## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(corrselect) ## ----------------------------------------------------------------------------- set.seed(42) n <- 100 df <- data.frame( A = rnorm(n), B = rnorm(n), C = rnorm(n), D = rnorm(n), E = rnorm(n) ) df$F <- df$A * 0.9 + rnorm(n, sd = 0.1) # strongly correlated with A ## ----------------------------------------------------------------------------- res <- corrSelect(df, threshold = 0.7) res as.data.frame(res) ## ----------------------------------------------------------------------------- corrSubset(res, df, which = 1)[1:10,] ## ----------------------------------------------------------------------------- res2 <- corrSelect(df, threshold = 0.7, force_in = "A") res2 ## ----------------------------------------------------------------------------- res3 <- corrSelect(df, threshold = 0.6, cor_method = "spearman") res3 ## ----------------------------------------------------------------------------- mat <- cor(df) res4 <- MatSelect(mat, threshold = 0.7) res4 ## ----------------------------------------------------------------------------- MatSelect(mat, threshold = 0.5) ## ----------------------------------------------------------------------------- MatSelect(mat, threshold = 0.5, force_in = 1) ## ----------------------------------------------------------------------------- df_ass <- data.frame( height = rnorm(15, 170, 10), weight = rnorm(15, 70, 12), group = factor(rep(LETTERS[1:3], each = 5)), score = ordered(sample(c("low","med","high"), 15, TRUE)) ) # keep every subset whose internal associations ≤ 0.6 res5 <- assocSelect(df_ass, threshold = 0.6) res5 ## ----------------------------------------------------------------------------- res6 <- corrSelect(df, threshold = 0.7, cor_method = "spearman") res6 ## ----------------------------------------------------------------------------- assocSelect(df_ass, method_num_num = "kendall", method_num_ord = "spearman", method_ord_ord = "kendall" ) ## ----------------------------------------------------------------------------- df_ass <- data.frame( height = rnorm(10), weight = rnorm(10), group = factor(sample(c("A", "B"), 10, replace = TRUE)), score = ordered(sample(1:3, 10, replace = TRUE)) ) res7 <- assocSelect(df_ass, threshold = 1, method = "bron-kerbosch", use_pivot = TRUE) res7 ## ----------------------------------------------------------------------------- df_res <- as.data.frame(res) head(df_res) ## ----------------------------------------------------------------------------- lapply(corrSubset(res, df, which = 1:2), function(x) head(x, 10)) ## ----------------------------------------------------------------------------- # Number and size of subsets length(res@subset_list) summary(lengths(res@subset_list)) # Summaries of within-subset correlations summary(res@max_corr) summary(res@avg_corr) ## ----------------------------------------------------------------------------- str(res@subset_list) ## ----------------------------------------------------------------------------- sessionInfo()