Package ‘cry’

June 19, 2025

Type Package
Title Statistics for Structural Crystallography

Version 0.5.2
Date 2025-06-18

Description Reading and writing of files in the most commonly used formats of
structural crystallography. It includes functions to work with a variety
of statistics used in this field and functions to perform basic
crystallographic computing. References: D. G. Waterman, J. Foadi, G. Evans
(2011) <doi:10.1107/S0108767311084303>.

License GPL-2

LazyLoad yes

RoxygenNote 7.3.2
VignetteBuilder knitr
Encoding UTF-8

Depends R (>=4.5.0)
Imports methods, zoo, ggplot2

Suggests knitr, rmarkdown, markdown

URL https://jfoadi.github.io/cry/
NeedsCompilation no

Author James Foadi [aut, cre],
David Waterman [aut],
Rita Giordano [aut],
Kutumbarao Nidamarthi [aut]

Maintainer James Foadi <james_foadi@yahoo.co.uk>
Repository CRAN
Date/Publication 2025-06-19 18:40:02 UTC

https://doi.org/10.1107/S0108767311084303
https://jfoadi.github.io/cry/

2 Contents

Contents
angle e 3
AVEL VS TS o o v v e o e e e s, 4
bravais e e 5
calculate_cell_volume e e 6
calculate_cell_volume.rec_unit_cell 6
calculate_cell_volume.unit_cell 7
change_COLSRC e 8
check_angle_validity 9
check_bravais_validity 10
check_cryst_symm_validity 10
check_merged_reflections_validity L. 11
check_rec_unit_cell_validity 12
check_unit_cell_validity e 13
check_validity L. 14
create_merged_reflections L 15
create_merged_reflections.default oL 16
create_rec_unit_cell L e 17
create_rec_unit_cell.bravais e 18
create_rec_unit_cell.cryst_symm L. Lo 18
create_rec_unit_cell.default 19
create_rec_unit_cellunit_cell e 20
create_unit_cell L. L L e 21
create_unit_cell.bravais L e 22
create_unit_cell.cryst_symm oL 22
create_unit_cell.default 23
create_unit_cell.rec_unit_cell e 24
crystal_family e 25
crystal_SyStem L e e e e 26
CIYSE_SYMIM v ittt it e et e e e e e 26
deplete_systematic_absencesl e e 28
extract_symmetry_info 29
findHM e e 30
find_symm_setting 31
frac_to_orth e 31
full_symm_strings e e e e 32
generate_miller 33
hKI_to_1eso e 34
lattice_stuff 35
lowest_uc_compatible_SG 36
merged_reflections 37
NUM_SYMM_SEtNgS v v v v e e e e e e e e e e e e e e e e 39
op_xyz_list_to_matrix_list 40
OP_XYZ_tO_MALriX . .« v v v vt v e e e e e e e e e e e e e e e e 41
orth to_frac e e 42
plot_SHELX e 43

printangle 44

angle 3
print.bravais e e e e e e e 44
Print.CrySt_SYMmM o i e e e e e e e e e e e e 45
printrec_unit_cell 46
printunit_cell L 46
readCIF e 47
readmm_CIF e 48
readMTZ e e 49
readMTZHeadero 50
readpd_Itv L. e 51
readSF_CIF 52
readsm_REFL e 53
readXDS_ASCII e 53
readXDS_ASCIIHeader 54
read_SHELX log 55
rec_unit_cell e 56
syminfo_to_matrix_list 57
syminfo_to_op_xyz_list 58
symm_to_cell_const 59
SYSADS . . . e e e 60
theme_Cry o e e e e e 61
translate_SG e e e 62
unit_cell e e 63
writeMTZ e e e 64
writeXDS_ASCIIL e 65
xtal_matOl e 66
xtal_mat02 e 67

Index 69

angle Constructor for an S3 object of class "angle"

Description

Constructor for an S3 object of class "angle"

Usage
angle(ang, rad_flag = TRUE)

Arguments
ang A real number, in degrees or radians depending on rad_flag.
rad_flag A logical flag. If FALSE, the value is meant to be in radians.
Value

An object of class "angle" whose numerical value is always in degrees.

4 avel_vs_res

Examples

Create an angle of 60 degrees
angl <- angle(60)
class(angl)

avei_vs_res Mean and standard deviation in resolution shells.

Description
Calculates averages and standard deviations of the input vector quantity for all reflections, corre-
sponding to shells of resolution.

Usage

avei_vs_res(nbin, resos, II = NULL, m = max(resos), M = min(resos))

Arguments

nbin A positive integer. The number of resolution shells.

resos A vector of real quantities. These are the resolutions (in angstroms) correspond-
ing to the data vector, II. If the data vector is missing, the averages will be
computed just for resos.

II A vector of real quantities. This is the key quantity whose averages and standard
deviations are calculated. If IT is set to NULL, resolutions averages and standard
deviations will be the calculated quantities.

m Minimum (highest) resolution (in angstroms). Data with resolution smaller than
m will be ignored when calculating the averages.

M Maximum (lowest) resolution (in angstroms). Data with resolution larger than
M will be ignored when calculating the averages.

Details

Binning is done with inverse resolutions in order to have lower resolutions correspond to small
numbers and high resolutions to large numbers. The output mids, ave and sd correspond to inverse
resolutions.

Value

A named list of length 4. counts is a vector of integers, the number of reflections in each resolution
shell. mids is the representative inverse resolution for each resolution shell; the value is decided
by the function hist. ave is the average value in each resolution shell and sd is the corresponding
standard deviation.

bravais 5

Examples

datadir <- system.file("extdata”,package="cry")

filename <- file.path(datadir,"1dei_phases.mtz")

Imtz <- readMTZ(filename)

hkl <- Imtz$reflections[,1:3]

II <- 1mtz$reflections[,4]

cpars <- lmtz$header$CELL

resos <- hkl_to_reso(hkl[,1],hk1[,2],hk1[, 3],
cpars[1],cpars[2],cpars[3],
cpars[4],cpars[5],cpars[6])

ltmp <- avei_vs_res(20,resos,II)

plot(1tmp$mids, ltmp$ave, type="b",pch=16)

bravais Constructor for an S3 object of class "bravais"”

Description
There are 14 Bravais lattices. They are represented by a two-letter symbol: aP, mP, mS, oP, oS, oF,
ol, tP, tI, hP, hR, cP, cF, cl

Usage

bravais(bt = NULL)

Arguments

bt A two-letter character, denoting the Bravais type.

Value

An object of class "bravais". It is a named list of length 4. The first slot, "bt", is the universally-used
two-letter symbol. The second, third and fourth slots are, respectively, "cr_fam" (the corresponding
crystal family), "cr_sys" (the corresponding crystal system) and "lt_sys" (the corresponding lattice
system).

Examples

mS is a monoclinic, face-centred Bravais lattice
bt <- bravais("mS")

class(bt)

bt[1:4]

6 calculate _cell volume.rec_unit _cell

calculate_cell_volume 83 generic to compute cell volume

Description

The volume of a unit cell and a reciprocal unit cell can be calculated starting from specific objects,

files, etc.
Usage
calculate_cell_volume(x, ...)
Arguments
X An object used to select a method. Either an object of class unit_cell or an object
of class rec_unit_cell.
Further arguments passed to or from other methods.
Value
V A real number. The volume (in angstroms® or angstroms=2) of the input unit cell or reciprocal
unit cell.
Examples

Calculate the volume of a unit cell
uc <- unit_cell(20)
V <- calculate_cell_volume(uc)

Calculate the volume of the corresponding reciprocal cell
ruc <- create_rec_unit_cell(uc)

Vrec <- calculate_cell_volume(ruc)

V#Vrec # Should be 1!

calculate_cell_volume.rec_unit_cell
Volume of a reciprocal unit cell (in angstroms”(—3))

Description

Method of the S3 generic class "calculate_cell_volume", to calculate the volume, in reciprocal cubic
angstroms, of the reciprocal unit cell corresponding to the input object of class "rec_unit_cell".

calculate_cell_volume.unit_cell 7

Usage

S3 method for class 'rec_unit_cell'
calculate_cell_volume(x, ...)

Arguments

X An object of class "rec_unit_cell".

Additional arguments passed to the calculate_cell_volume methods

Value

A positive numeric, the volume in reciprocal cubic angstroms of the reciprocal unit cell correspond-
ing to the input.

Examples

Create a monoclinic cell and the corresponding reciprocal
bt <- bravais("mP")

uc <- create_unit_cell(bt)

ruc <- create_rec_unit_cell(uc)

Calculate reciprocall cell volume
calculate_cell_volume(ruc)

calculate_cell_volume.unit_cell
Volume of a unit cell (in cubic angstroms)

Description
Method of the S3 generic class "calculate_cell_volume", to calculate the volume, in cubic angstroms,
of the unit cell corresponding to the input object of class "unit_cell".
Usage
S3 method for class 'unit_cell'
calculate_cell_volume(x, ...)
Arguments

X An object of class "unit_cell".

Additional arguments passed to the calculate_cell_volume methods

Value

A positive numeric, the volume in cubic angstroms of the unit cell corresponding to the input.

8 change_ COLSRC

Examples

Create a monoclinic cell
bt <- bravais("mP")

uc <- create_unit_cell(bt)
print(uc)

Calculate cell volume
calculate_cell_volume(uc)

change_COLSRC Change COLSRC date and time stamp

Description

Function to update the created column of the data frame COLSRC with current date and time.

Usage
change_COLSRC(hdr)

Arguments
hdr A data frame. The COLSRC data frame included in the header component of the
named list obtained with readMTZ or readMTZHeader.
Details

The COLSRC data frame of an MTZ header has a column called created which displays the date
and time at which the MTZ file data columns were created. When writing out a modified list
obtained from reading an MTZ file, one might want to change the created column with the current
date and time. Other specific types of change can be operated by handling the COLSRC data frame
in an *ad hoc* manner.

Value

The hdr input data frame with the created column of the COLSRC data frame changed to display
the current date and time.

Examples

Read a sample MTZ file
datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,"1dei_phases.mtz")
IMTZ <- readMTZ(filename)

Original COLSRC
print (IMTZ$header$COLSRC)

check_angle_validity 9

Update date and time stamp
IMTZ$header <- change_COLSRC(1IMTZ$header)

New COLSRC
print (IMTZ$header$COLSRC)

check_angle_validity Validity and compatibility of a cry object of class 'angle’

Description

An object of class "angle’ is a numeric with logical attribute "rad_flag".

Usage

check_angle_validity(x, message = FALSE)

Arguments
X Object of class angle.
message A logical variable. If TRUE, the function prints a message on the errors, if any
(default is FALSE, i.e. no message printed).
Value

ans A logical value. TRUE means that the input is a valid object of class ’angle’.

Examples

Create an object of class angle
x <- angle(80)

Check its validity
check_angle_validity(x)

Modify the 'rad_flag' attribute
attr(x,"rad_flag") <- 12.5

Check its validity
check_angle_validity(x, TRUE)

10 check_cryst_symm_validity

check_bravais_validity
Validity and compatibility of a cry object of class ’bravais’

Description

An object of class "bravais’ is a named list of length 4. The first slot, "bt", is the universally-used
two-letter symbol. The second, third and fourth slots are, respectively, "cr_fam" (the corresponding
crystal family), "cr_sys" (the corresponding crystal system) and "lt_sys" (the corresponding lattice
system).

Usage

check_bravais_validity(x, message = FALSE)

Arguments
X Object of class ’bravais’.
message A logical variable. If TRUE, the function prints a message on the errors, if any
(default is FALSE, i.e. no message printed).
Value

ans A logical value. TRUE means that the input is a valid object of class ’bravais’.

Examples

Create an object of class 'bravais'
X <- bravais("mP")

Check its validity
check_bravais_validity(x, TRUE)

check_cryst_symm_validity
Validity and compatibility of a cry object of class ’cryst_symm’

Description
An object of class ’cryst_symm’ is a named list of length 4. The first field is a character string, the
second field is a 3 x 3 array and the third and fourth field are 3 x 1 arrays.

Usage

check_cryst_symm_validity(x, message = FALSE)

check_merged_reflections_validity 11

Arguments
X Object of class “cryst_symm’.
message A logical variable. If TRUE, the function prints a message on the errors, if any
(default is FALSE, i.e. no message printed).
Value

ans A logical value. TRUE means that the input is a valid object of class’cryst_symm’.

Examples

Create an object of class 'cryst_symm'
x <- cryst_symm(15)

Check its validity
check_cryst_symm_validity(x)

Now change a field
x$PGL[1]] <- matrix(rep(@,times=9),ncol=3)

Check validity again
check_cryst_symm_validity(x, TRUE)

check_merged_reflections_validity
Validity and compatibility of a cry object of class 'merged_reflections’

Description

An object of class *merged_reflections’ is a named list of length 4:

ruc An object of class "rec_unit_cell".
csym An object of class "cryst_symm".
records A data frame containing the data.

dtypes A character vector containing the type of data (Miller indices, structure factors, etc).

Internal consistency must be displayed between the object ’ruc’ and the object ’csym’ because
groups of crystallographic symmetries are compatible only with certain unit cells (and, accordingly,
certain reciprocal cells). It is not possible to check consistency between dtypes and the nature of
data in each column of the data frame ’records’, but a check about length of ’dtypes’ and number
of columns is possible. Therefore, the user should pay attention to the nature of his/her data. Also,
merged reflection data, having to be compatible with crystal symmetry, have to display the appro-
priate systematic absences. Users interested in keeping systematic absences in the object, might
want to look at the object of class "raw_reflections".

12 check_rec_unit_cell_validity

Usage

check_merged_reflections_validity(x, message = FALSE)

Arguments

X Object of class *merged_reflections’.

message A logical variable. If TRUE, the function prints a message on the errors, if any.
Value

ans A logical value. TRUE means that the input is a valid object of class’merged_reflections’.

Examples

Create an object of class 'merged_reflections'
(default ara data associated with a cubic cell)
x <- merged_reflections()

Check its validity
check_merged_reflections_validity(x)

Now change reciprocal unit cell (to triclinic)
uc <- unit_cell(10,20,30,30,50,70)

ruc <- create_rec_unit_cell(uc)

x$ruc <- ruc

Check validity again
check_merged_reflections_validity(x)

check_rec_unit_cell_validity
Validity and compatibility of a cry object of class ’rec_unit_cell’

Description
An object of class 'rec_unit_cell’ is a named list of length 6. The first three fields are numeric, the
last three of class "angle’.

Usage

check_rec_unit_cell_validity(x, message = FALSE)

Arguments
X Object of class ’rec_unit_cell’.
message A logical variable. If TRUE, the function prints a message on the errors, if any

(default is FALSE, i.e. no message printed).

check_unit_cell_validity 13

Value

ans A logical value. TRUE means that the input is a valid object of class’rec_unit_cell’.

Examples

Create an object of class 'rec_unit_cell'
x <- create_rec_unit_cell()

Check its validity
check_rec_unit_cell_validity(x)

Now change a field
x$alphar <- 123

Check validity again
check_rec_unit_cell_validity(x, TRUE)

check_unit_cell_validity
Validity and compatibility of a cry object of class "unit_cell’

Description

An object of class "unit_cell’ is a named list of length 6. The first three fields are numeric, the last
three of class "angle’.

Usage
check_unit_cell_validity(x, message = FALSE)

Arguments
X Object of class "unit_cell’.
message A logical variable. If TRUE, the function prints a message on the errors, if any
(default is FALSE, i.e. no message printed).
Value

ans A logical value. TRUE means that the input is a valid object of class’unit_cell’.

Examples

Create an object of class 'unit_cell'
x <- create_unit_cell()

Check its validity
check_unit_cell_validity(x)

14 check_validity

Now change a field
x$alpha <- 123

Check validity again
check_unit_cell_validity(x, TRUE)

check_validity Validity and compatibility of cry objects

Description

Compatibility of cry objects The objects that can be created in cry are subject to issues of compati-
bility of the parameters forming them. For example, the unit cell of a cubic system cannot have the
a, b, c sides different from each other. The present function returns TRUE if all parts composing
the object are compatible with each other. Otherwise it returns FALSE and one or more warnings
with details.

Usage

check_validity(x, y = NULL, message = FALSE)

Arguments
X A first object of one of the new cry classes.
y A second object of one of the new cry classes.
message A logical variable. If TRUE, the function prints a message on the errors, if any
(default is FALSE, i.e. no message printed).
Details

The available checks for individual objects are:

* angle (unit cell angle)

* bravais (Bravais system)

* unit_cell (unit cell)

* rec_unit_cell (reciprocal unit cell)

* cryst_symm (crystallographic symmetry)

* merged_reflections (scaled and merged data)
The available checks for couple of objects are:

¢ bravais and unit_cell

* unit_cell and cryst_symm

create_merged_reflections 15

Value

ans A logical value. ans = TRUE means that either the parameters of the single object (if only one
input is provided) are valid parameters, or that the two objects are compatible with each other.

Examples

Create a cubic cell with side 50
uc <- create_unit_cell(50)

Create an object of class "cryst_symm”
crsym <- cryst_symm("P m -3")

Are they compatible with each other?
check_validity(uc,crsym, TRUE)

create_merged_reflections
S3 generic to create merged_reflections objects

Description

The merged_reflections object can be created starting from specific objects, files, etc.

Usage
create_merged_reflections(ruc, ...)
Arguments
ruc An object used to select a method.
Further arguments passed to or from other methods.
Value

mrefs An object of class "merged_reflections". It is a named list of length 4 whose names are:

ruc An object of class "rec_unit_cell".
csym An object of class "cryst_symm".
records A data frame containing the data.

dtypes A character vector containing the type of data (Miller indices, structure factors, etc).

16 create_merged_reflections.default

Examples

Create a default merged_reflections object (no arguments)
mrefs <- create_merged_reflections()
print(mrefs)

Create merged_reflections object from symmetry
csym <- cryst_symm("P 3")

mrefs <- create_merged_reflections(csym=csym)
print(mrefs)

create_merged_reflections.default
Default method for generic "create_merged_reflections”

Description

This method is an alternative call to *'merged_reflections’. .

Usage

Default S3 method:
create_merged_reflections(

ruc = NULL,
csym = NULL,
records = NULL,
dtypes = NULL,
)
Arguments
ruc An object of class 'rec_unit_cell’.
csym An object of class "cryst_symm’.
records A data frame containing all reflections coming from the x-ray data collection on
the crystal. This data frame must include at least the three Miller indices, H, K,
L (of dtype "H").
dtypes A character vector whose length is the same as the number of columns in ’records’.

One character (a capital letter) is associated with each type of data. For exam-
ple, a Miller index is of dtype "H"; a structure amplitude is of dtype "F"; an
anomalous difference is of dtype "D"; etc (see details later).

Additional arguments passed to the create_merged_reflections methods.

create_rec_unit_cell 17

Value
An object of class "merged_reflections". It is a named list of length 4 whose names are:
ruc An object of class "rec_unit_cell".
csym An object of class "cryst_symm".

records A data frame containing the data.

dtypes A character vector containing the type of data (Miller indices, structure factors, etc).

See Also

merged_reflections

Examples

Create merged data for a cubic (10 angstrom) unit cell
of space group P 2 3. Data up to 5 angstroms resolution
mrefs <- create_merged_reflections()

print(mrefs)

create_rec_unit_cell S3 generic to create rec_unit_cell objects

Description

The rec_unit_cell object can be created starting from specific objects, files, etc.

Usage
create_rec_unit_cell(ar, ...)
Arguments
ar An object or objects used to select a method. These can be reciprocal unit cell
parameters, an object of class rec_unit_cell, etc.
Further arguments passed to or from other methods.
Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

Examples

Create a rec_unit_cell in default (no arguments)
ruc <- create_rec_unit_cell()
print(ruc)

18 create_rec_unit_cell.cryst_symm

create_rec_unit_cell.bravais
Reciprocal unit cell starting from a Bravais symbol

Description

Method to create a "rec_unit_cell" object starting from a "bravais" object. The Bravais symbols
indicate the 14 possible Bravais lattices. A few examples are "aP", "oF", etc. The cell parameters
assigned are assigned randomly, but are compatible with the Bravais lattice.

Usage

S3 method for class 'bravais'
create_rec_unit_cell(ar, ...)

Arguments

ar An object of class "bravais".

Additional arguments passed to the create_rec_unit_cell methods

Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

Examples

Create a "rec_unit_cell” object from a monoclinic primitive Bravais lattice
Cell parameters generated automatically.

bt <- bravais("mP")

ruc <- create_rec_unit_cell(bt)

print(ruc)

create_rec_unit_cell.cryst_symm
Reciprocal unit cell from a ’cryst_symm’ object

Description

Method to create an object of class "rec_unit_cell" starting from an object of class cryst_symm’.

Usage

S3 method for class 'cryst_symm'
create_rec_unit_cell(ar, ...)

create_rec_unit_cell.default 19

Arguments
ar An object of class "cryst_symm’.
Additional arguments passed to the create_rec_unit_cell.
Details

The symmetry of a space group imposes constrains on the parameters of unit cells. For example,
the cubic group P 2 3 means that all cell sides have to be equal and all angles have to be equal to
90 degrees. This function suggests the appropriate reciprocal cell compatible with the given space

group.

Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of class
’angle’. The cell parameters are calculated from those of the corresponding unit cell. The default
unit cell parameters are a=10, b=20, c=15, alpha=70, beta=80, gamma=100. When constrains due
to symmetry are required, b and ¢ might be equaled to a, alpha, beta and gamma might be set to 90,
gamma might be set to 120 and the three angles might be set equal to each other.

Examples

Symmetry "C 1 2/c 1"
csym <- cryst_symm("C 1 2/c 1")

Reciprocal unit_cell
ruc <- create_rec_unit_cell(csym)
print(ruc)

create_rec_unit_cell.default
Default method for generic "create_rec_unit_cell"

Description

This method is an alternative call to "rec_unit_cell" .

Usage

Default S3 method:
create_rec_unit_cell(

ar = NULL,
br = NULL,
cr = NULL,
aar = NULL,
bbr = NULL,
ccr = NULL,

20 create_rec_unit_cell.unit_cell

Arguments
ar A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.
br A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.
cr A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.
aar A real number. One of the reciprocal unit cell’s angles, in degrees.
bbr A real number. One of the reciprocal unit cell’s angles, in degrees.
ccr A real number. One of the reciprocal unit cell’s angles, in degrees.

Additional arguments passed to the create_rec_unit_cell methods
Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

See Also

rec_unit_cell

Examples

Create a reciprocal cubic cell with side 1/50
ruc <- create_rec_unit_cell(1/50)
print(ruc)

create_rec_unit_cell.unit_cell
Reciprocal unit cell starting from a unit cell

Description

Method to create an object of class "rec_unit_cell" starting from an object of class "unit_cell".

Usage
S3 method for class 'unit_cell'
create_rec_unit_cell(ar, ...)
Arguments

ar An object of class "unit_cell".

Additional arguments passed to the create_rec_unit_cell methods

Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

create_unit_cell 21

Examples

Create a "rec_unit_cell” object starting from a cubic cell object
uc <- unit_cell()

print(uc)
ruc <- create_rec_unit_cell(uc)
print(ruc)
create_unit_cell S3 generic to create unit_cell objects
Description

The unit_cell object can be created starting from specific objects, files, etc.

Usage
create_unit_cell(a, ...)
Arguments
a An object or objects used to select a method. These can be cell parameters, an
object of class rec_unit_cell, etc.
Further arguments passed to or from other methods.
Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of class
"angle".

Examples

Create a unit_cell in default (no arguments)
uc <- create_unit_cell()
print(uc)

22 create_unit_cell.cryst_symm

create_unit_cell.bravais
Unit cell starting from a Bravais symbol

Description

Method to create a "unit_cell" object starting from a "bravais" object. The Bravais symbols indicate
the 14 possible Bravais lattices. A few examples are "aP", "oF", etc. The cell parameters assigned
are assigned randomly, but are compatible with the Bravais lattice.

Usage
S3 method for class 'bravais'
create_unit_cell(a, ...)

Arguments
a An object of class "bravais".

Additional arguments passed to the create_unit_cell methods

Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

Examples

Create a "unit_cell” object from a monoclinic primitive Bravais lattice
Cell parameters generated automatically.

bt <- bravais("mP")

uc <- create_unit_cell(bt)

print(uc)

create_unit_cell.cryst_symm
Unit cell from a ’cryst_symm’ object

Description

Method to create an object of class "unit_cell" starting from an object of class ’cryst_symm’.

Usage

S3 method for class 'cryst_symm'
create_unit_cell(a, ...)

create_unit_cell.default 23

Arguments
a An object of class “cryst_symm’.
Additional arguments passed to the create_unit_cell.
Details

The symmetry of a space group imposes constrains on the parameters of unit cells. For example,
the cubic group P 2 3 means that all cell sides have to be equal and all angles have to be equal to 90
degrees. This function suggests the appropriate unit cell compatible with the given space group.

Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of class *angle’.
Default cell parameters are a=10, b=20, c=15, alpha=70, beta=80, gamma=100. When constrains
due to symmetry are required, b and ¢ might be equaled to a, alpha, beta and gamma might be set
to 90, gamma might be set to 120 and the three angles might be set equal to each other.

Examples

Symmetry "C 1 2/c 1"
csym <- cryst_symm("C 1 2/c 1")

Unit_cell
uc <- create_unit_cell(csym)
print(uc)

create_unit_cell.default
Default method for generic "create_unit_cell”

Description

This method is an alternative call to "unit_cell" .

Usage

Default S3 method:
create_unit_cell(

a = NULL,
b = NULL,
¢ = NULL,
aa = NULL,
bb = NULL,
cc = NULL,

24 create_unit_cell.rec_unit_cell

Arguments
A real number. One of the unit cell’s side lengths, in angstroms.
A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.
Additional arguments passed to the create_unit_cell methods
Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.
See Also

unit_cell

Examples

Create a cubic cell with side 50
uc <- create_unit_cell(50)
print(uc)

create_unit_cell.rec_unit_cell
Unit cell starting from a reciprocal unit cell

Description

Method to create an object of class "unit_cell" starting from an object of class "rec_unit_cell".

Usage
S3 method for class 'rec_unit_cell'
create_unit_cell(a, ...)

Arguments
a An object of class "rec_unit_cell".

Additional arguments passed to the create_unit_cell methods

Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

crystal_family 25

Examples

Create a "unit_cell” object starting from a reciprocal cubic cell object
ruc <- rec_unit_cell()

print(ruc)
uc <- create_unit_cell(ruc)
print(uc)
crystal_family Crystal family corresponding to given space group.
Description

Crystal family corresponding to given space group.

Usage

crystal_family(gn)

Arguments

gn A natural integer (1,2,3,...). the space group number.

Value

A character string, the name of the crystal family associated with the given space group. If the
input integer does not correspond any existing space group, the function returns NULL and throws
a warning.

Examples

P1 is part of the TRICLINIC family
crystal_family(1)

The object returned is a string
cfam <- crystal_family(1)
class(cfam)

26 cryst_symm

crystal_system Crystal system corresponding to given space group.

Description

Crystal system corresponding to given space group.

Usage

crystal_system(gn)

Arguments

gn A natural integer (1,2,3,...). the space group number.

Value

A character string, the name of the crystal system associated with the given space group. If the
input integer does not correspond any existing space group, the function returns NULL and throws
a warning.

Examples

P1 is part of the TRICLINIC system
crystal_system(1)

The object returned is a string
csys <- crystal_system(1)
class(csys)

cryst_symm Constructor for an S3 object of class "cryst_symm".

Description

This represents a crystallographic space group.

Usage

cryst_symm(SG = NULL, set = NULL)

cryst_symm 27

Arguments

SG A character string or an integer identifying the space group. There are 230 used
space group in crystallography and each one corresponds to a unique and so-
called extended Hermann-Mauguin symbol. An example is space group number
19, identified by the extended Hermann-Mauguin symbol "P 21 21 21". Several
formats are possible and some of them are now rarely used. Attempts are made
to transform the input into a correct Hermann-Mauguin symbol, but if all fails,
a warning is raised and the space group P 1 is assigned.

set An integer defining which setting of many possible for the given space group.
Some crystallographic space groups can be implemented with small variants
known as "settings". If the input SG is an extended Hermann-Mauguin symbol,
set is ignored, as it is already specified by the xHM symbol.

Details

The constructor can be used with less than the full set of two input parameters, to create an object of
class cryst_symm corresponding to space group P 1. If the input string is not recognised, a warning
is raised and space group P 1 is assigned.

Value

An object of class "cryst_symm". It is a named list of length 4. The names are, "SG", "PG", "T"
and "C".

* 1) SG. This is a string containing the correct extended Hermann-Mauguin symbol.

* 2) PG. This is a list whose elements are all the 3 x 3 matrices forming the point-group part of
the symmetry transformation.

» 3) T. This is a list whose elements are all the 3 x 1 vectors forming the translational part of
the symmetry transformation.

* 4) C. This is a list whose elements are all the 3 x 1 vectors forming the centering of the unit
cell.

Examples

The symplest symmetry: P 1
crsym <- cryst_symm("P 1")
print(crsym)

The second space group: P -1
crsym <- cryst_symm(2)
print(crsym)

Something more complicated
crsym <- cryst_symm("P 21 21 21")
print(crsym)

28 deplete_systematic_absences

deplete_systematic_absences
Deplete systematic absences

Description
Remove systematically-absent reflections from a data frame in which Miller indices are in the first
three columns. The systematically-absent reflections are determined by the specific space group.
Usage

deplete_systematic_absences(hkl, SG)

Arguments
hkl A data frame with first three columns H, K, L corresponding to the three Miller
indices. This is normally the "record’ data frame in an object of class "merged_reflections".
SG A character. The extended Hermann-Mauguin symbol of the crystallographic
space group.
Details

Crystallography symmetry forces constraints on data from x-ray diffraction. One of these con-
straints consists in the full cancellation of reflections with certain Miller indices. It is said that
the reflection with that specific Miller index is systematically absent. For example, in data corre-
sponding to a crystal with space group C 2, general reflections like (h,k,1) must obey h+k=2n (even
number). Thus, the Miller indices (2,3,1) are a systematic absence because 2+3=5 (odd).

Value

hkl The same data frame acquired from input, depleted of all systematic absences.

Examples

C 2 monoclinic space group
SG <-"C 121"

Create an arbitrary cell compatible with C 2
uc <- unit_cell(10,15,10,90,110,90)

Crete the related reciprocal cell
ruc <- create_rec_unit_cell(uc)

Create a full data frame of Miller indices
hkl <- expand.grid(H=-4:4,K=-4:4,L=-4:4)

Get rid of systematic absences
new_hkl <- deplete_systematic_absences(hkl,SG)

extract_symmetry_info 29

Compare first 10 items of original and depleted arrays
hkl[1:10,]
new_hkl1[1:10,]

extract_symmetry_info Information on a specific space group

Description

Returns human-readable information on a specific input space group.

Usage

extract_symmetry_info(SG)

Arguments

SG

Details

A character string. The extended Hermann-Mauguin symbol (e.g. 'P 1 1 21°)

Crystallographic symmetry is fundamental in crystallography. It affects the way atoms are arranged
in a unit cell, the pattern of reflections in reciprocal space and many other common occurrences in
crystallography. This function returns a named list with human-readable character strings which
detail key symmetry information.

Value

infostring A named list with fields corresponding to those in the CCP4 symmetry library. The fields’
name are:

NUMBER standard spacegroup number

BASISOP change of basis operator

CCP4 CCP4 spacegroup number e.g. 1003 (0 if not a CCP4 group)

HALL Hall symbol

xHM extended Hermann Mauguin symbol

OLD CCP4 spacegroup name (blank if not a CCP4 group)

LAUE Laue group symbol

PATT Patterson group symbol

PGRP Point group symbol

HKILASU reciprocal space asymmetric unit (with respect to standard setting)

MAPASU_CCP4 CCP4 real space asymmetric unit (with respect to standard setting. Nega-
tive ranges if not a CCP4 group)

30 findHM

MAPASU_ZERO origin based real space asymmetric unit (with respect to current setting)

MAPASU_NONZ non-origin based real space asymmetric uni (with respect to current set-
ting)

CHESHIRE Cheshire cell (with respect to standard setting)

SYMOP list of primitive symmetry operators

CENOP list of centering operators

Examples

This is the full information for space group number 19, P 21 21 21
SG <- translate_SG(19)$msg

1tmp <- extract_symmetry_info(SG)

1tmp

findHM Correct spelling for Herman-Mauguin space groups symbols

Description

The commonly-used spelling of a crystallographic space group does not match the correct definition
given by the Herman-Mauguin symbols which define all space groups in a unique and precise way.
This function attempt to translate a tentative string into a possible Herman-Mauguin symbol, if it
finds one. If the input string is already in the extended Herman-Mauguin form, the same string is
returned as output.

Usage
findHM(sym_xHM)

Arguments

sym_xHM A character string. The space group symbol in its commonly-used spelling.

Value

SG A character string. The extended Hermann-Mauguin symbol (e.g. 'P 1 1 21°).

Examples
P21
print(find("P 21"))

P -1
print(find("P-1"))

find_symm_setting 31

find_symm_setting Find specific space group setting

Description

Although a space group is uniquely defined, i.e. the symmetry operations defining it are uniquely
given, the choice of vectors that defines a unit cell for that symmetry is not unique. The different
choices are known as settings. Most space groups have only one setting, but it is possible to find
space groups with several settings. For example, "C 1 2/c 1" has 18 settings. The xHM symbol for
setting 1 is "C 1 2/c 1", the symbol for setting 2 is "A 1 2/n 1", etc.

Usage
find_symm_setting(SG)

Arguments
SG A character string indicating the extended Hermann-Mauguin symbol for the
space group.
Value

set An integer equal to the specific setting corresponding to the given XHM symbol.

Examples

P2 (group number 4) has three settings
nsets <- find_symm_setting("P 1 2 1")
print(nsets)

frac_to_orth From fractional to orthogonal coordinates

Description

This function transforms any number of fractional coordinates (xf,%y,2s), arranged as a vector
or in a matrix or data frame, into the corresponding number of orthogonal coordinates (z,y, z),
arranged in the same format.

1. ochoice = 1: X axis along a; Y axis normal to a, in the (a,b) plane; Z axis normal to X and Y
(and therefore parallel to c*).

2. ochoice = 2: this is also called "Cambridge setting". The X axis is along a*; the Y axis lies in
the (a*,b*) plane; the Z axis is, consequently, along c.

32 full_symm_strings

Usage

frac_to_orth(xyzf, a, b, c, aa, bb, cc, ochoice = 1)

Arguments
xyzf A vector or n X 3 matrix or data frame of fractional crystal coordinates.
a A real number. One of the unit cell’s side lengths, in angstroms.
b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.
ochoice A natural integer indicating the choice of orthogonal transformation. 1 corre-
sponds to the first choice and 2 to the second choice in Giacovazzo’s book (see
xtal_mat@1 and xtal_mat02).
Value

A n x 3 matrix or data frame of orthogonal coordinates corresponding to the fractional coordinates
provided in the input.

Examples

Matrix containing 3 fractional coordinates
xyzf <- matrix(c(0.1,0.2,0.3,0.2,0.6,0.7,0.15,0.28,0.55),ncol=3,byrow=TRUE)

Cartesian coordinates
xyz <- frac_to_orth(xyzf,10,30,20,90,90,90,1)

full_symm_strings Symmetry operations in human readable form

Description

This function returns the full set of symmetry operations in human-readable form, each one as a
character string starting with 'SYMM’. These are the common crystallographic symmetry opera-
tions.

Usage

full_symm_strings(SG)

Arguments

SG A character string. The extended Hermann-Mauguin symbol (e.g. 'P 1 1 21°)

generate_miller 33

Value

Symm_string A character vector whose components are strings starting by ’'SYMM’ and containing
the symmetry operations of the given group in human-readable form.

Examples

P1 has only one symmetry operation
SG <- "P 1"

symm_string <- full_symm_strings(SG)
print(symm_string)

P 21 21 21 is has many more operations
SG <- "P 21 21 21"

symm_string <- full_symm_strings(SG)
print(symm_string)

generate_miller Generate Miller indices

Description
Function to create a data frame with complete set of Miller indices, up to a given resolution (in
angstroms).

Usage

generate_miller(uc, SG, reso)

Arguments
uc An object of class "unit_cell".
SG A character string or a number indicating the extended Hermann-Mauguin sym-
bol for the space group.
reso A real number. The highest data resolution, in angstroms.
Details

Miller indices are named H, K, L in the data frame. Only values of (H,K,L) corresponding to a
resolution d(h,k,I) >= reso (in angstroms), are included. The full list does not include systematic
absences corresponding to the specific symmetry of the crystal.

Value

hkl A data frame with columns H, K, L corresponding to the three Miller indices, and a columns S
corresponding to their inverse resolutions (in angstroms).

34

Examples

C 2 monoclinic space group
SG<-"C121"

Create an arbitrary cell compatible with C 2
uc <- unit_cell(10,15,10,90,110,90)

Generate Miller indices to 5 angstroms resolution
reso <- 5
hkl <- generate_miller(uc,SG,reso)

Display first 10 indices
hkl[1:10,]

hkl to_reso

hkl_to_reso Calculates resolution, given the Miller indices

Description

Calculates resolution, given the Miller indices

Usage

hkl_to_reso(h, k, 1, a, b, c, aa, bb, cc)

Arguments
h An integer, A Miller index.
k An integer, A Miller index.
1 An integer, A Miller index.
a A real number. One of the unit cell’s side lengths, in angstroms.
b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.

Value

A positive, real number. The resolution associated with (h,k,1), in angstroms.

lattice_stuff

Examples

datadir <- system.file("extdata”,package="cry")

fname <- file.path(datadir,”1dei_phases.mtz")

hdr <- readMTZHeader (fname,message=FALSE)

ucell <- hdr$CELL

resol <- hkl_to_reso(1,0,0,ucell[1],ucell[2],ucell[3],ucell[4],ucell[5],ucell[6])
print(resol) # Low resolution

reso2 <- hkl_to_reso(20,20,20,ucell[1],ucell[2],ucell[3],ucell[4],ucell[5],ucell[6])
reso2 # High resolution

lattice_stuff Calculation of useful lattice parameters

Description

Calculation of useful lattice parameters

Usage

lattice_stuff(a, b, ¢, aa, bb, cc)

Arguments
A real number. One of the unit cell’s side lengths, in angstroms.

b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.

Value

A named vector of real numbers and length 16. The names are:

¢ sa. Sine(aa)

* sb. Sine(bb)

e sc. Sine(cc)

¢ ca. Cosine(aa)

¢ cb. Cosine(bb)

¢ cc. Cosine(cc)

* ar. a* (reciprocal cell side length)
* br. b* (reciprocal cell side length)
* cr. c* (reciprocal cell side length)

* sar. Sine of a reciprocal cell angle

36 lowest_uc_compatible_SG

* sbr. Sine of a reciprocal cell angle
* scr. Sine of a reciprocal cell angle
* car. Cosine of a reciprocal cell angle
* cbr. Cosine of a reciprocal cell angle
* ccr. Cosine of a reciprocal cell angle

* V. Volume of the unit cell in cubic angstroms

Examples

datadir <- system.file("extdata”,package="cry")
fname <- file.path(datadir,"”1dei_phases.mtz")
hdr <- readMTZHeader (fname,message=FALSE)

ucell <- hdr$CELL

vtmp <- lattice_stuff(ucell[1],ucell[2],ucell[3],ucell[4],ucell[5],ucelll[6])
vtmp[1:3]

vtmp[4:6]

vtmp[7:9]

vtmp[10:12]

vtmp[13:15]

vtmp[16]

lowest_uc_compatible_SG
Space group compatible with given cell

Description
This function returns the space group, among those compatible with the given unit cell, with the
lowest symmetry group number.

Usage

lowest_uc_compatible_SG(uc)

Arguments

uc An object of class "unit_cell’.

Details

A given unit cell is compatible with several symmetries. For example, a cell with different sides
and different angles, also different from 90 degrees, is compatible with the triclinic lattice system,
which corresponds to space groups P1 and P -1. A cell with different sides, alpha = 90, gamma=90
and beta different from 90, is compatible with the monoclinic lattice system, which corresponds to
space groups from number 3 ("P 1 2 1") to number 15 (C 1 2/c 1"). In the first case this function
returns "P 1", while in the second case it returns "P 1 2 1".

merged_reflections 37

Value

csym An object of class ’cryst_symm’, corresponding to the selected, lowest symmetry.

Examples

Monoclinic cell
uc <- unit_cell(10,20,15,90,110,90)

The selected space group is "P 1 2 1"
csym <- lowest_uc_compatible_SG(uc)
print(csym)

'

merged_reflections Constructor for an S3 object of class "merged_reflections".

Description

This represents scaled and merged x-ray data from one crystal.

Usage
merged_reflections(ruc = NULL, csym = NULL, records = NULL, dtypes = NULL)

Arguments
ruc An object of class "rec_unit_cell" (which represents a reciprocal unit cell).
csym An object of class "cryst_symm" (which represents a crystallographic symmetry
group).
records A data frame containing all reflections coming from the x-ray data collection on

the crystal. This data frame must include at least the three Miller indices, H, K,
L (of dtype "H").

dtypes A character vector whose length is the same as the number of columns in "records’.
One character (a capital letter) is associated with each type of data. For exam-
ple, a Miller index is of dtype "H"; a structure amplitude is of dtype "F"; an
anomalous difference is of dtype "D"; etc (see details later).

Details

If the constructor is used without arguments, the default object created will be create reflections for
a cubic crystal with cell of side 10 angstroms, and symmetry P 2 3, up to 5 angstroms resolution.
The only available columns will be of dtype "H", named H, K, L (the Miller indices), and of dtype
"S", inverse resoluton, named S.

The possible dtypes are:

H Miller index

38 merged_reflections

S Inverse resolution (1/angstroms)

J Reflection intensity

F Amplitude of a structure factor

D Anomalous difference

Q Standard deviation of J, F, D

G Amplitude associated with a Friedel pair (F(+), F(-))
L Standard deviation of G

K Intensity associated with G (I(+), I(-))

M Standard deviation of K

E Amplitude of the normalised structure factors

P Phase angle (in degrees)

W Weight of some sort

A Phase probability coefficients (Hendrickson-Lattman)
B Batch number (from raw data)

I Any other integer

R Any other real

More values can become available in a future release.

Value

An object of class "merged_reflections". It is a named list of length 4 whose names are:

ruc An object of class "rec_unit_cell".
csym An object of class "cryst_symm".
records A data frame containing the data.

dtypes A character vector containing the type of data (Miller indices, structure factors, etc).

Examples

Create an orthorombic (default) cell
uc <- unit_cell(10,30,15)

Create the related reciprocal cell
ruc <- create_rec_unit_cell(uc)

Create symmetry (P n c 2)
csym <- cryst_symm(30)

Create a few records (these include syst. absences)
records <- expand.grid(H=-2:2,K=-2:2,L=-2:2)
print(length(records[,1]))

dtypes are all H
dtypes <= c("H","H","H")

num_symm_settings 39

Create merged_reflections object with H, K, L

Systematic absences have been eliminated

mrefs <- merged_reflections(ruc,csym,records,dtypes)
print(length(mrefs$records[,1]))

num_symm_settings Number of space group settings

Description

Although a space group is uniquely defined, i.e. the symmetry operations defining it is uniquely
given, the choice of vectors that defines a unit cell for that symmetry is not unique. The different
choices are known as settings. Most space groups have only one setting, but it is possible to find
space groups with several settings. For example, "C 1 2/c 1" has 18 settings. While the xHM symbol
for setting 1 is "C 1 2/c 1", the symbol for setting 2 is "A 1 2/n 1", etc.

Usage

num_symm_settings(SG = NULL)

Arguments

SG A character string or a number indicating the space group.

Value

nsett The number of setting for the given space group.

Examples

P 1 21 1 (group number 4) has three settings
num_symm_settings(4)

Find the extended Hermann-Mauguin symbols
translate_SG(4, "number”,"xHM",1)$msg
translate_SG(4, "number”,"xHM",2)$msg
translate_SG(4, "number”,"xHM", 3)$msg

40 op_xyz_list_to_matrix_list

op_xyz_list_to_matrix_list
List of matrices and vectors of a specific space group

Description
Returns 3 x 3 matrices and 3 x 1 vectors corresponding to point group operations, group translations
and cell centring of a given space group.

Usage

op_xyz_list_to_matrix_list(op_xyz_list)

Arguments
op_xyz_list A named list made of two vectors. The first vector, SYMOP, contains strings
describing the symmetry operators. The second vector, CENOP, contains strings
describing the centring of the unit cell.
Details

A crystallographic space group consists of a series of transformations on a point (zf,ys,2s) in
space that are mathematically implemented as the product of a 3 x 3 point-group matrix and the
point fractional coordinates, (2, y¢, z¢), followed by a sum with a 3 x 1 translation vector. The
complete set of points thus produced can be cloned into a new and shifted set translated of an
amount represented by a 3 x 1 centring vector.

Value

mat_ops_list A named list consisting of 3 lists. The first list, PG, contains 3 x 3 point group matrices;
the second list, T, contains the same number of 3 x 1 translation vectors. The first matrix is always
the identity matrix, the first translation vector is always the null vector. The third list, C, consists
of centering vectors; the first centering vector is always the null vector. To summarize, the output
looks like the following:

[[[[LM2,M3,....Mn]], [[O,V2,V3,...,Vn]], [[0,C2,C3....,Cm]]]] where: I = identity 3X3 matrix 0
=null 3X1 vector M2,M3,...,.Mn = point group 3X3 matrices V2,V3,...,Cn = translation 3X1 vectors
C2,C3,...,Cm = centering 3X1 vectors

Examples

Symmetry operators for space group number 3, P 1 2 1
SG<-"P 121"

op_xyz_list <- syminfo_to_op_xyz_list(SG)

mat_ops_list <- op_xyz_list_to_matrix_list(op_xyz_list)
names(mat_ops_list)

Op_XyZ_to_matrix 41

op_xyz_to_matrix Human-readable symmetry operator into matrix and vector

Description

Returns a 3 x 3 matrix and 3 X 1 vector corresponding to either a symmetry operator or a centering
operator in human-readable, string form.

Usage

op_xyz_to_matrix(op_xyz)

Arguments
op_Xyz A symmetry or centering operation in the form of a human-readable string, e.g.
-X+1/2,-y,2+1/2’.
Details

A string describing a symmetry or a centering operation has a format similar to, for instance, ’-
x+1/2,-y,z+1/2’. Such a string corresponds to the symmetry operation represented mathematically
by the following matrix and vector:

-1 0 0 1/2
0 -1 0 , 0
0 01 1/2

Where symmetry operations in human-readable form are useful for the subjective reasoning in
crystallography, their mathematical counterpart is needed for all practical calculations.

Value

mat_ops A named list including a 3 X 3 matrix 'R’ and a 3 x 1 vector *T".

Examples

Reflection and translation
sop <- '-x,y+1/2,z'

mat_ops <- op_xyz_to_matrix(sop)
print(mat_ops)

42 orth_to_frac

orth_to_frac From orthogonal to fractional coordinates

Description

This function transforms any number of orthogonal coordinates (x,y, z), arranged as a vector or
in a matrix or data frame, into the corresponding number of fractional coordinates (¢, y¢, zf),
arranged in the same format.

1. ochoice = 1: X axis along a; Y axis normal to a, in the (a,b) plane; Z axis normal to X and Y
(and therefore parallel to c*).

2. ochoice = 2: this is also called "Cambridge setting". The X axis is along a*; the Y axis lies in
the (a*,b*) plane; the Z axis is, consequently, along c.

Usage

orth_to_frac(xyz, a, b, c, aa, bb, cc, ochoice = 1)

Arguments
Xyz A vector or n X 3 matrix or data frame of orthogonal crystal coordinates.
a A real number. One of the unit cell’s side lengths, in angstroms.
b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.
ochoice A natural integer indicating the choice of orthogonal transformation. 1 corre-
sponds to the first choice and 2 to the second choice in Giacovazzo’s book (see
xtal_mat@1 and xtal_mat02).
Value

A n x 3 matrix or data frame of fractional coordinates corresponding to the orthogonal coordinates
provided in the input.

Examples

Matrix containing 3 orthogonal coordinates
xyz <- matrix(c(5, 15, 10, 2, 10, 8, 1, 1, 1),ncol=3,byrow=TRUE)

Fractional coordinates
xyzf <- orth_to_frac(xyz,10,30,20,90,90,90,1)

plot_SHELX

plot_SHELX Plot SHELXC log files

Description

Plot SHELXC log files

Usage

plot_SHELX(filename, filename_e, var, type, title_chart)

Arguments
filename A data frame in output from {read_SHELX_log}.
filename_e A data frame with the inverted hand from shelxe
var the variable to be plotted vs the resolution
type indicate the type of file, possible value are "shelxc", "shelxd" and "shelxe".

title_chart title of the chart.

Value

A graphical object from ggplot2 class that contains the solution founded by SHELX log file.

Examples

datadir <- system.file("extdata"”,package="cry")

SHELXC

shelxc_log <- file.path(datadir, "shelxc.log")

shelxc <- read_SHELX_log(shelxc_log)

plot_shelxc <- plot_SHELX(filename = shelxc, var = shelxc$I_sig,
type = "shelxc", title_chart = "SHELXC")

plot_shelxc

SHELXD

shelxd_log <- file.path(datadir, "shelxd.log")

shelxd <- read_SHELX_log(shelxd_log)

plot_shelxd <- plot_SHELX(filename = shelxd, type = "shelxd”,
title_chart = "SHELXD")

plot_shelxd

SHELXE

filename_i <- file.path(datadir,"shelxe_i.log")

shelxe_i <- read_SHELX_log(filename_i)

filename_o <- file.path(datadir,"shelxe_o.log")

shelxe_o <- read_SHELX_log(filename_o)

plot_shelxe <- plot_SHELX(filename = shelxe_i,

filename_e = shelxe_o, type = "shelxe", title_chart = "SHELXE")
plot_shelxe

44 print.bravais

print.angle Print method for an object of class "angle".

Description

The value is displayed in degrees

Usage
S3 method for class 'angle'
print(x, ...)
Arguments
X An object of class "angle".
Additional arguments passed to the print methods
Value

Nothing. A message is displayed which includes information on the angle.

Examples

Create an angle of 90 degrees using radians
angl <- angle(pi/2,FALSE)

Display its value
print(angl)

print.bravais Print method for an object of class "bravais".

Description

The Bravais lattice and related crystal family, crystal system and lattice system are displayed.

Usage
S3 method for class 'bravais'
print(x, ...)

Arguments
X An object of class "bravais".

Additional arguments passed to the print methods

print.cryst_symm

Value

Nothing. A message is displayed which includes information on the Bravais lattice.

Examples

Create a triclinic Bravais lattice
bt <- bravais()

Display its value
print(bt)

45

print.cryst_symm Print method for an object of class "cryst_symm".

Description

XXX

Usage
S3 method for class 'cryst_symm'
print(x, ...)

Arguments

X An object of class "cryst_symm".

Additional arguments passed to the print methods

Value

Nothing. A message is displayed which includes information on the crystallographic symmetry.

Examples

Create an object of P 2 symmetry
crsym <- cryst_symm("P 2")

Display its value
print(crsym)

46 print.unit_cell

print.rec_unit_cell Print method for an object of class "rec_unit_cell".

Description

The values are displayed in 1/angstroms and degrees

Usage
S3 method for class 'rec_unit_cell’
print(x, ...)
Arguments
X An object of class "rec_unit_cell".
Additional arguments passed to the print methods
Value

Nothing. A message is displayed which includes information on the reciprocal unit cell.

Examples

Create a cubic reciprocal unit cell
ruc <- rec_unit_cell(1/10,1/10,1/10,90,90,90)

Display its value
print(ruc)

print.unit_cell Print method for an object of class "unit_cell".

Description

The values are displayed in angstroms and degrees

The output includes details on the unit cell, the crystal symmetry and the first 10 records (data).

Usage
S3 method for class 'unit_cell’
print(x, ...)

S3 method for class 'merged_reflections'
print(x, ...)

readCIF 47

Arguments
X An object of class "merged_reflections".
Additional arguments passed to the print methods
Value

Nothing. A message is displayed which includes information on the unit cell.

Nothing. A message is displayed which includes information on the reflections contained in this
object and the crystal structure they relate to.

Examples

Create a cubic unit cell
uc <- unit_cell(10,10,10,90,90,90)

Display its value

print(uc)

Create a default 'merged_reflections' object
mrefs <- merged_reflections()

Display its value
print(mrefs)

readCIF Reads and output a CIF file

Description

Reads and output a CIF file

Usage

readCIF(filename, message = FALSE)

Arguments
filename A character string. The path to a valid CIF file.
message A logical variable. If TRUE (default) the function prints a message highlighting
what is included in the cif file.
Value

A named list. Each name correspond to a valid field in the cif.

48 readmm_CIF

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,"AMS_DATA.cif")
1CIF <- readCIF(filename)

print(names(1CIF))

print (1CIF$INTRO$CELL)

print (LCIF$INTRO$HALL)

print (1CIF$INTRO$HM)

print (1CIF$SYMM)

readmm_CIF Reads and output an mmCIF file

Description

Reads and output an mmCIF file

Usage

readmm_CIF(filename, message = FALSE)

Arguments
filename A character string. The path to a valid CIF file.
message A logical variable. If TRUE (default) the function prints a message highlighting
what is included in the cif file.
Value

A named list. Each name correspond to a valid field in the cif.

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,"”3syu.cif"”)

1CIF <- readmm_CIF(filename)

print(names(1CIF))

print (1CIF$HEADERS$ENtry)

print (1CIF$HEADER$Symmtery)

print (1CIF$HEADERS$CELL)

print (LCIF$EXP_DETAILS$CRYSTAL_CON$VAL)

readMTZ 49

readMTZ Load an MTZ file

Description

Reads mtz files and store both header information and reflection data records in named lists. A third
list is used, if the mtz file is an unmerged file, for storing batch headers.

Usage

readMTZ(filename, message = FALSE)

Arguments
filename A character string. The path to a valid mtz file.
message A logical variable. If TRUE the function prints a message highlighting data
included in the mtz file. Default value is message=FALSE.
Value

A named list of length 3. The first element is called "reflections" and is a dataframe with as many
columns as are included in the mtz file. The name of each column of the dataframe coincides
with the name of the corresponding column in the mtz. The second element is called "header" and
is a named list in which each name correspond to a valid field in the mtz header (see details in
readMTZHeader). The third element is called "batch_header" and is a list with as many elements
as the number of batches (images) included in the mtz file. Each list element is, itself, a named list
including all the useful variables stored in batch headers. If no batch headers are contained in the
file (merged mtz), the batch_header element is NULL.

Examples

datadir <- system.file("extdata"”,package="cry")
filename <- file.path(datadir,"1dei_phases.mtz")
ltmp <- readMTZ(filename)

print(names(1ltmp))
print(class(ltmp$reflections))
str(ltmp$reflections)

print(class(ltmp$header))
print(class(ltmp$batch_header))

refs <- ltmp$reflections
print(colnames(refs))
print(range(refs$H))

50 readMTZHeader

readMTZHeader Reads and output an MTZ header

Description
An MTZ file is a binary file created to carry information on x-ray diffraction experiments on crystals.
It includes x-ray diffraction data and information on the experiment and the crystal.

Usage

readMTZHeader (filename, message = FALSE)

Arguments
filename A character string. The path to a valid mtz file.
message A logical variable. If TRUE the function prints a message highlighting what is
included in the mtz header. Default value is message=FALSE.
Details

The function returns a named list whose components are the reflections, the header and the
batch_header. The header is a named list whose components are:

TITLE A character string containing the title of the MTZ file.

NCOL Number of columns in data frame reflections.

CELL A numeric vector of length 6, containing the unit cell parameters.

SORT An integer vector of length 5, containing the sort order of the first 5 columns of data.

SYMINF Un-named list with 6 components: the number of symmetry operations (an integer), the
number of primitive operations (an integer), the lattice type (a one-letter character), the space
group number (an integer), the space group name (a 10-letter character string) and the point
group name (a 6-letter character).

RESO Minimum and maximum data resolution, stored as 1/ d2.
NDIF Number of datasets whose reflection data are present in the file.

SYMM A character vector whose length depends on the type of symmetry. It describes the sym-
metry operations in human-readable format, International Tables style. Each string is 80 char-
acters long.

PROJECT A data frame whose rows provide an ID and a name (called "pname") for the projects
for which the data contained have been produced.

CRYSTAL A data frame whose rows provide an ID and a name (called "pname") for the crystals
for which the data contained have been produced.

DATASET A data frame whose rows provide an ID and a name (called "pname") for the datasets
included in the reflections record.

DCELL A data frame whose rows contain the CRYSTAL IDs and cell parameters of each crystal
that has contributed to the data in the reflections record.

readpd_rtv 51

DWAVEL A data frame whose rows contain the DATASET IDs and the wavelength with which the
reflection data were collected.

COLUMN A data frame describing the type of data included in the reflections record. The data
frame includes the labels for each column, the dtype (see merged_reflections) for each
column, min and max values and the DATASET ID.

COLSRC A data frame with three columns. The first includes the labels of each reflections record
column. The second includes a time stamp of when each data column was created. The third
is the dataset ID as a string.

COLGRP A character string vector where each component is an 80-letters string describing the
name and type of data.

HISTORY A character string vector of variable length. Each component is an 80-letter string
summarising the steps that lead to the current reflections record. HISTORY can contain a
maximum of 30 lines.

Value

A named list. Each name correspond to a valid field in the mtz header (see details).

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,”1dei_phases.mtz")
1tmp <- readMTZHeader(filename)
print(names(1ltmp))

print(1tmp$CELL)

print(1tmp$SYMM)

readpd_rtv Reads and output a CIF file for powder diffraction

Description

Reads and output a CIF file for powder diffraction

Usage

readpd_rtv(filename, message = FALSE)

Arguments
filename A character string. The path to a valid CIF file.
message A logical variable. If TRUE (default) the function prints a message highlighting

what is included in the cif file.

52 readSF_CIF

Value

A named list. Each name correspond to a valid field in the powder diffraction Rietveld processed
CIE.

Examples

datadir <- system.file("extdata"”,package="cry")
filename <- file.path(datadir,"”e-65-00i60-Isup2.rtv")
1CIF <- readpd_rtv(filename)

print(names(1CIF))

print (1CIF$INTRO$CELL)

print (1CIF$INTROS$HALL)

print (1CIF$INTRO$HM)

print (1CIF$REFL)

readSF_CIF Reads and output an CIF file

Description

Reads and output an CIF file

Usage
readSF_CIF(filename, message = FALSE)

Arguments
filename A character string. The path to a valid CIF file.
message A logical variable. If TRUE (default) the function prints a message highlighting
what is included in the cif file.
Value

A named list. Each name correspond to a valid field in the SF cif.

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,”1dei-sf.cif")
1CIF <- readSF_CIF(filename)

print(names(1CIF))

print (1CIF$INTRO$CELL)

print (LCIF$INTRO$HALL)

print (1CIF$INTRO$HM)

print (1CIF$REFL)

readsm_REFL 53

readsm_REFL Reads and output an CIF file

Description

Reads and output an CIF file

Usage

readsm_REFL (filename, message = FALSE)

Arguments
filename A character string. The path to a valid small molecule reflection file. Typically
a hkl or an fcf file.
message A logical variable. If TRUE (default) the function prints a message highlighting
what is included in the cif file.
Value

A named list. Each name correspond to a valid field in the fcf or hkl file.

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,”1dei-sf.cif")
1CIF <- readsm_REFL(filename)
print(names(1CIF))

print (L1CIF$INTRO$CELL)

print (1CIF$SYMM)

print (1CIF$REFL)

readXDS_ASCII Load an XDS_ASCII file.

Description
Function to load XDS_ASCIL.HKL files into a named list with three components called process-
ing_info, header and reflections (see details further down).

Usage

readXDS_ASCII(filename, message = FALSE)

54 readXDS ASCIIHeader

Arguments
filename A character string. The path to a valid XDS ASCII file.
message A logical variable. If TRUE (default) the function prints a message highlighting
what is included in the xds header. If filename is not a valid XDS ascii file, the
function returns ‘NULL‘ and prints out a warning message.
Details

This function reads in all data from an XDS_ASCII data file and organises them into a named list.
The list’s name are:

processing_info This list component includes three logical variables, MERGE, FRIEDEL and
PROFILE. Their TRUE/FALSE value reflect features of the XDS_ASCII file connected with
the specific processing performed to obtain the file itself (for more details see https://xds.
mr.mpg.de/).

header This list includes several components, like for instance SPACE_GROUP_NUMBER or
UNIT_CELL_CONSTANTS, which give informations on the crystal and the experiment gen-
erating the data.

reflections This data.frame includes the actual experimental data, i.e. the observations collected
during the X-ray diffraction experiment on the crystal (or crystals). The number and type of
columns can vary.

Value

A named list (see details).

Examples

Load one of the XDS ASCII files included with
this distribution of cry

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,"xds@@_ascii.hkl")
ltmp <- readXDS_ASCII(filename,message=FALSE)
print(names(1ltmp))

print(ltmp$reflections[1:5,1)

readXDS_ASCIIHeader Load an XDS_ASCII file’s header.

Description

This function reads information from the header of an XDS_ASCIIL.HKL data file and organises it
into a named list with a variable number of components, according to the type of XDS_ASCIL.HKL
file (see details in readXDS_ASCII).

https://xds.mr.mpg.de/
https://xds.mr.mpg.de/

read_SHELX_log 55

Usage

readXDS_ASCIIHeader (filename)

Arguments

filename A character string. The path to a valid XDS ASCII file.

Value

A named list. Each name correspond to a valid field in the xds header. If filename is not a valid
XDS ascii file, the function returns ‘NULL* and prints out a warning message.

Examples

Load one of the XDS ASCII files included with
this distribution of cry

datadir <- system.file("extdata"”,package="cry")
filename <- file.path(datadir,"xds@@_ascii.hkl")
1tmp <- readXDS_ASCIIHeader (filename)
print(names(1ltmp))

read_SHELX_log Reads and SHELXD log files

Description

Reads and SHELXD log files

Usage

read_SHELX_log(filename)

Arguments

filename A character string. The path to a valid log file.

Value

A named list. Each name correspond to a valid field in the log header.

Examples

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir, "shelxc.log")
1tmp <- read_SHELX_log(filename)
print(names(ltmp))

56

rec_unit_cell

rec_unit_cell

Constructor for an S3 object of class "rec_unit_cell.

Description

This represents a crystal reciprocal unit cell.

Usage

rec_unit_cell(
ar = NULL,
br = NULL,
cr = NULL,

aar =
bbr =
ccr

Arguments
ar
br
cr
aar
bbr

ccr

Details

A real number. One of the reciprocal unit cell’s angles, in degrees.
A real number. One of the reciprocal unit cell’s angles, in degrees.

A real number. One of the reciprocal unit cell’s angles, in degrees.

A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.
A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.

A real number. One of the reciprocal unit cell’s side lengths, in 1/angstroms.

The constructor can be used with less than the full set of six input parameters, to create reciprocal
unit cells for the cubic, tetragonal and orthogonal systems. Objects of "rec_unit_cell" class can also
be created with no parameters (default to a reciprocal cubic cell of side length 0.1 1/angstroms).

Value

An object of class "rec_unit_cell". It is a named list of length 6 whose last three slots are of "angle"

class.

Examples

Create a monoclinic reciprocal unit cell
ruc <- unit_cell(0.115,0.033,0.077,90,120,90)

print(ruc)

Create a cubic cell (default)

ruc <- rec_unit_cell()
print(ruc)

syminfo_to_matrix_list 57

Create a reciprocal cubic cell with side 1/20
ruc <- rec_unit_cell(1/20)
print(ruc)

Create a reciprocal tetragonal unit cell with sides 1/20 and 1/60@
ruc <- rec_unit_cell(1/20,1/60)
print(ruc)

Create a reciprocal orthogonal unit cell
ruc <- rec_unit_cell(1/40,1/15,1/30)
print(ruc)

syminfo_to_matrix_list
Operators of a specific space group in matrix form

Description

Returns 3 x 3 matrices and 3 x 1 vectors corresponding to point group operations, group translations
and cell centring of a given space group.

Usage

syminfo_to_matrix_list(SG)

Arguments

SG A character string. The extended Hermann-Mauguin symbol (e.g. 'P 1 1 21°)

Details

A crystallographic space group consists of a series of transformations on a point (zf,ys,2f) in
space that are mathematically implemented as the product of a 3 x 3 point-group matrix and the
point fractional coordinates, (xs,yy, zy), followed by a sum with a 3 x 1 translation vector. The
complete set of points thus produced can be cloned into a new and shifted set translated of an
amount represented by a 3 X 1 centring vector.

Value

mat_ops_list A named list consisting of 3 lists. The first list, PG, contains 3 x 3 point group matrices;
the second list, T, contains the same number of 3 x 1 translation vectors. The first matrix is always
the identity matrix, the first translation vector is always the null vector. The third list, C, consists
of centering vectors; the first centering vector is always the null vector. To summarize, the output
looks like the following:

[[[[L,M2,M3,....Mn]], [[O,V2,V3.,....Vn]], [[0,C2,C3,....Cm]]]] where: I = identity 3X3 matrix 0
=null 3X1 vector M2,M3,....Mn = point group 3X3 matrices V2,V3,...,Cn = translation 3X1 vectors
C2,C3,...,Cm = centering 3X1 vectors

58 syminfo_to_op_xyz_list

Examples

Symmetry operators for space group number 4, P 1 21 1
SG <= "P 121 1"

mat_ops <- syminfo_to_matrix_list(SG)

print(mat_ops)

syminfo_to_op_xyz_list
Operators of a specific space group

Description

Returns human-readable symmetry operators corresponding to a specific input space group.

Usage

syminfo_to_op_xyz_list(SG)

Arguments

SG A character string. The extended Hermann-Mauguin symbol (e.g. 'P 1 1 21°)

Details

A crystallographic space group includes a set of symmetry operators that can be expressed like
operations on the (X,y,z) fractional coordinates of atoms in a unit cell. So, for example, The only
operator associated with the space group P 1 is "x,y,z", while the four operators associated with P

21 21 21 are "symop x,y,z", "symop -x+1/2,-y,z+1/2", "symop x+1/2,-y+1/2,-z", "symop -x,y+1/2,-
z+1/2".

Value

op_xyz_list A named list made of two vectors. The first vector, SYMOP, contains strings describing
the symmetry operators. The second vector, CENOP, contains strings describing the centring of the
unit cell.

Examples

Symmetry operators for space group number 3, P 1 2 1
SG<-"P 121"

1tmp <- syminfo_to_op_xyz_list(SG)

1tmp

symm_to_cell_const 59

symm_to_cell_const Cell parameter constrains from symmetry

Description

This function returns a set of constrains, as string character expressions, imposed by the specific
symmetry group on the given unit cell.

Usage

symm_to_cell_const(SG)

Arguments
SG A character string indicating the extended Hermann-Mauguin symbol for the
space group.
Details

Space group symmetry imposes certain constraints on the values that unit cell parameters can take.
For example, the symmetry represented by the monoclinic space group of extended Hermann-
Mauguin symbol "P 1 2 1" is compatible with a unit cell in which alpha=gamma=90.

There is just a handful of constrains for unit cells. Here they are indicated with the following set of
specific strings:

* ’No constrains’ Like in a triclinic cell.

* ’alpha=90’ The alpha angle is fixed at 90 degrees.

* ’beta=90’ The beta angle is fixed at 90 degrees.

» ’gamma=90’ The gamma angle is fixed at 90 degrees.

* ’samma=120" The gamma angle is fixed at 120 degrees.

* ’alpha=beta=gamma’ The three angle have the same value, different from 90 degrees.

* ’a=b’ Cell side a is equal to cell side b.

* ’a=b=c’ The three cell sides are equal.

Value

vcons A character vector. Each component is a string, like "alpha=90’ or *a=b’, that describes the
type of constrain to be applied to a unit cell of a crystal structure with given space group symmetry
(see above).

60 sysabs

Examples

P 11 2 (group number 3) corresponds to setting 2
SG <- translate_SG(3,set=2)

Constrains for this symmetry
stmp <- symm_to_cell_const(SG)
print(stmp)

R 3 (rombohedral setting)
stmp <- symm_to_cell_const("R 3 :R")
print(stmp)

sysabs Locate systematic absences

Description
Given an mX3 matrix of Miller indices, this function returns those indices corresponding to valid
reflections, i.e. to reflections which are not systematic absences.

Usage

sysabs(hkl, SG)

Arguments
hkl An mX3 matrix or a data frame whose rows are the three integers corresponding
to the Miller indices.
SG A character. The extended Hermann-Mauguin symbol of the crystallographic
space group.
Details

Crystallography symmetry forces constraints on data from x-ray diffraction. One of these con-
straints consists in the full cancellation of reflections with certain Miller indices. It is said that
the reflection with that specific Miller index is systematically absent. For example, in data corre-
sponding to a crystal with space group C 2, general reflections like (h,k,1) must obey h+k=2n (even
number). Thus, the Miller indices (2,3,1) are a systematic absence because 2+3=5 (odd).

Value

idx A vector of integers corresponding to the position, in the array mhk1, in which the Miller indices
ARE NOT systematically absent. The position of systematically-absent reflections can be found
using lidx.

theme_cry

Examples

C 2 monoclinic space group (special setting)
csym <- cryst_symm(15,set=5)
print(csym$SG)

Create a full data frame of Miller indices
hkl <- expand.grid(H=-4:4,K=-4:4,L=-4:4)

Index corresponding to valid reflections
(not systematic absences)
idx <- sysabs(hkl,csym$SG)

Indices for all reflections
fulldx <- 1:length(hkl[,1])

Index corresponding to systematic absences
jdx <= fulldx[-idx]

A couple of systematic absences
hk1[jdx[1:21],]

61

theme_cry cry theme for ggplot2

Description

cry theme for ggplot2

Usage

theme_cry()

Examples

Not run:
plot_SHELX(obj_shelxc, var = obj_shelxc$Chi_sq, type = "shelxc”,
title_chart = "Chis *2") + theme_cry

End(Not run)

62 translate_SG

translate_SG Translation of space group symbols, numbers, etc.

Description

Function to find out space group symbol given number and vice-versa.

Usage

translate_SG(value, SG_in = "number"”, SG_out = "xHM", set = 1)

Arguments
value A string or an integer number corresponding to the space group being investi-
gated.

SG_in A string representing the space group format for the input. Possible values are:

* 1) "number"
* 2) "ccp4"
* 3) "Hall"
* 4) "xHM"
* 5)"old"
SG_out A string representing the space group format for the output. Possible values are:

¢ 1) "number"
e 2) "ccp4"
* 3) "Hall"
* 4) "xHM"
* 5)"old"
set Specific setting for the given space group. A number like 1,2.... It is used if for
a same symbol there are more than one choice.

Details

This function returns either a number of a specific symbol corresponding to a crystallographic space
group. The input is an integer number or a character symbol identifying a specific space group. The
output is, similarly, the corresponding character symbol or number, according to what is specified
in the input. Possible formats are:

* 1) Space group number
e 2) Hall symbol (e.g. * P 2yb (z,x,y)’)
* 3) Extended Hermann-Mauguin symbol (e.g. 'P 1 1 21”)

If more than one setting is implied in an ambiguous way in the input value, then the first setting will
be selected by default for the output value, unless argument "set" is set to another value.

unit_cell 63

Value

list_SG A named list with two fields. The first field, "msg", is a character string representing the
space group format needed as output. Possible values are the same as those for SG_in. The second
field, "ans", is TRUE only if a valid symbol for "msg" is found.

Examples

Space Group P1 corresponds to number 1
translate_SG(value=1,SG_in="number",SG_out="xHM")

unit_cell Constructor for an S3 object of class "unit_cell.

Description

This represents a crystal unit cell.

Usage

unit_cell(a = NULL, b = NULL, ¢ = NULL, aa = NULL, bb = NULL, cc = NULL)

Arguments
a A real number. One of the unit cell’s side lengths, in angstroms.
b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.

Details

The constructor can be used with less than the full set of six input parameters, to create unit cells
for the cubic, tetragonal and orthogonal systems. Objects of "unit_cell" class can also be created
with no parameters (default to a cubic cell of side length 10 angstroms).

Value

An object of class "unit_cell". It is a named list of length 6 whose last three slots are of "angle"
class.

64 writeMTZ

Examples

Create a monoclinic unit cell
uc <- unit_cell(10,30,15,90,60,90)
print(uc)

Create a cubic cell (default)
uc <- unit_cell()
print(uc)

Create a cubic cell with side 20
uc <- unit_cell(20)
print(uc)

Create a tetragonal unit cell with sides 20 and 60
uc <- unit_cell(20,60)
print(uc)

Create an orthogonal unit cell
uc <- unit_cell(40,15,30)
print(uc)

writeMTZ Write data to an MTZ file

Description

Write reflections and experimental information to an MTZ file

Usage

writeMTZ(reflections, header, filename, title = NULL, batch_header = NULL)

Arguments

reflections A data frame containing all reflection records in columns. This is usually derived
from modifications of a previously existing data frame obtained using readMTZ.

header A list whose components are other R objects. This is normally derived from the
reading of another MTZ file using readMTZ. See further details at readMTZHeader.

filename A character string. The path to a valid mtz file. If a file with the same name
exists, it will be deleted.

title A character string. The character string associated with the TITLE keyword in

an MTZ file. This feature makes it easy to quickly identify the data file in CCP4
programs. Default (NULL) is for the output file to have the same title as the
input file.

https://www.ccp4.ac.uk

writeXDS_ASCII 65

batch_header A named list including information at data collection time. This component
is present only for raw (unmerged) intensity data produce after the diffraction
images integration. Merged MTZ reflection files have batch_header=NULL.
Names and types depend on the type of experiment (more information on this
can be found at CCP4.)

Value

This function does not return any R object. It outputs an MTZ reflection file to some target location.

Examples

Read the 1dei_phases data included in the package
datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,”1dei_phases.mtz")
IMTZ <- readMTZ(filename)

Change dataset name
print (IMTZ$header$DATASET)
IMTZ$header$DATASET[2,2] <- "New CRY dataset”

Add one HISTORY line (string has to be 80-letters long)
addhist <- "From CRY ©.3.0 - run on Apr 2 20:12:00 2021"
n <- nchar(addhist)

nblanks <- 8@-n

for (i in 1:nblanks) addhist <- paste@(addhist,” ")
IMTZ$header$HISTORY <- c(IMTZ$header$HISTORY,addhist)

Write to a new MTZ file

wd <- tempdir()

fname <- file.path(wd, "new.mtz")
writeMTZ(IMTZ$reflections, IMTZ$header, fname)

writeXDS_ASCII Write data to an XDS_ASCII file.

Description
Function to write an XDS_ASCII-tye named list to a file with XDS_ASCII format (unmerged or
merged).

Usage

writeXDS_ASCII(proc_info, header, reflections, filename)

https://www.ccp4.ac.uk

66 xtal _mat01

Arguments
proc_info The first component of an XDS_ASCII-type object. It includes up to three com-
ponents, MERGE, FRIEDEL and PROFILE_FITTING (this last component is missing
for files with merged observations, obtained with the program XSCALE).
header The second component of an XDS_ASCII-type object. This object includes

several other objects (see readXDS_ASCII).

reflections The third component of an XDS_ASCII-type object. It contains the data (the
experimental observations). See readXDS_ASCII for more details.

filename A character string. The path to a valid XDS_ASCII file. If a file with the same
name exists, it will be deleted.

Details

The XDS_ASCII-type named list includes three components, processing_info, header and reflections
(see readXDS_ASCII).

Value

This function does not return any R object. It outputs an XDS_ASCII reflection file to some target
location.

Examples

Load one of the XDS ASCII files included with
this distribution of cry

datadir <- system.file("extdata”,package="cry")
filename <- file.path(datadir,"xds@@_ascii.hkl")
1XDS <- readXDS_ASCII(filename)

Change date
print (1XDS$header$DATE)
1XDS$header$DATE <- "7-Apr-2021"

Write to a file called "new.hkl”

wd <- tempdir()

fname <- file.path(wd, "new.hkl")

writeXDS_ASCII(1XDS$processing_info,1XDS$header,
1XDS$reflections, fname)

xtal_mato1 Matrix for cell orthogonalisation (first choice)

Description

Given the cell parameters, this function returns a matrix for transforming fractional to orthogonal
coordinates, corresponding to the first choice in Giacovazzo’s book.

xtal _mat02 67

Usage

xtal_mat@1(a, b, c, aa, bb, cc)

Arguments
a A real number. One of the unit cell’s side lengths, in angstroms.
b A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.
cc A real number. One of the unit cell’s angles, in degrees.

Value

A 3x$ matrix M that transforms a 3 x 1 vector of fractional coordinates into a 3 x 1 vector of
orthogonal coordinates.
Examples

Fractional coordinates
Xf = ¢c(0.1,0.4,0.8)

Orthorombic unit cell
M = xtal_mat@1(10,40,20,90,90,90)

Cartesian coordinates
Xc = M%*%XT

xtal_mat@2 Matrix for cell orthogonalisation (second choice)

Description

Given the cell parameters, this function returns a matrix for transforming fractional to orthogonal
coordinates, corresponding to the second choice in Giacovazzo’s book.

Usage

xtal_mat@2(a, b, c, aa, bb, cc)

Arguments
a A real number. One of the unit cell’s side lengths, in angstroms.
A real number. One of the unit cell’s side lengths, in angstroms.
c A real number. One of the unit cell’s side lengths, in angstroms.
aa A real number. One of the unit cell’s angles, in degrees.
bb A real number. One of the unit cell’s angles, in degrees.

cc A real number. One of the unit cell’s angles, in degrees.

68 xtal _mat02

Value
A 3x$ matrix M that transforms a 3 x 1 vector of fractional coordinates into a 3 x 1 vector of
orthogonal coordinates.

Examples

Fractional coordinates
Xf = c(0.1,0.4,0.8)

Orthorombic unit cell
M = xtal_mat02(10,40,20,90,90,90)

Cartesian coordinates
Xc = M%*%Xf

Index

angle, 3
avei_vs_res, 4

bravais, 5

calculate_cell_volume, 6
calculate_cell_volume.rec_unit_cell, 6
calculate_cell_volume.unit_cell,7
change_COLSRC, 8
check_angle_validity, 9
check_bravais_validity, 10
check_cryst_symm_validity, 10
check_merged_reflections_validity, 11
check_rec_unit_cell_validity, 12
check_unit_cell_validity, 13
check_validity, 14
create_merged_reflections, 15
create_merged_reflections.default, 16
create_rec_unit_cell, 17
create_rec_unit_cell.bravais, 18
create_rec_unit_cell.cryst_symm, 18
create_rec_unit_cell.default, 19
create_rec_unit_cell.unit_cell, 20
create_unit_cell, 21
create_unit_cell.bravais, 22
create_unit_cell.cryst_symm, 22
create_unit_cell.default, 23
create_unit_cell.rec_unit_cell, 24
cryst_symm, 26

crystal_family, 25

crystal_system, 26

deplete_systematic_absences, 28
extract_symmetry_info, 29
find_symm_setting, 31

findHM, 30

frac_to_orth, 31
full_symm_strings, 32

69

generate_miller, 33
hkl_to_reso, 34

lattice_stuff, 35
lowest_uc_compatible_SG, 36

merged_reflections, 17,37, 51
num_symm_settings, 39

op_xyz_list_to_matrix_list, 40
op_xyz_to_matrix, 41
orth_to_frac, 42

plot_SHELX, 43
print.angle, 44
print.bravais, 44
print.cryst_symm, 45
print.merged_reflections
(print.unit_cell), 46
print.rec_unit_cell, 46
print.unit_cell, 46

read_SHELX_log, 55
readCIF, 47
readmm_CIF, 48
readMTZ, 8, 49, 64
readMTZHeader, 8, 49, 50, 64
readpd_rtv, 51
readSF_CIF, 52
readsm_REFL, 53
readXDS_ASCII, 53, 54, 66
readXDS_ASCIIHeader, 54
rec_unit_cell, 20, 56

syminfo_to_matrix_list, 57
syminfo_to_op_xyz_list, 58
symm_to_cell_const, 59
sysabs, 60

theme_cry, 61

70

translate_SG, 62
unit_cell, 24, 63

writeMTZ, 64
writeXDS_ASCII, 65

xtal_mat@1, 32, 42, 66
xtal_mat@2, 32, 42, 67

INDEX

	angle
	avei_vs_res
	bravais
	calculate_cell_volume
	calculate_cell_volume.rec_unit_cell
	calculate_cell_volume.unit_cell
	change_COLSRC
	check_angle_validity
	check_bravais_validity
	check_cryst_symm_validity
	check_merged_reflections_validity
	check_rec_unit_cell_validity
	check_unit_cell_validity
	check_validity
	create_merged_reflections
	create_merged_reflections.default
	create_rec_unit_cell
	create_rec_unit_cell.bravais
	create_rec_unit_cell.cryst_symm
	create_rec_unit_cell.default
	create_rec_unit_cell.unit_cell
	create_unit_cell
	create_unit_cell.bravais
	create_unit_cell.cryst_symm
	create_unit_cell.default
	create_unit_cell.rec_unit_cell
	crystal_family
	crystal_system
	cryst_symm
	deplete_systematic_absences
	extract_symmetry_info
	findHM
	find_symm_setting
	frac_to_orth
	full_symm_strings
	generate_miller
	hkl_to_reso
	lattice_stuff
	lowest_uc_compatible_SG
	merged_reflections
	num_symm_settings
	op_xyz_list_to_matrix_list
	op_xyz_to_matrix
	orth_to_frac
	plot_SHELX
	print.angle
	print.bravais
	print.cryst_symm
	print.rec_unit_cell
	print.unit_cell
	readCIF
	readmm_CIF
	readMTZ
	readMTZHeader
	readpd_rtv
	readSF_CIF
	readsm_REFL
	readXDS_ASCII
	readXDS_ASCIIHeader
	read_SHELX_log
	rec_unit_cell
	syminfo_to_matrix_list
	syminfo_to_op_xyz_list
	symm_to_cell_const
	sysabs
	theme_cry
	translate_SG
	unit_cell
	writeMTZ
	writeXDS_ASCII
	xtal_mat01
	xtal_mat02
	Index

