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dca

Discriminative Component Analysis

Description

Performs discriminative component analysis on the given data.

Usage

dca(data, chunks, neglinks, useD = NULL)

Arguments

data

chunks

neglinks

useD

Details

n x d data matrix. n is the number of data points, d is the dimension of the data.
Each data point is a row in the matrix.

length n vector describing the chunklets: -1 in the i th place means point i
doesn’t belong to any chunklet; integer j in place i means point i belongs to
chunklet j. The chunklets indexes should be 1:(number of chunklets).

s * s symmetric matrix describing the negative relationship between all the s
chunklets. For the element neglinks;;: neglinks;; = 1 means chunklet i and
chunklet j have negative constraint(s); neglinks;; = 0 means chunklet i and
chunklet j don’t have negative constraints or we don’t have information about
that.

Integer. Optional. When not given, DCA is done in the original dimension and
B is full rank. When useD is given, DCA is preceded by constraints based LDA
which reduces the dimension to useD. B in this case is of rank useD.

Put DCA function details here.

Value
list of the DCA results:
B DCA suggested Mahalanobis matrix
DCA DCA suggested transformation of the data. The dimension is (original data di-
mension) * (useD)
newData DCA transformed data

For every two original data points (x1, x2) in newData (y1, y2):
(22 —21) % B * (22 — 21) = |[(22 — 1) * A||? = ||y2 — y1]|?

Note

Put some note here.
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Author(s)

Xiao Nan <http://www.road2stat.com>

References

Steven C.H. Hoi, W. Liu, M.R. Lyu and W.Y. Ma (2006). Learning Distance Metrics with Con-
textual Constraints for Image Retrieval. Proceedings IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2006).

Examples

## Not run:
set.seed(123)
require(MASS) # generate synthetic Gaussian data

k = 100 # sample size of each class
n=3 # specify how many class
N=k*xn # total sample number

x1 = mvrnorm(k, mu = c(-10, 6), matrix(c(10, 4, 4, 10), ncol = 2))

x2 = mvrnorm(k, mu = c(@, @), matrix(c(10, 4, 4, 10), ncol = 2))

x3 = mvrnorm(k, mu = c(10, -6), matrix(c(10, 4, 4, 10), ncol = 2))

data = as.data.frame(rbind(x1, x2, x3))

# The fully labeled data set with 3 classes

plot(data$Vl, data$Vv2, bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)1,
pch = c(rep(22, k), rep(21, k), rep(25, k)))

Sys.sleep(3)

# Same data unlabeled; clearly the classes' structure is less evident

plot(x$V1, x$V2)

Sys.sleep(3)

chunkl = sample(1:100, 5)
chunk2 = sample(setdiff(1:100, chunkl), 5)
chunk3 = sample(101:200, 5)
chunk4 = sample(setdiff(101:200, chunk3), 5)
chunk5 = sample(201:300, 5)
chks = list(chunkl, chunk2, chunk3, chunk4, chunk5)
chunks = rep(-1, 300)
# positive samples in the chunks
for (i in 1:5) ¢

for (j in chks[[i]]) {

chunks[j] = i

}

3

# define the negative constrains between chunks
neglinks = matrix(c(

0, 0, 1, 1, 1,
0, 0, 1, 1, 1,
1, 1, o0, o, 0,
1, 1, 0, o, 1,
1, 1, 1, 1, 9,
ncol = 5, byrow = TRUE)
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dcaData = dca(data = data, chunks = chunks, neglinks = neglinks)$newData

# plot DCA transformed data

plot(dcaDatal, 1], dcaDatal, 21, bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)1,
pch = c(rep(22, k), rep(21, k), rep(25, k)),
xlim = c(-15, 15), ylim = c(-15, 15))

## End(Not run)

GdmDiag Global Distance Metric Learning

Description

Performs Global Distance Metric Learning (GDM) on the given data, learning a diagonal matrix.

Usage
GdmDiag(data, simi, dism, C@ = 1, threshold = 0.001)

Arguments
data n x d data matrix. n is the number of data points, d is the dimension of the data.
Each data point is a row in the matrix.
simi n * 2 matrix describing the similar constrains. Each row of matrix is serial num-
ber of a similar pair in the original data. For example, pair(1, 3) represents the
first observation is similar the 3th observation in the original data.
dism n x 2 matrix describing the dissimilar constrains as simi. Each row of matrix is
serial number of a dissimilar pair in the original data.
co numeric, the bound of similar constrains.
threshold numeric, the threshold of stoping the learning iteration.
Details

Put GdmDiag function details here.

Value

list of the GdmDiag results:

newData GdmbDiag transformed data

diagonalA suggested Mahalanobis matrix

dmlA matrix to transform data, square root of diagonal A

error the precision of obtained distance metric by Newton-Raphson optimization

For every two original data points (x1, x2) in newData (y1, y2):
(22 — 21) x Ax (22 — 21) = ||(22 — 21) * B||* = ||y2 — y1]|?



GdmDiag 5

Note

Be sure to check whether the dimension of original data and constrains’ format are valid for the
function.

Author(s)

Gao Tao <http://www.gaotao.name>

References

Steven C.H. Hoi, W. Liu, M.R. Lyu and W.Y. Ma (2003). Distance metric learning, with application
to clustering with side-information.

Examples

## Not run:
set.seed(602)
library(MASS)
library(scatterplot3d)

# generate simulated Gaussian data

k = 100

m <- matrix(c(1, 0.5, 1, 0.5, 2, -1, 1, -1, 3), nrow =3, byrow = T)
x1 <= mvrnorm(k, mu = c(1, 1, 1), Sigma = m)

x2 <= mvrnorm(k, mu = c(-1, @, @), Sigma = m)

data <- rbind(x1, x2)

# define similar constrains
simi <- rbind(t(combn(1:k, 2)), t(combn((k+1):(2xk), 2)))

temp <- as.data.frame(t(simi))
tol <- as.data.frame(combn(1:(2*xk), 2))

# define disimilar constrains
dism <- t(as.matrix(tol[!tol %in% simil))

# transform data using GdmDiag
result <- GdmDiag(data, simi, dism)
newData <- result$newData
# plot original data
color <- gl(2, k, labels = c("red”, "blue"))
par(mfrow = c(2, 1), mar = rep(@, 4) + 0.1)
scatterplot3d(data, color = color, cex.symbols = 0.6,
xlim = range(datal, 1], newDatal, 11),
ylim = range(datal, 2], newDatal, 2]),
zlim = range(datal[, 3], newDatal[, 31),
main = "Original Data")
# plot GdmDiag transformed data
scatterplot3d(newData, color = color, cex.symbols = 0.6,
xlim = range(datal, 1], newDatal, 11),
ylim = range(datal, 2], newDatal, 2]),
zlim = range(datal[, 3], newDatal[, 31),
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main = "Transformed Data")

## End(Not run)

GdmFull Global Distance Metric Learning

Description

Performs Global Distance Metric Learning (GDM) on the given data, learning a full matrix.

Usage

GdmFull(data, simi, dism, maxiter = 100)

Arguments
data n * d data matrix. n is the number of data points, d is the dimension of the data.
Each data point is a row in the matrix.
simi n * 2 matrix describing the similar constrains. Each row of matrix is serial num-
ber of a similar pair in the original data. For example, pair(1, 3) represents the
first observation is similar the 3th observation in the original data.
dism n * 2 matrix describing the dissimilar constrains as simi. Each row of matrix is
serial number of a dissimilar pair in the original data.
maxiter numeric, the number of iteration.
Details

Put GdmFull function details here.

Value

list of the GdmDiag results:

newData GdmDiag transformed data

fullA suggested Mahalanobis matrix

dmlA matrix to transform data, square root of diagonal A

converged whether the iteration-projection optimization is converged or not

For every two original data points (x1, x2) in newData (y1, y2):
(22 —21) *x Ax (22 — 21) = ||(22 — 21) * B||> = ||y2 — y1]|?

Note

Be sure to check whether the dimension of original data and constrains’ format are valid for the
function.
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Author(s)

Gao Tao <http://www.gaotao.name>

References

Steven C.H. Hoi, W. Liu, M.R. Lyu and W.Y. Ma (2003). Distance metric learning, with application
to clustering with side-information.

Examples

## Not run:
set.seed(123)
library(MASS)
library(scatterplot3d)

# generate simulated Gaussian data

k = 100

m <- matrix(c(1, 0.5, 1, ©.5, 2, -1, 1, -1, 3), nrow =3, byrow =T)
x1 <= mvrnorm(k, mu = c(1, 1, 1), Sigma = m)

x2 <= mvrnorm(k, mu = c(-1, @, @), Sigma = m)

data <- rbind(x1, x2)

# define similar constrains
simi <- rbind(t(combn(1:k, 2)), t(combn((k+1):(2xk), 2)))

temp <- as.data.frame(t(simi))
tol <- as.data.frame(combn(1:(2*xk), 2))

# define disimilar constrains
dism <- t(as.matrix(tol[!tol %in% simil))

# transform data using GdmFull
result <- GdmFull(data, simi, dism)
newData <- result$newData
# plot original data
color <- gl(2, k, labels = c("red”, "blue"))
par(mfrow = c(2, 1), mar = rep(@, 4) + 0.1)
scatterplot3d(data, color = color, cex.symbols = 0.6,
xlim = range(datal, 1], newDatal, 11),
ylim = range(data[, 2], newDatal, 21),
zlim = range(datal, 3], newDatal, 3]),
main = "Original Data")
# plot GdmFull transformed data
scatterplot3d(newData, color = color, cex.symbols = 0.6,
xlim = range(datal, 1], newDatal, 11),
ylim = range(data[, 2], newDatal, 21),
zlim = range(datal, 3], newDatal, 3]),
main = "Transformed Data")

## End(Not run)


http://www.gaotao.name

8 rca

rca Relevant Component Analysis

Description

Performs relevant component analysis on the given data.

Usage

rca(x, chunks)

Arguments
X matrix or data frame of original data. Each row is a feature vector of a data
instance.
chunks list of k numerical vectors. Each vector represents a chunklet, the elements
in the vectors indicate where the samples locate in x. See examples for more
information.
Details

The RCA function takes a data set and a set of positive constraints as arguments and returns a linear
transformation of the data space into better representation, alternatively, a Mahalanobis metric over
the data space.

Relevant component analysis consists of three steps:

1. locate the test point
2. compute the distances between the test points
3. find k shortest distances and the bla

The new representation is known to be optimal in an information theoretic sense under a constraint
of keeping equivalent data points close to each other.

Value
list of the RCA results:
B The RCA suggested Mahalanobis matrix. Distances between data points x1, X2
should be computed by (x2 - x1)” * B * (x2 - x1)
A The RCA suggested transformation of the data. The data should be transformed
by A * data
newX The data after the RCA transformation (A). newData = A * data

The three returned argument are just different forms of the same output. If one is interested in
a Mahalanobis metric over the original data space, the first argument is all she/he needs. If a
transformation into another space (where one can use the Euclidean metric) is preferred, the second
returned argument is sufficient. Using A and B is equivalent in the following sense:

ifyl=A*xl,y2=A*y2then (x2-x1)" *B* (x2-x1)=(y2-yl) *(y2-yl)
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Note
Note that any different sets of instances (chunklets), e.g. 1, 3, 7 and 4, 6, might belong to the same
class and might belong to different classes.

Author(s)

Xiao Nan <http://www.road2stat.com>

References

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall (2003). Learning Distance
Functions using Equivalence Relations. Proceedings of 20th International Conference on Machine
Learning (ICML2003).

See Also

See dca for exploiting negative constrains.

Examples

## Not run:
set.seed(1234)
require(MASS) # generate synthetic Gaussian data

k = 100 # sample size of each class

n=3 # specify how many class

N=k*xn # total sample number

x1 = mvrnorm(k, mu = c(-10, 6), matrix(c(10, 4, 4, 10), ncol = 2))

x2 = mvrnorm(k, mu = c(@, @), matrix(c(10, 4, 4, 10), ncol = 2))
x3 = mvrnorm(k, mu = c(10, -6), matrix(c(10, 4, 4, 10), ncol = 2))
X = as.data.frame(rbind(x1, x2, x3))

x$V3 = gl(n, k)

# The fully labeled data set with 3 classes

plot(x$V1, x$V2, bg = c("#E41A1C", "#377EB8", "#4DAF4A")[x$V3],
pch = c(rep(22, k), rep(21, k), rep(25, k)))

Sys.sleep(3)

# Same data unlabeled; clearly the classes' structure is less evident
plot(x$V1, x$V2)
Sys.sleep(3)

chunkl = sample(1:100, 5)

chunk2 = sample(setdiff(1:100, chunkl), 5)

chunk3 = sample(101:200, 5)

chunk4 = sample(setdiff(101:200, chunk3), 5)

chunk5 = sample(201:300, 5)

chks = x[c(chunk1, chunk2, chunk3, chunk4, chunk5), ]
chunks = list(chunk1, chunk2, chunk3, chunk4, chunk5)

# The chunklets provided to the RCA algorithm
plot(chks$V1, chks$V2, col = rep(c("#E41A1C", "#377EB8",
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"#4DAF4A", "#984EA3", "#FF7F00"), each = 5),
pch = rep(@:4, each = 5), ylim = c(-15, 15))
Sys.sleep(3)

# Whitening transformation applied to the chunklets
chkTransformed = as.matrix(chks[ , 1:2]) %*% rca(x[ , 1:2]1, chunks)$A

plot(chkTransformed[ , 11, chkTransformed[ , 2], col = rep(c(
"#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00"), each = 5),
pch = rep(@:4, each = 5), ylim = c(-15, 15))

Sys.sleep(3)

# The origin data after applying the RCA transformation

plot(rca(x[ , 1:21, chunks)$newX[, 11, rca(x[ , 1:2], chunks)$newX[, 21,
bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)1,
pch = c(rep(22, k), rep(21, k), rep(25, k)))

# The RCA suggested transformation of the data, dimensionality reduced
rca(x[ , 1:2], chunks)$A

# The RCA suggested Mahalanobis matrix
rca(x[ , 1:2], chunks)$B

## End(Not run)
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