Package 'discourseGT'

February 14, 2024

Title Analyze Group Patterns using Graph Theory in Educational Settings

Version 1.2.0

Description Analyzes group patterns using discourse analysis data with graph theory mathematics. Takes the order of which individuals talk and converts it to a network edge and weight list. Returns the density, centrality, centralization, and subgroup information for each group. Based on the analytical framework laid out in Chai et al. (2019) <doi:10.1187/cbe.18-11-0222>.

License MIT + file LICENSE

Depends R (>= 3.5.0)

- **Imports** dplyr, GGally, ggplot2, ggrepel, graphics, igraph, network, stats, utils
- Suggests BiocManager, formatR, ggpubr, knitr, markdown, R.rsp, rmarkdown, rticles, sna, testthat (>= 3.0.0)

VignetteBuilder knitr, R.rsp

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Albert Chai [aut], Andrew Lee [aut], Joshua Le [aut], Katherine Ly [ctb], Kevin Banh [ctb], Priya Pahal [ctb], Jitarth Sheth [aut], Qi Cui [aut, cre], Stanley Lo [aut]

Maintainer Qi Cui <q1cui@ucsd.edu>

Repository CRAN

Date/Publication 2023-07-19 07:20:02 UTC

R topics documented:

		13
writeData	•••	. 11
tabulate_edges	•••	. 11
summaryNet		. 10
subgroupsNetAnalysis		. 9
sampleData1	•••	. 8
prepareGraphs		. 8
plotNGTData		. 7
plot2Att		
plot1Att		. 5
edgelist_raw		. 4
coreNetAnalysis		. 4
basicPlot		. 3
attributeData		. 2

Index

attributeData

Sample Attribute Data

Description

A data set that sample attribute data to complement Sample Data 1. This data was randomly generated. This data set is for students who are currently taking a STEM course at a major university. 4 students are in this sample study.

Usage

attributeData

Format

A data frame of 4 rows with 12 variables

node Student identifier in the group

gender Gender of student

ethnicity Ethnicity of student

current_gpa Current overall GPA of student

first_generation If the student is a first generation standing

stem_major If student is in a STEM major

major Major of the student

course_reason Reasons to why student is taking the course

class_level Current class standing at the university

number_prior_ap Number of prior AP courses taken

residency Current residency of the student

sat_score SAT score for admission ...

basicPlot

Description

Plots the graph using the base plot function. To map attributes on the graph use plot1Att for 1 attribute or plot2Att for 2 attributes.

Usage

```
basicPlot(
  ginp,
  graph_selection_input = 0,
  curvedEdgeLines = TRUE,
  arrowSizeMultiplier = 1,
  scaledEdgeLines = FALSE,
  scaledMin = NULL,
  scaledMax = NULL
)
```

Arguments

ginp	The prepared graph object from prepareGraphs function	
graph_selection_input		
	The type of graphical projection to be used. Default projection is 0 (Fruchterman Reingold). Selection must be a numeric option from 0-2. Other options include: $1 = Kamada Kawai, 2 = Reingold Tilford$	
curvedEdgeLines		
	Whether or not the edges between nodes should be curved or straight. Default is curved lines.	
arrowSizeMultiplier		
	Adjusts the default arrow size based on a multiplier. Default value is 1.	
scaledEdgeLines		
	Whether or not the edges of the graph should be scaled	
scaledMin	If scaledEdgeLines = TRUE, then what the lightest weight should be scaled to	
scaledMax	If scaledEdgeLines = TRUE, then what the heaviest weight should be scaled to	

Value

Returns graphical plot to disk, if selected, or to R console

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)</pre>
```

```
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
#Plot the graph
basicPlot(baseNet)</pre>
```

coreNetAnalysis Run Graphical Analysis Core Parameters

Description

Analyzes the graphs with the core parameters, such as number of edges and nodes, density, average degree, centrality, and modularity

Usage

```
coreNetAnalysis(ginp)
```

Arguments

ginp

The prepared graph object from prepareGraphs function

Value

Gives the edge and weighted edge counts, number of nodes, density, degree (averages), memberships, modularity, centrality, articulation points, and strong/weak plots as a list object

Examples

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
coreNetAnalysis(baseNet)</pre>
```

edgelist_raw Process raw order lists from two column format to edge lists

Description

Takes raw input that is in a 2 column format/question-and-response format and generates an appropriate edge lists in a combined .csv file.

Usage

```
edgelist_raw(input_file)
```

4

plot1Att

Arguments

input_file Source of the raw input file. Must be in a .csv format

Value

Saves the weight and edge lists as a data.frame object or a .csv file to disk.

Examples

```
df <- sampleData1
prepNet <- edgelist_raw(df)</pre>
```

plot1Att

Plots Graphs using ggplot2 with one attribute

Description

Plots graph data using the GGally library and ggnet function while incorporating demographic properties. Use this plot function if you have all demographic data available to plot.

Usage

```
plot1Att(
   data,
   prop = 20,
   graphmode = "fruchtermanreingold",
   attribute = NULL,
   attribute.label = NULL,
   attribute.node.labels = NULL,
   attribute.nodesize = 10
)
```

Arguments

data	Data from the prepareGraphs function	
prop	Rescaling the graph edge sizes for the plot	
graphmode	Type of graphical projection to use. Default is Fruchterman Reingold. Refer to gplot.layout for the various available options	
attribute	Mapping to the attribute information, can be list or column in data frame	
attribute.label		
	Name of the attribute info (Required)	
attribute.node.labels		
	Mapping to the node labels, can be list or column in data frame	
attribute.nodesize		
	Size of the nodes. Default will result in size of 10. Can be replaced with custom mapping in list or column in data frame. (Required)	

Examples

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
attdata <- attributeData
plot1Att(baseNet, prop = 20, graphmode = "fruchtermanreingold",
attribute = attdata$gender,
attribute.label = "Gender",
attribute.node.labels = attdata$node, attribute.nodesize = 12)</pre>
```

plot2Att

Plots Graphs using ggplot2 with two attributes

Description

Plots graph data using the GGally library and ggnet function while incorporating demographic properties. Use this plot function if you have all demographic data available to plot.

Usage

```
plot2Att(
  data,
  prop = 20,
  graphmode = "fruchtermanreingold",
  attribute1 = NULL,
  attribute2 = NULL,
  attribute1.label = "Attribute 1",
  attribute2.label = "Attribute 2",
  attribute.node.labels = NULL,
  attribute.nodesize = 10
)
```

Arguments

data	Data from the prepareGraphs function
prop	Rescaling the graph edge sizes for the plot
graphmode	Type of graphical projection to use. Default is Fruchterman Reingold. Refer to gplot.layout for the various available options
attribute1	Mapping to the attribute 1 information, can be list or column in data frame (Required)
attribute2	Mapping to the attribute 2 information, can be list or column in data frame (Required)
attribute1.label	
	Name of the attribute 1 info (Required)

6

plotNGTData

attribute2.label Name of the attribute 2 info (Required) attribute.node.labels Mapping to the node labels, can be list or column in data frame (Required) attribute.nodesize Size of the nodes. Default will result in size of 10. Can be replaced with custom mapping in list or column in data frame. (Required)

Examples

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
attdata <- attributeData
plot2Att(baseNet, prop = 20, graphmode = "fruchtermanreingold",
attribute1 = attdata$gender, attribute2 = attdata$ethnicity,
attribute1.label = "Gender", attribute2.label = "Ethnicity",
attribute.node.labels = attdata$node, attribute.nodesize = 12)</pre>
```

plotNGTData

Plot non-graphical parameters

Description

Creates plots for non-graph theory parameters for episode lengths, questions per hour versus responses per hour, and normalized turn ratio

Usage

plotNGTData(data, convoMinutes, silentNodes = 0)

Arguments

data	Original raw input data in ordered question/response 2 column format
convoMinutes	Time length of the conversation in the graph in minutes
silentNodes	The number of nodes that do not interact with other nodes but are in the group

Value

Creates a plot returning the questions per hour versus responses per hour, frequency plot of the number of episodes, and normalized turn ratio

```
df <- sampleData1
plotNGTData(df, convoMinutes = 60, silentNodes = 0)</pre>
```

prepareGraphs

Description

Prepares the graphical object from the prepared edge and weight list data frame

Usage

```
prepareGraphs(raw_data_input, project_title = "", weightedGraph = TRUE)
```

Arguments

raw_data_input	The raw edge and weight list processed from the tabulate_edges() function.
<pre>project_title</pre>	The title of the project.
weightedGraph	Graph will add weights to the edges to a set of nodes based on the weight spec- ified on the list. Default allows for weights on the graph.

Value

Stores the igraph graph object, graph adjacency matrix, edge and weight lists, project title, and a user option for weighted to list object.

Examples

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)</pre>
```

sampleData1

Sample Episode Start and Episode Continuation Data (2 Column)

Description

A data set that contains Episode Start (in this case, questions) and Episode Contination (in this case, responses) data in a 2 column format. This data was randomly generated. Case basis: 4 students in a group discussion questions in a STEM course at a major university.

Usage

sampleData1

Format

A data frame with 466 rows and 2 variables:

ep_start If participant in the graph has initiated an episode

ep_cont If participant in the graph has raised a response to the previous episode ...

subgroupsNetAnalysis Runs subgroup analysis on graphs

Description

Performs a subgroup analysis on the graph

Usage

subgroupsNetAnalysis(ginp, raw_input = NULL, normalized = FALSE)

Arguments

ginp	The prepared graph object from prepareGraphs function
raw_input	The data of the original .csv file
normalized	Normalize the betweeness centrality values

Value

Saves number of potential cliques, cores, symmetry of the graph, dyads in graphs, node composition in proposed cliques, neighbors adjacent to each node, transitivity (local and global) as a list object

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
subgroupsNetAnalysis(baseNet, raw_input = df)</pre>
```

summaryNet

Description

Returns a summary of the processed graph results on console. The initial graph configuration and core analysis is required for this function to work. The other components are optional due to the modular nature of the functions. Data must be stored as a data object.

Usage

```
summaryNet(
   netintconfigData = NULL,
   coreNetAnalysisData = NULL,
   subgroupsNetAnalysisData = NULL,
   display = FALSE
)
```

Arguments

netintconfigDa	ta
	Data object where the graph configuration data is stored (from prepareGraphs)
coreNetAnalysi	sData
	Data object where the core analysis data is stored (from coreNetAnalysis)
subgroupsNetAnalysisData	
	Data object where subgroup analysis data is stored (from subgroupsNetAnalysis)
display	Should the output be displayed in the R console? Results are saved as the project name in the initial config data as a text file on disk.

Value

Prints organized summary of all results of the graph with modular components on console or to .txt file on disk.

```
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
prepGraphs <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
coreNet <- coreNetAnalysis(prepGraphs)
subgroup <- subgroupsNetAnalysis(prepGraphs, raw_input = df)
summaryNet(netintconfigData = prepGraphs, coreNetAnalysisData = coreNet,
subgroupsNetAnalysisData = subgroup, display = TRUE)</pre>
```

tabulate_edges

Description

Takes raw input that is in a 2 column format/question-and-response format and generates an appropriate edge and weight lists in a combined .csv file. The weights in this function are determined by the number of occurrences a specific edge has occurred in the graph

Usage

```
tabulate_edges(input, silentNodes = 0)
```

Arguments

input	Input in question-and-response format. Must be a data.frame or file name of a .csv
silentNodes	The number of nodes that do not interact with other nodes but are in the group

Value

Saves the weight and edge lists as a data.frame object or a .csv file to disk.

Examples

```
df <- sampleData1
tabData <- tabulate_edges(df, silentNodes = 0)</pre>
```

writeData

```
Exports graphs and data objects from the package to disk
```

Description

Saves information from graphs and data objects created by package. Plots are saved as .tiff at 300 dpi

Usage

```
writeData(project_name, objectfile, dirpath = NULL)
```

writeData

Arguments

project_name	Name of the project
objectfile	The saved data object data file
dirpath	The working directory that the files will be saved to. Path required for write function to work. Current directory, use "." as the dirpath

Value

Saves the requested object file to disk. Saves graphs or summary information sheets.

```
attributeData <- attributeData
df <- sampleData1
prepNet <- tabulate_edges(df, silentNodes = 0)
baseNet <- prepareGraphs(prepNet, project_title = "Sample Data 1", weightedGraph = TRUE)
NetPlots2 <- plot2Att(baseNet, attribute1 = attributeData$ethnicity,
attribute2 = attributeData$gender, attribute.node.labels = attributeData$node,
attribute1.label = "Ethnicity", attribute2.label = "Gender")
writeData("Sample Data 1", NetPlots2, dirpath = tempdir())</pre>
```

Index

* datasets
 attributeData, 2
 sampleData1, 8

attributeData, 2

basicPlot, 3

coreNetAnalysis,4

 $\texttt{edgelist_raw, 4}$

plot1Att, 5
plot2Att, 6
plotNGTData, 7
prepareGraphs, 8

sampleData1, 8
subgroupsNetAnalysis, 9
summaryNet, 10

tabulate_edges, 11

writeData, 11