Package ‘cayleyR’

November 25, 2025

Type Package
Title Cayley Graph Analysis for Permutation Puzzles

Version 0.1.0

Description Implements algorithms for analyzing Cayley graphs of permutation groups,
with a focus on the TopSpin puzzle and similar permutation-based combinatorial
puzzles. Provides methods for cycle detection, state space exploration, and
finding optimal operation sequences in permutation groups generated by shift
and reverse operations.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Imports digest

Suggests knitr, rmarkdown
VignetteBuilder knitr

URL https://github.com/Zabis13/cayleyR

BugReports https://github.com/Zabis13/cayleyR/issues
NeedsCompilation no

Author Yuri Baramykov [aut, cre]

Maintainer Yuri Baramykov <lbsbmsu@mail.ru>

Repository CRAN

Date/Publication 2025-11-25 20:42:14 UTC

Contents

apply_operations e e
find_best_random_combinations e e
get_reachable_states
get_reachable_states_light
reverse_prefix L e
shift_left o e,
shift_right

https://github.com/Zabis13/cayleyR
https://github.com/Zabis13/cayleyR/issues

2 apply_operations

Index 9

apply_operations Apply Operation Sequence

Description

Applies a sequence of operations to a permutation state. Operations can be specified as "L"/"1"
(shift left), "R"/"2" (shift right), or "X"/"3" (reverse first k elements).

Usage

apply_operations(state, operations, k)

Arguments
state Integer vector representing the initial permutation state
operations Character vector of operations to apply sequentially
k Integer, the parameter for reverse_prefix operations
Value

Integer vector representing the state after all operations

Examples

Basic usage with numeric codes
apply_operations(1:5, c("1", "3"), k = 3)

TopSpin puzzle example

start_state <- 1:20

operations <- c("1", "3", "2") # Left, Reverse(4), Right
result <- apply_operations(start_state, operations, k = 4)
print(result)

Using letter codes
apply_operations(1:5, c("L", "X", "R"), k = 3)

find_best_random_combinations 3

find_best_random_combinations
Find Best Random Operation Sequences

Description

Generates random sequences of operations and evaluates their cycle lengths to find sequences that
produce the longest cycles in the Cayley graph. Useful for discovering interesting operation se-
quences in permutation puzzles.

Usage
find_best_random_combinations(
moves,
combo_length,
n_samples,
n_top,
start_state,
k
)
Arguments
moves Character vector of allowed operation symbols (e.g., c("1", "2", "3") or c("L",
IIRH’ "Xll))
combo_length Integer, length of each operation sequence to test
n_samples Integer, number of random sequences to generate and test
n_top Integer, number of top results to return (sorted by cycle length)
start_state Integer vector, initial permutation state
k Integer, parameter for reverse operations
Details

The returned data frame reachable_states_df has the following structure:

step | state | operation

_____ I e —— | ——————————

1 | 12345 | 1 <- INITIAL, operation="1" (next operation)
2 | 23456 | 1 <- after applying op1 from row 1

3 | 34567 | 2 <- after applying op1 from row 2

4 | 45678 | 3 <- after applying op2 from row 3

5 | 56789 | 1 <- after applying op3 from row 4

20 | 201 2 3 4... | 1 <- after applying all ops from rows 1-19

NA | 12345... | NA <- after applying op1 from row 20 = initial

4 get_reachable_states

Value

Data frame with columns:

combination String representation of the operation sequence

total_moves Cycle length for this sequence

unique_states_count
Number of unique states visited in the cycle

Examples

Find top 10 sequences from 100 random samples
best <- find_best_random_combinations(
moves = c("1", "2", "3"),
combo_length = 10,
n_samples = 100,
n_top = 10,
start_state = 1:10,
k =4
)
print(best)

Quick search with letter codes

top5 <- find_best_random_combinations(
moves = c("L", "R", "X"),
combo_length = 5,
n_samples = 100,
n_top = 5,
start_state = 1:10,
k =3

)

print(top5)

get_reachable_states Find Cycle in Permutation Group

Description

Explores the Cayley graph starting from an initial state and applying a sequence of operations
repeatedly until returning to the start state. Returns detailed information about all visited states and
the cycle structure.

Usage

get_reachable_states(start_state, allowed_positions, k, verbose = FALSE)

get_reachable_states_light 5

Arguments

start_state Integer vector, the initial permutation state
allowed_positions
Character vector, sequence of operations to repeat

k Integer, parameter for reverse operations
verbose Logical; if TRUE, prints progress and cycle information messages (default FALSE)
Value

List containing:

states List of all visited states
reachable_states_df

Data frame with states, operations, and step numbers
operations Vector of operations applied

total_moves Total number of moves in the cycle
unique_states_count
Number of unique states visited

cycle_info Summary string with cycle statistics

Examples

Simple example with letter codes
result <- get_reachable_states(1:20, c("L", "X"), k = 4)
writeLines(result$cycle_info)

Example with numeric codes

n <- 20

k <- 4

start_state <- 1:n

allowed_positions <- c("1", "3", "2")

result <- get_reachable_states(start_state, allowed_positions, k)
writeLines(result$cycle_info)
head(result$reachable_states_df)

get_reachable_states_light
Find Cycle Length (Lightweight Version)

Description

Fast version of cycle detection that only returns cycle length and unique state count without storing
all intermediate states. Useful for testing many operation sequences efficiently.

Usage

get_reachable_states_light(start_state, allowed_positions, k)

Arguments

start_state Integer vector, the initial permutation state
allowed_positions
Character vector, sequence of operations to repeat

k Integer, parameter for reverse operations

Value
List containing:

total_moves Total number of moves to return to start state
unique_states_count
Number of unique states in the cycle

Examples

Quick cycle length check

result <- get_reachable_states_light(1:20, c("L", "X", "L"), k = 4)

cat("Cycle length:"”, result$total_moves, "\n")
cat("Unique states:"”, result$unique_states_count, "\n")

Compare multiple sequences

reverse_prefix

seql <- get_reachable_states_light(1:20, c("1", "3"), k = 4)
seq2 <- get_reachable_states_light(1:20, c("2", "3"), k = 4)
cat("Sequence 1 cycle:"”, seql$total_moves, "\n")
cat("Sequence 2 cycle:"”, seq2$total_moves, "\n")
reverse_prefix Reverse Prefix
Description

Reverses the first k elements of the state vector, analogous to the turnstile operation in the TopSpin

puzzle.

Usage

reverse_prefix(state, k)

Arguments
state Integer vector representing the current permutation state
k Integer, the number of leading elements to reverse
Value

Integer vector with the first k elements reversed

shift_left

Examples

Basic example
reverse_prefix(1:10, 4) # Returns c(4, 3, 2, 1, 5, 6, 7, 8, 9, 10)

With variables

n <-10

k <- 4

start_state <- 1:n

demo <- reverse_prefix(start_state, k)
print(demo)

shift_left Shift State Left

Description

Performs a cyclic left shift on the state vector, moving the first element to the end.

Usage

shift_left(state)

Arguments

state Integer vector representing the current permutation state

Value

Integer vector with elements shifted left by one position

Examples

Basic shift operation
shift_left(1:5)

With variables

start_state <- 1:20

result <- shift_left(start_state)
print(result)

8 shift_right

shift_right Shift State Right

Description

Performs a cyclic right shift on the state vector, moving the last element to the beginning.

Usage
shift_right(state)

Arguments

state Integer vector representing the current permutation state

Value

Integer vector with elements shifted right by one position

Examples

Simple example
shift_right(1:5)

With variable assignment
start_state <- 1:20

result <- shift_right(start_state)
print(result)

Index

apply_operations, 2
find_best_random_combinations, 3

get_reachable_states, 4
get_reachable_states_light, 5

reverse_prefix, 6

shift_left,7
shift_right, 8

	apply_operations
	find_best_random_combinations
	get_reachable_states
	get_reachable_states_light
	reverse_prefix
	shift_left
	shift_right
	Index

