Package 'dpcc'

October 13, 2022

Type Package Title Dynamic Programming for Convex Clustering Version 1.0.0 Author Bingyuan Zhang, Jie Chen, Yoshikazu Terada Maintainer Bingyuan Zhang <zhang@sigmath.es.osaka-u.ac.jp> Description Use dynamic programming method to solve 11 convex clustering with identical weights. License MIT + file LICENSE **Encoding** UTF-8 LazyData False RoxygenNote 7.1.1 LinkingTo Rcpp Imports Rcpp Suggests testthat (>= 3.0.0) Config/testthat/edition 3 NeedsCompilation yes **Repository** CRAN Date/Publication 2021-06-01 06:40:02 UTC

R topics documented:

	cdp	
	find_lambda	
Index		4

Description

L1 convex clustering with a single lambda.

Usage

cdp(X, lam)

Arguments

Х	a data matrix of n * p or a data vector with length n.
lam	a tuning parameter.

Details

A list with length p equal to the dimension of the data matrix. Each dimension includes a vector of the estimated centroids.

Value

the estimated centroids.

Examples

```
# generate a data matrix with n = 10 and p = 2.
X = matrix(rnorm(10*2), 10, 2)
lam = find_lambda(X)/2
# set a tuning parameter lambda.
cdp(X, lam)
```

cpaint

L1 convex clustering with a lambda sequence.

Description

L1 convex clustering with a lambda sequence.

Usage

cpaint(X, lam)

find_lambda

Arguments

Х	a data matrix of n * p or a data vector with length n.
lam	a sequence of lambdas.

Details

A list with length p equal to the dimension of the data matrix. Each dimension includes a sequence of vectors. Each vector includes the estimated centroids with a certain tuning parameter lambda.

Value

A sequence of estimated centroids.

Examples

```
# generate a data matrix with n = 10 and p = 2.
X = matrix(rnorm(10*2), 10, 2)
# set the biggest lambda in the sequence.
lam_max = find_lambda(X)
# set the length of the sequence.
K = 10
# equally separate the sequence with K.
Lam = sapply(1:K, function(i) i/K*lam_max)
cpaint(X,Lam)
```

find_lambda Return the lambda which causes all the points become fused into one cluster.

Description

Return the lambda which causes all the points become fused into one cluster.

Usage

find_lambda(X)

Arguments

X data matrix of n * p

Value

the biggest lambda

Examples

X = matrix(rnorm(3*2), 3, 2)
find_lambda(X)

Index

cdp,2 cpaint,2

find_lambda,3