## ----echo=FALSE--------------------------------------------------------------- library(knitr) options(digits = 3) ## ----echo=FALSE--------------------------------------------------------------- library(codyn) library(knitr) data(collins08) kable(head(collins08)) ## ----results='asis'----------------------------------------------------------- KNZ_turnover <- turnover(df = collins08, time.var = "year", species.var = "species", abundance.var = "abundance", replicate.var = "replicate") ## ----echo=FALSE--------------------------------------------------------------- kable(head(KNZ_turnover)) ## ----results='asis', error = TRUE--------------------------------------------- KNZ_turnover_agg <- turnover(df = collins08, species.var = "species", time.var = "year", abundance.var = "abundance") ## ----results='asis'----------------------------------------------------------- KNZ_appearance <- turnover(df = collins08, time.var = "year", species.var = "species", abundance.var = "abundance", replicate.var = "replicate", metric = "appearance") ## ----results='asis'----------------------------------------------------------- KNZ_disappearance <- turnover(df = collins08, time.var = "year", species.var = "species", abundance.var = "abundance", replicate.var = "replicate", metric = "disappearance") ## ----fig.width = 7, fig.height = 4, echo=FALSE-------------------------------- library(ggplot2) ggplot(KNZ_turnover, aes(x=year, y=total, color=replicate)) + geom_line(size = 2) + theme_bw() ## ----fig.width = 7, fig.height = 4, echo=FALSE-------------------------------- KNZ_appearance$metric<-"appearance" names(KNZ_appearance)[1]="turnover" KNZ_disappearance$metric<-"disappearance" names(KNZ_disappearance)[1]="turnover" KNZ_appdisapp<-rbind(KNZ_appearance, KNZ_disappearance) ggplot(KNZ_appdisapp, aes(x=year, y=turnover, color=replicate)) + geom_line(size = 2) + theme_bw() + facet_wrap(~metric) + ggtitle("Species appearances and disappearances \n Annually burned vs unburned plots, Konza ") ## ----------------------------------------------------------------------------- ## Generate some sample data yr = 1977:2003 sp1 = .3*sin(yr) + rnorm(length(yr), 0, .1) + -.05*yr + 150 sp2 = .2*sin(yr) + rnorm(length(yr), 0, .1) + -.01*yr + 70 sp3 = .2*sin(yr) + rnorm(length(yr), 0, .1) + .01*yr + 30 dat = data.frame(year = rep(yr, 3), species = gl(3, length(yr), labels = c("sp1","sp2","sp3")), abundance = c(sp1, sp2, sp3)) ## ---- fig.width = 7, fig.height = 4------------------------------------------- ggplot(dat, aes(year, abundance, color = species)) + geom_line(size = 2) + theme_bw() ## ---- fig.width = 5, fig.height = 5------------------------------------------- ggplot(dat, aes(year, abundance, color = species)) + geom_line(size = 2) + coord_polar() + theme_bw() ## ---- fig.width = 7, fig.height = 5------------------------------------------- aggdat <- aggregate(abundance ~ species * year * replicate, data = subset(collins08, species == "andrgera" | species == "andrscop" | species == "poaprat"| species == "sorgnuta"), FUN = mean) ggplot(aggdat, aes(year, abundance, color = species)) + geom_line(size = 2) + coord_polar() + theme_bw() + facet_wrap(~replicate) + ggtitle("Dominant species abundances \n Annually burned vs unburned plots, Konza \n") ## ----------------------------------------------------------------------------- KNZ_rankshift <- rank_shift(df=collins08, time.var = "year", species.var = "species", abundance.var = "abundance", replicate.var = "replicate") #Select the final time point from the returned time.var_pair KNZ_rankshift$year <- as.numeric(substr(KNZ_rankshift$year_pair, 6,9)) ## ----echo=FALSE--------------------------------------------------------------- kable(head(KNZ_rankshift)) ## ---- error = TRUE------------------------------------------------------------ KNZ_rankshift_agg <- rank_shift(df = collins08, time.var = "year", species.var = "species", abundance.var = "abundance") ## ----fig.width = 7, fig.height = 4-------------------------------------------- # Create a column with the final year from the returned time.var_pair KNZ_rankshift$year <- as.numeric(substr(KNZ_rankshift$year_pair, 6, 9)) # Plot it ggplot(KNZ_rankshift, aes(year, MRS, color=replicate)) + geom_line(size= 2) + theme_bw() ## ----------------------------------------------------------------------------- rate.res <- rate_change(collins08, time.var= "year", species.var= "species", abundance.var= "abundance", replicate.var = "replicate") ## ---- echo = F---------------------------------------------------------------- rownames(rate.res) = NULL ## ---- fig.width = 7, fig.height = 5------------------------------------------- kable(rate.res) ## ---- fig.width = 7, fig.height = 5------------------------------------------- #Use the rate_change_interval function to generate the full data frame of distances by time lag intervals comm.res <- rate_change_interval(collins08, time.var = "year", species.var = "species", abundance.var = "abundance", replicate.var = "replicate") ggplot(comm.res, aes(interval, distance, color = replicate)) + facet_wrap(~replicate) + geom_point() + theme_bw() + stat_smooth(method = "lm", se = F, size = 2)