
Package ‘comsimitv’
October 12, 2022

Type Package

Title Flexible Framework for Simulating Community Assembly

Version 0.1.5

Author Zoltan Botta-Dukat

Maintainer Zoltan Botta-Dukat <botta-dukat.zoltan@okologia.mta.hu>

Description Flexible framework for trait-
based simulation of community assembly, where components could be replaced by user-
defined function and that
allows variation of traits within species.

Imports MASS, vegan

License GPL-2

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, markdown, rmarkdown, testthat, bookdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-17 16:30:02 UTC

R topics documented:
asymmetric.competition.kernel . 2
comm.sampling . 3
comm.simul . 4
competition.kernel . 6
fDispersal . 7
fITV . 8
Gaussian.competition.kernel . 8
Gaussian.tolerance . 9
Gener.species.pool . 10
MetaCom.Dispersal . 11

1

2 asymmetric.competition.kernel

randomITV . 12
SeedProduction . 13
tolerance . 14
trait.sampling . 15

Index 16

asymmetric.competition.kernel

Asymmetric competition kernels

Description

It calculates asymmetric competition coefficients

Usage

asymmetric.competition.kernel(
trait.values,
trait.compet = "trait.b",
ac.type = c("Kisdi", "Nattrass"),
sigma.b = 0.03,
ac.C = 1,
ac.v = 1,
...

)

Arguments

trait.values Dataframe of all traits

trait.compet Name of trait related to resource use

ac.type Type of the function (see vignette("competition"))

sigma.b steepness of competition kernel

ac.C parameter influencing shape of the function (has to be positive)

ac.v parameter influencing shape of the function (has to be positive)

... Any additional parameters

Details

Depending on value of ac.type the convex-concave function from Kisdi (1999) or smooth function
suggested by Nattrass et al (2012) are used.

For formulas and meaning of parameters see the vignette("competition")

comm.sampling 3

References

Kisdi, E. (1999) Evolutionary Branching under Asymmetric Competition Journal of Theoretical
Biology 197(2): 149-162. doi: 10.1006/jtbi.1998.0864

Nattrass, S., Baigent, S., & Murrell, D. J. (2012) Quantifying the Likelihood of Co-existence for
Communities with Asymmetric Competition. Bulletin of Mathematical Biology, 74(10): 2315–2338.
doi: 10.1007/s1153801297558

See Also

competition.kernel

comm.sampling Converting simulation results into site-by-species matrix

Description

Converts simulation result into site-by-species matrix of abundances, and optionally in the same
step simulates random sampling with fixed number of individuals.

Usage

comm.sampling(x, type = c("full", "random"), size)

Arguments

x community and trait data matrix produced by comm.simul function

type Type of sampling. If type=="full" sample size equals to community size. It
simply converts x into a site-by-species matrix If type=="random", it applies
random sampling by calling (rrarefy) function

size Number of individuals in the random samples. It should be smaller than number
of individuals in simulated (sub)communities. Otherwise, x is converted into a
site-by-species matrix without (re)sampling

Details

If type=="full" it simply converts simulation results from long to wide format. If type=="random"
it randomly selects size individuals in each (sub)community and abundances in these samples are
converted into site-by-species matrix format.

Value

A site-by-species matrix containing abundances.

https://doi.org/10.1006/jtbi.1998.0864
https://doi.org/10.1007/s11538-012-9755-8

4 comm.simul

Examples

x<-comm.simul(S=20, J=30)
str(x$final.community)

w<-comm.sampling(x$final.community,type="full")
str(w)

w.rarefied<-comm.sampling(x$final.community,type="random",size=10)
rowSums(w)
rowSums(w.rarefied)

comm.simul Framework for community assembly simulation

Description

Flexible framework of individual-based simulation of community assembly following framework
proposed by Botta-Dukat & Czucz (2016), but allowing intraspecific trait variation (ITV)

Usage

comm.simul(
x = vector(),
S = 200,
n.traits = 3,
J = 300,
rand.seed = NULL,
sim.length = 1,
fSpecPool = "Gener.species.pool",
competition.kernel = "Gaussian.competition.kernel",
fSurvive = "Gaussian.tolerance",
fSeedProduction = "SeedProduction",
fDispersal = "MetaCom.Dispersal",
fITV = "randomITV",
verbose = FALSE,
...

)

Arguments

x Vector of environmental values in communities. If not given, 40 communities
are created, with environmental variable equally spacing from 0.11 to 0.89

S Species pool size

n.traits Number of traits

J Number of individuals in each community

comm.simul 5

rand.seed Random seed number. Setting the same value allows repeating the same simu-
lation

sim.length Length of simulation. sim.length*S cycle (disturbance-seed production-dispersal-
establishment) will happen.

fSpecPool Name of (the user defined) function that generates the species pool. See Gener.species.pool
competition.kernel

Name of the (user defined) function for calculating pairwise competition coef-
ficients. See more details in available functions and specification of your own
function in competition.kernel

fSurvive Name of the (user defined) function for calculating survival probability of seeds.
See more details in available functions and specification of your own function
in tolerance

fSeedProduction

Name of the user defined function for calculating number of produced seeds See
SeedProduction

fDispersal Name of the user defined function for dispersal of produced seeds among local
communities. See more details in available functions and specification of your
own function in fDispersal

fITV Name of the function that define seeds trait values, possibly considering mother’s
trait and mothers environment. If "noITV", there is no intraspecific trait vari-
ation. See more details in available functions and specification of your own
function in fITV

verbose Runing may take long time. If verbose set to TRUE, it writes messages into the
screen indicating the progress.

... Additional parameters of functions called by the framework.

Details

This function is a framework for simulation of assembly in a meta-community. The simulation con-
sists of a community initialization followed by an iterative simulation of a "disturbance–regeneration"
cycle. During initialization a species pool is created defining each species by its trait values. Each
locality is characterized by an environmental variable. Initial composition of local communities is a
random selection from the species pool: species identity is selected independently for each individal
with probability of seedling survival (that depends on local environment and trait value).

The "disturbance-regeneration" cycle consists of the following steps:

1. disturbance event: some randomly selected individuals die in each community

2. survivors produce seeds. Seed production depends on fertility of the locality and competition
among coexisting individuals

3. seeds are dispersed among localities

4. all seeds germinate and seedlings struggle for survival. The number of adults in local commu-
nities is fixed, thus number of seedlings that can survive and grow up equals to the number of
individulas died in the disturbance event (in the recent version one individual dies, but planed
development is introducing a disturbance severity/number of deaths parameter)

It is a flexible framework that calls funcions for:

6 competition.kernel

• generating species pool (Gener.species.pool)

• calculating pairwise competition coefficients (competition.kernel)

• calculating seedling’s survival probabilities (tolerance)

• calculating number of produced seeds (SeedProduction)

• calculating trait values of offsprings (fITV)

• seed dispersal among localities (fDispersal)

Functions available in the package can be easily replaced by user-defined functions.

Value

A list with two elements:

$final.community a dataframe containing data on individuals in the final meta-community. Each
individual represented by a row; columns are: sub-community, species identity, trait values.

$parameters list of simulation parameters (including parameters of functions called by the frame-
work function)

References

Botta-Dukat Z, Czucz B (2016) Testing the ability of functional diversity indices to detect trait
convergence and divergence using individual-based simulation. Methods in Ecology and Evolution
7(1): 114-126. doi: 10.1111/2041210X.12450

Examples

w<-comm.simul(S=20, J=30)
str(w)

set.seed(1)
w<-comm.simul(S=20, J=30, fITV=NULL)$final.community
w[w[,2]==1,] # Each individuals belonging to Species1 has the same trait values

competition.kernel Competition kernels

Description

User defined functions for calculating pairwise competition coefficients

Arguments

trait.values Values of trait related to resource use

... Additional parameters

https://doi.org/10.1111/2041-210X.12450

fDispersal 7

Details

User can defined any specific from of competition. Pairwise competition between species/individuals
should depend on their trait values related to resource use. Vector of these trait values has to be the
first parameter of the function, and any further parameters are allowed. The output has to be a
square matrix of pairwise competition coefficients.

Competition kernels available in the package:
asymmetric.competition.kernel
Gaussian.competition.kernel

Value

Square matrix of pairwise competition coefficients

fDispersal User defined functions for dispersal

Description

These functions define how seeds can spread among local communities.

Arguments

before matrix where each seed is represented by one row, and seeds’s attributes (loca-
tion, species, trait values) are in the columns

... Additional parameters of functions called by the framework.

Details

User can define any rule for seed dispersal. The only requirement is that both first argument and
value of the function should be a matrix where each seed is represented by one row, and seeds’s
attributes (location, species, trait values) are in the columns. The locality information has to be
stored in column named ’site’.

Available function in the package:

MetaCom.Dispersal

Value

Same type as the first argument.

8 Gaussian.competition.kernel

fITV Intraspecific Trait Variation

Description

User defined function for Intraspecific Trait Variation

Arguments

seeds Matrix of produced seeds (with mother’s trait values) as produced by SeedProduction
function

... Other parameters of the function

Details

User can defined any specific function for ITV, e.g. random variation around mothers value, or
maternal effect.

The first parameter has to be matrix of produced seeds, in the form as it created by SeedProduction
function, and the results has to be in the same matrix form with updated trait values.

ITV functions available in the package:

randomITV

Value

The same type as seeds parameter, i.e. a matrix where each seed is represented by one row, and
seeds’s attributes (location, species, trait values) are in the columns

Gaussian.competition.kernel

Gaussian competition kernel

Description

It calculates pairwise competition coefficients as overlap of Gaussian resource utilization curve

Usage

Gaussian.competition.kernel(
trait.values,
trait.compet = "trait.b",
sigma.b = 0.03,
...

)

Gaussian.tolerance 9

Arguments

trait.values Dataframe of all traits

trait.compet Name of trait related to resource use

sigma.b Width of Gaussian kernel

... Any additional parameters

Details

It assumes that each species has Gaussian resource utilization curve:

exp(
(x− trait.value)2

sigma.b
)

where: x = quality of resource (e.g. seed size or rooting depth

Optima of curves depend on trait value related to resource use, while standard deviation is the same
for all species (note that for technical reason parameter sigma.b is twice of the common sqared
s.d.). Pairwise competition coefficients are calculated as overlap of resource utilization functions
(MacArthur & Levins 1967).See details in vignette("competition")

References

MacArthur R, Levins R (1967) The Limiting Similarity, Convergence, and Divergence of Coexist-
ing Species. The American Naturalist 101: 377-385. doi: 10.1086/282505

See Also

competition.kernel

Gaussian.tolerance Bell-shaped tolerance function

Description

It calculates probability of seedling’s survival from their trait related to habitat filtering and the local
environment.

Usage

Gaussian.tolerance(
trait.values,
env,
env.trait = "trait.a",
sigma.a = 0.001,
...

)

https://doi.org/10.1086/282505

10 Gener.species.pool

Arguments

trait.values Dataframe of all traits

env Vector of environmental conditions in the local communities

env.trait Name of trait related to environmental tolerance

sigma.a Tolerance width (same for all species)

... Any additional parameters

Details

It assumes that probability of seedling’s survival is maximal if the local environment has the same
value as its trait. Survival probability decrease as environmental value departs from the optimum
according to a Gaussian (bell-shaped) curve. The speed of decrease depends on the tolerance width
parameter (sigma.a).

Value

A matrix of survival probabilities, communities in rows, species/individuals in columns

See Also

tolerance

Gener.species.pool Generating trait values for the species pool

Description

It generates random trait values for species. Each species (individual) are characterized by three
traits.

Usage

Gener.species.pool(
S,
n.traits = 3,
distribs = rep("unif", n.traits),
distr.parms = list(),
sigma = diag(1, n.traits, n.traits),
...

)

MetaCom.Dispersal 11

Arguments

S Species pool size

n.traits Number of traits

distribs Types of the distributions of traits

distr.parms Parameters of distribution (see Details)

sigma Matrix of variance-covariance matrix of traits

... Any additional parameters

Details

Each species are characterized by three traits called trait A, B and C. Trait A describes the habitat
preference, trait B influences the competitive interactions, while trait C is a completely neutral trait.

Any standard distribution of stats package can be used for generating the random numbers. For
list of these distribution see Distributions In stats package the functions for the density/mass
function are named in the form dxxx."xxx" (without d!) as string (i.e. between quatation marks)
should be supplied for parameter distribs.

In this step single value of each trait is generated for each species, i.e. there is no intraspecific trait
variation.

If traits are independent (it is the default option), random number generating functions are called
with parameters specified by the user.

Otherwise, a variance-covariance matrix has to be given. First, triplets of random numbers are
drawn from multivariate normal distribution with zero means and the supplied variance-covariance
matrix as parameters. Then these random numbers are converted to probability by standard normal
probability function, and then these probabilities converted to trait values using quantile function of
selected distribution with parameters given by the user.

Value

A data frame with traits as columns

MetaCom.Dispersal Seed dispersion in a metacommunity

Description

Seeds can disperse to any other local community with the same probability; i.e. probability to dis-
perse other subcommunity/(number local communities - 1). Each seed is dispersed independently.

Usage

MetaCom.Dispersal(n, before, m = 0.1, ...)

12 randomITV

Arguments

n number of local (sub)communities

before A matrix of seed’s attributes; seeds in rows, their location, species identity and
traits are in columns. Column that contains information on locality has to be
called ’site’

m probability that a seed are dispersed into other (sub)community

... Additional parameters. It necessary for thechnical reasons: the framework don’t
know the current list of parameters when call this function

Details

Both input and output is a matrix where seeds are in the rows, and their attributes (i.e. location,
species identity and trait values) are in the columns.

Value

Same type of matrix as before

See Also

fDispersal

randomITV Intraspecific Trait Variation

Description

This function adds a random noise to mother’s trait values of each seed

Usage

randomITV(
seeds = matrix(),
n.traits = 3,
distribs = rep("unif", n.traits),
distr.parms = list(),
sigma = diag(1, n.traits, n.traits),
ITV.ratio = 0.01,
...

)

SeedProduction 13

Arguments

seeds Matrix of produced seeds (with mother’trait values) as produced by SeedProduction
function

n.traits Number of traits

distribs Types of the distributions of traits (see Gener.species.pool)

distr.parms Parameters of distribution (see Gener.species.pool)

sigma Matrix of variance-covariance matrix of traits (see Gener.species.pool)

ITV.ratio Ratio of within/between species variances of traits

... Any additional parameters

Details

The function uses parameters of Gener.species.pool. First it transforms back mother’s trait val-
ues to multivariate normal distribution. Then random noise was added to this values. Random
noise has multivariate normal distribution, with zero means and the same correlation structure as
specified in parameter sigma. Note that sigma specifies covariance matrix, not correlation structure
per se. Variances in the random noise are diagonals (i.e. variance componens) of parameter sigma
multiplied by ITV.ratio. The non-diagonal elements of covariance matrix were specified to conserve
the correlation structure among traits.

Value

Matrix of produced seeds as produced by SeedProduction function

SeedProduction Calculating number of produced seeds

Description

Number of seeds calculated following the formula used by Botta-Dukat & Czucz (2016). This
built-in function can be replaced by a user-defined one.

Usage

SeedProduction(compet, b0 = 1, K = 200, seed.distrib = c("pois", "binom"), ...)

Arguments

compet Matrix of pairwise competition coefficients

b0 Probability of producing seed, if no competition

K Critical level of competition (See Details)

seed.distrib Distribution of seed numbers (See Details)

... any additional parameters

14 tolerance

Details

Expected value of produced seeds is a decreasing sigmoid function of strength of competition (sum
of abundances weighted by competition coefficients). If strength of competition is higher than
parameter K, probability is set to zero. See vignette("competition") for formulas

In simulation of Botta-Dukat & Czucz (2016) each individual produces one seed or does not produce
seed at all. In this case number of seeds follows binomial distribution (i.e. distrib="binom"). A more
realistic alternative is using Poisson distribution (distrib="pois").

Value

Matrix of produced seeds

tolerance Habitat suitability (tolerance) functions

Description

User defined functions for habitat suitability

Arguments

trait.values Values of trait related to habitat filtering

env Vector of environmental conditions in the local communities

... Additional parameters

Details

User can defined any specific function of habitat suitability, depending on environmental conditions
and trait value related to habitat filtering. Vectors of these trait values and environmental conditions
have to be the first and second parameter of the function, and any further parameters are allowed.
The output has to be a matrix of habitat suitabilities, communities in rows, species/individuals in
columns.

Tolerance functions available in the package:

Gaussian.tolerance

Value

A matrix of habitat suitabilities, communities in rows, individuals in columns

trait.sampling 15

trait.sampling Simulated sampling for trait value measurement

Description

Randomly selects individuals for trait value measurement and gives back raw measured traits or
their means

Usage

trait.sampling(x, ITV = FALSE, aggregate = TRUE, n = 5)

Arguments

x community and trait data matrix produced by comm.simul function

ITV If TRUE each subcommunity are sampled separately, otherwise the meta-community
level sampling was done

aggregate If TRUE mean trait values are returned, otherwise the raw values of sampled
individuals

n Number of sampled individuals

Details

It simulates the real world situation that not all individuals are collected for trait measurement.
If ITV==FALSE, all individuals belonging to the species are pooled, and then n randomly selected
individuals are measured. If ITV==TRUE, n individuals are measured in each (sub)community, where
the species occur. If the occurring individuals are less than n, all individuals are measured.

If aggregate==TRUE, meta-community or subcommunity level means are calculated, otherwise raw
measurements are returned.

Value

data.frame with fields: species, site (only if ITV=TRUE), trait.a, trait.b, trait.c (raw values
or means depending on parameter aggregate)

Examples

x<-comm.simul(S=20, J=30)
str(x)

w<-trait.sampling(x$final.community)
w

w<-trait.sampling(x$final.community,ITV=TRUE,aggregate=TRUE)
str(w)

Index

asymmetric.competition.kernel, 2, 7

comm.sampling, 3
comm.simul, 3, 4, 15
competition.kernel, 3, 5, 6, 6, 9

Distributions, 11

fDispersal, 5, 6, 7, 12
fITV, 5, 6, 8

Gaussian.competition.kernel, 7, 8
Gaussian.tolerance, 9, 14
Gener.species.pool, 5, 6, 10, 13

MetaCom.Dispersal, 7, 11

randomITV, 8, 12
rrarefy, 3

SeedProduction, 5, 6, 8, 13, 13

tolerance, 5, 6, 10, 14
trait.sampling, 15

16

	asymmetric.competition.kernel
	comm.sampling
	comm.simul
	competition.kernel
	fDispersal
	fITV
	Gaussian.competition.kernel
	Gaussian.tolerance
	Gener.species.pool
	MetaCom.Dispersal
	randomITV
	SeedProduction
	tolerance
	trait.sampling
	Index

