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1 Introduction

The dejaVu package performs multiple imputation on recurrent event data sets. The package allows users to
import or simulate a “complete” data set (one without any subjects dropping out). User-specified dropout
mechanisms can then be applied to this data to generate a “dropout” data set (or a dropout set can be
imported directly). A multiple imputation procedure is then applied to the dropout data set and the
package allows user specified imputation mechanisms to be created. Finally, the imputed data sets can be
analysed and their results combined using Rubin’s rules.

2 Running a Single MI Example

In this section we walk through a single MI example:

• Simulating Complete Data

• Simulating Subject Dropout

• Generating MI data sets

• Analysing results using Rubin’s formula

See later in the guide for using covariates with the package and for details of running a large number of
examples and combining the results to estimate summary statistics such as power and Type I error.

In order to use the functionality of the package, it must be loaded:

library(dejaVu)

Note: due to namespace conflicts between libraries MASS and trafficlight, dejaVu does will not work
if trafficlight is loaded.

For reproducibility we set the random seed:

set.seed(1298711)
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2.1 Simulating Complete Data

The SimulateComplete function is used to generate a complete data set of subject outcomes for a recurrent
event study with follow up time T and the number of events for each subject, ni is given by a negative
binomial process.

Under the negative binomial assumption the time interval between adjacent event for a given subject are
exponentially distributed with rate λi/T where λi ∼ Gamma(1/k, kµ) and k is the dispersion parameter and
µ the mean number of events (k and µ can be different for each treatment group).

Specifically,

P(ni = r) = NB(p, γ) =
Γ(γ + r)

Γ(r + 1)Γ(γ)
pr(1− p)γ (1)

where γ = 1/k and p = kµ
1+kµ .

The SimulateComplete function takes the following arguments:

• study.time = T

• number.subjects: the number of subjects in each arm to simulate - if it is a single number then this
will be used for both arms, otherwise a vector c(number.control,number.active)

• event.rates = µ/T : the event rates for each arm

• dispersions = k, again either a single number if k is the same for both arms otherwise a vector.

• dejaData, this advanced option is used only when subject covariates are included; see later in the
guide for further information

An example of the data generation procedure:

complete <- SimulateComplete(study.time=365,

number.subjects=50,

event.rates=c(0.01,0.005),

dispersions=0.25)

print(complete)

## complete dataset

## Study follow up period: 365

## Negative binomial event rates: 0.01 0.005

## Negative binomial dispersion: 0.25

## Data:

## 'data.frame': 100 obs. of 5 variables:

## $ Id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ arm : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

## $ censored.time : num 365 365 365 365 365 365 365 365 365 365 ...

## $ observed.events: num 4 2 2 3 10 6 15 5 3 5 ...

## $ actual.events : num 4 2 2 3 10 6 15 5 3 5 ...

summary(complete)

## complete dataset

## Study follow up period: 365

## Subjects (per arm): 50 50

## Subject dropouts (per arm): 0 0

## Number of events (per arm): 212 69

## Total Time at risk (per arm): 18250 18250

## Empirical event rates (per arm): 0.01161644 0.003780822
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We can also access the data directly:

head(complete$data)

## Id arm censored.time observed.events actual.events

## 1 1 0 365 4 4

## 2 2 0 365 2 2

## 3 3 0 365 2 2

## 4 4 0 365 3 3

## 5 5 0 365 10 10

## 6 6 0 365 6 6

#The event times for subject with Id 1

complete$event.times[[1]]

## [1] 104.3637 173.7090 195.1324 200.4362

The SimulateComplete function returns a SingleSim object. See help(SingleSim) for further details.

2.2 Subject Dropout

Given a SingleSim object, we can use the SimulateDropout function to apply a dropout mechanism to
create a data set which includes subject dropout. In this example we use a simple MCAR example.

The ConstantRateDrop mechanism will give subjects exponentially distributed drop out times with
subject specific rate R where R = (rate)exp(Xi) where Xi ∼ N (0,var). If the simulated drop out time is
< T then the subject drops out and any events which occur after dropout are not observed.

ConstantRateDrop(rate=0.0025,var=1)

## Dropout Type: MCAR

## Dropout Mechanism: Constant rate per subject

## Parameters:

## rate : 0.0025

## between.subject.var : 1

This dropout mechanism can be used to create a data set with subject dropouts.

with.MCAR.dropout <- SimulateDropout(complete,

drop.mechanism=ConstantRateDrop(rate=0.0025,

var=1)) #var by default=0

Note the censored.time and observed.events have been updated:

summary(with.MCAR.dropout)

## dropout dataset

## Study follow up period: 365

## Subjects (per arm): 50 50

## Subject dropouts (per arm): 31 29

## Number of events (per arm): 126 35

## Total Time at risk (per arm): 10233.38 12147.64

## Empirical event rates (per arm): 0.01231265 0.002881218
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head(with.MCAR.dropout$data)

## Id arm censored.time observed.events actual.events

## 1 1 0 365.00000 4 4

## 2 2 0 19.36295 0 2

## 3 3 0 365.00000 2 2

## 4 4 0 365.00000 3 3

## 5 5 0 16.19086 2 10

## 6 6 0 365.00000 6 6

See later in the tutorial for other available dropout mechanisms and a description of how to implement
your own.

2.3 Generating MI data sets

Given a SingleSim object we can fit a negative binomial model using the Simfit function. Note a warning
will be displayed if the model fit does not converge this is possible, especially if there are a
small number of subjects.

my.fit <- Simfit(with.MCAR.dropout,

equal.dispersion=TRUE)

The function glm.nb from the package MASS is used with the following models:

• observed.events ∼ arm + offset(log(censored.time)) if equal.dispersion is TRUE

• observed.events ∼ offset(log(censored.time)) if equal.dispersion is FALSE and separate mod-
els are fitted for each arm

It is possible to include covariates in the model formula using the covar argument; see Section 5 for
further details. Additional arguments to Simfit are passed to the model fitting function. For example
Simfit(with.MCAR.dropout,maxit=50) will increase the number of iterations when fitting the model (see
help(glm.control) for further details).

This creates a SingleSimFit object:

class(my.fit)

## [1] "SingleSimFit"

summary(my.fit)

## Summary for model fit for dropout data set

## Treatment Effect: 0.2248795

## SE (log) treatment effect: 0.247891

## 95% CI: [0.138339, 0.365557]

## Rate Estimates (per arm): 0.01265197 0.002845169

## Negative binomial dispersion model parameter: 0.4803851

## p-value: 1.749095e-09

## Note p-value is associated with this individual data set

#Can access the individual elements of the summary object

x <- summary(my.fit)

x$pval

## [1] 1.749095e-09
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We can output γ and µ which would be used for the imputation (see Equation (1)) – γ, a vector containing
the 1/dispersion for first the control arm and then the active arm and µ a matrix containing the predicted
mean number of events per subject, one row per subject, one column for if the subject were to have been in
the control arm, the second for if the subject had been in the active arm.

The function genCoeff.function inside the SingleSimFit object takes one logical argument use.uncertainty.
If FALSE then no uncertainty is incorporated into the parameter estimates output. By default, it is set to
TRUE, whereby each call to the function generates its own sample of γ and µ which takes into account
uncertainty using the mvrnorm function from MASS.

Note that if there are covariates in the model then µ is a function of these covariates.

#First get values direct from model fit

gamma_and_mu <- my.fit$genCoeff.function(use.uncertainty=FALSE)

## Warning in my.fit$genCoeff.function(use.uncertainty = FALSE): Not using uncertainty in parameters

therefore imputation will not be proper

gamma_and_mu$gamma

## [1] 2.081663 2.081663

head(gamma_and_mu$mu, 5)

## [,1] [,2]

## [1,] 0.01265197 0.002845169

## [2,] 0.01265197 0.002845169

## [3,] 0.01265197 0.002845169

## [4,] 0.01265197 0.002845169

## [5,] 0.01265197 0.002845169

#Now sample uncertainty in coefficients

#each imputation will call this function

#itself and so generate its own coefficients

#for the imputation

head(my.fit$genCoeff.function(use.uncertainty=TRUE)$mu,5)

## [,1] [,2]

## [1,] 0.01402533 0.003738611

## [2,] 0.01402533 0.003738611

## [3,] 0.01402533 0.003738611

## [4,] 0.01402533 0.003738611

## [5,] 0.01402533 0.003738611

Given a SingleSimFit object we can generate a set of imputed data sets:

imputed.data.sets <- Impute(fit = my.fit,

impute.mechanism = weighted_j2r(trt.weight=0),

N=10)

#output the number of subject dropouts in each arm

imputed.data.sets$dropout

## [1] 31 29
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The Impute function requires three arguments, the fit, an impute mechanism and N the number of
data sets to impute. We are using the weighted j2r impute mechanism with treatment weight = 0 which
implies missing counts for subjects in both arms will be imputed according to the mean of the control arm
conditioned on the number of subject’s observed events. See later in the tutorial for further details, other
available impute mechanisms and a description of how to implement your own.

2.4 Fitting MI datasets

It is possible to access the individual imputed data sets (note these data sets assume the imputed data is
‘truth’ and hence as far as this data set is concerned the number of subject dropouts is 0):

sixth.data.set <- GetImputedDataSet(imputed.data.sets,index=6)

summary(sixth.data.set)

## imputed dataset

## Study follow up period: 365

## Subjects (per arm): 50 50

## Subject dropouts (per arm): 0 0

## Number of events (per arm): 232 93

## Total Time at risk (per arm): 18250 18250

## Empirical event rates (per arm): 0.01271233 0.00509589

head(sixth.data.set$data)

## Id arm censored.time observed.events actual.events actual.censored.time

## 1 1 0 365 4 4 365.00000

## 2 2 0 365 4 2 19.36295

## 3 3 0 365 2 2 365.00000

## 4 4 0 365 3 3 365.00000

## 5 5 0 365 6 10 16.19086

## 6 6 0 365 6 6 365.00000

Note the actual.censored.time column is the time the subject was actually censored at whereas the
censored.time column is the time the subject was censored after applying the imputation. Similarly the
actual.events is the actual number of events which occurred and observed.events is the number of events
which were ‘observed’ including imputed events.

We can fit a model to imputed data sets. By default the Simfit function fits a negative binomial model,
however, by using the family argument a Poission or quasi-Poisson model can be used instead (the same
model formula is used as in the negative binomial case however glm is used rather than glm.nb)

sixth.fit <- Simfit(sixth.data.set,

family="poisson")

summary(sixth.fit)

## Summary for model fit for imputed data set

## Treatment Effect: 0.4008621

## SE (log) treatment effect: 0.1227306

## 95% CI: [0.3151567, 0.5098747]

## Rate Estimates (per arm): 0.01271233 0.00509589

## Negative binomial dispersion model parameter: NA
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## p-value: 9.453043e-14

## Note p-value is associated with this individual data set

It is possible to fit the entire set of imputed data sets in one go, again using the Simfit function (again
the covar argument can be used to include covariates in the model fit):

fitted <- Simfit(imputed.data.sets,

family="negbin") #negbin is the default

We can create a data frame collating the fitted values:

head(as.data.frame(fitted))

## imputeID control.rate active.rate treatment.effect se pval

## 1 1 0.01260274 0.004054795 0.3217391 0.1928930 4.127982e-09

## 2 2 0.01243836 0.006520548 0.5242291 0.1819008 3.845993e-04

## 3 3 0.01276712 0.006136986 0.4806867 0.1963729 1.912148e-04

## 4 4 0.01282192 0.005972603 0.4658120 0.1808050 2.385183e-05

## 5 5 0.01123288 0.005972603 0.5317073 0.1901999 8.968152e-04

## 6 6 0.01271233 0.005095890 0.4008621 0.1856446 8.473658e-07

## dispersion

## 1 0.4836589

## 2 0.5069815

## 3 0.6335479

## 4 0.4810659

## 5 0.5530908

## 6 0.4850217

We can also summarise the results – the values shown here are calculated using Rubin’s formula [1].

summary(fitted)

## Summary for imputed data sets

## Treatment Effect: 0.4757741

## SE (log) treatment effect: 0.2790041

## Degrees of freedom: 33.13335

## p-value: 0.01187991

## Adjusted d.o.f: 19.25946

## Adjusted p-value: 0.01527075

## Average dispersion: 0.5844744

## Number of subjects dropped out per arm: 31 29

3 Running Complete Scenarios

In order to calculate the summary statistics such as power it is necessary to repeat the procedure multiple
times. In this example we show how to easily replicate and combine the results.

First we create a function which outputs a list of the summaries of the fits we are interested in:
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example.scenario <- function(){

#simulate a complete data set

sim <- SimulateComplete(study.time=365,number.subjects=125,

event.rates=c(0.01,0.005),dispersions=0.25)

#take the simulated data set and apply an MCAR dropout mechanism...

sim.with.MCAR.dropout <- SimulateDropout(sim,

drop.mechanism=ConstantRateDrop(rate=0.0025))

#fit a Negative Binomial model

with.MCAR.fit <- Simfit(sim.with.MCAR.dropout,equal.dispersion=TRUE)

#we can impute a set of 10 sets following the j2r mechanism using the fit

impute.data.sets <- Impute(with.MCAR.fit,impute.mechanism = weighted_j2r(trt.weight=0),N=10)

#we can then fit models to the entire imputed data set

fit.imputed.set <- Simfit(impute.data.sets)

#output the summary values

return(list(MI=summary(fit.imputed.set), #for MI

dropout=summary(with.MCAR.fit), #for dropout

complete=summary(Simfit(sim)))) #for complete data set

}

Next we run the simulation a large number of times (In this example, two of the 6000 model fits did not
fully converge, hence the warning messages):

answer <- replicate(500,example.scenario(),simplify = FALSE)

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > : iteration

limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > : iteration

limit reached

and process the results using the extract results function (note the extract results is a simple
wrapper around the CreateScenario function):

#answer contains a list of lists each containing 3 SimFit objects

names(answer[[1]])

## [1] "MI" "dropout" "complete"

answer[[1]]$MI

## Summary for imputed data sets

## Treatment Effect: 0.7025427

## SE (log) treatment effect: 0.1235926

## Degrees of freedom: 56.02235

## p-value: 0.00599837

## Adjusted d.o.f: 40.59495

## Adjusted p-value: 0.006721929
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## Average dispersion: 0.2129433

## Number of subjects dropped out per arm: 79 74

names(answer[[2]])

## [1] "MI" "dropout" "complete"

length(answer)

## [1] 500

#we can create a list with only the MI results

MI.fits <- lapply(answer,"[[","MI")

#the 2nd MI fit

MI.fits[[2]]

## Summary for imputed data sets

## Treatment Effect: 0.6568822

## SE (log) treatment effect: 0.1108937

## Degrees of freedom: 88.89575

## p-value: 0.000274139

## Adjusted d.o.f: 58.10357

## Adjusted p-value: 0.00036062

## Average dispersion: 0.1698235

## Number of subjects dropped out per arm: 75 84

#and create the scenario

MI.answer <- CreateScenario(MI.fits,description="the description of the scenario")

#The extract_results function can be used to both extract the list and

#create the scenario in one go

MI.answer <- extract_results(answer,name="MI",

description="Using j2r multiple imputation")

dropout.answer <- extract_results(answer,name="dropout",

description="Using no imputation")

complete.answer <- extract_results(answer,name="complete",

description="Using complete data sets")

class(MI.answer)

## [1] "Scenario"

We can output a summary of the simulations as a data frame and summarize the results:

head(as.data.frame(MI.answer))

## replica treatment.effect se pval df dispersion

## 1 1 0.7025427 0.1235926 5.998370e-03 56.02235 0.2129433

## 2 2 0.6568822 0.1108937 2.741390e-04 88.89575 0.1698235

## 3 3 0.6946910 0.1221099 4.187133e-03 57.20043 0.2384786
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## 4 4 0.6906176 0.1235480 3.820314e-03 67.58339 0.2628547

## 5 5 0.6533744 0.1054918 6.730548e-05 348.02909 0.2547627

## 6 6 0.6043190 0.1088671 8.455864e-06 138.59122 0.2382916

## dropout.control.rate dropout.active.rate

## 1 0.632 0.592

## 2 0.600 0.672

## 3 0.688 0.520

## 4 0.608 0.568

## 5 0.584 0.584

## 6 0.592 0.568

summary(dropout.answer)

## Scenario summary

## Description: Using no imputation

## Estimated Treatment Effect: 0.4967566

## Event Rate Reduction: 50.32434%

## Estimated SE (log) treatment effect: 0.122086

## Using alpha=0.05

## power: 1

## Dropout rate summary statistics

## Control arm:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.440 0.568 0.600 0.597 0.632 0.728

## Active arm:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.464 0.568 0.600 0.598 0.632 0.736

summary(complete.answer)

## Scenario summary

## Description: Using complete data sets

## Estimated Treatment Effect: 0.5001534

## Event Rate Reduction: 49.98466%

## Estimated SE (log) treatment effect: 0.1025977

## Using alpha=0.05

## power: 1

## Dropout rate summary statistics

## Control arm:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0 0 0 0 0 0

## Active arm:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0 0 0 0 0 0

#and can access individual elements

x <- summary(MI.answer,use.adjusted.pval=TRUE,alpha=0.025)

#power is calculated as the proportion of replicas which have

#pvalue < alpha

x$power

## [1] 0.958
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4 Additional Dropout and Imputing Information

Additional Dropout mechanisms Alongside the ConstantRateDrop function. Additional dropout
mechanisms have been implemented:

The LinearRateChangeDrop function allows a piecewise exponential drop out function where after j
events subjects have drop out rate Rj where Rj = Cj exp(Xj) where Xj ∼ N (0, σ2) and Cj = C + jD for
constants C and D.

drop.mec <- LinearRateChangeDrop(starting.rate=0.0025, #C in text above

rate.change=0.0005, #D in text above

var=1) #sigma^2 in text above by default var=0

drop.mec

## Dropout Type: MAR

## Dropout Mechanism: Linear change in rate after each event

## Parameters:

## starting.rate : 0.0025

## rate.change.after.event : 5e-04

## between.subject.var : 1

with.MAR.dropout <- SimulateDropout(complete,

drop.mechanism=drop.mec)

See later in the guide for creating custom dropout mechanisms.

Additional Imputing Mechanisms By altering the trt.weight argument, the weighted j2r imputing
mechanism can be used to generate different imputing mechanisms:

If trt.weight = 0 then imputation using this mechanism will follow the jump to reference (j2r) model
whereby missing counts for subjects in both arms will be imputed according to the mean of the placebo arm
conditioned on the subject’s observed number of events

If trt.weight = 1 then imputation using this mechanism will follow the MAR model whereby missing
counts for subjects in each arm will be imputed according to the event rate of subjects in its treatment group
conditioned on the subject’s observed number of events

Explicitly, when using the weighted j2r function, with trt.weight= ω, µ = (µc, µa), the (possibly
subject-specific) expected means, and γ = (γc, γa) are 1/dispersions, which are parameter estimates sampled
with uncertainty from a model fit1, for a subject with Oi observed events and ‘imputation time’ ti =
T−censor.time, the number of imputed events is negative binomial given by

• NB(p = µcti
γc+µcT

, γ = γc +Oi) for subjects in the control arm.

• NB(p = (1− ω)qc + ωqa, γ = γa +Oi) for subjects in the active arm where qc =
µcti

γa+µa(T−ti)+µcti
and

qa = µati
γa+µaT

.

Finally if trt.weight = 1 an additional argument delta can be included. It should be a vector of
length 2, c(control.delta,treatment.delta) and in this case the mean number of expected events for
the imputed missing data is multipled by the appropriate delta (and so p is adjusted appropriately):

weighted_j2r(trt.weight=1,delta=c(1,1.4))

1using a normal approximation to sample the coefficeints and log(1/dispersion) which are asymptotically uncorrelated
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## Imputation Method: weighted_j2r

## Parameters:

## trt.weight : 1

## delta : 1 1.4

5 Using covariates & creating new dropout/imputing mechanisms

In this Section we show how to perform multiple imputation using a data set with covariates. Here we
use a set of covariates to simulate a “complete data set” of events. Note that it is possible to import a
complete/dropout data set on which imputation can be perfomed, see help(ImportSim) for examples.

In order to use the SimulateComplete function with covariates, we require a data frame containing the
covariates together with three additional columns: subject Id, treatment arm (0 for control or 1 for active)
and a rate column (typically a function of the covariates/treatment arm). The rate column will replace the
event.rates argument, so it is a subject specific µ/T .

Users have complete freedom over the number and type of covariates. In this example we use two
covariates: pre.exa, the number of events in the previous year, and steroid a variable for whether the
subject is using steroids (1 yes, 0 no).

We first generate some covariates for a 100 subject trial with equal randomization proportions:

covar.df <- data.frame(Id=1:100,

arm=c(rep(0,50),rep(1,50)),

pre.exa=rbinom(n=100,size=15,prob=0.4),

steroid=rbinom(n=100,size=1,prob=0.2))

We then define the subject specific event rate to be given by the following formula:

0.001 + 0.002pre.exa + 0.005(1− steroid) + 0.008(1− arm)

covar.df$rate <- 0.001 + 0.002*covar.df$pre.exa +

0.005*(1-covar.df$steroid) + 0.008*(1-covar.df$arm)

head(covar.df)

## Id arm pre.exa steroid rate

## 1 1 0 10 0 0.034

## 2 2 0 3 0 0.020

## 3 3 0 5 0 0.024

## 4 4 0 7 0 0.028

## 5 5 0 8 0 0.030

## 6 6 0 9 0 0.032

Finally we can simulate a complete data set using the dejaData argument to the SimulateComplete

function:

complete.covar <- SimulateComplete(study.time=365,

dispersion=0.25,

dejaData = MakeDejaData(covar.df,arm="arm",

Id="Id",rate="rate"))

head(complete.covar$data)
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## Id arm censored.time observed.events actual.events pre.exa steroid

## 1 1 0 365 26 26 10 0

## 2 2 0 365 4 4 3 0

## 3 3 0 365 22 22 5 0

## 4 4 0 365 6 6 7 0

## 5 5 0 365 4 4 8 0

## 6 6 0 365 10 10 9 0

The MakeDejaData function requires 4 arguments: the data frame and the column names used for the
treatment arm, the subject Id and the event rate. The value in the event rate column for each subject is
used as the negative binomial event rate (µ/T ) for this subject when simulating event times.

Implementing new drop out mechanisms (advanced!) - the idea is for a developer to add new
mechanisms, though advanced R users can follow these instructions. It is possible to implement
your own drop out mechanisms using the CreateNewDropoutMechanism function. A DropoutMechanism

object should be created which contains 5 elements. We show a very simple example here and see
help(DropoutMechanism.object) and help(CreateNewDropoutMechanism) for further details.

In our example we say subject dropouts are exponentially distributed with subject specific rate R where
R = (rate) exp(Xi) where Xi ∼ N (0, var) and there are different rates dependent on whether the subject
is on steroids.

#we create a function which returns the new dropout mechanism

steroidMCAR <- function(steroid.rate, non.steroid.rate,var=0){

#First we create a function which must take in two arguments,

#event.times - a list of a single subject's event times

#data - a row of the data frame containing the subject details

#and outputs the time of subject dropout

GetDropTime <- function(event.times,data){
rate <- if(data$steroid==1) steroid.rate else non.steroid.rate

rate <- rate*exp(rnorm(1,mean = 0,sd = sqrt(var)))

dropout.time <- rexp(1,rate)

return(min(dropout.time, data$censored.time))

}

#we create a vector of the columns from the data frame that

#are used in the GetDropTime function

cols.needed <- c("censored.time","steroid")

#we call the CreateNewDropoutMechanism function

#with the following arguments

CreateNewDropoutMechanism(type="MNAR",

text="Rate dependent on steroid use", #the text to be output

cols.needed=cols.needed, #see above

GetDropTime=GetDropTime, #see above

parameters=list(steroid.rate=steroid.rate,

non.steroid.rate=non.steroid.rate,

var=var) #The parameters to be output

)

}
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We can then use the steroidMCAR function:

#we can view the dropout mechanism

steroidMCAR(steroid.rate = 0.005, non.steroid.rate = 0.025)

## Dropout Type: MNAR

## Dropout Mechanism: Rate dependent on steroid use

## Parameters:

## steroid.rate : 0.005

## non.steroid.rate : 0.025

## var : 0

#we can use it

dropout.covar <- SimulateDropout(complete.covar,

drop.mechanism=steroidMCAR(steroid.rate = 0.0025,

non.steroid.rate = 0.001))

summary(dropout.covar)

## dropout dataset

## Study follow up period: 365

## Subjects (per arm): 50 50

## Subject dropouts (per arm): 20 18

## Number of events (per arm): 361 283

## Total Time at risk (per arm): 13985.88 14190.8

## Empirical event rates (per arm): 0.02581175 0.01994249

By using the covar argument with the SimFit function, covariates can be included in the model fit. In
the code below we include the covariate pre.exa in the model fit (so the model becomes observed.events
∼ arm + offset(log(censored.time))+ pre.exa).

dropout.fit <- Simfit(dropout.covar,

equal.dispersion=TRUE,

covar=~pre.exa)

#The values of mu now depend on subject's pre.exa value

gamma_mu <- dropout.fit$genCoeff.function(use.uncertainty=TRUE)

head(gamma_mu$mu)

## [,1] [,2]

## [1,] 0.05599407 0.03905091

## [2,] 0.01562708 0.01089850

## [3,] 0.02250293 0.01569380

## [4,] 0.03240412 0.02259900

## [5,] 0.03888488 0.02711877

## [6,] 0.04666179 0.03254247

Implementing new imputing mechanisms (advanced!) - the idea is for a developer to add new
mechanisms, though advanced R users could follow these instructions It is possible to implement
your own imputing mechanisms using the CreateNewImputeMechanism function. A ImputeMechanism object
should be created which contains 4 elements. We show a toy example here and see help(ImputeMechanism.object)
and help(CreateNewImputeMechanism) for further details.
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In our toy2 example we would like subjects in the treatment group to have no imputed events and subjects
in the control group to have either 0 or 1 events with a given probability which depends on their steroid
covariate value. If subjects have an event it is midway between dropping out and the end of the follow up
period.

#we create a function which returns the new dropout mechanism

#arguments are parameters for probability control arm having event

my.example.impute <- function(steroid.prob,non.steroid.prob){

#We need a function which takes in a SingleSimFit object

#and returns a list with 2 elements:

#newevent.times which contains vectors of the imputed event times for each subject

#new.censored.times, a vector of the times the imputed data subjects dropout

#(the code in this function has been designed for clarity as does NOT follow

#R best practice)

impute <- function(fit){

#how many subjects are there in the data frame?

number.of.subjects <- numberSubjects(fit)

#subject follow up time

study.time <- fit$singleSim$study.time

#After imputing data, all subjects are followed up

#for study.time

new.censored.times <- rep(study.time,number.of.subjects)

#The subject data

data <- fit$singleSim$data

#the imputed event times for each subject

newevent.times <- list()

#Note could access the mu, gamma taking into

#account uncertainty in parameter estimates for the imputation

gamma_mu <- fit$genCoeff.function(use.uncertainty=TRUE)

#so gamma_mu£mu[i,] is (mu_c,mu_a) for subject i

#for each subject create a vector of imputed event times

#if no events are imputed then use numeric(0)

for(id in 1:number.of.subjects){

#assume by default no events are imputed

newevent.times[[id]] <- numeric(0)

#time left on study

time.left <- study.time - data[id,]$censored.time

#if ti = 0 then subject didn't drop out so

2this is clearly not a sensible imputing method but shows how to implement imputing mechanisms
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#no imputed events and if in treatment group then no new events

if(data[id,]$arm==1 || time.left==0) next;

#get the probability of an event

prob <- if(data[id,]$steroid==1)steroid.prob else non.steroid.prob

#did subject have an event?

if(rbinom(n=1,size = 1,prob=prob)!= 0){
newevent.times[[id]] <- data[id,]$censored.time + 0.5*time.left

}
}

#return the appropriate list

return(list(new.censored.times=new.censored.times,

newevent.times=newevent.times))

}

#we create a vector of the columns from the data frame that

#are used in the impute function

cols.needed <- c("censored.time","arm","steroid")

CreateNewImputeMechanism(name="my new impute mechanism", #name for outputting

cols.needed=cols.needed, #see above

impute=impute, #see above

parameters=list(steroid.prob=steroid.prob,

non.steroid.prob=non.steroid.prob)) #extra parameters

}

#we can view the impute mechanism

my.example.impute(steroid.prob=0.5,non.steroid.prob = 0.9)

## Imputation Method: my new impute mechanism

## Parameters:

## steroid.prob : 0.5

## non.steroid.prob : 0.9

For a more complex example (aimed for developers) see the functions: weighted j2r and
dejaVu:::.internal.impute. Using the imputation mechanism, MI can be performed and models (with
covariates) fitted to the data as before:

imputed.covar <- Impute(fit = dropout.fit,

impute.mechanism = my.example.impute(steroid.prob=0.5,

non.steroid.prob = 0.9),

N=10)

fitted.covar <- Simfit(imputed.covar,

family="negbin",

covar=~pre.exa)

summary(fitted.covar)
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## Summary for imputed data sets

## Treatment Effect: 0.7058284

## SE (log) treatment effect: 0.1657061

## Degrees of freedom: 13612974

## p-value: 0.03551686

## Adjusted d.o.f: 94.98204

## Adjusted p-value: 0.03816193

## Average dispersion: 0.5036714

## Number of subjects dropped out per arm: 20 18
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