gramacy, R.B., and Polson, N. (2011). “Dynamic trees for learning and design”
Journal of the American Statistical Association, 106(493), pp. 109-123; arXiv:0912.1586

Anagnostopoulos, C., Gramacy, R.B. (2013) “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510-5535; arXiv:1201.5568

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing”.
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

predict.dynaTree, dynaTree, plot.dynaTree, deletecloud, getBF

Examples

simple function describing (x,y) data
f1d <- function(x, sd=0.1){

return(sin(x) - dcauchy(x,1.6,0.15) + rnorm(1,0,sd))
}

initial (x,y) data
X <- seq(0, 7, length=30)
y <- f1d(X)

PL fit to initial data
obj <- dynaTree(X=X, y=y, N=1000, model="linear")

https://bobby.gramacy.com/r_packages/dynaTree/

30 varpropuse

a predictive grid
XX <- seq(0,7, length=100)
obj <- predict(obj, XX, quants=FALSE)

follow the ALM algorithm and choose the next
point with the highest predictive variance
m <- which.max(obj$var)
xstar <- drop(obj$XX[m,])
ystar <- f1d(xstar)

plot the next chosen point
par(mfrow=c(2,1))
plot(obj, ylab="y", xlab="x", main="fitted surface")
points(xstar, ystar, col=3, pch=20)
plot(obj$XX, sqrt(obj$var), type="l", xlab="x",

ylab="predictive sd", main="active learning")

update the fit with (xstar, ystar)
obj <- update(obj, xstar, ystar)

new predictive surface
obj <- predict(obj, XX, quants=FALSE)

plotted
plot(obj, ylab="y", xlab="x", main="updated fitted surface")
plot(obj$XX, sqrt(obj$var), type="l", xlab="x",

ylab="predictive sd", main="active learning")

delete the cloud to prevent a memory leak
deletecloud(obj); obj$num <- NULL

see demo("design") for more iterations and
design under other active learning heuristics
like ALC, and EI for optimization; also see
demo("online") for an online learning example

varpropuse Calculate the proportion of variables used in tree splits, and average
summary stats of tree heights and leaf sizes

Description

Calculates the proportion of particles which use each input to make a tree split and the proportion
of all splits in trees of each particle that correspond to each input variable; also provides tree height
and leaf size summary information

Usage

S3 method for class 'dynaTree'

varpropuse 31

varpropuse(object)
S3 method for class 'dynaTree'
varproptotal(object)
S3 method for class 'dynaTree'
treestats(object)

Arguments

object a "dynaTree"-class object built by dynaTree

Details

varpropuse gives the proportion of times a particle uses each input variable in a tree split; varproptotal
gives the proportion of total uses by the tree in each particle (i.e., averaged over the total number of
splits used in the tree).

Usually, varpropuse returns a vector of (nearly) all ones unless there are variables which are not
useful in predicting the response. Using model = "linear" is not recommended for this sort of
variable selection.

treestats returns the average tree height, and the average leaf size, both active and retired

Value

For varprop*, a vector of proportions of length ncol(object$X)) is returned; for treestats a
1-row, 4-column data.frame is returned

Author(s)

Robert B. Gramacy <rbg@vt.edu>,
Matt Taddy and Christoforos Anagnostopoulos

References

Gramacy, R.B., Taddy, M.A., and S. Wild (2011). “Variable Selection and Sensitivity Analysis via
Dynamic Trees with an Application to Computer Code Performance Tuning” arXiv:1108.4739

https://bobby.gramacy.com/r_packages/dynaTree/

See Also

dynaTree, sens.dynaTree, relevance.dynaTree

Examples

ffit a dynaTree model to the Ozone data
X <- airquality[,2:4]
y <- airquality$Ozone
na <- apply(is.na(X), 1, any) | is.na(y)
out <- dynaTree(X=X[!na,], y=y[!na])

obtain variable usage proportions
varpropuse(out)

https://bobby.gramacy.com/r_packages/dynaTree/

32 varpropuse

varproptotal(out)

gather relevance statistics which are more meaningful
out <- relevance(out)
boxplot(out$relevance)
abline(h=0, col=2, lty=2)

obtain tree statistics
treestats(out)

clean up
deletecloud(out)

Index

∗ aplot
plot.dynaTree, 15

∗ classes
dynaTree-class, 5

∗ classif
dynaTrees, 6

∗ datasets
elec2, 12

∗ design
update.dynaTree, 28

∗ hplot
plot.dynaTree, 15

∗ htest
getBF, 14
relevance.dynaTree, 20
sens.dynaTree, 24

∗ methods
alcX.dynaTree, 3
dynaTree-class, 5
predict.dynaTree, 17
rejuvenate.dynaTree, 19
relevance.dynaTree, 20
retire.dynaTree, 22
sens.dynaTree, 24
update.dynaTree, 28

∗ method
varpropuse, 30

∗ nonlinear
dynaTrees, 6

∗ nonparametric
dynaTrees, 6

∗ package
dynaTree-package, 2

∗ regression
dynaTrees, 6

∗ tree
dynaTrees, 6
varpropuse, 30

alc (dynaTree-class), 5

alc,dynaTree-method (dynaTree-class), 5
alc-methods (dynaTree-class), 5
alc.dynaTree, 17, 19
alc.dynaTree (alcX.dynaTree), 3
alcX (dynaTree-class), 5
alcX,dynaTree-method (dynaTree-class), 5
alcX-methods (dynaTree-class), 5
alcX.dynaTree, 3, 6, 20, 23

classprobs (dynaTree-class), 5
classprobs,dynaTree-method

(dynaTree-class), 5
classprobs-methods (dynaTree-class), 5
coef.dynaTree (predict.dynaTree), 17
copy (dynaTree-class), 5
copy,dynaTree-method (dynaTree-class), 5
copy-methods (dynaTree-class), 5
copy.dynaTree, 10

data.frame, 31
deletecloud, 10, 20, 29
deleteclouds, 10
dynaTree, 3, 4, 6, 14–17, 19–24, 26–29, 31
dynaTree (dynaTrees), 6
dynaTree-class, 5
dynaTree-package, 2
dynaTrees, 6, 14, 16, 20, 26, 29

elec2, 12
entropyX (dynaTree-class), 5
entropyX,dynaTree-method

(dynaTree-class), 5
entropyX-methods (dynaTree-class), 5
entropyX.dynaTree, 19, 20, 23
entropyX.dynaTree (alcX.dynaTree), 3

getBF, 10, 14, 21, 29

ieci (dynaTree-class), 5
ieci,dynaTree-method (dynaTree-class), 5
ieci-methods (dynaTree-class), 5

33

34 INDEX

intervals (dynaTree-class), 5
intervals,dynaTree-method

(dynaTree-class), 5
intervals-methods (dynaTree-class), 5

list, 25

matrix, 26

plot, 16
plot.dynaTree, 8, 10, 15, 19, 29
predict, 17, 28
predict.dynaTree, 4, 6, 8–10, 16, 17, 22, 27,

29

qEI,dynaTree-method (dynaTree-class), 5
qEntropy,dynaTree-method

(dynaTree-class), 5

range, 3, 21
rejuvenate (dynaTree-class), 5
rejuvenate,dynaTree-method

(dynaTree-class), 5
rejuvenate-methods (dynaTree-class), 5
rejuvenate.dynaTree, 19, 23
relevance (dynaTree-class), 5
relevance,dynaTree-method

(dynaTree-class), 5
relevance-methods (dynaTree-class), 5
relevance.dynaTree, 8, 10, 20, 21, 27, 31
retire (dynaTree-class), 5
retire,dynaTree-method

(dynaTree-class), 5
retire-methods (dynaTree-class), 5
retire.dynaTree, 4–6, 19, 20, 22, 22

sameleaf (dynaTree-class), 5
sameleaf,dynaTree-method

(dynaTree-class), 5
sameleaf-methods (dynaTree-class), 5
sens (dynaTree-class), 5
sens,dynaTree-method (dynaTree-class), 5
sens-methods (dynaTree-class), 5
sens.dynaTree, 5, 6, 8, 10, 21, 22, 24, 31

treestats (dynaTree-class), 5
treestats,dynaTree-method

(dynaTree-class), 5
treestats-methods (dynaTree-class), 5
treestats.dynaTree (varpropuse), 30

update.dynaTree, 6, 9, 10, 15, 16, 19–23, 28

varproptotal, 8–10, 22, 27
varproptotal (dynaTree-class), 5
varproptotal,dynaTree-method

(dynaTree-class), 5
varproptotal-methods (dynaTree-class), 5
varproptotal.dynaTree (varpropuse), 30
varpropuse, 8–10, 22, 27, 30
varpropuse (dynaTree-class), 5
varpropuse,dynaTree-method

(dynaTree-class), 5
varpropuse-methods (dynaTree-class), 5
varpropuse.dynaTree (varpropuse), 30

	dynaTree-package
	alcX.dynaTree
	dynaTree-class
	dynaTrees
	elec2
	getBF
	plot.dynaTree
	predict.dynaTree
	rejuvenate.dynaTree
	relevance.dynaTree
	retire.dynaTree
	sens.dynaTree
	update.dynaTree
	varpropuse
	Index

