
The caper package: comparative analysis of phylogenetics

and evolution in R

David Orme

September 26, 2023

This vignette documents the use of the caper package for R (R Development Core Team,
2011) in carrying out a range of comparative analysis methods for phylogenetic data. The caper

package, and the code in this vignette, requires the ape package (Paradis et al., 2004) along with
the packages mvtnorm and MASS.

Contents

1 Background 2

2 Comparative datasets 3
2.1 The comparative.data class and objects. 3

2.1.1 na.omit . 3
2.1.2 subset . 5
2.1.3 [. 5

2.2 Example datasets . 6

3 Methods and functions provided by caper. 7
3.0.1 Phylogenetic linear models . 7
3.0.2 Fitting phylogenetic GLS models: pgls . 8

3.1 Optimising branch length transformations: profile.pgls. 9
3.1.1 Criticism and simplification ofpgls models: plot, anova and AIC. 11

3.2 Phylogenetic independent contrasts . 12
3.2.1 Variable names in contrast functions . 12
3.2.2 Continuous variables: crunch . 13
3.2.3 Categorical variables: brunch . 13
3.2.4 Species richness contrasts: macrocaic . 14
3.2.5 Phylogenetic signal: phylo.d . 15

3.3 Checking and comparing contrast models. 16
3.3.1 Testing evolutionary assumptions: caic.diagnostics. 16
3.3.2 Robust contrasts: caic.robust . 17
3.3.3 Model criticism: plot . 19
3.3.4 Model comparison: anova & AIC . 20

3.4 Other comparative functions . 21
3.4.1 Tree imbalance: fusco.test . 21

3.5 Phylogenetic diversity: pd.calc, pd.bootstrap and ed.calc. 22
3.6 Phylogeny and trait simulation: growTree . 24

3.6.1 Simulating continuous characters. 25
3.6.2 Simulating discrete characters . 26
3.6.3 Lineage properties and simulation grain . 28
3.6.4 Inheritance rules. 28
3.6.5 Epochs: linking simulations. 29

3.7 Utility functions . 31
3.7.1 clade.matrix . 31
3.7.2 clade.members and clade.members.list 31
3.7.3 VCV.array . 32

A The CAIC ‘package’ 36

1

1 Background

Comparing the traits of species (or of groups of species of higher taxonomic rank) can produce
deep insights into evolutionary processes. However, all such analyses should take into account the
degree to which species are related and hence do not provide independent data on a hypothesis.
This can lead both to situations in which apparently strong relationships rest on relatively few
truly independent events (Fig. 1a) or where strong relationships within groups are masked by
phylogenetic differences between groups (Fig. 1b).

● ●

● ●

● ●

● ●

● ●

a

●

●

●
●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

1
2

3
4

5

2 3 4 5

● ●

● ●

● ●

● ●

● ●

b

●

●

●
●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

1 2 3 4 5

Figure 1: Phylogenetic autocorrelation in action. a) Simple regression (solid line) suggests a strong
relationship between two variables; the phylogeny shows that within the three main groups, there is no
consistent relationship (dashed lines) and the apparent relationship stems from only two linked shifts in
the means of the traits early in the evolution of the clade. b) Simple regression (solid line) suggests a
weak positive relationship between the two variables; the phylogeny shows that there are strong positive
relationships between the traits within each of the three main groups but this is masked by early shifts in
the mean value of the red trait.

The caper package implements two methods that account for this phylogenetic autocorrelation.
The first, originally described by Felsenstein (1985), is to recognize that the differences between
taxa on either side of a bifurcating node represent independent evolutionary trajectories and that
these differences (‘independent contrasts’) can be used to test hypotheses in a way that accounts
for the phylogenetic autocorrelation between the taxa. Pagel (1992) extended this method to
permit contrasts to be calculated at polytomies. The second, described by [refs], is to include the
phylogenetic structure as a covariance matrix in a linear model.

The caper package also provides a number of other phylogenetic comparative methods, along
with a flexible method for simulating trait evolution on phylogenies.

2

2 Comparative datasets

2.1 The comparative.data class and objects.

The majority of functions in caper require both a phylogeny and data set of traits for the taxa
at the tips of that phylogeny. Crucially, the rows of data need to be matched carefully to the tips
to ensure that the phylogenetic structure in the variables is represented correctly: caper provides
the function comparative.data to facilitate this. The following simple example shows the basic
operation:

> phy <- read.tree(text='(((B:2,A:2):1,D:3):1,(C:1,E:1):3);')

> dat <- data.frame(

+ taxa=c("A","B","C","D","E"),

+ n.species=c(5,9,12,1,13), mass=c(4.1,4.5,5.9,3.0,6.0)

+)

> cdat <- comparative.data(data=dat, phy=phy, names.col="taxa")

> print(cdat)

Comparative dataset of 5 taxa:

Phylogeny: phy

5 tips, 4 internal nodes

chr [1:5] "B" "A" "D" "C" "E"

Data: dat

$ n.species: num [1:5] 9 5 1 12 13

$ mass : num [1:5] 4.5 4.1 3 5.9 6

In order to make it easier to use contrast methods, where values are estimated at internal nodes,
the comparative.data function and contrast methods use internal node labels to identify values.
Creating a comparative data object will not replace existing labels but will insert simple numeric
labels for unlabelled nodes. The comparative.data class has a number of generic methods that
allow users to extract a subset of taxa and the relevant linked data from within a comparative.data
object.

2.1.1 na.omit

This method returns a subset of the object containing only those taxa for which the data are
complete (i.e no NA values). By default, the comparative.data function drops incomplete rows,
but this can be altered. The examples below show the function in use on the perissodactyla

dataset.

> data(perissodactyla)

> (perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial))

Comparative dataset of 9 taxa:

Phylogeny: perissodactyla.tree

9 tips, 7 internal nodes

chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" ...

Data: perissodactyla.data

$ log.female.wt : num [1:9] 6.24 6.18 6.26 5.46 5.65 ...

$ log.gestation.length: num [1:9] 2.68 2.65 2.69 2.6 2.59 ...

$ log.neonatal.wt : num [1:9] 4.84 4.7 4.9 3.92 4.6 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 1 1 2 2

3

Dropped taxa:

perissodactyla.tree { 9 (9 } 0) perissodactyla.data

> # but this can be turned off

> (perissoFull <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial, na.omit=FAL

Comparative dataset of 13 taxa:

Phylogeny: perissodactyla.tree

13 tips, 11 internal nodes

chr [1:13] "Dicerorhinus sumatrensis" "Rhinoceros sondaicus" ...

Data: perissodactyla.data

$ log.female.wt : num [1:13] 5.91 6.15 6.24 6.18 6.26 ...

$ log.gestation.length: num [1:13] 2.6 2.68 2.68 2.65 2.69 ...

$ log.neonatal.wt : num [1:13] 4.54 4.7 4.84 4.7 4.9 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": NA NA 2 1 2 NA NA 2 2 1 ...

Dropped taxa:

perissodactyla.tree { 5 (13 } 0) perissodactyla.data

> na.omit(perisso)

Comparative dataset of 9 taxa:

Phylogeny: perissodactyla.tree

9 tips, 7 internal nodes

chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" ...

Data: perissodactyla.data

$ log.female.wt : num [1:9] 6.24 6.18 6.26 5.46 5.65 ...

$ log.gestation.length: num [1:9] 2.68 2.65 2.69 2.6 2.59 ...

$ log.neonatal.wt : num [1:9] 4.84 4.7 4.9 3.92 4.6 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 1 1 2 2

Dropped taxa:

perissodactyla.tree { 9 (9 } 0) perissodactyla.data

The scope argument uses a model formula to indicate which variables to consider when reducing
a comparative data object to complete rows and can be used directly by na.omit or indirectly
through comparative.data.

> comparative.data(perissodactyla.tree, perissodactyla.data, Binomial, scope= log.female.wt ~ log.

Comparative dataset of 12 taxa:

Phylogeny: perissodactyla.tree

12 tips, 10 internal nodes

chr [1:12] "Dicerorhinus sumatrensis" "Rhinoceros sondaicus" ...

Data: perissodactyla.data

$ log.female.wt : num [1:12] 5.91 6.15 6.24 6.18 6.26 ...

$ log.gestation.length: num [1:12] 2.6 2.68 2.68 2.65 2.69 ...

$ log.neonatal.wt : num [1:12] 4.54 4.7 4.84 4.7 4.9 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": NA NA 2 1 2 NA 2 2 1 1 ...

Dropped taxa:

perissodactyla.tree { 6 (12 } 0) perissodactyla.data

Scope of complete data:

log.female.wt ~ log.gestation.length

> na.omit(perissoFull, scope=log.female.wt ~ log.gestation.length + Territoriality)

4

Comparative dataset of 9 taxa:

Phylogeny: perissodactyla.tree

9 tips, 7 internal nodes

chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" ...

Data: perissodactyla.data

$ log.female.wt : num [1:9] 6.24 6.18 6.26 5.46 5.65 ...

$ log.gestation.length: num [1:9] 2.68 2.65 2.69 2.6 2.59 ...

$ log.neonatal.wt : num [1:9] 4.84 4.7 4.9 3.92 4.6 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 1 1 2 2

Dropped taxa:

perissodactyla.tree { 9 (9 } 0) perissodactyla.data

Scope of complete data:

log.female.wt ~ log.gestation.length + Territoriality

2.1.2 subset

This method functions like the subset function for data frames: the subset argument is used to
specify a logical subset of rows using one or more of the data columns; the select argument can
be used to choose which variables to include in the subset.

> subset(perissoFull, subset=! is.na(Territoriality))

Comparative dataset of 9 taxa:

Phylogeny: perissodactyla.tree

9 tips, 7 internal nodes

chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" ...

Data: perissodactyla.data

$ log.female.wt : num [1:9] 6.24 6.18 6.26 5.46 5.65 ...

$ log.gestation.length: num [1:9] 2.68 2.65 2.69 2.6 2.59 ...

$ log.neonatal.wt : num [1:9] 4.84 4.7 4.9 3.92 4.6 ...

$ Territoriality : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 1 1 2 2

Dropped taxa:

perissodactyla.tree { 9 (9 } 0) perissodactyla.data

> subset(perissoFull, subset=log.female.wt > 5.5, select=c(log.female.wt, log.gestation.length))

Comparative dataset of 6 taxa:

Phylogeny: perissodactyla.tree

6 tips, 5 internal nodes

chr [1:6] "Dicerorhinus sumatrensis" "Rhinoceros sondaicus" ...

Data: perissodactyla.data

$ log.female.wt : num [1:6] 5.91 6.15 6.24 6.18 6.26 ...

$ log.gestation.length: num [1:6] 2.6 2.68 2.68 2.65 2.69 ...

Dropped taxa:

perissodactyla.tree { 12 (6 } 0) perissodactyla.data

2.1.3 [

This method treats the dataset as the rows (taxa) and columns (variables) of a matrix. The
first index allows taxa to be specified by name or by their position in the sequence of tip labels
for the phylogeny. The second index selects variables in the same way as in the extract method
([.data.frame) for a data frame.

5

> horses <- grep('Equus', perissoFullphytip.label)

> perissoFull[horses,]

Comparative dataset of 5 taxa:

Phylogeny: perissodactyla.tree

5 tips, 3 internal nodes

chr [1:5] "Equus grevyi" "Equus burchelli" "Equus zebra" "Equus africanus" ...

Data: perissodactyla.data

$ log.female.wt : num [1:5] 5.65 5.48 5.46 5.44 5.46

$ log.gestation.length: num [1:5] 2.59 2.56 2.56 2.56 2.56

$ log.neonatal.wt : num [1:5] 4.6 4.48 4.4 4.4 4.4

$ Territoriality : Factor w/ 2 levels "No","Yes": 2 1 1 2 2

Dropped taxa:

perissodactyla.tree { 13 (5 } 0) perissodactyla.data

> perissoFull[horses, 2:3]

Comparative dataset of 5 taxa:

Phylogeny: perissodactyla.tree

5 tips, 3 internal nodes

chr [1:5] "Equus grevyi" "Equus burchelli" "Equus zebra" "Equus africanus" ...

Data: perissodactyla.data

$ log.gestation.length: num [1:5] 2.59 2.56 2.56 2.56 2.56

$ log.neonatal.wt : num [1:5] 4.6 4.48 4.4 4.4 4.4

Dropped taxa:

perissodactyla.tree { 13 (5 } 0) perissodactyla.data

Far more functionality for creating and manipulating comparative datasets is provided by the
phylobase package. It is intended to incorporate this functionality into caper.

2.2 Example datasets

The examples in this vignette make use of the following datasets:

shorebird This dataset includes a phylogeny of 71 species of shorebirds along with data on male
and female body mass, egg mass, clutch size and mating system (Lislevand and Thomas,
2006).

syrphidae This dataset includes a phylogeny of 204 genera of hoverfly along with data on the
species richness of each of those genera (Katzourakis et al., 2001).

perissodactyla This dataset includes a phylogeny of 18 perissodactyl species and a data frame of
female and neonatal mass, gestation length and territoriality for 13 of those species. The data
frame contains missing data and the dataset was provided as an example with the original
CAIC program (Purvis and Rambaut, 1995b).

IsaacEtAl The datafile contains species level phylogenies and data sets of nine variables for each of
four mammalian orders (Primates, Carnivora, Chiroptera and Marsupialia). The data were
published in supplementary material for Isaac et al. (2005). The variables are body mass,
age at sexual maturity, gestation length, interbirth interval, litter size , population density,
group size, mass dimorphism and length.dimorphism. The data sets all contain missing data
and all the variables have been natural log transformed.

British Birds The datafile contains a species level phylogeny for 249 species of British birds
(some represented by congeneric surrogates) and a data set on the conservation status of 181
of those species (Thomas, 2008).

6

3 Methods and functions provided by caper.

The caper package provides two broad sets of methods of accounting for phylogenetic autocorrela-
tion in analyses. One is the use of phylogenetic independent contrasts (Felsenstein, 1985), the other
is the use of a phylogenetic variance-covariance matrix within a standard linear model (Freckleton
et al., 2002) [other refs]. These two approaches are basically equivalent, although small differences
may arise from the way in which polytomies are handled.

3.0.1 Phylogenetic linear models

In a basic linear regression, the response variable (y) is modelled as the product of the estimated
coefficients (β) and the explanatory variables (X), plus residual variation (ǫ): y = βX+ ǫ. If the
cases in the model are related taxa, then the values in y and X are no longer independent: each
value will be more similar to some values (closer relatives) than others (distant relatives).

The pgls function addresses this problem by incorporating the covariance between taxa into
the calculation of estimated coefficients: this is a generalized least squares (GLS) model. The
covariance matrix (V), showing the expected covariance between each pair of tips is calculated
using the branch lengths of a phylogeny showing how the taxa are related (Fig. 2).

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2








































9.0 7.7 2.9 1.0 1.0 1.0 0.0 0.0 0.0 0.0

7.7 9.0 2.9 1.0 1.0 1.0 0.0 0.0 0.0 0.0

2.9 2.9 9.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 9.0 8.0 2.5 0.0 0.0 0.0 0.0

1.0 1.0 1.0 8.0 9.0 2.5 0.0 0.0 0.0 0.0

1.0 1.0 1.0 2.5 2.5 9.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 9.0 6.3 5.7 5.7

0.0 0.0 0.0 0.0 0.0 0.0 6.3 9.0 5.7 5.7

0.0 0.0 0.0 0.0 0.0 0.0 5.7 5.7 9.0 7.9

0.0 0.0 0.0 0.0 0.0 0.0 5.7 5.7 7.9 9.0









































Figure 2: A phylogenetic tree of 10 taxa and the variance covariance matrix (V) of that phylogeny. The
diagonal of the matrix (bold values) shows the path length from each tip to the root (example in red). Off
diagonal values show the shared path length for a given pair of tips (example in blue).

The initial covariance matrix (V) taken from an ultrametric phylogeny assumes a Brownian
model of evolution: that variation between tips accumulates along all branches of the tree at a
rate proportional to the length of the branches. However, not all variables necessarily correspond
to this assumption and likelihood methods can be used to find transformations of V that improve
the fit of the model to the data. Three transformations are implemented in the pgls function (Fig.
3):

lambda (λ) The internal branch lengths of the phylogeny are multiplied by a constant. When
λ = 0, internal branch lengths are all zero and all the variation in the data is modelled as a
function of the independent evolution along the branches leading to the tips. If λ > 1, then
the data shows more covariance than expected under a Brownian model.

Note that a pgls model with a lambda of 0 will not be the same as a standard linear model
if the tree is not ultrametric: although the covariance terms will all be zero, the variances of
the tips will differ.

delta (δ) In this case, all the values in the V matrix are raised to the power of δ. This is a

transformation of the sum of the length of the shared branches between two tips l:
∑

(l)
δ
.

7

kappa (κ) All branch lengths in the phylogeny are raised to the power κ — the elements of the
V are the sum of the individually transformed branch lengths

∑

(lκ). As κ decrease towards
zero, all branches will become of equal length, representing an evolutionary model where
variation accumulates only when two clades diverge.

1

2

3

4

5

6

7

8

9

10

λ = 1.4

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

λ = 1

1

2

3

4

5

6

7

8

9

10

λ = 0.5

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

δ =1.2

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

δ =1

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

δ =0.5

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

κ = 1.2

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

κ = 1

t8

t6

t4

t10

t9

t5

t7

t1

t3

t2

κ = 1.2

Figure 3: Examples of λ, δ and κ branch length transformations. The branches affected by a given
transformation are shown in red.

3.0.2 Fitting phylogenetic GLS models: pgls

The pgls function implements GLS models accounting for phylogeny. It also includes the three
branch length transformations (λ, κ, δ) described above. The values of these may be fixed at values
provided by the user or optimised within bounds to find the maximum likelihood transformation.
Multiple transformations can be optimised simultaneously, although the underlying evolutionary
model may be hard to interpret.

The function uses a formula interface to describe the model and uses data provided as a com-
parative data object. Because the model fitting uses a covariance matrix, which can be compu-
tationally expensive to extract from a phylogeny, it is useful to include this when creating the
comparative data object at the start of an analysis using vcv=TRUE. The resulting pgls model
object has standard print and summary methods.

> data(shorebird)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species, vcv=TRUE)

> mod <- pgls(log(Egg.Mass) ~ log(M.Mass), shorebird)

> print(mod)

8

Call:

pgls(formula = log(Egg.Mass) ~ log(M.Mass), data = shorebird)

Coefficients:

(Intercept) log(M.Mass)

-0.4218 0.6756

> summary(mod)

Call:

pgls(formula = log(Egg.Mass) ~ log(M.Mass), data = shorebird)

Residuals:

Min 1Q Median 3Q Max

-0.104152 -0.018160 0.006679 0.022493 0.078391

Branch length transformations:

kappa [Fix] : 1.000

lambda [Fix] : 1.000

delta [Fix] : 1.000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.421775 0.227825 -1.8513 0.0684 .

log(M.Mass) 0.675619 0.034791 19.4194 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03343 on 69 degrees of freedom

Multiple R-squared: 0.8453, Adjusted R-squared: 0.8431

F-statistic: 377.1 on 1 and 69 DF, p-value: < 2.2e-16

3.1 Optimising branch length transformations: profile.pgls.

The pgls function has three arguments to specify parameter values for the λ, κ and δ transfor-
mations. However, the value for these parameters can alternatively be specified as "ML", in which
case the maximum likelihood value for each ML parameter will be found within set bounds. The
default bounds (λ = [1× 10−6, 1], κ = [1× 10−6, 3], δ = [1× 10−6, 3]) may be altered but cannot be
negative. Optimising multiple parameters can lead to computational problems with lower bounds
very close to zero, so it may be necessary to increase the lower bound slightly.

Because calculating likelihood under a κ transformation requires a transformation of the indi-
vidual branch lengths, it is not possible with a simple V matrix. This is because V only holds
the sums of those branch lengths. Any variation of κ, whether for optimization or for profiling
likelihood values, therefore needs a 3 dimensional V array, in which the branch lengths are held
separately. The vcv.dim argument to the comparative.data function creates this.

By default, pgls will use likelihood ratio tests to establish confidence bounds on optimised
parameters. The likelihood value at the ML estimate is tested against the values at the parameter
bounds and confidence intervals of the ML estimate are also calculated. The profile.pgls function
allows the likelihood surface of a parameter for a model to be displayed. If the ML estimate of the
parameter is known then then the profile will show this along with confidence limits (Fig. 4). The
likelihood profile is taken for a single parameter at a time, with the other two parameters held at
their fixed or optimum values.

9

> data(shorebird)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species, vcv=TRUE, vcv.dim=3)

> mod <- pgls(log(Egg.Mass) ~ log(M.Mass), shorebird, lambda='ML')

> summary(mod)

Call:

pgls(formula = log(Egg.Mass) ~ log(M.Mass), data = shorebird,

lambda = "ML")

Residuals:

Min 1Q Median 3Q Max

-0.079306 -0.015127 0.005864 0.019562 0.065373

Branch length transformations:

kappa [Fix] : 1.000

lambda [ML] : 0.956

lower bound : 0.000, p = < 2.22e-16

upper bound : 1.000, p = 0.047331

95.0% CI : (0.867, 1.000)

delta [Fix] : 1.000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.486129 0.205686 -2.3635 0.02093 *

log(M.Mass) 0.688645 0.032647 21.0937 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02905 on 69 degrees of freedom

Multiple R-squared: 0.8657, Adjusted R-squared: 0.8638

F-statistic: 444.9 on 1 and 69 DF, p-value: < 2.2e-16

> mod.l <- pgls.profile(mod, 'lambda')

> mod.d <- pgls.profile(mod, 'delta')

> mod.k <- pgls.profile(mod, 'kappa')

> plot(mod.l); plot(mod.d); plot(mod.k)

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

lambda

lo
g
L
ik

Data: shorebird; Model: log(Egg.Mass) ~ log(M.Mass)
kappa 1.00; lambda 0.96; delta 1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2
6

2
8

3
0

3
2

3
4

3
6

3
8

delta

lo
g
L
ik

Data: shorebird; Model: log(Egg.Mass) ~ log(M.Mass)
kappa 1.00; lambda 0.96; delta 1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3
0

3
2

3
4

3
6

3
8

kappa

lo
g
L
ik

Data: shorebird; Model: log(Egg.Mass) ~ log(M.Mass)
kappa 1.00; lambda 0.96; delta 1.00

Figure 4: Likelihood surfaces of λ, κ and δ for a simple model (log Egg.Mass logM.Mass) on the shorebird
dataset. The ML estimate has only been fitted for λ and so this is the only plot that shows confidence
limits.

10

3.1.1 Criticism and simplification ofpgls models: plot, anova and AIC.

The caper package provides standard generic methods for examining pgls models. The first is the
plot methods, which produces four diagnostic plots. The first two show the fit of the residuals to
a normal distribution: a density plot of the distribution of the residuals and a normal Q-Q plot
the distribution of the residuals against their expected distribution under a normal distribution.
The second two show the fitted values against both the residuals and the observed value to look
for pattern in the residuals within the model. Figure 5 shows these plots for the model above using
the command plot(mod).

−4 −3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

density.default(x = res)

N = 71 Bandwidth = 0.3451

D
e

n
s
it
y

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0

−
2

−
1

0
1

2

Fitted value

R
e

s
id

u
a

l
va

lu
e

 (
c
o

rr
e

c
te

d
 f
o

r
p

h
y
lo

g
e

n
y
)

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●● ●
●

●●

●

●

●●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

2.0 2.5 3.0 3.5 4.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Observed value

F
it
te

d
 v

a
lu

e

Figure 5: Model diagnostic plots for a simple model (log(Egg.Mass) ~log(M.Mass)) on the shorebird

dataset.

The package also provides anova and logLik methods that allow model comparison. The
logLik method allows the generic AIC methods to be used with pgls models. Analysis of variance
tables for a pgls model uses sequential sums of squares: each F value is the marginal improvement
in the model given the combined effects of the terms above. The anova command can also be used
to compare a set of models.

> mod1 <- pgls(log(Egg.Mass) ~ log(M.Mass) * log(F.Mass), shorebird)

> anova(mod1)

Analysis of Variance Table

Sequential SS for pgls: lambda = 1.00, delta = 1.00, kappa = 1.00

Response: log(Egg.Mass)

Df Sum Sq Mean Sq F value Pr(>F)

11

log(M.Mass) 1 0.42146 0.42146 371.8424 <2e-16 ***

log(F.Mass) 1 0.00114 0.00114 1.0014 0.3206

log(M.Mass):log(F.Mass) 1 0.00004 0.00004 0.0339 0.8545

Residuals 67 0.07594 0.00113

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> mod2 <- pgls(log(Egg.Mass) ~ log(M.Mass) + log(F.Mass), shorebird)

> mod3 <- pgls(log(Egg.Mass) ~ log(M.Mass) , shorebird)

> mod4 <- pgls(log(Egg.Mass) ~ 1, shorebird)

> anova(mod1, mod2, mod3, mod4)

Analysis of Variance Table

pgls: lambda = 1.00, delta = 1.00, kappa = 1.00

Model 1: log(Egg.Mass) ~ log(M.Mass) * log(F.Mass)

Model 2: log(Egg.Mass) ~ log(M.Mass) + log(F.Mass)

Model 3: log(Egg.Mass) ~ log(M.Mass)

Model 4: log(Egg.Mass) ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 67 0.07594

2 68 0.07598 -1 -0.00004 0.0339 0.8545

3 69 0.07711 -1 -0.00114 1.0014 0.3206

4 70 0.49858 -1 -0.42146 371.8424 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AIC(mod1, mod2, mod3, mod4)

df AIC

mod1 4 -64.96854

mod2 3 -66.93263

mod3 2 -67.87981

mod4 1 62.63955

3.2 Phylogenetic independent contrasts

The caper package implements the methods originally provided in the programs CAIC (Purvis
and Rambaut, 1995b) and MacroCAIC (Agapow and Isaac, 2002). Both programs calculate phylo-
genetically independent contrasts in a set of variables and then use linear models of those contrasts
to test for evolutionary relationships. All of the functions in this section require a comparative
dataset object and a description of a linear model as an R formula (see formula()).

In contrast model functions, a reference variable (ref.var) may also be provided. This is
used to standardize the directions in which contrasts are calculated in multivariate models. If no
reference variable is provided, the function defaults to using the first explanatory variable specified
in the model formula. All contrast model functions enforce regression through the origin (Garland
et al., 1992).

3.2.1 Variable names in contrast functions

The three functions below (crunch, brunch, macrocaic) all make use of existing methods within
R to generate a model matrix. In normal linear models, the terms in the model formula allow

12

transformations to be specified within models: a model can use y log(x) and subsequent mod-
ifications of the model will expect to be able to use a data frame containing x that will be logged
before use. These contrast functions do support this in initial model fitting. However modifica-
tions cannot be made so simply to contrast models: the variable log(x) now represents contrasts in
log(x), and reference back to the original variable x will not yield the correct results. Generating
consistent behaviour using the R modelling framework in these cases is not easy.

It is therefore strongly recommended that any transformation of data should be carried out in
the original data frame and that these transformed variables are used in model specification.

3.2.2 Continuous variables: crunch

The crunch function provides calculation of independent contrasts (Felsenstein, 1985) for contin-
uous variables, as implemented in the ‘crunch’ option of the CAIC package (Purvis and Rambaut,
1995b), using the method of Pagel (1992) to calculate contrasts at polytomies. The following
example shows an example analysis using the shorebird dataset.

> data(shorebird)

> shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)

> shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)

> shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> crunchMod <- crunch(lgEgg.Mass ~ lgF.Mass + lgM.Mass, data=shorebird)

> summary(crunchMod)

Call:

lm(lgEgg.Mass ~ lgF.Mass + lgM.Mass - 1, data = contrData)

Residuals:

Min 1Q Median 3Q Max

-0.075470 -0.019982 0.005309 0.016856 0.083748

Coefficients:

Estimate Std. Error t value Pr(>|t|)

lgF.Mass -0.2203 0.2349 -0.938 0.352039

lgM.Mass 0.8926 0.2370 3.767 0.000379 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03503 on 60 degrees of freedom

Multiple R-squared: 0.8476, Adjusted R-squared: 0.8425

F-statistic: 166.8 on 2 and 60 DF, p-value: < 2.2e-16

3.2.3 Categorical variables: brunch

The inclusion of categorical variables in phylogenetic independent contrast models is problematic.
Continuous variables are assumed to evolve under a Brownian process, which permits estimates
of nodal values and hence allows nested contrasts to be drawn. There is no sensible model for
reconstructing the nodal values of a categorical variable, except where all daughters share the
same categorical value. However, identifying nodes with daughter variables that differ in the value
of the categorical variable permit independent contrasts to be identified (Burt, 1989). While nodal
estimates of continuous variables can be made below at nodes below a brunch contrast, to do so
would assume independent evolution of these variables at the nodes of any deeper contrasts (Burt,
1989). As a result, the brunch algorithm only uses the data from any single tip in the calculation
of a single contrast.

13

The example below shows brunch contrasts for the perissodactyla dataset calculated using
territoriality. Figure 6 shows how these contrasts are extracted from the available data. In each
case, a contrast is drawn between groups of species showing differing territorial behaviour and no
species is used in more than one contrast.

> perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)

> brunchMod <- brunch(log.female.wt ~ Territoriality, data=perisso)

> caic.table(brunchMod)

log.female.wt Territoriality contrVar nChild nodeDepth nodeAge studentResid

19 0.055861436 1 2.00000 2 2 1 -0.04153674

22 -0.003521142 1 10.66667 3 3 8 -1.57705483

24 0.124450793 1 2.00000 2 2 1 1.91107764

14

15

16

19

22

23

24

●

●

●

●

●

●

●

●

●

Rhinoceros unicornis

Diceros bicornis

Ceratotherium simum

Tapirus indicus

Equus grevyi

Equus burchelli

Equus zebra

Equus africanus

Equus hemionus

Figure 6: Location of brunch contrasts for territoriality in the perissodactyla dataset. Branches in
bold show the tips contributing to each contrast. See also the output of caic.table in the main text.

3.2.4 Species richness contrasts: macrocaic

One common approach in macroevolution is to investigate the links between the traits of taxa
and their species richness. It is inappropriate to calculate crunch contrasts in species richness,
particularly for nested nodes, where crunch contrasts would estimate nodal values as a weighted
average of species richness for the daughter taxa, rather than tracking total species richness. For
this reason, Agapow and Isaac (2002) developed the program MacroCAIC, which implemented the
calculation of species richness contrasts.

The MacroCAIC program, and the macrocaic function, take a statistical model of species
richness as a function of continuous explanatory variables and calculate crunch contrasts in the
explanatory variables and one of two recommended species richness contrasts as a response (Isaac
et al., 2003). These two contrasts are the relative rate difference (RRD: ln(N1/N2)) and the
proportion dominance index (PDI: (N1/(N1 + N2)) − 0.5), where N1 and N2 are the number of
species in the daughter clades and N1 is the richness of the clade with the higher value in the focal
explanatory variable (Agapow and Isaac, 2002).

> data(IsaacEtAl)

> primates <- comparative.data(primates.tree, primates.data, binomial, na.omit=FALSE)

> primatesBodySize <- macrocaic(species.rich ~ body.mass, data=primates)

> summary(primatesBodySize)

14

Call:

lm(species.rich ~ body.mass - 1, data = contrData)

Residuals:

Min 1Q Median 3Q Max

-3.2046 -1.0206 -0.3174 0.7218 3.1996

Coefficients:

Estimate Std. Error t value Pr(>|t|)

body.mass -0.2348 0.6275 -0.374 0.709

Residual standard error: 1.305 on 91 degrees of freedom

Multiple R-squared: 0.001536, Adjusted R-squared: -0.009436

F-statistic: 0.14 on 1 and 91 DF, p-value: 0.7092

>

3.2.5 Phylogenetic signal: phylo.d

Fritz and Purvis (2010) proposed the statistic D as a measure of phylogenetic signal in binary
traits. The D statistic makes use of the way in which estimated nodal values calculated lusing
crunch change along the edges of a phylogeny. If a trait is highly conserved, with only a basal
division between two clades expressing either trait value, then the only change will be along the
edges between the two daughter clades at the root. This will give a summed value of 1: the two
differences between the root nodal value of 0.5 and the ancestors of the 1 and 0 clades. In contrast,
if the trait is labile, more differences will be observed and the sum will be higher.

The sum of these changes across a phylogeny will be governed by the phylogenetic signal in the
variable, but also by the size of the phylogeny and by the relative proportions of the two states
(prevalence). In order to standardise the effects of phylogeny size and prevalence, phylo.d uses
two simulated null models:

Phylogenetic randomness Trait values are randomly shuffled relative to the tips of the phy-
logeny.

Brownian threshold model A continuous trait is evolved along the phylogeny under a Brownian
process and then converted to a binary trait using a threshold that reproduces the relative
prevalence of the observed trait.

The mean sum of changes under the Brownian (s̄b) and random (s̄r) models are used to calibrate
the observed sum of changes (so) values: D = (so − s̄b)/(s̄r − s̄b) (Fig 7). On this standardised
scale, a variable with random association will have D ≈ 1 since so ≈ s̄r and a variable following
the Brownian model will have D ≈ 0 since so = s̄b. Values of D smaller than 0 are phylogenetically
more conserved than under the Brownian model and values of D greater than 1 are phylogenetically
overdispersed. The simulated values can also be used to assess whether the observed D differs
significantly from the simulated models.

The example below uses the BritishBirds dataset to calculate D for the phylogenetic distribu-
tion of ‘Red’ conservation status for 181 species of British birds (Fritz and Purvis, 2010; Thomas,
2008).

> data(BritishBirds)

> BritishBirds <- comparative.data(BritishBirds.tree, BritishBirds.data, binomial)

> redPhyloD <- phylo.d(BritishBirds, binvar=Red_list)

> print(redPhyloD)

15

10 20 30 40 50

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Sum of character change

D
e
n
s
it
y

0 0.56 1D =

Figure 7: Scaling of D values for the observed sum of character change from the distributions of simulated
sums of character change under models of random association (blue line) and a Brownian process (red line).
The distributions of the simulations are used to test the significance of departures from either model.

Calculation of D statistic for the phylogenetic structure of a binary variable

Data : BritishBirds.data

Binary variable : Red_list

Counts of states: 0 = 149

1 = 32

Phylogeny : BritishBirds.tree

Number of permutations : 1000

Estimated D : 0.5555898

Probability of E(D) resulting from no (random) phylogenetic structure : 0

Probability of E(D) resulting from Brownian phylogenetic structure : 0.028

3.3 Checking and comparing contrast models.

The three contrast model functions (crunch, brunch and macrocaic) all return an object of class
caic for which a number of common functions and methods are provided, including print and
summary methods. These are useful for assessing the robustness of contrast models. The simplest
function is caic.table, which returns a table of contrasts and nodal values that is very like the
original contrast files provided by CAIC and MacroCAIC. This data frame (see the example in the
brunch section, page 13) provides all the information needed to assess model suitability but some
convenience functions are provided for standard checks.

3.3.1 Testing evolutionary assumptions: caic.diagnostics.

This function implements three diagnostic regression tests for the robustness of a contrast model
(Garland et al., 1992; Purvis and Rambaut, 1995a). The function performs regression for each test
and optionally displays scatterplots of the diagnostic test data. The tests examine the behaviour
of the absolute standardised contrasts with the scale of the following nodal values:

Estimated nodal value This tests an evolutionary assumption of the contrast model: that there
is no relationship between the magnitude of estimated contrasts and the estimated nodal
value. Put another way, the proportional difference between daughter clades should be inde-
pendent of magnitude of their trait values.

16

Estimated standard deviation at the node The evolutionary model underlying contrasts (Felsen-
stein, 1985) assumes that variance accumulates in continuous characters equally along all
branches and that the amount of variation is proportional to branch length. The square root
of the expected variance calculated at each node can therefore be used to standardize the
absolute difference (‘raw contrasts’) between sister taxa. If this standardization is successful,
there should be no relationship between absolute values of standardized contrasts and the
estimated standard deviation.

Age of the node If the phylogeny is ultrametric, then the node age, as time from the present,
provides a further test of the effectiveness of the standardization of the contrasts.

If any of these diagnostic regressions are significant, then the assumption of evolution under
a Brownian walk has been violated and a transformation of the data or branch lengths may be
required. As in the example use below on the shorebird dataset, log transformation of continuous
variables is often an effective solution for problems with contrast diagnostics (Fig 8).

> par(mfrow=c(2,3))

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)

> caic.diagnostics(crunchMod)

M.Mass :

Estimate Std. Error t value Pr(>|t|)

NV 0.065449 0.010770 6.0769 9.138e-08 ***

SD 0.700158 1.468213 0.4769 0.6352

AGE 3.258202 2.809928 1.1595 0.2508

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)

> shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> crunchMod2 <- crunch(lgEgg.Mass ~ lgM.Mass, data=shorebird)

> caic.diagnostics(crunchMod2)

lgM.Mass :

Estimate Std. Error t value Pr(>|t|)

NV -0.0103218 0.0097468 -1.0590 0.2938

SD -0.0033931 0.0054315 -0.6247 0.5345

AGE 0.0090846 0.0104824 0.8666 0.3896

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3.2 Robust contrasts: caic.robust

In Figure 8, there is a systematic problem with the unlogged model and, although one contrast has
a high studentized residual, this point does not drive the relationship. In other cases, individual
contrasts may exert undue influence over an otherwise well behaved set of contrasts. This is more
commonly the case for models where there are known to be problems with branch length estimates
or where all branch lengths are treated as equal length. In such cases, these nodes should be
removed from the set of contrasts used in the linear model. A threshold of absolute studentized
residuals greater than 3 is commonly applied (Jones and Purvis, 1997; Garland et al., 1992).

17

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●●
●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●
●●
●

●
●

●

●

●

●
●

●

0 100 300 500

0
2
0

4
0

6
0

M.Mass @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ● ●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

2 4 6 8

0
2
0

4
0

6
0

SD @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

1 2 3 4

0
2
0

4
0

6
0

Age @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

3.0 4.0 5.0 6.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

lgM.Mass @ node

 C
o
n
tr

a
s
ts

 i
n
 l

g
M

.M
a

s
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

2 4 6 8

0
.0

0
0
.1

0
0
.2

0
0
.3

0

SD @ node

 C
o
n
tr

a
s
ts

 i
n
 l

g
M

.M
a

s
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

1 2 3 4

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Age @ node

 C
o
n
tr

a
s
ts

 i
n
 l

g
M

.M
a

s
s

Figure 8: Diagnostic plots for contrasts in male shorebird mass for contrast models on unlogged (top row,
poorly distributed with one serious outlier) and logged (bottom row) data.

The contrast model functions in caper provide the robust argument to set the size of this
threshold. By default, this is set to infinity: all contrasts are used to fit the linear model. This
can be changed by altering the robust argument but can also be modified after initial inspection
of contrast diagnostics using the caic.robust function. This simple method alter the threshold
for a caic object and returns a modified version with this threshold filter enforced.

Note that none of the contrasts or residuals are recalculated using the robust options: the
caic object retains all of the original contrast data and the studentized residuals are always those
obtained from the full set of contrasts. The threshold filter is only applied in two contexts:

1. The statistical model of the contrasts held in the caic object and displayed by the model
summary.

2. The points displayed by caic.diagnostics. Note that the outlier argument to this func-
tion is independent of the value of robust for an object.

Although clearly a bad model, the example below uses unlogged data from shorebird to
illustrate the use of the functions (Fig. 9).

> data(shorebird)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)

> caic.diagnostics(crunchMod)

M.Mass :

Estimate Std. Error t value Pr(>|t|)

NV 0.065449 0.010770 6.0769 9.138e-08 ***

SD 0.700158 1.468213 0.4769 0.6352

AGE 3.258202 2.809928 1.1595 0.2508

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

18

> crunchModRobust <- caic.robust(crunchMod)

> caic.diagnostics(crunchModRobust, outlier=2)

Excluding 1 contrast with absolute studentised residuals > 3

M.Mass :

Estimate Std. Error t value Pr(>|t|)

NV 0.057357 0.010998 5.2154 2.474e-06 ***

SD 1.348589 1.353080 0.9967 0.32299

AGE 4.920180 2.571071 1.9137 0.06052 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●●
●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●
●●
●

●
●

●

●

●

●
●

●

0 100 300 500

0
2
0

4
0

6
0

M.Mass @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ● ●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

2 4 6 8

0
2
0

4
0

6
0

SD @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

1 2 3 4

0
2
0

4
0

6
0

Age @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

133

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●●
●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●
●●
●

●
●

●

●

●

●
●

0 100 300 500

0
2
0

4
0

6
0

M.Mass @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

109

131

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ● ●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

2 4 6 8

0
2
0

4
0

6
0

SD @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

109

131

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●●● ●● ●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

1 2 3 4

0
2
0

4
0

6
0

Age @ node

 C
o
n
tr

a
s
ts

 i
n
 M

.M
a
s
s

109

131

Figure 9: Diagnostic plots and caic.robust: the upper row shows diagnostic plots for the full model,
highlighting a single point with an absolute studentized residual > 3. The lower row shows the same plots
after applying caic.robust: the highlighted point has been excluded and the argument outlier has been
used to reveal points with absolute residuals > 2.

3.3.3 Model criticism: plot

The preceding tools are broadly useful for assessing whether the evolutionary assumptions of con-
trast modelling have been met and for excluding problematic nodes. However it is still wise to
check whether the statistical assumptions of the linear model on the contrasts are met. The caper
package provides a simple wrapper to allow the standard model criticism plots to be generated for
a caic object (Fig 10).

> data(shorebird)

> shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)

> shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)

> shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> crunchMod <- crunch(lgEgg.Mass ~ lgF.Mass + lgM.Mass, data=shorebird)

> par(mfrow=c(2,2))

> plot(crunchMod)

>

19

−0.05 0.05 0.15

−
0

.0
5

0
.0

5

Fitted values

R
e

s
id

u
a

ls

●

●

●
●

●

●

●

●● ● ●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

Residuals vs Fitted

8473

133

●

●

●
●

●

●

●

●●● ●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
1

2
3

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls Normal Q−Q

84
73

133

−0.05 0.05 0.15

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

Scale−Location
84
73133

0.00 0.05 0.10 0.15
−

2
0

1
2

3

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

●

●

●
●

●

●

●

●● ● ●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●●
●

●

●
● ●

●

●

●

●

● Cook's distance 0.5

0.5

1

Residuals vs Leverage

84

78
102

Figure 10: Testing the assumptions of a linear model for a contrast plot

3.3.4 Model comparison: anova & AIC

In a similar fashion, the caper package provides simple wrappers to standard anova and AIC

methods to allow contrast models to be compared.

> shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)

> shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)

> shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)

> shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

> cMod1 <- crunch(lgEgg.Mass ~ lgM.Mass * lgF.Mass, data=shorebird)

> cMod2 <- crunch(lgEgg.Mass ~ lgM.Mass + lgF.Mass, data=shorebird)

> cMod3 <- crunch(lgEgg.Mass ~ lgM.Mass , data=shorebird)

> anova(cMod1, cMod2, cMod3)

Analysis of Variance Table

Model 1: lgEgg.Mass ~ lgM.Mass + lgF.Mass + lgM.Mass:lgF.Mass - 1

Model 2: lgEgg.Mass ~ lgM.Mass + lgF.Mass - 1

Model 3: lgEgg.Mass ~ lgM.Mass - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 59 0.073257

2 60 0.073268 -1 -0.00001151 0.0093 0.9236

3 61 0.074363 -1 -0.00109437 0.8814 0.3516

> AIC(cMod1, cMod2, cMod3)

df AIC

cMod1 4 -233.9885

20

cMod2 3 -235.9787

cMod3 2 -237.0595

AIC

3.4 Other comparative functions

3.4.1 Tree imbalance: fusco.test

The I statistic (Fusco and Cronk, 1995) is a measure of phylogenetic imbalance. It has the useful
properties that it can be calculated for trees containing polytomies and that the tips of trees can
be associated with species richness values. An imbalance score, in the interval [0, 1] is calculated
for all nodes in the phylogeny and the distribution of the nodal values is used to assess overall
balance. Nodes leading to fewer than 4 species are uninformative about balance and I cannot be
calculated for polytomous nodes and hence both are omitted from balance calculations.

The original I statistic proposed by Fusco and Cronk (1995) has been shown to have a bias at
nodes with even numbers of species (Purvis et al., 2002). This function therefore also implements
the modified I ′ statistic: a Wilcoxon test is used to assess whether the median of the observed I ′

values differs from the value of 0.5 expected under a Markov process and a randomisation process
is used to provide confidence intervals.

The function can make use of species richness data but can also be set to treat the tips of the
phylogeny as species. These two approaches contrast the balance of the distribution of species
richness across a topology and the balance of the topology itself.

> data(syrphidae)

> syrphidae <- comparative.data(phy=syrphidaeTree, dat=syrphidaeRich, names.col=genus)

> summary(fusco.test(syrphidae, rich=nSpp))

Fusco test for phylogenetic imbalance

Tree with 105 informative nodes and 204 tips.

Tips are higher taxa containing 5330 species.

95.0% confidence intervals around 0.5 randomised using 1000 replicates.

Mean I prime: 0.629 [0.435,0.564]

Median I: 0.727

Quartile deviation in I: 0.291

Wilcoxon signed rank test with continuity correction

data: object$observed$I.prime

V = 3986, p-value = 0.0001197

alternative hypothesis: true location is not equal to 0.5

> summary(fusco.test(syrphidae, tipsAsSpecies=TRUE))

Fusco test for phylogenetic imbalance

Tree with 58 informative nodes and 204 tips.

Tips are treated as species.

21

95.0% confidence intervals around 0.5 randomised using 1000 replicates.

Mean I prime: 0.714 [0.401,0.596]

Median I: 0.94

Quartile deviation in I: 0.25

Wilcoxon signed rank test with continuity correction

data: object$observed$I.prime

V = 1345.5, p-value = 0.0001481

alternative hypothesis: true location is not equal to 0.5

3.5 Phylogenetic diversity: pd.calc, pd.bootstrap and ed.calc.

There are two functions that provide simple ways to calculate phylogenetic diversity indices for a
set of tips on a phylogeny (pd.calc) and to bootstrap the distribution of those indices for a subset
of a given size (pd.bootstrap).

The following indices of phylogenetic diversity are supported (Fig. 11):

Total Branch Length (TBL) The sum of all the edge lengths in the subtree given by the tip
subset. This measure can be partitioned into the two next measures.

Shared Branch Length (SBL) The sum of all edges in the subtree that are shared by more
than one tip.

Unique Evolutionary History (UEH) The sum of the edge lengths that give rise to only one
tip in the subtree.

Length of tip branch lengths (TIPS) Unlike UEH, this measure does not use the unique paths
to each tips on the subtree and instead gives the sum of the unique branches leading to the
tips on the complete tree.

Minimum Spanning Tree (MST) The sum of the lengths of the edges for the smallest tree
that links the subset tips, excluding any edges below the node of the most recent common
ancestor.

These two functions can be used together to compare observed phylogenetic diversity for a
group of species to the distribution of phylogenetic diversity for a similar sized group. These
functions use a phylogeny arranged as a clade.matrix, as this greatly accelerates sampling of
phylogenetic diversity measures. A phylo object can be used but will be immediately converted
to a clade matrix.

> data(BritishBirds)

> BritishBirds.cm <- clade.matrix(BritishBirds.tree)

> redListSpecies <- with(BritishBirds.data, binomial[Red_list==1])

> obs <- pd.calc(BritishBirds.cm, redListSpecies, method="TBL")

> rand <- pd.bootstrap(BritishBirds.cm, ntips=length(redListSpecies), rep=1000, method="TBL")

> plot(density(rand), main='Total branch length for random sets of 32 species.')

> abline(v=obs, col='red')

The ed.calc function takes a phylogeny, again ideally converted using clade.matrix, and
calculates evolutionary distinctness (ED) scores for each tip (Isaac et al., 2007). The length of
each branch on the phylogeny is shared equally among all the tips descending from it and the
sum of the per-tip contributions along the paths to each tip provides the ED measure of the
distinctness of each tip (Fig 12a). In the example code below, two species (Allocebus trichotis

22

A

B

C

D

E

F

G

H

I
TBL

A

B

C

D

E

F

G

H

I
UEH

A

B

C

D

E

F

G

H

I
SBL

A

B

C

D

E

F

G

H

I
TIP

A

B

C

D

E

F

G

H

I
MST

600 700 800 900

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

D
e

n
s
it
y

Figure 11: Illustration of the different measures of phylogenetic diversity available and a plot of observed
(red) and randomized (black) TBL for red listed British birds

and Phaner furcifer) share long branches and belong to species poor clades, resulting in high
evolutionary distinctiveness (Fig 12b,c)

> data(IsaacEtAl)

> primates.cm <- clade.matrix(primates.tree)

> primateED <- ed.calc(primates.cm)

> str(primateED)

List of 2

$ spp :'data.frame': 233 obs. of 2 variables:

..$ species: chr [1:233] "Lemur catta" "Hapalemur aureus" "Hapalemur griseus" "Hapalemur simus"

..$ ED : num [1:233] 13.62 10.07 10.07 10.07 9.51 ...

$ branch:'data.frame': 404 obs. of 6 variables:

..$ len : num [1:404] 10.92 8.19 8.19 8.19 4.26 ...

..$ nSp : num [1:404] 1 1 1 1 1 1 1 1 1 1 ...

..$ ED : num [1:404] 10.92 8.19 8.19 8.19 4.26 ...

..$ parent : num [1:404] 240 241 241 241 244 244 245 245 242 238 ...

..$ node.size: int [1:404] 2 3 3 3 2 2 2 2 2 2 ...

..$ ED.cor : num [1:404] 10.92 6.45 6.45 6.45 4.26 ...

> plot(density(primateEDsppED))

> with(primateED, spp[spp$ED == max(spp$ED),])

species ED

29 Allocebus trichotis 22.52876

30 Phaner furcifer 22.52876

23

0.5 / 5

0.5 / 3

1.5 / 2

1 / 1

1 / 1

2.5 / 1

2.4 / 2

0.6 / 1

0.6 / 1

0.8 / 4

0.8 / 2

1.9 / 1

1.9 / 1

1.1 / 2

1.6 / 1

1.6 / 1

0.10

0.17

0.75

1.00

1.00

2.50

1.20

0.60

0.60

0.20

0.40

1.90

1.90

0.55

1.60

1.60

2.02

2.02

2.77

1.90

1.90

2.50

2.50

2.35

2.35a)

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Species ED score

D
e

n
s
it
y

b)
c)

Figure 12: a) Calculation of ED scores. Edge labels show the calculation of ED contributions (below
branch) from the branch length and number of descendent species (above branch). Tip labels show species
ED scores and the component contribution values are highlighted for two species. b) The distribution of
ED scores for a phylogeny of primate species (c). The paths leading to the species with the highest ED
values (red arrow) are shown on the phylogeny.

3.6 Phylogeny and trait simulation: growTree

A number of other packages provide fast methods for simulating phylogenies and traits along
phylogenies under a range of models. The growTree function is likely to be considerably slower for
some common models but provides a flexible environment for simulating more complex scenarios. It
bears many similarities to the simulations provided by the program MeSA written by Paul-Michael
Agapow (http://www.agapow.net/software/mesa).

A basic growTree simulation has three components: a speciation rate (b), an extinction rate (d)
and a stopping rule (halt). The default values for these (b=1, d=0, halt=20) therefore simply
grow a phylogeny from a single ancestor until there are 20 extant species. The speciation and
extinction rates both specify the rate of an exponential function which is used to draw waiting
times until the next event.

However, the power of growTree is that any of these components can be R expressions using
information about the scenario being simulated. In simple simulations of a phylogeny, the following
clade properties can be used: clade.age,nLin, nTip,nExtantTip, nExtinctTip. For example, the
default halt = 20 is actually just a shorthand for expression(nExtantTip == 20) and more
examples are shown in the code below and in Fig. 13.

There are three important details of these simple simulations:

1. Expressions using clade.age cannot test for an exact end time (clade.age==3) since the
simulation may overstep this end point and run infinitely: clade.age>=3 must be used
instead.

2. Expressions using numbers of lineages or tips will halt the simulation exactly at a speciation
or extinction event. The optional argument extend.proportion can be used to continue to
run the simulation until a given proportion of the time to the next speciation has passed.

3. The clade.age includes the length of the root edge.

The significance of the argument grain=Inf in these examples is discussed below (Section
3.6.3).

> basicTree <- growTree(b=1, d=0, halt=20, grain=Inf)

> extendTree <- growTree(b=1, d=0, halt=20, extend.proportion=1, grain=Inf)

24

> timeLimit <- growTree(b=1, d=0, halt=expression(clade.age>=3), grain=0.01)

> extinctTree <- growTree(b=1, d=0.1, halt=expression(nExtinctTip>=3), extend.proportion=1, grain=

> densityDependence <- growTree(b=expression(2/nExtantTip), d=0, halt=50, grain=Inf)

> increasingExtinction <- growTree(b=1, d=expression(0.2 * clade.age), halt=50)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5

a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4

b)

1

2

3
4
5

6

7
8

9

10

11

12

13
14

15
16

17

18

19

20
21

22
23

24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

0.0 0.5 1.0 1.5 2.0 2.5 3.0

c)

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

d)

1
2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36
37

38

39
40

41
42

43
44

45
46

47
48

49
50

0 5 10 15 20 25

e)
1 2 3

45

6
7 8

91011

12

1314

1516
1718

1920

21

22 23

24

25

26

27

28

2930

31

32

33
34

35

36

37

38

39

40

41

42

43
4445

4647

48

4950

5152
5354

5556

57

58

59

60

61 62

6364

65

66

676869

70

71

7273

74

75

7677

787980

8182

8384

85

86

878889

9091

92
9394

95

9697

9899

100

101

102

103

104

105

106

107108

109110

111
112113

114115

116

117118119120121
122123

0 2 4 6 8 10

f)

Figure 13: growTree simulations

Simple simulations using growTree. See the code example for a) basicTree, b) extendTree, c)
timeLimit, d) extinctTree, e) densityDependence and f) increasingExtinction.

3.6.1 Simulating continuous characters.

The growTree function currently only supports Brownian evolution of continuous characters and
requires the user to provide a vector containing of starting value for each trait (ct.start). If
ct.start is a named vector, then these names will be used to identify each trait within the
simulation. If no names are provided then the trait names default to the form ct#.

By default, the mean change per unit time in each trait is assumed to be zero — there is no
directional bias in the evolution of each trait. Similarly, the variance of each trait is assumed to be
1 and there is no covariance between traits. Both these defaults can be over-ridden by providing a

25

vector ct.change of mean changes and a vector ct.var of variances for each trait. Alternatively,
ct.var can be a symmetrical square matrix giving the covariances between the traits.

During the simulation, the waiting times between events are used to randomly draw changes in
trait values according to the specified model. The code below shows some examples using values for
log body mass and log litter size taken from the PanTHERIA database of mammalian life-history
traits (Jones et al., 2009). The relationship between the two variables for the values at the tips of
each simulation are shown in Fig. 14.

> # > pantheria <- read.delim('PanTHERIA_1-0_WR05_Aug2008.txt', na.string='-999.00')

> # > vars <- log(pantheria[, c(7,21)])

> # > cov(vars, use='complete')

> # X5.1_AdultBodyMass_g X15.1_LitterSize

> # X5.1_AdultBodyMass_g 10.0038050 -0.6544125

> # X15.1_LitterSize -0.6544125 0.4427426

> # > sum(complete.cases(vars))

> # [1] 2325

> # > mean(vars,na.rm=TRUE)

> # X5.1_AdultBodyMass_g X15.1_LitterSize

> # 5.4749827 0.6905053

> mammalMeans <- c(logBodyMass=5.48, logLitterSize=0.69)

> simpleBrownian <- growTree(halt=100, ct.start=mammalMeans, extend.proportion=1, grain=Inf)

> mammalVar <- c(10, 0.44)

> varBrownian <- growTree(halt=100, ct.start=mammalMeans, ct.var=mammalVar, extend.proportion=1, g

> mammalCovar <- matrix(c(10,-0.65, -0.65, 0.44), ncol=2)

> covarBrownian <- growTree(halt=100, ct.start=mammalMeans, ct.var=mammalCovar, extend.proportion=

● ●

●

●

●

● ●

● ●

● ●

●
●●

●

● ●●

●

●●●

●
●●

●
●

●
●

●
●

● ●
● ●

●

● ●
●

●

●● ●
●
●

●
●● ●●●

●
●

●●

●

●●

●●

●

●●●

●

● ● ●

●●
●●

●●●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●●● ●●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4
6

8
1
0

logLitterSize

lo
g
B

o
d
y
M

a
s
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●
●

●

●

●
●

●

●
● ●●

●●
●

●●●●

●
●

●●

●

●
●

●
●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●●●

●●

●

●●

●●

●●

●●

●●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4
6

8
1
0

logLitterSize

lo
g
B

o
d
y
M

a
s
s

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●
●●

●●

●●

●

●●

●●

●●

●●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4
6

8
1
0

logLitterSize

lo
g
B

o
d
y
M

a
s
s

Figure 14: Simulated values for two continuous traits using a) only starting mean values
(simpleBrownian), b) means and variances (varBrownian) and c) means and covariances (covarBrownian).

3.6.2 Simulating discrete characters

Simulation of discrete characters uses a transition matrix for each trait. This matrix defines the
number of states and the names of those states and also the rates at which lineages move from one
state to another. This matrix does not need to be symmetrical but the diagonal values (the rates
at which traits change to the same state) should be zero. These discrete trait matrices need to be
provided in a list and the names of the list items will be used as trait names. Again, if names are
missing than default values are used: dt# for trait names and st# for state names. The simulation
will start with the traits in the first state in the matrix.

26

> flight <- matrix(c(0,0.1,0.001,0), ncol=2)

> flightNames <- c('ter','fly')

> dimnames(flight) <- list(flightNames, flightNames)

> trophic <- matrix(c(0,0.2,0.01,0.2,0,0.1,0,0.05,0), ncol=3)

> trophNames <- c('herb','omni','carn')

> dimnames(trophic) <- list(trophNames, trophNames)

> discTraits <- list(flight=flight, trophic=trophic)

> discreteTree <- growTree(halt=60, dt=discTraits, extend.proportion=1, grain=Inf)

>

Simulating correlated evolution between discrete traits is possible by combining traits into a
single larger matrix that contains the rates of transitions between sets of combined states.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 15: Simulated values for two discrete traits: flight (circles) and trophic (squares).

27

3.6.3 Lineage properties and simulation grain

In addition to the clade properties (page 24), expressions for speciation and extinction rates and
halting the simulation can all use properties of the lineages. The basic lineage properties are less
likely to be useful (parent.id, id, lin.age, birth.time, death.time, extinct, tip) but
any simulated trait is also available using the trait name. Rates are calculated for every extant
lineage and then the competing events (speciation, extinction and changes in discrete traits) draw
waiting times given their rates and the event with the shortest waiting time occurs.

These events occur at the discrete points identified by the winning event. However, change in
continuous traits is handled differently: once one of those events has occurred, that waiting time
is used to scale simulated change in the continuous traits and all of this change is added on to the
trait values at the event. Similarly, clade age advances in chunks: the waiting time is added on to
the age of all extant tips as each event occurs.

If continuous trait values or clade age are used to control rates within the simulation then this
can be problematic: smooth changes in rates may be badly simulated if there are relatively large
step changes in continuous character values or clade age at events. The solution in growTree is to
set the grain of the simulation: this is the maximum amount of time that can pass in a simulation
without recalculating clade ages and continuous trait values. Essentially, this scales the relative
size of step changes in these continuous values to more closely approximate a smooth function.

By default, growTree uses a grain value of 0.1. If a particular simulation does not contain
rates base on trait or age values then the grain can be set to infinity (grain=Inf). This may
substantially speed up some simulations.

In the examples below, the age of each lineage is being used to control the rates of speciation
and extinction (Fig. 16). Speciation follows an asymptotic latency model: young species have
lower rates of speciation but eventually reach a constant maximum speciation rate. Extinction
follows a simple linear relationship of senescence: increasing extinction rate with lineage age. The
second simulation incorporates an influence of body size: the asymptotic speciation rate for species
is proportional to a simulated trait.

> bLatency <- expression((0.2 *lin.age)/(0.1 + lin.age))

> dSenesce <- expression(lin.age * 0.02)

> halt <- expression(nExtantTip >= 60)

> latencyTree <- growTree(b=bLatency, d=dSenesce, halt=halt, grain=0.01)

> traitMean <- c(logBodyMass=5.48)

> traitVar <- c(logBodyMass=10)

> bLatTrait <- expression(((0.2 + ((5.48 - logBodyMass)/25))*lin.age)/(0.1 + lin.age))

> latTraitTree <- growTree(b=bLatTrait, d=dSenesce, halt=halt, ct.start=traitMean, ct.var=traitVar

>

3.6.4 Inheritance rules.

Another way of controlling simulations is through the use of inheritance rules. At each speciation
event, two new lineages replace the parent lineage and inherit exact copies of any traits. Although
the traits of these new species will then evolve independently, it is also possible to immediately alter
the trait values using expressions. Each rule should generate two values, one for each daughter,
and needs to be provided as a list with the name of the list showing the trait affected.

In the first example below, the two daughter lineages inherit divergent body size from their
parent (Fig. 17).

> traitMean <- c(logBodyMass=5.48)

> traitVar <- c(logBodyMass=10)

28

0 5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

Lineage age

R
a

te
1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

1617

18

1920

21

2223

24

25

26

27 28

29

30

3132

33

3435

36 37

3839

40

4142

4344

4546

4748

49
5051

5253

5455
56

5758

5960

6162
63

64656667

6869
7071

7273

7475

Figure 16: Simulations using expressions. a) Simulated extinction and speciation rates. Extinction (black)
shows senescence and speciation shows latency. For the first simulation (b: latencyTree), speciation is
determined entirely by lineage age and there are relatively few extant basal species and few rapid sequences
of speciation along branches. For the second (c: latTraitTree), there are again few rapid sequence of
speciation and simulated body mass (red bars) is predominantly smaller than the ancestral average (width
of the grey bar). The dashed red lines in a) show the speciation rate for species with simulated log body
mass 2 units higher and lower than the ancestral mean.

> inherit <- list(logBodyMass=expression(logBodyMass * c(0.8, 1.2)))

> inheritTree <- growTree(b=1, halt=40, ct.start=traitMean, ct.var=traitVar, inheritance=inherit,

The second example is a more complex biogeographic simulation (Fig. 17). The tree has a
single discrete trait representing presence in two regions — a species can be present in either or
both regions and the matrix shows the rates of transition between these states. The extinction rule
gives different extinction rates for species occurring in single regions and species in both regions.
Speciation occurs at different rates in the two regions and species present in both regions can
speciate in either region. This needs two speciation rules, provided as a list, that compete with
each other and among species. Finally the inheritance rules differentiate between speciation of a
species in a single region (where both species stay in sympatry) and speciation in a lineage that
occurs in both regions (where the species diverge in allopatry). These inheritance rules make use
of the simulation property winnerName which shows which event has happened at an event.

> rNames <- c("AB", "A", "B")

> regions <- list(region = matrix(c(0, 0.05, 0.05, 0.1, 0,0,0.1,0,0), ncol=3,

+ dimnames=list(rNames,rNames)))

> extinct <- expression(ifelse(region == "AB", 0.0001, 0.01))

> spec <- list(regA_spec = expression(ifelse(region == "AB" | region == "A", 1, 0)),

+ regB_spec = expression(ifelse(region == "AB" | region == "B", 0.5, 0)))

> inherit <- list(region = expression(if(winnerName=="regB_spec" && region[1] == "AB") c("B","A")

+ region = expression(if(winnerName=="regA_spec" && region[1] == "AB") c("A","B")

> biogeogTree <- growTree(b=spec, d=extinct, halt=80, inherit=inherit, dt.rates=regions, inf.rates

3.6.5 Epochs: linking simulations.

The final way of controlling simulations is through the use of linked sets of simulations, each
representing a different epoch. By default, the growTree function returns a comparative data

29

object but can also return a simulation as a raw table of lineages. These lineage tables can be
used as a starting object for a simulation, allowing the output of one simulation to be passed into
the next. Unless explicitly altered, all rules are inherited between epochs. The example below
simulates a mass extinction event (Fig. 17).

> epochTree <- growTree(halt=100, output.lineages=TRUE, grain=Inf)

> epochTree2 <- growTree(d=5, halt=expression(nExtantTip==20), linObj=epochTree, output.lineages=T

> epochTree3 <- growTree(linObj=epochTree2, halt=100, grain=Inf)

Figure 17: Inheritance rules and epochs. a) Simulation showing divergent evolution of a continuous trait
at speciation. b) A biogeographic simulation with sympatric speciation within single regions (red, green)
and allopatric speciation of species occurring in both regions (black). Colours show the region at daughter
node of an edge and do not show transitions along the edge. c) Use of epochs to simulate a mass extinction
event.

30

3.7 Utility functions

3.7.1 clade.matrix

The clade.matrix function turns a phylogeny into a binary matrix showing the tips (columns)
descending from each node (rows) in the tree, along with a vector of the edge lengths leading to
that node. Although this is an extremely bulky way to represent a phylogeny, a clade matrix allows
calculations on subsets of a phylogeny to be calculated much more rapidly.

> data(perissodactyla)

> perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)

> perissoCM <- clade.matrix(perisso$phy)

> str(perissoCM)

List of 4

$ clade.matrix: num [1:16, 1:9] 1 0 0 0 0 0 0 0 0 1 ...

..- attr(*, "dimnames")=List of 2

.. ..$ edges: chr [1:16] "1" "2" "3" "4" ...

.. ..$ tips : chr [1:9] "1" "2" "3" "4" ...

$ tip.label : chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" "Tapiru

$ edge : int [1:15, 1:2] 10 11 12 12 13 13 11 10 14 15 ...

$ edge.length : Named num [1:16] 4 1 1 8 1 1 4 8 8 0 ...

..- attr(*, "names")= chr [1:16] "1" "2" "3" "4" ...

- attr(*, "class")= chr "clade.matrix"

> perissoCM$clade.matrix

tips

edges 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 1

10 1 1 1 1 1 1 1 1 1

11 1 1 1 1 0 0 0 0 0

12 1 1 1 0 0 0 0 0 0

13 0 1 1 0 0 0 0 0 0

14 0 0 0 0 1 1 1 1 1

15 0 0 0 0 1 1 1 0 0

16 0 0 0 0 1 1 0 0 0

3.7.2 clade.members and clade.members.list

These functions return a vector of the tips that descend from a given node (clade.members) or a list
of vectors showing the tips descending from every node (clade.members.list) in a phylogeny. Op-
tions to both functions control whether vectors of internal nodes are also returned (include.nodes)
and whether tip labels are used instead of the index of those tip labels (tip.labels).

31

> data(perissodactyla)

> perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)

> clade.members(15, perisso$phy)

[1] 7 5 6

> clade.members(15, perisso$phy, tip.labels=TRUE)

[1] "Equus zebra" "Equus grevyi" "Equus burchelli"

> clade.members(15, perisso$phy, tip.labels=TRUE, include.nodes=TRUE)

$tips

[1] "Equus zebra" "Equus grevyi" "Equus burchelli"

$nodes

[1] 15 16

> str(clade.members.list(perisso$phy))

List of 7

$ 10: int [1:9] 4 1 2 3 8 9 7 5 6

$ 11: int [1:4] 4 1 2 3

$ 12: int [1:3] 1 2 3

$ 13: int [1:2] 2 3

$ 14: int [1:5] 8 9 7 5 6

$ 15: int [1:3] 7 5 6

$ 16: int [1:2] 5 6

> str(clade.members.list(perisso$phy, tip.labels=TRUE))

List of 7

$ 10: chr [1:9] "Tapirus indicus" "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum"

$ 11: chr [1:4] "Tapirus indicus" "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum"

$ 12: chr [1:3] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum"

$ 13: chr [1:2] "Diceros bicornis" "Ceratotherium simum"

$ 14: chr [1:5] "Equus africanus" "Equus hemionus" "Equus zebra" "Equus grevyi" ...

$ 15: chr [1:3] "Equus zebra" "Equus grevyi" "Equus burchelli"

$ 16: chr [1:2] "Equus grevyi" "Equus burchelli"

3.7.3 VCV.array

This function replaces the vcv.phylo function provided by the ape package. This is primarily
to provide covariance structures that retain separate branch lengths in order to support kappa
transformations. For standard two dimensional covariance matrices, it is also faster than the
vcv.phylo function for trees of more than about 100 tips.

> data(perissodactyla)

> perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)

> str(VCV.array(perisso$phy))

32

'VCV.array' num [1:9, 1:9] 17 13 13 9 0 0 0 0 0 13 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" "Tapirus indicus

..$: chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" "Tapirus indicus

> str(VCV.array(perisso$phy, dim=3))

'VCV.array' num [1:9, 1:9, 1:5] 4 9 9 9 0 0 0 0 0 9 ...

- attr(*, "dimnames")=List of 3

..$: chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" "Tapirus indicus

..$: chr [1:9] "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" "Tapirus indicus

..$: NULL

References

Paul-Michael Agapow and Nick J B Isaac. Macrocaic: revealing correlates of species richness by
comparative analysis. Diversity and Distributions, 8:41–43, 2002.

Austin Burt. Comparative methods using phylogenetically independent contrasts. Oxford Surveys
in Evolutionary Biology, 6:33–53, 1989.

Joseph Felsenstein. Phylogenies and the comparative method. American Naturalist, 125:1–15,
1985.

Robert P. Freckleton, Paul H. Harvey, and Mark Pagel. Phylogenetic analysis and comparative
data: A test and review of evidence. American Naturalist, 160:712–726, 2002.

Susanne A. Fritz and Andy Purvis. Selectivity in mammalian extinction risk and threat types:
a new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24(4):
1042–1051, August 2010. doi: DOI 10.1111/j.1523-1739.2010.01455.x.

Guiseppe Fusco and Quentin C B Cronk. A new method for evaluating the shape of large phylo-
genies. Journal of Theoretical Biology, 175:235–243, 1995.

Theodore Garland, Paul H. Harvey, and Anthony R. Ives. Procedures for the analysis of compar-
ative data using phylogenetically independent contrasts. Systematic Biology, 41(1):18–32, Mar
1992. ISSN 1063-5157.

Nick J. B. Isaac, Samuel T. Turvey, Ben Collen, Carly Waterman, and Jonathan E. M. Baillie.
Mammals on the edge: Conservation priorities based on threat and phylogeny. Plos One, 2(3):
e296, March 2007. doi: DOI 10.1371/journal.pone.0000296.

NJB Isaac, PM Agapow, PH Harvey, and A Purvis. Phylogenetically nested comparisons for
testing correlates of species richness: A simulation study of continuous variables. Evolution, 57
(1):18–26, January 2003.

NJB Isaac, KE Jones, JL Gittleman, and A Purvis. Correlates of species richness in mammals:
Body size, life history, and ecology. American Naturalist, 165(5):600–607, May 2005.

Kate E. Jones and Andy Purvis. An optimum body size for mammals? comparative evidence
from bats. Functional Ecology, 11(6):751–756, 1997. ISSN 1365-2435. doi: 10.1046/j.1365-
2435.1997.00149.x. URL http://dx.doi.org/10.1046/j.1365-2435.1997.00149.x.

Kate E. Jones, Jon Bielby, Marcel Cardillo, Susanne A. Fritz, Justin O’Dell, C. David L.
Orme, Kamran Safi, Wes Sechrest, Elizabeth H. Boakes, Chris Carbone, Christina Connolly,
Michael J. Cutts, Janine K. Foster, Richard Grenyer, Michael Habib, Christopher A. Plas-
ter, Samantha A. Price, Elizabeth A. Rigby, Janna Rist, Amber Teacher, Olaf R. P. Bininda-
Emonds, John L. Gittleman, Georgina M. Mace, Andy Purvis, and W. K. Michener. Pan-
theria: a species-level database of life history, ecology, and geography of extant and re-
cently extinct mammals. Ecology, 90(9):2648–2648, 2009. doi: 10.1890/08-1494.1. URL
http://www.esajournals.org/doi/abs/10.1890/08-1494.1.

33

A Katzourakis, A Purvis, S Azmeh, G Rotheray, and F Gilbert. Macroevolution of hoverflies
(diptera : Syrphidae): the effect of using higher-level taxa in studies of biodiversity, and correlates
of species richness. Journal of Evolutionary Biology, 14:219–227, 2001.

Terje Lislevand and Gavin H. Thomas. Limited male incubation ability and the evolution of egg
size in shorebirds. Biology Letters, 2(2):206–208, June 2006. doi: DOI 10.1098/rsbl.2005.0428.

Mark D Pagel. A method for the analysis of comparative data. Journal of Theoretical Biology, 156
(4):431–442, 1992.

Emmanuel Paradis, Julien Claude, and Korbinian Strimmer. Ape: analyses of phylogenetics and
evolution in R language. Bioinformatics, 20(2):289–290, 2004.

Andy Purvis and Andrew Rambaut. Comparative Analysis by Independent Contrasts (CAIC)
User’s Guide, 1995a.

Andy Purvis and Andy Rambaut. Comparative analysis by independent contrasts (caic): an apple
macintosh application for analysing comparative data. Computer Applications In the Biosciences,
11:247–251, 1995b.

Andy Purvis, Aris Katzourakis, and Paul-Michael Agapow. Evaluating phylogenetic tree shape:
Two modifications to fusco & cronk’s method. Journal of Theoretical Biology, 214:99–103, 2002.
doi: DOI 10.1006/jtbi.2001.2443.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2011. URL http://www.R-project.org/.
ISBN 3-900051-07-0.

Gavin H. Thomas. Phylogenetic distributions of british birds of conservation concern. Proceedings
of the Royal Society B-Biological Sciences, 275(1647):2077–2083, September 2008. doi: DOI
10.1098/rspb.2008.0549.

34

Index

Data
British Birds, 6
BritishBirds, 15
IsaacEtAl, 6
perissodactyla, 3, 6, 14
shorebird, 6, 10, 11, 13, 17, 18
syrphidae, 6

Functions
brunch, 12, 13, see also crunch, 14, 16
caic.diagnostics, 16, 18
caic.robust, 17–19
caic.table, 14, 16
clade.matrix, 22, 31
clade.members, 31
clade.members.list, 31
comparative.data, 3, 4, 9
[, 5
na.omit, 3, 4
subset, 5

crunch, 12–16
AIC, 20, 21
anova, 20
plot, 19
print, 16
summary, 16

ed.calc, 22
fusco.test, 21
growTree, 24, 25, 28, 29
macrocaic, 12, 14, see also crunch, 16
pd.bootstrap, 22
pd.calc, 22
pglm, see pgls
pgls, 7–9, 11, 36
AIC, 11
anova, 11
logLik, 11
plot, 11
print, 8
summary, 8

phylo.d, 15
profile.pgls, 9
VCV.array, 32

35

A The CAIC ‘package’

The CAIC package was initially developed and used within the Section of Ecology and Evolution
at Imperial College London as a replacement for the CAIC program (Purvis and Rambaut, 1995b).
Over time, the CAIC package was circulated outside of the Section and accreted additional functions
for comparative analysis and was subsequently made available through the R-Forge website. How-
ever, there was little integration of the different data formats across functions and no consistent
provision of basic methods and documentation to support the main functions.

The caper package addresses these failings and replaces the package CAIC. Although the code
and functions largely mirror the CAIC package, many functions are now used in different ways –
notably through the use of a common comparative data structure – and function arguments have
changed. Where possible these changes are backwards compatible but the two packages are not
completely interchangeable. One of the more noticeable changes is that the function pglm has been
renamed to pgls: the function provides generalised least squares but does not provide the link
functions of generalised linear models. The change in name of the package therefore reflects both
the broader set of methods provided and this step change in the way the package is used.

36

