## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo=TRUE, results='hold', warning=F, cache=F, eval=T, #dev = 'pdf', message=F, fig.width=5, fig.height=5, # fig.retina=0.7, tidy.opts=list(width.cutoff=75), tidy=TRUE ) old <- options(scipen = 1, digits = 4) ## ----setup-------------------------------------------------------------------- library(circularEV) require(plotly) ## ----------------------------------------------------------------------------- data(HsSP) data(drc) timeRange <- 54.5 idx <- order(drc) drc <- drc[idx] Data <- HsSP[idx] set.seed(1234) Data <- Data + runif(length(Data), -1e-4, 1e-4) ## ----------------------------------------------------------------------------- PlotData(Data=Data, drc=drc, thr=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotData(Data=Data, drc=drc, thr=NULL, pointSize=4, fontSize=14, thrWidth=4, ylim=c(0,max(Data)) ) ## ----------------------------------------------------------------------------- thetaVec <- 1:360 ## ---- eval=F------------------------------------------------------------------ # thrResultML <- ThrSelection(Data=Data, drc=drc, h=60, b=0.35, thetaGrid=thetaVec, # EVIestimator="ML", useKernel=T, concent=10, bw=30, numCores=2)$thr ## ---- echo=F------------------------------------------------------------------ data(thresholdExampleML) thrResultML <- thresholdExampleML ## ----------------------------------------------------------------------------- PlotData(Data=Data, drc=drc, thr=thrResultML, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotData(Data=Data, drc=drc, thr=thrResultML, pointSize=4, fontSize=12, thrWidth=4, ylim=c(0,max(Data))) ## ---- results='hide'---------------------------------------------------------- lambda <- 100 kappa <- 40 thrPerObs <- thrResultML[drc] excess <- Data - thrPerObs drcExcess <- drc[excess>0] excess <- excess[excess>0] splineFit <- SplineML(excesses = excess, drc = drcExcess, nBoot = 30, numIntKnots = 16, lambda=lambda, kappa=kappa, numCores=2) ## ----------------------------------------------------------------------------- xiBoot <- splineFit$xi sigBoot <- splineFit$sig PlotParamEstim(bootEstimates=xiBoot, thetaGrid=0:360, ylab=bquote(hat(xi)), alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2) PlotParamEstim(bootEstimates=sigBoot, thetaGrid=0:360, ylab=bquote(hat(sigma)), alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2) ## ----------------------------------------------------------------------------- h <- 60 # needed for calculating local probability of exceedances RLBoot <- CalcRLsplineML(Data=Data, drc=drc, xiBoot=xiBoot, sigBoot=sigBoot, h=h, TTs=c(100, 10000), thetaGrid=thetaVec, timeRange=timeRange, thr=thrResultML) ## ----------------------------------------------------------------------------- # 100-year level PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=c(0, 25), pointSize=4, fontSize=12, lineWidth=2) ## ----------------------------------------------------------------------------- # 10000-year level PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=2, alpha=0.05, ylim=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=2, alpha=0.05, ylim=c(0, 25), pointSize=4, fontSize=12, lineWidth=2) ## ---- include = FALSE--------------------------------------------------------- options(old)