Package ‘bsts’

January 17, 2024
Version 0.9.10
Date 2024-01-16
Title Bayesian Structural Time Series
Author Steven L. Scott <steve. the.bayesian@gmail.com>
Maintainer Steven L. Scott <steve.the.bayesian@gmail.com>

Description Time series regression using dynamic linear models fit using
MCMC. See Scott and Varian (2014) <DOI:10.1504/IJMMNO.2014.059942>, among many
other sources.

Depends BoomSpikeSlab (>= 1.2.6), zoo (>= 1.8), xts, Boom (>=0.9.13),
R(>=3.4.0)

Suggests testthat

LinkingTo Boom (>=0.9.13)

License LGPL-2.1 | MIT + file LICENSE
Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-01-17 13:02:07 UTC

R topics documented:

bsts-package 3
add.ar e e 4
add.dynamic.regression oLl e 5
add.localllevel L 9
add.local.linear.trend e 10
add.monthly.annual.cycle oL 12
add.random.walk.holiday L 14
add.seasonal L. e e e e e 16
add.semilocal.linear.trend 18
add.shared.local.level 20
add.static.ntercept L. e e e 22

https://doi.org/10.1504/IJMMNO.2014.059942

R topics documented:

add.student.local.lineartrend o Lo 23
add.trig e 25
aggregate.time.SerieS v v vt e e e e e e e 27
aggregate.weeks.tomonthso oL 28
AULOLAT . . o e e e e e e e e e e e e e e e 30
DStS . e e 31
bstsoptions.Rd oL 37
compare.bsts.models L 38
daterange e 40
descriptive-plots L e 41
diagnostic-plots 42
dirm e 43
dirm-model-optoins L. 46
estimate.time.scale 47
extend.time L e 48
format.timestamps L. 49
gAD e 50
GEOMEITIC.SEQUENICE . .« v v v v v v v v e e e e e e e e e e e e e e e e 50
get.fraction L. 51
GO0 © o v i e e e e e e e e e e e 52
HarveyCumulator e 53
holiday e 54
iclaims e e 56
last.day.in.month 57
MATCH.NumericTimestamps o v v v vt et e e e e e e e 58
match.week.toomonth oL 59
max.window.width 60
mbSts . .. 61
mixed.frequency L e 65
month.distance L. 68
named.holidays L 69
newhome.sales L 69
one.step.prediCtion.errors L. e 70
plotbsts 72
plotbsts.mixed 75
plot.bsts.prediction e e 78
plotbsts.predictors 79
plotholiday e 81
PlOt.mbStS e e e e e e 82
plotmbsts.prediction oL 83
predict.bsts 85
predictmbsts L. e e e e 89
QUATTET . o o v v v o e 90
regression.holiday 91
regularize.timestampso L o e e e e 94
residuals.bstso oL e 95
ISXES . o e 96

bsts-package 3

shorten oL 97
simulate.fake.mixed.frequency.data. oL Lo 98
spike.slab.arprior 100
SLAE.SIZES .« . v o i e e e e e e e e e e e e e e 101
StateSpecification 102
SuggestBurn L e 102
SUMMATY.DSES e e e e e e e e 103
TO.POSIXE . o o o o e e e e e 104
turkish o L 105
week.ends e e 106
weekday.names 107
wide.todong L L L e e e 107

Index 109

bsts-package bsts
Description

Time series regression using dynamic linear models fit using MCMC. See Scott and Varian (2014)
<DOI:10.1504/IJTMMNO.2014.059942>, among many other sources.

Details

Installation note for Linux users: If you are installing bsts using install.packages on a
Linux machine (and thus compiling yourself) you will almost certainly want to set the Ncpus
argument to a large number. Windows and Mac users can ignore this advice.

Author(s)

Author: Steven L. Scott <steve.the.bayesian @ gmail.com> Maintainer: Steven L. Scott <steve.the.bayesian @ gmail.com>

References

Please see the references in the help page for the bsts function.

See Also

See the examples in the bsts function.

4 add.ar

add.ar AR(p) state component

Description

Add an AR(p) state component to the state specification.

Usage
AddAr(state.specification,
Y,
lags = 1,

sigma.prior,
initial.state.prior = NULL,
sdy)

Arguments

state.specification
A list of state components. If omitted, an empty list is assumed.

y A numeric vector. The time series to be modeled.

lags The number of lags ("p") in the AR(p) process.

sigma.prior An object created by SdPrior. The prior for the standard deviation of the process
increments.

initial.state.prior

An object of class MvnPrior describing the values of the state at time 0. This
argument can be NULL, in which case the stationary distribution of the AR(p)
process will be used as the initial state distribution.

sdy The sample standard deviation of the time series to be modeled. Used to scale
the prior distribution. This can be omitted if y is supplied.

Details

The model is

= Q1051+ F Ppy_p €1 e ~ N(0, 02)

The state consists of the last p lags of alpha. The state transition matrix has phi in its first row,
ones along its first subdiagonal, and zeros elsewhere. The state variance matrix has sigma*2 in its
upper left corner and is zero elsewhere. The observation matrix has 1 in its first element and is zero
otherwise.

Value

Returns state.specification with an AR(p) state component added to the end.

add.dynamic.regression 5

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior

Examples

n <- 100
residual.sd <- .001

Actual values of the AR coefficients
true.phi <- c(-.7, .3, .15)
ar <- arima.sim(model = list(ar = true.phi),
n=n,
sd = 3)

Layer some noise on top of the AR process.
y <= ar + rnorm(n, @, residual.sd)
ss <- AddAr(list(), lags = 3, sigma.prior = SdPrior(3.0, 1.0))

Fit the model with knowledge with residual.sd essentially fixed at the
true value.
model <- bsts(y, state.specification=ss, niter = 500, prior = SdPrior(residual.sd, 100000))

Now compare the empirical ACF to the true ACF.

acf(y, lag.max = 30)

points(@:30, ARMAacf(ar = true.phi, lag.max = 30), pch = "+"

points(@:30, ARMAacf(ar = colMeans(model$AR3.coefficients), lag.max = 30))
legend("topright”, leg = c("empirical”, "truth”, "MCMC"), pch = c(NA, "+", "0"))

add.dynamic.regression
Dynamic Regression State Component

Description

Add a dynamic regression component to the state specification of a bsts model. A dynamic regres-
sion is a regression model where the coefficients change over time according to a random walk.

6 add.dynamic.regression

Usage

AddDynamicRegression(
state.specification,
formula,
data,
model.options = NULL,
sigma.mean.prior.DEPRECATED = NULL,
shrinkage.parameter.prior.DEPRECATED = GammaPrior(a = 10, b = 1),
sigma.max.DEPRECATED = NULL,
contrasts = NULL,
na.action = na.pass)

DynamicRegressionRandomWalkOptions(
sigma.prior = NULL,
sdy = NULL,
sdx = NULL)

DynamicRegressionHierarchicalRandomWalkOptions(
sdy = NULL,
sigma.mean.prior = NULL,
shrinkage.parameter.prior = GammaPrior(a = 10, b = 1),
sigma.max = NULL)

DynamicRegressionArOptions(lags = 1, sigma.prior = SdPrior(1, 1))

Arguments

state.specification
A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

formula A formula describing the regression portion of the relationship between y and
X. If no regressors are desired then the formula can be replaced by a numeric
vector giving the time series to be modeled.

data An optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from ’environment(formula)’, typically the environment
from which AddDynamicRegression is called.

model.options An objectinheriting from DynamicRegressionOptions giving the specific tran-
sition model for the dynamic regression coefficients, and the prior distribution
for any hyperparameters associated with the transition model.

sigma.mean.prior
An object created by GammaPrior describing the prior distribution of b/a (see
details below).

sigma.mean.prior.DEPRECATED
This option should be set using model.options. It will be removed in a future
release.

add.dynamic.regression 7

shrinkage.parameter.prior
An object of class GammaPrior describing the shrinkage parameter, a (see details
below).

shrinkage.parameter.prior.DEPRECATED
This option should be set using model.options. It will be removed in a future
release.

sigma.max The largest supported value of each sigma[i]. Truncating the support of sigma
can keep ill-conditioned models from crashing. This must be a positive number
(Inf is okay), or NULL. A NULL value will set sigma.max = sd(y), which is a
substantially larger value than one would expect, so in well behaved models this
constraint will not affect the analysis.

sigma.max.DEPRECATED
This option should be set using model.options. It will be removed in a future

release.

contrasts An optional list. See the contrasts.arg of model.matrix.default. This
argument is only used if a model formula is specified. It can usually be ignored
even then.

na.action What to do about missing values. The default is to allow missing responses,

but no missing predictors. Set this to na.omit or na.exclude if you want to omit
missing responses altogether.

sdy The standard deviation of the response variable. This is used to scale default
priors and sigma.max if other arguments are left NULL. If all other arguments
are non-NULL then sdy is not used.

sdx The vector of standard deviations of each predictor variable in the dynamic re-
gression. Used only to scale the default prior. This argument is not used if a
prior is specified directly.

lags The number of lags in the autoregressive process for the coefficients.

sigma.prior Either an object of class SdPrior or a list of such objects. If a single SdPrior
is given then it specifies the prior on the innovation variance for all the coeffi-
cients. If a list of SdPrior objects is given, then each element gives the prior
distribution for the corresponding regression coefficient. The length of such a
list must match the number of predictors in the dynamic regression part of the
model.
Details

For the standard "random walk" coefficient model, the model is

Bit+1 = beta; + € et ~ N(0, af/variancem)
1
— ~ Ga(a,b)
0;

b/a ~ sigma.mean.prior

8 add.dynamic.regression

a ~ shrinkage.parameter.prior

That is, each coefficient evolves independently, with its own variance term which is scaled by the
variance of the i’th column of X. The parameters of the hyperprior are interpretable as: sqrt(b/a)
typical amount that a coefficient might change in a single time period, and ’a’ is the ’sample size’
or 'shrinkage parameter’ measuring the degree of similarity in sigmali] among the arms.

In most cases we hope b/a is small, so that sigmal[i]’s will be small and the series will be forecastable.
We also hope that "a’ is large because it means that the sigma[i]’s will be similar to one another.

The default prior distribution is a pair of independent Gamma priors for sqrt(b/a) and a. The mean of
sigmal[i] is set to .01 * sd(y) with shape parameter equal to 1. The mean of the shrinkage parameter
is set to 10, but with shape parameter equal to 1.

If the coefficients have AR dynamics, then the model is that each coefficient independently follows
an AR(p) process, where p is given by the lags argument. Independent priors are assumed for each
coefficient’s model, with a uniform prior on AR coefficients (with support restricted to the finite
region where the process is stationary), while the sigma.prior argument gives the prior for each
coefficient’s innovation variance.

Value

Returns a list with the elements necessary to specify a dynamic regression model.

Author(s)

Steven L. Scott

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

Examples

Setting the seed to avoid small sample effects resulting from small
number of iterations.

set.seed(8675309)

n <- 1000

x <- matrix(rnorm(n))

beta follows a random walk with sd = .1 starting at -12.
beta <- cumsum(rnorm(n, @, .1)) - 12

level is a local level model with sd = 1 starting at 18.

add.local.level 9

level <- cumsum(rnorm(n)) + 18

sigma.obs is .1
error <- rnorm(n, @, .1)

y <- level + x x beta + error

par(mfrow = c(1, 3))

plot(y, main = "Raw Data")

plot(x, y - level, main = "True Regression Effect”)
plot(y - x *x beta, main = "Local Level Effect”)

ss <- list()

ss <- AddLocallLevel(ss, y)

ss <- AddDynamicRegression(ss, y ~ x)

In a real appliction you'd probably want more than 100

iterations. See comment above about the random seed.

model <- bsts(y, state.specification = ss, niter = 100, seed = 8675309)
plot(model, "dynamic”, burn = 10)

XX <= rnorm(10)
pred <- predict(model, newdata = xx)
plot(pred)

add.local.level Local level trend state component

Description

Add alocal level model to a state specification. The local level model assumes the trend is a random
walk:

Qi1 = + € et ~ N(0,0).

The prior is on the o parameter.

Usage

AddLocallLevel (
state.specification,
Y,
sigma.prior,
initial.state.prior,
sdy,
initial.y)

Arguments

state.specification

A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

10 add.local.linear.trend

y The time series to be modeled, as a numeric vector.

sigma.prior An object created by SdPrior describing the prior distribution for the standard
deviation of the random walk increments.
initial.state.prior

An object created using NormalPrior, describing the prior distribution of the
initial state vector (at time 1).

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

initial.y The initial value of the series being modeled. This will be ignored if y is pro-
vided, or if the priors for the initial state are all provided directly.
Value

Returns a list with the elements necessary to specify a local linear trend state model.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

add.local.linear.trend
Local linear trend state component

Description

Add a local linear trend model to a state specification. The local linear trend model assumes that
both the mean and the slope of the trend follow random walks. The equation for the mean is

Mer1 = pe + 0 + € e~ N(0,0,).
The equation for the slope is
Sr1 =0 +ne e~ N(0,05).

The prior distribution is on the level standard deviation o, and the slope standard deviation os.

add.local.linear.trend 11

Usage
AddLocallLinearTrend(

state.specification = NULL,
Y,
level.sigma.prior = NULL,
slope.sigma.prior = NULL,
initial.level.prior = NULL,
initial.slope.prior = NULL,
sdy,
initial.y)

Arguments

state.specification
A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

y The time series to be modeled, as a numeric vector.

level.sigma.prior

An object created by SdPrior describing the prior distribution for the standard
deviation of the level component.

slope.sigma.prior
An object created by SdPrior describing the prior distribution of the standard
deviation of the slope component.

initial.level.prior

An object created by NormalPrior describing the initial distribution of the level
portion of the initial state vector.

initial.slope.prior
An object created by NormalPrior describing the prior distribution for the slope
portion of the initial state vector.

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

initial.y The initial value of the series being modeled. This will be ignored if y is pro-
vided, or if the priors for the initial state are all provided directly.

Value

Returns a list with the elements necessary to specify a local linear trend state model.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

References
Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

12 add.monthly.annual.cycle

See Also

bsts. SdPrior NormalPrior

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)
plot(pred)

add.monthly.annual.cycle
Monthly Annual Cycle State Component

Description

A seasonal state component for daily data, representing the contribution of each month to the annual
seasonal cycle. IL.e. this is the "January, February, March, ..." effect, with 12 seasons. There is a
step change at the start of each month, and then the contribution of that month is constant over the
course of the month.

Note that if you have anything other than daily data, then you’re probably looking for AddSeasonal
instead.

The state of this model is an 11-vector v; where the first element is the contribution to the mean for
the current month, and the remaining elements are the values for the 10 most recent months. When
t is the first day in the month then

1
Ye+1 = — Z 1y + € er ~N(0,0)

=2

And the remaining elements are y; shifted down one. When ¢ is any other day then ;11 = ;.

Usage

AddMonthlyAnnualCycle(state.specification,
Y,
date.of.first.observation = NULL,
sigma.prior = NULL,
initial.state.prior = NULL,
sdy)

add.monthly.annual.cycle 13

Arguments

state.specification
A list of state components, to which the monthly annual cycle will be added. If
omitted, an empty list will be assumed.

y The time series to be modeled, as a numeric vector.
date.of.first.observation
The time stamp of the first observation in y, as a Date or POSIXt object. If y is
a zoo object with appropriate time stamps then this argument will be deduced.

sigma.prior An object created by SdPrior describing the prior distribution for the standard
deviation of the random walk increments.

initial.state.prior
An object created using NormalPrior, describing the prior distribution of the
the initial state vector (at time 1).

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

Examples

Let's simulate some fake daily data with a monthly cycle.
Not run:
residuals <- rnorm(365 * 5)

End(Not run)

n <- length(residuals)
dates <- seq.Date(from = as.Date("2014-01-01"),
len = n,
by = 1)
monthly.cycle <- rnorm(12)
monthly.cycle <- monthly.cycle - mean(monthly.cycle)
timestamps <- as.POSIX1t(dates)
month <- timestamps$mon + 1

new.month <- c(TRUE, diff(timestamps$mon) != @)
month.effect <- cumsum(new.month)
month.effect[month.effect == 0] <- 12

response <- monthly.cycle[month] + residuals
response <- zoo(response, timestamps)

Now let's fit a bsts model to the daily data with a monthly annual
cycle.

ss <- AddLocallLevel(list(), response)

ss <- AddMonthlyAnnualCycle(ss, response)

In real life you'll probably want more iterations.

model <- bsts(response, state.specification = ss, niter = 200)
plot(model)

plot(model, "monthly")

14 add.random.walk.holiday

add.random.walk.holiday
Random Walk Holiday State Model

Description

Adds a random walk holiday state model to the state specification. This model says

Yt = Q)¢ T €t

where there is one element in o for each day in the holiday influence window. The transition
equation is

Qg(t4+1),t4+1 = Qd(t+1),t T Et+1

if t+1 occurs on day d(t+1) of the influence window, and

Qd(t41),t+1 = AXd(t41),t

otherwise.
Usage
AddRandomWalkHoliday(state.specification = NULL,
Y,
holiday,
time® = NULL,

sigma.prior = NULL,
initial.state.prior = NULL,
sdy = sd(as.numeric(y), na.rm = TRUE))

Arguments

state.specification
A list of state components that you wish augment. If omitted, an empty list will
be assumed.

y The time series to be modeled, as a numeric vector convertible to xts. This state
model assumes y contains daily data.

holiday An object of class Holiday describing the influence window of the holiday being
modeled.
time@ An object convertible to Date containing the date of the initial observation in

the training data. If omitted and y is a zoo or xts object, then time@ will be
obtained from the index of y[1].

sigma.prior An object created by SdPrior describing the prior distribution for the standard
deviation of the random walk increments.

add.random.walk.holiday 15

initial.state.prior
An object created using NormalPrior, describing the prior distribution of the
the initial state vector (at time 1).

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

Value

A list describing the specification of the random walk holiday state model, formatted as expected
by the underlying C++ code.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. RegressionHolidayStateModel HierarchicalRegressionHolidayStateModel

Examples

trend <- cumsum(rnorm(730, @, .1))

dates <- seq.Date(from = as.Date("2014-01-01"), length = length(trend),
by = "day")

y <- zoo(trend + rnorm(length(trend), @, .2), dates)

AddHolidayEffect <- function(y, dates, effect) {
Adds a holiday effect to simulated data.
Args:
y: A zoo time series, with Dates for indices.
dates: The dates of the holidays.
effect: A vector of holiday effects of odd length. The central effect is
the main holiday, with a symmetric influence window on either side.
Returns:
y, with the holiday effects added.
time <- dates - (length(effect) - 1) / 2
for (i in 1:length(effect)) {
y[time] <- y[time] + effect[i]
time <- time + 1
}
return(y)
}

Define some holidays.

16 add.seasonal

memorial.day <- NamedHoliday("MemorialDay")

memorial.day.effect <- c(.3, 3, .5)

memorial.day.dates <- as.Date(c("2014-05-26", "2015-05-25"))

y <- AddHolidayEffect(y, memorial.day.dates, memorial.day.effect)

presidents.day <- NamedHoliday("PresidentsDay")

presidents.day.effect <- c(.5, 2, .25)

presidents.day.dates <- as.Date(c("2014-02-17", "2015-02-16"))

y <- AddHolidayEffect(y, presidents.day.dates, presidents.day.effect)

labor.day <- NamedHoliday("LaborDay")

labor.day.effect <- c(1, 2, 1)

labor.day.dates <- as.Date(c("2014-09-01", "2015-09-07"))

y <- AddHolidayEffect(y, labor.day.dates, labor.day.effect)

The holidays can be in any order.
holiday.list <- list(memorial.day, labor.day, presidents.day)
number.of.holidays <- length(holiday.list)

In a real example you'd want more than 100 MCMC iterations.

niter <- 100

ss <- AddLocallevel(list(), y)

ss <- AddRandomWalkHoliday(ss, y, memorial.day)

ss <- AddRandomWalkHoliday(ss, y, labor.day)

ss <- AddRandomWalkHoliday(ss, y, presidents.day)

model <- bsts(y, state.specification = ss, niter = niter, seed = 8675309)

Plot model components.
plot(model, "comp")

Plot the effect of the specific state component.
plot(ss[[2]], model)

add.seasonal Seasonal State Component

Description

Add a seasonal model to a state specification.

The seasonal model can be thought of as a regression on nseasons dummy variables with coeffi-
cients constrained to sum to 1 (in expectation). If there are S seasons then the state vector 7 is of
dimension S-1. The first element of the state vector obeys

s
Vo1 =—Y ite e ~N(0,0)

=2

Usage

AddSeasonal (

add.seasonal 17

state.specification,

Y
nseasons,

season.duration = 1,
sigma.prior,
initial.state.prior,
sdy)

Arguments

state.specification
A list of state components that you wish to add to. If omitted, an empty list will

be assumed.
\ The time series to be modeled, as a numeric vector.
nseasons The number of seasons to be modeled.

season.duration
The number of time periods in each season.

sigma.prior An object created by SdPrior describing the prior distribution for the standard
deviation of the random walk increments.

initial.state.prior

An object created using NormalPrior, describing the prior distribution of the
the initial state vector (at time 1).

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.
Value

Returns a list with the elements necessary to specify a seasonal state model.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

18 add.semilocal.linear.trend

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)
plot(pred)

add.semilocal.linear.trend
Semilocal Linear Trend

Description

The semi-local linear trend model is similar to the local linear trend, but more useful for long-
term forecasting. It assumes the level component moves according to a random walk, but the slope
component moves according to an AR1 process centered on a potentially nonzero value D. The
equation for the level is

,ut+1=,ut+5t+et etNN(/7O—;L)'
The equation for the slope is

Sty1 =D+ ¢(0; — D) +my ne ~ N(1,05).

This model differs from the local linear trend model in that the latter assumes the slope §; follows
a random walk. A stationary AR(1) process is less variable than a random walk when making
projections far into the future, so this model often gives more reasonable uncertainty estimates
when making long term forecasts.

The prior distribution for the semi-local linear trend has four independent components. These are:

* an inverse gamma prior on the level standard deviation o,
* an inverse gamma prior on the slope standard deviation oy,
* a Gaussian prior on the long run slope parameter D,

* and a potentially truncated Gaussian prior on the ARI1 coefficient ¢. If the prior on ¢ is
truncated to (-1, 1), then the slope will exhibit short term stationary variation around the long
run slope D.

Usage

AddSemilocallLinearTrend(
state.specification = list(),
y = NULL,
level.sigma.prior = NULL,
slope.mean.prior = NULL,

add.semilocal.linear.trend 19

slope.arl.prior = NULL,
slope.sigma.prior = NULL,
initial.level.prior = NULL,
initial.slope.prior = NULL,
sdy = NULL,

initial.y = NULL)

Arguments

state.specification

A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

y The time series to be modeled, as a numeric vector. This can be omitted if sdy
and initial.y are supplied, or if all prior distributions are supplied directly.
level.sigma.prior
An object created by SdPrior describing the prior distribution for the standard
deviation of the level component.
slope.mean.prior
An object created by NormalPrior giving the prior distribution for the mean
parameter in the generalized local linear trend model (see below).
slope.arl.prior
An object created by Ar1CoefficientPrior giving the prior distribution for the
arl coefficient parameter in the generalized local linear trend model (see below).
slope.sigma.prior
An object created by SdPrior describing the prior distribution of the standard
deviation of the slope component.
initial.level.prior
An object created by NormalPrior describing the initial distribution of the level
portion of the initial state vector.
initial.slope.prior
An object created by NormalPrior describing the prior distribution for the slope
portion of the initial state vector.

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

initial.y The initial value of the series being modeled. This will be ignored if y is pro-
vided, or if the priors for the initial state are all provided directly.

Value

Returns a list with the elements necessary to specify a generalized local linear trend state model.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

20 add.shared.local.level

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

add.shared.local.level
Local level trend state component

Description

Add a shared local level model to a state specification. The shared local level model assumes the
trend is a multivariate random walk:

Qip1 =+ 1 ni; ~ N(0,05).
The contribution to the mean of the observed series obeys
Yt = BO{t + €.

plus observation error. Identifiability constraints imply that the observation coefficients B form a
rectangular lower triangular matrix with diagonal 1.0.

If there are m time series and p factors, then B has m rows and p columns. Having B be lower
triangular means that the first factor affects all series. The second affects all but the first, the third
excludes the first two, etc.

Usage

AddSharedLocallevel(
state.specification,
response,
nfactors,
coefficient.prior = NULL,
initial.state.prior = NULL,
timestamps = NULL,
series.id = NULL,
sdy,

L)

add.shared.local.level 21

Arguments

state.specification
A pre-existing list of state components that you wish to add to. If omitted, an
empty list will be assumed.

response The time series to be modeled. This can either be a matrix with rows as time
and columns as series, or it can be a numeric vector. If a vector is passed then
timestamps and series. id are required. Otherwise they are unused.

nfactors The number of latent factors to include in the model. This is the dimension of
the state for this model component.

coefficient.prior
Prior distribution on the observation coefficients.

initial.state.prior
An object of class MvnPrior, describing the prior distribution of the initial state
vector (at time 1).

timestamps If response is in long format (i.e. a vector instead of a matrix) this argument is
a vector of the same length indicating the time index to which each element of
response belongs.

series.id If response is in long format (i.e. a vector instead of a matrix) this argument is
a vector of the same length indicating the time series to which each element of
response belongs.

sdy A vector giving the standard deviation of each series to be modeled. This argu-
ment is only necessary if response cannot be supplied directly.

Extra arguments passed to ConditionalZellnerPrior, used to create a default
prior for the observation coefficients when coefficient.prior is left as NULL.

Value

Returns a list with the elements necessary to specify a local linear trend state model.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

22 add.static.intercept

add.static.intercept Static Intercept State Component

Description

Adds a static intercept term to a state space model. If the model includes a traditional trend com-
ponent (e.g. local level, local linear trend, etc) then a separate intercept is not needed (and will
probably cause trouble, as it will be confounded with the initial state of the trend model). However,
if there is no trend, or the trend is an AR process centered around zero, then adding a static intercept
will shift the center to a data-determined value.

Usage

AddStaticIntercept(
state.specification,

Y,
initial.state.prior = NormalPrior(y[1], sd(y, na.rm = TRUE)))

Arguments

state.specification
A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

y The time series to be modeled, as a numeric vector.
initial.state.prior
An object created using NormalPrior, describing the prior distribution of the
intecept term.
Value
Returns a list with the information required to specify the state component. If initial.state.prior is
specified then y is unused.
Author(s)

Steven L. Scott

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

add.student.local.linear.trend 23

add.student.local.linear.trend
Robust local linear trend

Description

Add a local level model to a state specification. The local linear trend model assumes that both the
mean and the slope of the trend follow random walks. The equation for the mean is

M1 = fig + 0p + € € ~ T, (0,0,).
The equation for the slope is
Ot41 =0 + 1M1 ne ~ Tus (0, 05).

Independent prior distributions are assumed on the level standard deviation, o, the slope standard
deviation o, the level tail thickness v,,, and the slope tail thickness vs.

Usage

AddStudentLocallLinearTrend(
state.specification = NULL,
Y,
save.weights = FALSE,
level.sigma.prior = NULL,
level.nu.prior = NULL,
slope.sigma.prior = NULL,
slope.nu.prior = NULL,
initial.level.prior = NULL,
initial.slope.prior = NULL,
sdy,
initial.y)

Arguments

state.specification
A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

y The time series to be modeled, as a numeric vector.

save.weights A logical value indicating whether to save the draws of the weights from the
normal mixture representation.

level.sigma.prior
An object created by SdPrior describing the prior distribution for the standard
deviation of the level component.

level.nu.prior An object inheritng from the class DoubleModel, representing the prior distri-

bution on the nu tail thickness parameter of the T distribution for errors in the
evolution equation for the level component.

24 add.student.local.linear.trend

slope.sigma.prior
An object created by SdPrior describing the prior distribution of the standard
deviation of the slope component.

slope.nu.prior An object inheritng from the class DoubleModel, representing the prior distri-
bution on the nu tail thickness parameter of the T distribution for errors in the
evolution equation for the slope component.

initial.level.prior
An object created by NormalPrior describing the initial distribution of the level
portion of the initial state vector.

initial.slope.prior

An object created by NormalPrior describing the prior distribution for the slope
portion of the initial state vector.

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

initial.y The initial value of the series being modeled. This will be ignored if y is pro-
vided, or if the priors for the initial state are all provided directly.

Value

Returns a list with the elements necessary to specify a local linear trend state model.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior

Examples

data(rsxfs)

ss <- AddStudentLocallLinearTrend(list(), rsxfs)

model <- bsts(rsxfs, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)

plot(pred)

add.trig

25

add.trig

Trigonometric Seasonal State Component

Description

Add a trigonometric seasonal model to a state specification.

Usage
AddTrig(
state.specification = NULL,
Y,
period,
frequencies,
sigma.prior = NULL,
initial.state.prior = NULL,
sdy = sd(y, na.rm = TRUE),
method = c("harmonic”, "direct”))
Arguments

state.specification

y
period

frequencies

sigma.prior

A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

The time series to be modeled, as a numeric vector.

A positive scalar giving the number of time steps required for the longest cycle
to repeat.

A vector of positive real numbers giving the number of times each cyclic com-
ponent repeats in a period. One sine and one cosine term will be added for each
frequency.

An object created by SdPrior describing the prior distribution for the standard
deviation of the increments for the harmonic coefficients.

initial.state.prior

An object created using NormalPrior, describing the prior distribution of the
the initial state vector (at time 1).

sdy The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.
method The method of including the sinusoids. The "harmonic" method is strongly
preferred, with "direct" offered mainly for teaching purposes.
Details
Harmonic Method:

Each frequency lambda,; = 2mj/S where S is the period (number of time points in a full cycle) is
associated with two time-varying random components: 7;;, and gammas;,. They evolve through

time as

26 add.trig

Yjt+1 = Vit €08(Aj) 4+ 77 ¢ sin(A;) + €or
Vip1 = VGt cos(Aj) — ;e *sin(A;) + e

where €p and €; are independent with the same variance. This is the real-valued version of a
harmonic function: -y exp(if).

The transition matrix multiplies the function by exp(i);, so that after ’t” steps the harmonic’s
value is y exp(iA;t).

The model dynamics allows gamma to drift over time in a random walk.

The state of the model is (;¢,77;), for j = 1, ... number of frequencies.

The state transition matrix is a block diagonal matrix, where block ’j’ is

cos(A;) sin(A;)
—sin(A;) cos(A;)

The error variance matrix is sigma”2 * 1. There is a common sigma”2 parameter shared by all
frequencies.

The model is full rank, so the state error expander matrix R_t is the identity.

The observation_matrix is (1, 0, 1, 0, ...), where the 1’s pick out the ’real’ part of the state contri-
butions.

Direct Method: Under the ’direct’” method the trig component adds a collection of sine and
cosine terms with randomly varying coefficients to the state model. The coefficients are the states,
while the sine and cosine values are part of the "observation matrix".

This state component adds the sum of its terms to the observation equation.
ye =Y Birsin(fit) + vjrcos(fit)
J

The evolution equation is that each of the sinusoid coefficients follows a random walk with stan-
dard deviation sigmal[j].
Bjt = Bjt—1 + N(0, Sigmaij)vjt =yj—1+ N(0, sigmaij)
The direct method is generally inferior to the harmonic method. It may be removed in the future.
Value

Returns a list with the elements necessary to specify a seasonal state model.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References
Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

aggregate.time.series 27

See Also

bsts. SdPrior MvnPrior

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddTrig(ss, y, period = 12, frequencies = 1:3)
model <- bsts(y, state.specification = ss, niter = 200)
plot(model)

The "harmonic"” method is much more stable than the "direct” method.
ss <- AddLocallLinearTrend(list(), y)

ss <- AddTrig(ss, y, period = 12, frequencies = 1:3, method = "direct")
model2 <- bsts(y, state.specification = ss, niter = 200)

plot(model2)

aggregate.time.series Aggregate a fine time series to a coarse summary

Description

Aggregate measurements from a fine scaled time series into a coarse time series. This is similar to
functions from the xts package, but it can handle aggregation from weeks to months.

Usage

AggregateTimeSeries(fine.series,
contains.end,
membership.fraction,
trim.left = any(membership.fraction < 1),
trim.right = NULL,
byrow = TRUE)

Arguments

fine.series A numeric vector or matrix giving the fine scale time series to be aggregated.

contains.end A logical vector corresponding to fine.series indicating whether each fine
time interval contains the end of a coarse time interval.

membership.fraction
A numeric vector corresponding to fine.series, giving the fraction of each
time interval’s observation attributable to the coarse interval containing the fine
interval’s first day. This will usually be a vector of 1’s, unless fine.series is
weekly.

trim.left Logical indicating whether the first observation in the coarse aggregate should
be removed.

28 aggregate.weeks.to.months

trim.right Logical indicating whether the final observation in the coarse aggregate should
be removed.
byrow Logical. If fine.series is a matrix, this argument indicates whether rows

(TRUE) or columns (FALSE) correspond to time points.

Value

A matrix (if fine.series is a matrix) or vector (otherwise) containing the aggregated values of
fine.series.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

Examples

week.ending <- as.Date(c("2011-11-05",

"2011-11-12",

"2011-11-19",

"2011-11-26",

"2011-12-03",

"2011-12-10",

"2011-12-17",

"2011-12-24",

"2011-12-31"))
membership.fraction <- GetFractionOfDaysInInitialMonth(week.ending)
which.month <- MatchWeekToMonth(week.ending, as.Date("2011-11-01"))
contains.end <- WeekEndsMonth(week.ending)

weekly.values <- rnorm(length(week.ending))
monthly.values <- AggregateTimeSeries(weekly.values, contains.end, membership.fraction)

aggregate.weeks.to.months
Aggregate a weekly time series to monthly

Description

Aggregate measurements from a weekly time series into a monthly time series.

Usage

AggregateWeeksToMonths(weekly.series,
membership.fraction = NULL,
trim.left = TRUE,
trim.right = NULL)

aggregate.weeks.to.months 29

Arguments

weekly.series A numeric vector or matrix of class zoo giving the weekly time series to be
aggregated. The index must be convertible to class Date.

membership.fraction
A optional numeric vector corresponding to weekly. series, giving the fraction
of each week’s observation attributable to the month containing the week’s first
day. If missing, then weeks will be split across months in proportion to the
number of days in each month.

trim.left Logical indicating whether the first observation in the monthly aggregate should
be removed.
trim.right Logical indicating whether the final observation in the monthly aggregate should
be removed.
Value

A zoo-matrix (if weekly. series is a matrix) or vector (otherwise) containing the aggregated values
of weekly.series.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

AggregateTimeSeries

Examples

week.ending <- as.Date(c("”2011-11-05",
"2011-11-12",
"2011-11-19",
"2011-11-26",
"2011-12-03",
"2011-12-10",
"2011-12-17",
"2011-12-24",
"2011-12-31"))

weekly.values <- zoo(rnorm(length(week.ending)), week.ending)
monthly.values <- AggregateWeeksToMonths(weekly.values)

30 auto.ar

auto.ar Sparse AR(p)

Description

Add a sparse AR(p) process to the state distribution. A sparse AR(p) is an AR(p) process with a
spike and slab prior on the autoregression coefficients.

Usage
AddAutoAr(state.specification,
y)
lags = 1,
prior = NULL,
sdy = NULL,

)

Arguments

state.specification
A list of state components. If omitted, an empty list is assumed.

y A numeric vector. The time series to be modeled. This can be omitted if sdy is
supplied.

lags The maximum number of lags ("p") to be considered in the AR(p) process.

prior An object inheriting from SpikeSlabArPrior, or NULL. If the latter, then a de-

fault SpikeSlabArPrior will be created.

sdy The sample standard deviation of the time series to be modeled. Used to scale
the prior distribution. This can be omitted if y is supplied.

Extra arguments passed to SpikeSlabArPrior.

Details

The model contributes alphalt] to the expected value of y[t], where the transition equation is

= Q10501+ F Ppap_p €1 e ~ N(0, 02)

The state consists of the last p lags of alpha. The state transition matrix has phi in its first row,
ones along its first subdiagonal, and zeros elsewhere. The state variance matrix has sigma*2 in its
upper left corner and is zero elsewhere. The observation matrix has 1 in its first element and is zero
otherwise.

This model differs from the one in AddAr only in that some of its coefficients may be set to zero.

Value

Returns state.specification with an AR(p) state component added to the end.

bsts 31

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior

Examples

n <- 100
residual.sd <- .001

Actual values of the AR coefficients
true.phi <- c¢(-.7, .3, .15)
ar <- arima.sim(model = list(ar = true.phi),
n=n,
sd = 3)

Layer some noise on top of the AR process.
y <= ar + rnorm(n, @, residual.sd)
ss <- AddAutoAr(list(), y, lags = 6)

Fit the model with knowledge with residual.sd essentially fixed at the
true value.
model <- bsts(y, state.specification=ss, niter = 500, prior = SdPrior(residual.sd, 100000))

Now compare the empirical ACF to the true ACF.

acf(y, lag.max = 30)

points(@:30, ARMAacf(ar = true.phi, lag.max = 30), pch = "+"

points(@:30, ARMAacf(ar = colMeans(model$AR6.coefficients), lag.max = 30))
legend("topright”, leg = c("empirical”, "truth”, "MCMC"), pch = c(NA, "+", "0o"))

bsts Bayesian Structural Time Series

Description

Uses MCMC to sample from the posterior distribution of a Bayesian structural time series model.
This function can be used either with or without contemporaneous predictor variables (in a time
series regression).

32 bsts

If predictor variables are present, the regression coefficients are fixed (as opposed to time varying,
though time varying coefficients might be added as state component). The predictors and response
in the formula are contemporaneous, so if you want lags and differences you need to put them in
the predictor matrix yourself.

If no predictor variables are used, then the model is an ordinary state space time series model.

The model allows for several useful extensions beyond standard Bayesian dynamic linear models.

* A spike-and-slab prior is used for the (static) regression component of models that include
predictor variables. This is especially useful with large numbers of regressor series.

* Both the spike-and-slab component (for static regressors) and the Kalman filter (for compo-
nents of time series state) require observations and state variables to be Gaussian. The bsts
package allows for non-Gaussian error families in the observation equation (as well as some
state components) by using data augmentation to express these families as conditionally Gaus-
sian.

* As of version 0.7.0, bsts supports having multiple observations at the same time point. In this
case the basic model is taken to be

T T
Ytj = Zy ou+ B x5 + €

This is a regression model where all observations with the same time point share a common
time series effect.

Usage
bsts(formula,
state.specification,
family = c("gaussian”, "logit"”, "poisson”, "student"),
data,
prior,
contrasts = NULL,
na.action = na.pass,
niter,
ping = niter / 10,
model.options = BstsOptions(),
timestamps = NULL,
seed = NULL,
)
Arguments
formula A formula describing the regression portion of the relationship between y and
X.

If no regressors are desired then the formula can be replaced by a numeric vec-
tor giving the time series to be modeled. Missing values are not allowed in
predictors, but they are allowed in the response variable.

If the response variable is of class zoo, xts, or ts, then the time series infor-
mation it contains will be used in many of the plotting methods called from
plot.bsts.

bsts 33

state.specification
A list with elements created by AddLocallLinearTrend, AddSeasonal, and sim-
ilar functions for adding components of state. See the help page for state.specification.

family The model family for the observation equation. Non-Gaussian model families
use data augmentation to recover a conditionally Gaussian model.

data An optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which bsts is called.

prior If regressors are supplied in the model formula, then this is a prior distribution
for the regression component of the model, as created by SpikeSlabPrior. The
prior for the time series component of the model will be specified during the cre-
ation of state.specification. This argument is only used if a formula is specified.

If the model contains no regressors, then this is simply the prior on the residual
standard deviation, expressed as an object created by SdPrior.

contrasts An optional list containing the names of contrast functions to use when con-
verting factors numeric variables in a regression formula. This argument works
exactly as it does in 1m. The names of the list elements correspond to factor
variables in your model formula. The list elements themselves are the names of
contrast functions (see help(contr.treatment) and the contrasts.arg ar-
gument to model.matrix.default). This argument is only used if a model
formula is specified, and even then the default is probably what you want.

na.action What to do about missing values. The default is to allow missing responses,
but no missing predictors. Set this to na.omit or na.exclude if you want to omit
missing responses altogether.

niter A positive integer giving the desired number of MCMC draws.

ping A scalar giving the desired frequency of status messages. If ping > O then the
program will print a status message to the screen every ping MCMC iterations.

model.options An object (list) returned by BstsOptions. See that function for details.

timestamps The timestamp associated with each value of the response. This argument is
primarily useful in cases where the response has missing gaps, or where there
are multiple observations per time point. If the response is a "regular” time se-
ries with a single observation per time point then you can leave this argument as
NULL. In that case, if either the response or the data argument is a type convert-
ible to zoo then timestamps will be inferred.

seed An integer to use as the random seed for the underlying C++ code. If NULL then
the seed will be set using the clock.

Extra arguments to be passed to SpikeSlabPrior (see the entry for the prior
argument, above).

Details

If the model family is logit, then there are two ways one can format the response variable. If the
response is 0/1, TRUE/FALSE, or 1/-1, then the response variable can be passed as with any other
model family. If the response is a set of counts out of a specified number of trials then it can be

34 bsts

passed as a two-column matrix, where the first column contains the counts of successes and the
second contains the count of failures.

Likewise, if the model family is Poisson, the response can be passed as a single vector of counts,
under the assumption that each observation has unit exposure. If the exposures differ across obser-
vations, then the resopnse can be a two column matrix, with the first column containing the event
counts and the second containing exposure times.

Value

An object of class bsts which is a list with the following components

coefficients A niter by ncol(X) matrix of MCMC draws of the regression coefficients,
where X is the design matrix implied by formula. This is only present if a
model formula was supplied.

sigma.obs A vector of length niter containing MCMC draws of the residual standard de-
viation.

The returned object will also contain named elements holding the MCMC draws of model param-
eters belonging to the state models. The names of each component are supplied by the entries in
state.specification. If a model parameter is a scalar, then the list element is a vector with
niter elements. If the parameter is a vector then the list element is a matrix with niter rows. If
the parameter is a matrix then the list element is a 3-way array with first dimension niter.

Finally, if a model formula was supplied, then the returned object will contain the information
necessary for the predict method to build the design matrix when a new prediction is made.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Scott and Varian (2014) "Predicting the Present with Bayesian Structural Time Series", International
Journal of Mathematical Modelling and Numerical Optimization. 4-23.

Scott and Varian (2015) "Bayesian Variable Selection for Nowcasting Economic Time Series", Eco-
nomic Analysis of the Digital Economy, pp 119-135.

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

George and McCulloch (1997) "Approaches for Bayesian variable selection”, Statistica Sinica pp
339-374.

See Also

bsts, AddLocallLevel, AddLocallLinearTrend, AddSemilocalLinearTrend, AddSeasonal AddDynamicRegression
SpikeSlabPrior, SdPrior.

bsts

Examples

Example 1: Time series (ts) data
data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)

par(mfrow = c(1,2))
plot(model)
plot(pred)

Not run:

MakePlots <- function(model, ask = TRUE) {
Make all the plots callable by plot.bsts.
opar <- par(ask = ask)
on.exit(par(opar))
plot.types <- c("state”, "components”, "resi

duals”,

"prediction.errors”, "forecast.distribution”)

for (plot.type in plot.types) {
plot(model, plot.type)
3
if (model$has.regression) {
regression.plot.types <- c("coefficients”,
for (plot.type in regression.plot.types) {
plot(model, plot.type)

}
3
}
Example 2: GOOG is the Google stock price,
data.
data(goog)

ss <- AddSemilocallLinearTrend(list(), goog)
model <- bsts(goog, state.specification = ss,
MakePlots(model)

Example 3: Change GOOG to be zoo, and not
goog <- zoo(goog, index(goog))

ss <- AddSemilocallLinearTrend(list(), goog)
model <- bsts(goog, state.specification = ss,
MakePlots(model)

Example 4: Naked numeric data works too

y <= rnorm(100)

ss <- AddLocallLinearTrend(list(), y)

model <- bsts(y, state.specification = ss, nit
MakePlots(model)

"predictors”, "size")

an xts series of daily

niter = 500)
xts.
niter = 500)

er = 500)

Example 5: zoo data with intra-day measurements

y <= zoo(rnorm(100),

35

36

seq(from = as.POSIXct("2012-01-01 7:00 EST"), len = 100, by = 100))

ss <- AddLocallLinearTrend(list(), y)
model <- bsts(y, state.specification = ss, niter = 500)

MakePlots(model)

\dontrun{
Example 6: Including regressors
data(iclaims)

ss <- AddLocallLinearTrend(list(), initial.claims$iclaimsNSA)
ss <- AddSeasonal(ss, initial.claims$iclaimsNSA, nseasons = 52)
model <- bsts(iclaimsNSA ~ ., state.specification = ss, data =
initial.claims, niter = 1000)
plot(model)
plot(model, "components")
plot(model, "coefficients”)
plot(model, "predictors")
3

End(Not run)

Not run:
Example 7: Regressors with multiple time stamps.
number.of.time.points <- 50
sample.size.per.time.point <- 10

total.sample.size <- number.of.time.points * sample.size.per.time.point

sigma.level <- .1
sigma.obs <- 1

Simulate some fake data with a local level state component.
trend <- cumsum(rnorm(number.of.time.points, @, sigma.level))
predictors <- matrix(rnorm(total.sample.size * 2), ncol = 2)
colnames(predictors) <- c("X1", "X2")

coefficients <- c(-10, 10)

regression <- as.numeric(predictors %*% coefficients)

y.hat <- rep(trend, sample.size.per.time.point) + regression
y <= rnorm(length(y.hat), y.hat, sigma.obs)

Create some time stamps, with multiple observations per time stamp.

first <- as.POSIXct("2013-03-24")

dates <- seq(from = first, length = number.of.time.points, by = "month")

timestamps <- rep(dates, sample.size.per.time.point)

Run the model with a local level trend, and an unnecessary seasonal component.

ss <- AddLocallLevel(list(), y)
ss <- AddSeasonal(ss, y, nseasons = 7)

model <- bsts(y ~ predictors, ss, niter = 250, timestamps = timestamps,

seed = 8675309)
plot(model)
plot(model, "components")

End(Not run)

Example 8: Non-Gaussian data

bsts

bsts.options.Rd 37

Poisson counts of shark attacks in Florida.
data(shark)
logshark <- loglp(shark$Attacks)
ss.level <- AddLocallLevel(list(), y = logshark)
model <- bsts(shark$Attacks, ss.level, niter = 500,
ping = 250, family = "poisson”, seed = 8675309)

Poisson data can have an 'exposure' as the second column of a

two-column matrix.

model <- bsts(cbind(shark$Attacks, shark$Population / 1000),
state.specification = ss.level, niter = 500,
family = "poisson”, ping = 250, seed = 8675309)

bsts.options.Rd Bsts Model Options

Description

Rarely used modeling options for bsts models.

Usage

BstsOptions(save.state.contributions = TRUE,
save.prediction.errors = TRUE,
bma.method = c("SSVS", "ODA"),
oda.options = list(

fallback.probability = 0.0,

eigenvalue.fudge.factor = 0.01),
timeout.seconds = Inf,
save.full.state = FALSE)

Arguments

save.state.contributions
Logical. If TRUE then a 3-way array named state.contributions will be
stored in the returned object. The indices correspond to MCMC iteration, state
model number, and time. Setting save.state.contributions to FALSE yields
a smaller object, but plot will not be able to plot the the "state", "components",
or "residuals" for the fitted model.

save.prediction.errors
Logical. If TRUE then a matrix named one.step.prediction.errors will be
saved as part of the model object. The rows of the matrix represent MCMC
iterations, and the columns represent time. The matrix entries are the one-step-
ahead prediction errors from the Kalman filter.

38 compare.bsts.models

bma.method If the model contains a regression component, this argument specifies the method
to use for Bayesian model averaging. "SSVS" is stochastic search variable selec-
tion, which is the classic approach from George and McCulloch (1997). "ODA"
is orthoganal data augmentation, from Ghosh and Clyde (2011). It adds a set
of latent observations that make the X7 X matrix diagonal, vastly simplifying
complete data MCMC for model selection.

oda.options If bma.method == "ODA" then these are some options for fine tuning the ODA
algorithm.

e fallback.probability: Each MCMC iteration will use SSVS instead of
ODA with this probability. In cases where the latent data have high lever-
age, ODA mixing can suffer. Mixing in a few SSVS steps can help keep an
errant algorithm on track.

e eigenvalue. fudge.factor: The latent X’s will be chosen so that the com-
plete data X7 X matrix (after scaling) is a constant diagonal matrix equal
to the largest eigenvalue of the observed (scaled) X7 X times (1 + eigen-
value.fudge.factor). This should be a small positive number.

timeout.seconds
The number of seconds that sampler will be allowed to run. If the timeout is
exceeded the returned object will be truncated to the final draw that took place
before the timeout occurred, as if that had been the requested number of itera-
tions.

save.full.state
Logical. If TRUE then the full distribution of the state vector will be preserved. It
will be stored in the model under the name full.state, which is a 3-way array
with dimenions corresponding to MCMC iteration, state dimension, and time.

Value

The arguments are checked to make sure they have legal types and values, then a list is returned
containing the arguments.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

compare.bsts.models Compare bsts models

Description

Produce a set of line plots showing the cumulative absolute one step ahead prediction errors for
different models. This plot not only shows which model is doing the best job predicting the data, it
highlights regions of the data where the predictions are particularly good or bad.

compare.bsts.models

Usage

39

CompareBstsModels(model.list,

Arguments

model.list
burn

filename

colors

lwd

x1lab
main
grid

cutpoint

Value

burn = SuggestBurn(.1, model.list[[1]1]),

filename = "",
colors = NULL,
lwd = 2,

xlab = "Time",
main = "",
grid = TRUE,

cutpoint = NULL)

A list of bsts models.
The number of initial MCMC iterations to remove from each model as burn-in.

A string. If non-empty string then a pdf of the plot will be saved in the specified
file.

A vector of colors to use for the different lines in the plot. If NULL then the
rainbow pallette will be used.

The width of the lines to be drawn.

Label for the horizontal axis.

Main title for the plot.

Logical. Should gridlines be drawn in the background?

Either NULL, or an integer giving the observation number used to define a holdout
sample. Prediction errors occurring after the cutpoint will be true out of sample
errors. If NULL then all prediction errors are "in sample". See the discussion in
bsts.prediction.errors.

Invisibly returns the matrix of cumulative one-step ahead prediction errors (the lines in the top panel
of the plot). Each row in the matrix corresponds to a model in model.list.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)
trend.only <- bsts(y, ss, niter = 250)

ss <- AddSeasonal(ss, y, nseasons = 12)
trend.and.seasonal <- bsts(y, ss, niter = 250)

40 date.range

CompareBstsModels(list(trend = trend.only,
"trend and seasonal” = trend.and.seasonal))

CompareBstsModels(list(trend = trend.only,
"trend and seasonal” = trend.and.seasonal),
cutpoint = 100)

date.range Date Range

Description

Returns the first and last dates of the influence window for the given holiday, among the given
timestamps.

Usage

DateRange(holiday, timestamps)

Arguments
holiday An object of class Holiday.
timestamps A vector of timestamps of class Date or class POSIXt. This function assumes
daily data. Use with care in other settings.
Value

Returns a two-column data frame giving the first and last dates of the influence window for the
holiday in the period covered by timestamps.
Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

holiday <- NamedHoliday("MemorialDay", days.before = 2, days.after = 2)

timestamps <- seq.Date(from = as.Date("2001-01-01"), by = "day",
length.out = 365 % 10)

influence <- DateRange(holiday, timestamps)

descriptive-plots 41

descriptive-plots Descriptive Plots

Description

Plots for describing time series data.

Usage
DayPlot(y, colors = NULL, ylab = NULL, ...)
MonthPlot(y, seasonal.identifier = months, colors = NULL, ylab = NULL, ...)
YearPlot(y, colors = NULL, ylab = NULL, ylim = NULL, legend = TRUE, ...)
Arguments
y A time series to plot. Must be of class ts, or zoo. If a zoo object then the

timestamps must be of type Date, yearmon, or POSIXt.

seasonal.identifier
A function that takes a vector of class POSIXt (date/time) and returns a character
vector indicating the season to which each element belongs. Each unique ele-
ment returned by this function returns a "season" to be plotted. See weekdays,
months, and quarters for examples of how this should work.

colors A vector of colors to use for the lines.

legend Logical. If TRUE then a legend is added to the plot.
ylab Label for the vertical axis.

ylim Limits for the vertical axis. (a 2-vector)

Extra arguments passed to plot or lines.

Details

DayPlot and MonthPlot plot the time series one season at a time, on the same set of axes. The
intent is to use DayPlot for daily data and MonthPlot for monthly or quarterly data.

YearPlot plots each year of the time series as a separate line on the same set of axes.

Both sets of plots help visualize seasonal patterns.

Value

Returns invisible{NULL}.

See Also

monthplot is a base R function for plotting time series of type ts.

42 diagnostic-plots

Examples

Plot a 'ts' time series.
data(AirPassengers)
par(mfrow = c(1,2))
MonthPlot(AirPassengers)
YearPlot (AirPassengers)

Plot a 'zoo' time series.
data(turkish)

par(mfrow = c(1,2))
YearPlot(turkish)

DayPlot (turkish)

diagnostic-plots Diagnostic Plots

Description

Diagnostic plots for distributions of residuals.

Usage
qqdist(draws, ...)
AcfDist(draws, lag.max = NULL, xlab = "Lag", ylab = "Autocorrelation”, ...)
Arguments
draws A matrix of Monte Carlo draws of residual errors. Each row is a Monte Carlo
draw, and each column is an observation. In the case of AcfDist successive
observations are assumed to be sequential in time.
lag.max The number of lags to plot in the autocorrelation function. See acf.
xlab Label for the horizontal axis.
ylab Label for the vertical axis.
Extra arguments passed to either boxplot (for AcfDist) or PlotDynamicDistribution
(for qgqdist).
Details

gqdist sorts the columns of draws by their mean, and plots the resulting set of curves against
the quantiles of the standard normal distribution. A reference line is added, and the mean of each
column of draws is represented by a blue dot. The dots and the line are the transpose of what you
get with ggnorm and qqgline.

AcfDist plots the posterior distribution of the autocorrelation function using a set of side-by-side
boxplots.

dirm 43

Examples

data(AirPassengers)
y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)
ss <- AddSeasonal(ss, y, nseasons = 12)
model <- bsts(y, ss, niter = 500)

r <- residuals(model)

par(mfrow = c(1,2))

gqdist(r) ## A bit of departure in the upper tail
AcfDist(r)

dirm Dynamic intercept regression model

Description

A dynamic intercept regression is a regression model where the intercept term is a state space model.
This model differs from bsts in that there can be multiple observations per time point.

Usage
dirm(formula,
state.specification,
data,
prior = NULL,
contrasts = NULL,
na.action = na.pass,
niter,
ping = niter / 10,
model.options = DirmModelOptions(),
timestamps = NULL,
seed = NULL,
)
Arguments
formula A formula, as you would supply to 1m describing the regression portion of the

relationship between y and X.
state.specification
A list with elements created by AddLocallLinearTrend, AddSeasonal, and sim-

ilar functions for adding components of state. See the help page for state.specification.

The state specification describes the dynamic intercept term in the regression
model.

44

data

prior

contrasts

na.action

niter

ping

model.options

timestamps

seed

Details

dirm

An optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which dirm is called.

A prior distribution for the regression component of the model, as created by
SpikeSlabPrior. The prior for the time series component of the model will be
specified during the creation of state.specification.

An optional list containing the names of contrast functions to use when con-
verting factors numeric variables in a regression formula. This argument works
exactly as it does in 1m. The names of the list elements correspond to factor
variables in your model formula. The list elements themselves are the names of
contrast functions (see help(contr.treatment) and the contrasts.arg argu-
ment to model.matrix.default). This argument can usually be omitted.

What to do about missing values. The default is to allow missing responses,
but no missing predictors. Set this to na.omit or na.exclude if you want to omit
missing responses altogether.

A positive integer giving the desired number of MCMC draws.

A scalar giving the desired frequency of status messages. If ping > O then the
program will print a status message to the screen every ping MCMC iterations.

An object created by DirmModelOptions specifying the desired model options.

The timestamp associated with each value of the response. This is most likely a
Date or POSIXt. It is expected that there will be multiple observations per time
point (otherwise "bsts’ should be used instead of ’dirm’), and thus the ’times-
tamps’ argument will contain many duplicate values.

An integer to use as the random seed for the underlying C++ code. If NULL then
the seed will be set using the clock.

Extra arguments to be passed to SpikeSlabPrior (see the entry for the prior
argument, above).

The fitted model is a regression model with an intercept term given by a structural time series model.
This is similar to the model fit by bsts, but it allows for multiple observations per time period.

Currently dirm only supports Gaussian observation errors, but look for that to change in future

releases.

Value

An object of class bsts which is a list with the following components

coefficients

sigma.obs

A niter by ncol(X) matrix of MCMC draws of the regression coefficients,
where X is the design matrix implied by formula. This is only present if a
model formula was supplied.

A vector of length niter containing MCMC draws of the residual standard de-
viation.

dirm 45

The returned object will also contain named elements holding the MCMC draws of model param-
eters belonging to the state models. The names of each component are supplied by the entries in
state.specification. If a model parameter is a scalar, then the list element is a vector with
niter elements. If the parameter is a vector then the list element is a matrix with niter rows. If
the parameter is a matrix then the list element is a 3-way array with first dimension niter.

Finally, if a model formula was supplied, then the returned object will contain the information
necessary for the predict method to build the design matrix when a new prediction is made.
Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

George and McCulloch (1997) "Approaches for Bayesian variable selection”, Statistica Sinica pp
339-374.

See Also

bsts, AddLocallLevel, AddLocallLinearTrend, AddSemilocalLinearTrend, AddSeasonal AddDynamicRegression
SpikeSlabPrior, SdPrior.

Examples

SimulateDirmData <- function(observation.sd
time.dimension
xdim = 4) {
trend <- cumsum(rnorm(time.dimension, @, trend.sd))
total.sample.size <- nobs.per.period * time.dimension
predictors <- matrix(rnorm(total.sample.size * xdim),
nrow = total.sample.size)
coefficients <- rnorm(xdim)
expanded.trend <- rep(trend, each = nobs.per.period)
response <- expanded.trend + predictors %*% coefficients + rnorm(
total.sample.size, @, observation.sd)
timestamps <- seq.Date(from = as.Date("2008-01-01"),
len = time.dimension, by = "day")
extended. timestamps <- rep(timestamps, each = nobs.per.period)
return(list(response = response,
predictors = predictors,
timestamps = extended.timestamps,
trend = trend,
coefficients = coefficients))

1, trend.sd = .1,
100, nobs.per.period = 3,

46 dirm-model-optoins

data <- SimulateDirmData(time.dimension = 20)
ss <- AddLocallevel(list(), data$response)

In real life you'd want more than 50 MCMC iterations.
model <- dirm(data$response ~ data$predictors, ss, niter = 50,
timestamps = data$timestamps)

dirm-model-optoins Specify Options for a Dynamic Intercept Regression Model

Description

Specify modeling options for a dynamic intercept regression model.

Usage

DirmModelOptions(timeout.seconds = Inf,
high.dimensional.threshold.factor = 1.0)

Arguments

timeout.seconds
The overall time budget for model fitting. If the MCMC algorithm takes longer
than this number, the current iteration will complete, and then the fitting algo-
rithm will return with however many MCMC iterations were managed during
the allotted time.

high.dimensional.threshold.factor
When doing Kalman filter updates for the model, Sherman-Morrisson-Woodbury
style updates are applied for high dimensional data, while direct linear algebra is
used for low dimensional data. The definition of "high dimensional" is relative
to the dimension of the state. An observation is considered high dimensional if
its dimension exceeds the state dimension times this factor.

Value

An object of class DirmModelOptions, which is simply a list containing values of the function
arguments.

The value of using this function instead of making a list "by hand" is that argument types are
properly checked, and list names are sure to be correct.

estimate.time.scale 47

estimate.time.scale Intervals between dates

Description

Estimate the time scale used in time series data.

Usage

EstimateTimeScale(dates)

Arguments

dates A sorted vector of class Date.

Value

non "non "non "non

A character string. Either "daily", "weekly", "yearly", "monthly", "quarterly", or "other". The value
is determined based on counting the number of days between successive observations in dates.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

weekly.data <- as.Date(c("2011-10-01",
"2011-10-08",
"2011-10-15",
"2011-10-22",
"2011-10-29",
"2011-11-05"))

EstimateTimeScale(weekly.data) # "weekly”

almost.weekly.data <- as.Date(c("2011-10-01",
"2011-10-08",
"2011-10-15",
"2011-10-22",
"2011-10-29",
"2011-11-06")) # last day is one later

EstimateTimeScale(weekly.data) # "other”

48 extend.time

extend.time Extends a vector of dates to a given length

Description

Pads a vector of dates to a specified length.

Usage

ExtendTime(dates, number.of.periods, dt = NULL)

Arguments

dates An ordered vector of class Date.
number.of.periods
The desired length of the output.

dt A character string describing the frequency of the dates in dates. Possible val-

ues are "daily", "weekly", "monthly", "quarterly", "yearly", or "other". An at-
tempt to deduce dt will be made if it is missing.

Value

If number.of.periods is longer than length(dates), then dates will be padded to the desired
length. Extra dates are added at time intervals matching the average interval in dates. Thus they
may not be

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

See Also

bsts.mixed.

Examples

origin.month <- as.Date(”2011-09-01")

week.ending <- as.Date(c("”2011-10-01", ## 1
"2011-10-08", ## 2
"2011-12-03", ## 3
"2011-12-31")) #i# 4

MatchWeekToMonth(week.ending, origin.month) == 1:4

format.timestamps 49

format.timestamps Checking for Regularity

Description

Tools for checking if a series of timestamps is ‘regular’ meaning that it has no duplicates, and no
gaps. Checking for regularity can be tricky. For example, if you have monthly observations with
Date or POSIXt timestamps then gaps between timestamps can be 28, 29, 30, or 31 days, but the
series is still "regular”.

Usage

NoDuplicates(timestamps)
NoGaps(timestamps)
IsRegular(timestamps)

HasDuplicateTimestamps(bsts.object)

Arguments

timestamps A set of (possibly irregular or non-unique) timestamps. This could be a set of
integers (like 1, 2, , 3...), a set of numeric like (1945, 1945.083, 1945.167, ...)
indicating years and fractions of years, a Date object, or a POSIXt object.

bsts.object A bsts model object.

Value
All four functions return scalar logical values. NoDuplicates returns TRUE if all elements of
timestamps are unique.

NoGaps examines the smallest nonzero gap between time points. As long as no gaps between time
points are more than twice as wide as the smallest gap, it returns TRUE, indicating that there are no
missing timestamps. Otherwise it returns FALSE.

IsRegular returns TRUE if NoDuplicates and NoGaps both return TRUE.
HasDuplicateTimestamps returns FALSE if the data used to fit bsts.model either has NULL times-

tamps, or if the timestamps contain no duplicate values.
Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

Examples

first <- as.POSIXct("2015-04-19 08:00:04")
monthly <- seq(from = first, length.out = 24, by = "month")
IsRegular(monthly) ## TRUE

skip.one <- monthly[-8]

50 geometric.sequence

IsRegular(skip.one) ## FALSE

has.duplicates <- monthly
has.duplicates[1] <- has.duplicates[2]
IsRegular(has.duplicates) ## FALSE

gdp Gross Domestic Product for 57 Countries

Description

Annual gross domestic product for 57 countries, as produced by the OECD.
Fields:

e LOCATION: Three letter country code.

MEASURE: MLN_USD signifies a total GDP number in millions of US dollars. USD_CAP
is per capita GDP in US dollars.

e TIME: The year of the measurement.
* Value: The measured value.

* Flag.Codes: P for provisional data, B for a break in the series, and E for an estimated value.

Usage
data(gdp)

Format

data frame

Source

OECD website: See https://data.oecd.org/gdp/gross-domestic-product-gdp.htm

geometric.sequence Create a Geometric Sequence

Description

Create a geometric sequence.

Usage

GeometricSequence(length, initial.value = 1, discount.factor = .5)

get.fraction 51

Arguments

length A positive integer giving the length of the desired sequence.

initial.value The first term in the sequence. Cannot be zero.
discount.factor
The ratio between a sequence term and the preceding term. Cannot be zero.

Value

A numeric vector containing the desired sequence.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

Examples

GeometricSequence(4, .8, .6)
[1] 0.8000 0.4800 0.2880 0.1728

GeometricSequence(5, 2, 3)
[1] 2 6 18 54 162

Not run:
GeometricSequence(@, -1, -2)

Error: length > @ is not TRUE

End(Not run)

get.fraction Compute membership fractions

Description

Returns the fraction of days in a week that occur in the ear

Usage
GetFractionOfDaysInInitialMonth(week.ending)
GetFractionOfDaysInInitialQuarter (week.ending)
Arguments

week.ending A vector of class Date. Each entry contains the date of the last day in a week.

Value

Returns a numeric vector of the same length as week. ending. Each entry gives the fraction of days
in the week that occur in the coarse time interval (month or quarter) containing the start of the week
(i.e the date 6 days before).

52

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

bsts.mixed.

Examples

dates <- as.Date(c("2003-03-31",

"2003-04-01",

"2003-04-02",

"2003-04-03",

"2003-04-04",

"2003-04-05",

"2003-04-06",

"2003-04-07"))
fraction <- GetFractionOfDaysInInitialMonth(dates)
fraction == c(1, 6/7, 5/7, 4/7, 3/7, 2/7, 1/7, 1)

goog

goog Google stock price

Description

Daily closing price of Google stock.

Usage

data(goog)

Format

xts time series

Source

The Internets

HarveyCumulator

53

HarveyCumulator

HarveyCumulator

Description

Given a state space model on a fine scale, the Harvey cumulator aggregates the model to a coarser
scale (e.g. from days to weeks, or weeks to months).

Usage

HarveyCumulator(fine.series,

Arguments

fine.series

contains.end

contains.end,
membership.fraction)

The fine-scale time series to be aggregated.

A logical vector, with length matching fine.series indicating whether each
fine scale time interval contains the end of a coarse time interval. For example,
months don’t contain a fixed number of weeks, so when cumulating a weekly
time series into a monthly series, you need to know which weeks contain the
end of a month.

membership.fraction

Value

The fraction of each fine-scale time observation belonging to the coarse scale
time observation at the beginning of the time interval. For example, if week i
started in March and ended in April, membership.fraction[i] is the fraction
of fine.series[i] that should be attributed to March. This should be 1 for most
observations.

Returns a vector containing the course scale partial aggregates of fine.series.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University

Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University

Press.

See Also

bsts.mixed,

54

Examples

data(goog)
days <- factor(weekdays(index(goog)),
levels = c("Monday”, "Tuesday", "Wednesday",
"Thursday"”, "Friday"),
ordered = TRUE)

Because of holidays, etc the days do not always go in sequence.

(Sorry, Rebecca Black! https://www.youtube.com/watch?v=kfVsfOSbJYQ)
diff.days[i] is the number of days between days[i-1] and days[i].
We know that days[i] is the end of a week if diff.days[i] < @.
diff.days <- tail(as.numeric(days), -1) - head(as.numeric(days), -1)
contains.end <- c(FALSE, diff.days < @)

goog.weekly <- HarveyCumulator(goog, contains.end, 1)

holiday

holiday Specifying Holidays

Description

Specify holidays for use with holiday state models.

Usage

FixedDateHoliday(holiday.name,
month = base::month.name,
day,
days.before = 1,
days.after = 1)
NthWeekdayInMonthHoliday(holiday.name,
month = base::month.name,
day.of.week = weekday.names,
week.number = 1,
days.before = 1,
days.after = 1)

LastWeekdayInMonthHoliday(holiday.name,
month = base::month.name,
day.of.week = weekday.names,
days.before = 1,
days.after = 1)

holiday 55

NamedHoliday(holiday.name = named.holidays,
days.before = 1,
days.after = 1)

DateRangeHoliday(holiday.name,
start.date,
end.date)

Arguments

holiday.name A string that can be used to label the holiday in output.

month A string naming the month in which the holiday occurs. Unambiguous partial
matches are acceptable. Capitalize the first letter.

day An integer specifying the day of the month on which the FixedDateHoliday
occurs.

day.of .week A string giving the day of the week on which the holiday occurs.

week . number An integer specifying the week of the month on which the NthWeekdayInMonthHoliday
occurs.

days.before An integer giving the number of days of influence that the holiday exerts prior
to the actual holiday.

days.after An integer giving the number of days of influence that holiday exerts after the
actual holiday.

named.holidays A character vector containing one or more recognized holiday names.

start.date A vector of starting dates for the holiday. Each instance of the holiday in the
training data or the forecast period must be represented by an element in this
vector. Thus if this is an annual holiday and, there are 10 years of training data,
and a 1-year forecast is needed, then this will be a vector of length 11.

end.date A vector of ending dates for the holiday. Each date must occur on or after the
corresponding element of start.date, and end.date[i] must come before
start.date[i+1].

Value

Each function returns a list containing the information from the function arguments, formatted as ex-
pected by the underlying C++ code. State models that focus on holidays, such as AddRandomWalkHoliday,
AddRegressionHoliday, and AddHierarchicalRegressionHoliday, will expect one or more
holiday objects as arguments.

* FixedDateHoliday describes a holiday that occurs on the same date each year, like US inde-
pendence day (July 4).

* NthWeekdayInMonthHoliday describes a holiday that occurs a particular weekday of a partic-
ular week of a particular month. For example, US Labor Day is the first Monday in September.

* LastWeekdayInMonthHoliday describes a holiday that occurs on the last instance of a par-
ticular weekday in a particular month. For example, US Memorial Day is the last Monday in
May.

56 iclaims

* DateRangeHoliday describes an irregular holiday that might not follow a particular pattern.
You can handle this type of holiday by manually specifying a range of dates for each instance
of the holiday in your data set. NOTE: If you plan on using the model to forecast, be sure to
include date ranges in the forecast period as well as the period covered by the training data.

* NamedHoliday is a convenience class for describing several important holidays in the US.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

AddRandomWalkHoliday, AddRegressionHoliday, AddHierarchicalRegressionHoliday

Examples

july4 <- FixedDateHoliday("July4", "July"”, 4)
memorial.day <- LastWeekdayInMonthHoliday(”"MemorialDay”, "May"”, "Monday")
labor.day <- NthWeekdayInMonthHoliday("LaborDay", "September”, "Monday"”, 1)
another.way.to.get.memorial.day <- NamedHoliday("MemorialDay")
easter <- NamedHoliday("Easter™)
winter.olympics <- DateRangeHoliday("WinterOlympicsSince2000",
start = as.Date(c("2002-02-08",
"2006-02-10",
"2010-02-12",
"2014-02-07",
"2018-02-07")),
end = as.Date(c("2002-02-24",
"2006-02-26",
"2010-02-28",
"2014-02-23",
"2018-02-25")))

iclaims Initial Claims Data

Description

A weekly time series of US initial claims for unemployment. The first column contains the initial
claims numbers from FRED. The others contain a measure of the relative popularity of various
search queries identified by Google Correlate.

Usage

data(iclaims)

last.day.in.month 57

Format

Z00 time series

Source

FRED. http://research.stlouisfed.org/fred2/series/ICNSA,
Google correlate. http://www.google.com/trends/correlate

See Also

bsts

Examples

data(iclaims)
plot(initial.claims)

last.day.in.month Find the last day in a month

Description

Finds the last day in the month containing a specefied date.

Usage

LastDayInMonth(dates)

Arguments

dates A vector of class Date.

Value
A vector of class Date where each entry is the last day in the month containing the corresponding
entry in dates.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

58 MATCH.NumericTimestamps

Examples

inputs <- as.Date(c("2007-01-01",
"2007-01-31",
"2008-02-01",
"2008-02-29",
"2008-03-14",
"2008-12-01",
"2008-12-31"))
expected.outputs <- as.Date(c("2007-01-31",
"2007-01-31",
"2008-02-29",
"2008-02-29",
"2008-03-31",
"2008-12-31",
"2008-12-31"))
LastDayInMonth(inputs) == expected.outputs

MATCH.NumericTimestamps

Match Numeric Timestamps

Description

S3 generic method for MATCH function supplied in the zoo package.

Usage
S3 method for class 'NumericTimestamps'
MATCH(x, table, nomatch = NA, ...)
Arguments
X A numeric set of timestamps.
table A set of regular numeric timestamps to match against.
nomatch The value to be returned in the case when no match is found. Note that it is

coerced to integer.

Additional arguments passed to match.

Details

Numeric timestamps match if they agree to 8 significant digits.

Value

Returns the index of the entry in table matched by each argument in x. If an entry has no match
then nomatch is returned at that position.

match.week.to.month 59

See Also

MATCH

match.week.to.month Find the month containing a week

Description

Returns the index of a month, in a sequence of months, that contains a given week.

Usage
MatchWeekToMonth(week.ending, origin.month)
Arguments
week.ending A vector of class Date. Each entry contains the date of the last day in a week.

origin.month A Date, giving any day in the month to use as the origin of the sequence (month
1).
Value

The index of the month matching the month containing the first day in week.ending. The origin is
month 1. It is the caller’s responsibility to ensure that these indices correspond to legal values in a
particular vector of months.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

bsts.mixed.

Examples

origin.month <- as.Date("2011-09-01")

week.ending <- as.Date(c("2011-10-01", ## 1
"2011-10-08", ## 2
"2011-12-03", ## 3
"2011-12-31")) #i# 4

MatchWeekToMonth(week.ending, origin.month) == 1:4

60 max.window.width

max.window.width Maximum Window Width for a Holiday

Description

The maximum width of a holiday’s influence window

Usage
Default S3 method:
MaxWindowWidth(holiday, ...)
S3 method for class 'DateRangeHoliday'
MaxWindowWidth(holiday, ...)

Arguments
holiday An object of class Holiday.

Other arguments (not used).

Value

Returns the number of days in a holiday’s influence window.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

Holiday. AddRegressionHoliday. AddRandomWalkHoliday. AddHierarchicalRegressionHoliday.

Examples

easter <- NamedHoliday("Easter”, days.before = 2, days.after = 1)
if (MaxWindowWidth(easter) == 4) {

print("That's the right answer!\n")
3

This holiday lasts two days longer in 2005 than in 2004.
may18 <- DateRangeHoliday("May18",
start = as.Date(c("2004-05-17",
"2005-05-16")),
end = as.Date(c("2004-05-19",
"2005-05-20")))

if (MaxWindowWidth(may18) == 5) {
print(”"Right again!\n")
}

mbsts

61

mbsts

Multivariate Bayesian Structural Time Series

Description

Fit a multivariate Bayesian structural time series model, also known as a "dynamic factor model."

** NOTE ** This code is experimental. Please feel free to experiment with it and report any bugs
to the maintainer. Expect it to improve substantially in the next release.

Usage

mbsts(

Arguments

formul

shared

series

formula,
shared.state.specification,
series.state.specification = NULL,
data = NULL,

timestamps = NULL,

series.id = NULL,

prior = NULL, # TODO

opts = NULL,

contrasts = NULL,

na.action = na.pass,

niter,
ping = niter / 10,
data.format = c("long”, "wide"),
seed = NULL,
>
a A formula describing the regression portion of the relationship between y and

X.
If no regressors are desired then the formula can be replaced by a numeric matrix
giving the multivariate time series to be modeled.

.state.specification
A list with elements created by AddSharedLocallevel, and similar functions
for adding components of state.
This list defines the components of state which are shared across all time series.
These are the "factors" in the dynamic factor model.

.state.specification
This argument specifies state components needed by a particular series. Not all
series need have the same state components (e.g. some series may require a
seasonal component, while others do not). It can be NULL, indicating that there
are no series-specific state components.
It can be a list of elements created by AddLocallLevel, AddSeasonal, and sim-
ilar functions for adding state component to scalar bsts models. In this case
the same, independent, individual components will be added to each series. For

data

timestamps

series.id

prior

opts

contrasts

na.action

niter

ping

data.format

seed

mbsts

example, each series will get its own independent Seasonal state component if
AddSeasonal was used to add a seasonal component to this argument.

In its most general form, this argument can be a list of lists, some of which can
be NULL, but with non-NULL lists specifying state components for individual
series, as above.

An optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables mentioned in the formula argument. If
not found in data, the variables are taken from environment (formula), typi-
cally the environment from which bsts is called.

A vector of timestamps indicating the time of each observation. If data. format
is "long” then this argument is required. If "wide" data is passed then it is
optional.

TODO: TEST THIS under wide and long formats in regression and non-regression
settings.

A factor (or object coercible to factor) indicating the series to which each ob-
servation in "long" format belongs. This argument is ignored for data in "wide"
format.

A list of SpikeSlabPrior objects, one for each time series. Or this argument
can be NULL in which case a default prior will be used. Note that the prior is
on both the regression coefficients and the residual sd for each time series.

A list containing model options. This is currently only used for debugging, so
leave this as NULL.

An optional list containing the names of contrast functions to use when con-
verting factors numeric variables in a regression formula. This argument works
exactly as it does in 1m. The names of the list elements correspond to factor
variables in your model formula. The list elements themselves are the names of
contrast functions (see help(contr.treatment) and the contrasts.arg ar-
gument to model.matrix.default). This argument is only used if a model
formula is specified, and even then the default is probably what you want.

What to do about missing values. The default is to allow missing responses,
but no missing predictors. Set this to na.omit or na.exclude if you want to omit
missing responses altogether.

A positive integer giving the desired number of MCMC draws.

A scalar giving the desired frequency of status messages. If ping > O then the
program will print a status message to the screen every ping MCMC iterations.

Whether the data are store in wide (each row is a time point, and columns are val-
ues from different series) or long (each row is the value of a particular series at
a particular point in time) format. For "long" see timestamps and series.id.

An integer to use as the random seed for the underlying C++ code. If NULL then
the seed will be set using the clock.

Extra arguments to be passed to SpikeSlabPrior (see the entry for the prior
argument, above).

mbsts 63

Value

An object of class mbsts which is a list with the following components

coefficients A niter by ncol(X) matrix of MCMC draws of the regression coefficients,
where X is the design matrix implied by formula. This is only present if a
model formula was supplied.

sigma.obs A vector of length niter containing MCMC draws of the residual standard de-
viation.

The returned object will also contain named elements holding the MCMC draws of model param-
eters belonging to the state models. The names of each component are supplied by the entries in
state.specification. If a model parameter is a scalar, then the list element is a vector with
niter elements. If the parameter is a vector then the list element is a matrix with niter rows. If
the parameter is a matrix then the list element is a 3-way array with first dimension niter.

Finally, if a model formula was supplied, then the returned object will contain the information
necessary for the predict method to build the design matrix when a new prediction is made.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

George and McCulloch (1997) "Approaches for Bayesian variable selection”, Statistica Sinica pp
339-374.

See Also

bsts, AddLocallLevel, AddLocalLinearTrend, AddSemilocalLinearTrend, AddSeasonal AddDynamicRegression
SpikeSlabPrior, SdPrior.

Examples

Not run:

This example takes 12s on Windows, which is longer than CRAN's 10s
limit. Marking code as 'dontrun' to prevent CRAN auto checks from
timing out.

seed <- 8675309
set.seed(seed)

ntimes <- 250
nseries <- 20
nfactors <- 6

64

mbsts

residual.sd <- 1.2
state.innovation.sd <- .75

state <- matrix(rnorm(ntimes * nfactors, @, state.innovation.sd), nrow = ntimes)
for (i in 1:ncol(state)) {
state[, i] <- cumsum(state[, il])

}

observation.coefficients <- matrix(rnorm(nseries * nfactors), nrow = nseries)
diag(observation.coefficients) <- 1.0
observation.coefficients[upper.tri(observation.coefficients)] <- 0

errors <- matrix(rnorm(nseries * ntimes, 0, residual.sd), ncol = ntimes)
y <- t(observation.coefficients %*% t(state) + errors)

par(mfrow=c(1,2))
plot.ts(y, plot.type="single"”, col = rainbow(nseries), main = "observed data")
plot.ts(state, plot.type = "single”, col = 1:nfactors, main = "latent state"”)

ss <- AddSharedLocallLevel(list(), y, nfactors = nfactors)
opts <- list("fixed.state" = t(state),
fixed.residual.sd = rep(residual.sd, nseries),

fixed.regression.coefficients = matrix(rep(@, nseries), ncol = 1))

model <- mbsts(y, shared.state.specification = ss, niter = 100,

data.format = "wide”, seed = seed)
B
Plot the state
B o

par(mfrow=c(1, nfactors))

ylim <- range(model$shared.state, state)

for (j in 1:nfactors) {
PlotDynamicDistribution(model$shared.statel, j, 1, ylim=ylim)
lines(state[, j1, col = "blue")

3

mixed.frequency 65

opar <- par(mfrow=c(nfactors,1), mar=c(@, 4, @, 4), omi=rep(.25, 4))

burn <- 10

for(j in 1:nfactors) {
BoxplotTrue(model$shared.local.level.coefficients[-(1:burn), j, 1,

t(observation.coefficients)[, jl, axes=F, truth.color="blue")

abline(h=0, 1ty=3)
box ()
axis(2)

3

axis(1)

par (opar)

index <- 1:12
nr <- floor(sqrt(length(index)))
nc <- ceiling(length(index) / nr)
opar <- par(mfrow = c(nr, nc), mar = c(2, 4, 1, 2))
for (i in index) {
PlotDynamicDistribution(
model$shared.state.contributions[, 1, i,]
+ model$regression.coefficients[, i, 1]
, ylim=range(y))

points(y[, iJ], col="blue", pch = ".", cex = .2)
3
par (opar)
next line closes 'dontrun'
End(Not run)
next line closes 'examples'
mixed.frequency Models for mixed frequency time series

Description

Fit a structured time series to mixed frequncy data.

Usage

bsts.mixed(target.series,
predictors,
which.coarse.interval,
membership.fraction,
contains.end,
state.specification,
regression.prior,
niter,

66

Arguments

target.series

predictors

mixed.frequency

ping = niter / 10,

seed = NULL,
truth = NULL,
L)

A vector object of class zoo indexed by calendar dates. The date associated with
each element is the LAST DAY in the time interval measured by the correspond-
ing value. The value is what Harvey (1989) calls a ’flow’ variable. It is a number
that can be viewed as an accumulation over the measured time interval.

A matrix of class zoo indexed by calendar dates. The date associated with each
row is the LAST DAY in the time interval encompasing the measurement. The
dates are expected to be at a finer scale than the dates in target.series. Any
predictors should be at sufficient lags to be able to predict the rest of the cycle.

which.coarse.interval

A numeric vector of length nrow(predictors) giving the index of the coarse
interval corresponding to the end of each fine interval.

membership.fraction

contains.end

A numeric vector of length nrow(predictors) giving the fraction of activity
attributed to the coarse interval corresponding to the beginning of each fine in-
terval. This is always positive, and will be 1 except when a fine interval spans
the boundary between two coarse intervals.

A logical vector of length nrow(predictors) indicating whether each fine in-
terval contains the end of a coarse interval.

state.specification

A state specification like that required by bsts.

regression.prior

niter

ping

seed

truth

A prior distribution created by SpikeSlabPrior. A default prior will be gener-
ated if none is specified.

The desired number of MCMC iterations.

An integer indicating the frequency with which progress reports get printed.
E.g. setting ping = 100 will print a status message with a time and iteration
stamp every 100 iterations. If you don’t want these messages set ping < @.

An integer to use as the random seed for the underlying C++ code. If NULL then
the seed will be set using the clock.

For debugging purposes only. A list containing one or more of the following
elements. If any are present then corresponding values will be held fixed in the
MCMC algorithm.

* A matrix named state containing the state of the coarse model from a
fake-data simulation.
* A vector named beta of regression coefficients.

e A scalar named sigma.obs.

Extra arguments passed to SpikeSlabPrior

mixed.frequency 67

Value

An object of class bsts.mixed, which is a list with the following elements. Many of these are
arrays, in which case the first index of the array corresponds to the MCMC iteration number.

coefficients A matrix containing the MCMC draws of the regression coefficients. Rows
correspond to MCMC draws, and columns correspond to variables.

sigma.obs The standard deviation of the weekly latent observations.
state.contributions
A three-dimensional array containing the MCMC draws of each state model’s
contributions to the state of the weekly model. The three dimensions are MCMC
iteration, state model, and week number.

weekly A matrix of MCMC draws of the weekly latent observations. Rows are MCMC
iterations, and columns are weekly time points.

cumulator A matrix of MCMC draws of the cumulator variable.

The returned object also contains MCMC draws for the parameters of the state models supplied as
part of state.specification, relevant information passed to the function call, and other supple-
mental information.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts, AddLocallLevel, AddLocalLinearTrend, AddSemilocallLinearTrend, SpikeSlabPrior,
SdPrior.

Examples

Not run:
data <- SimulateFakeMixedFrequencyData(nweeks = 104, xdim = 20)

Setting an upper limit on the standard deviations can help keep the

MCMC from flying off to infinity.

sd.limit <- sd(data$coarse.target)

state.specification <-

AddLocalLinearTrend(list(),

data$coarse. target,
level.sigma.prior = SdPrior(1.0, 5, upper.limit = sd.limit),
slope.sigma.prior = SdPrior(.5, 5, upper.limit = sd.limit))

weeks <- index(data$predictor)

68

months <- index(data$coarse.target)

which.month <- MatchWeekToMonth(weeks, months[1])
membership.fraction <- GetFractionOfDaysInInitialMonth(weeks)
contains.end <- WeekEndsMonth(weeks)

model <- bsts.mixed(target.series = data$coarse.target,
predictors = data$predictors,
membership.fraction = membership.fraction,
contains.end = contains.end,
which.coarse = which.month,
state.specification = state.specification,
niter = 500,
expected.r2 = .999,
prior.df = 1)

plot(model, "state")
plot(model, "components")

End(Not run)

month.distance

month.distance Elapsed time in months

Description

The (integer) number of months between dates.

Usage

MonthDistance(dates, origin)

Arguments
dates A vector of class Date to be measured.
origin A scalar of class Date.

Value

Returns a numeric vector giving the integer number of months that have elapsed between origin
and each element in dates. The daily component of each date is ignored, so two dates that are in
the same month will have the same measured distance. Distances are signed, so months that occur
before origin will have negative values.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

named.holidays 69

Examples

dates <- as.Date(c("2008-04-17",
"2008-05-01",
"2008-05-31",
"2008-06-01"))

origin <- as.Date("2008-05-15")

MonthDistance(dates, origin) == c¢(-1, 0, 0, 1)
named.holidays Holidays Recognized by Name
Description

A character vector listing the names of pre-specified holidays.

Usage

named.holidays

Value

"NewYearsDay" "SuperBowlSunday" "MartinLutherKingDay" "PresidentsDay" "ValentinesDay"
"SaintPatricksDay" "USDaylightSavingsTimeBegins" "USDaylightSavingsTimeEnds" "EasterSun-
day" "USMothersDay" "IndependenceDay" "LaborDay" "ColumbusDay" "Halloween" "Thanks-
giving" "MemorialDay" "VeteransDay" "Christmas"

new.home.sales New home sales and Google trends

Description

The first column, HSN1FNSA is a time series of new home sales in the US, obtained from the
FRED online data base. The series has been manually deseasonalized. The remaining columns
contain search terms from Google trends (obtained from http://trends.google.com/correlate). These
show the relative popularity of each search term among all serach terms typed into Google. All
series in this data set have been standardized by subtracting off their mean and dividing by their
standard deviation.

Usage

data(new.home.sales)

Format

700 time series

70

one.step.prediction.errors

Source

FRED and trends.google.com

one.step.prediction.errors
Prediction Errors

Description

Computes the one-step-ahead prediction errors for a bsts model.

Usage

bsts.prediction.errors(bsts.object,
cutpoints = NULL,
burn = SuggestBurn(.1, bsts.object),
standardize = FALSE)

Arguments

bsts.object An object of class bsts.

cutpoints An increasing sequence of integers between 1 and the number of time points in
the trainig data for bsts.object, or NULL. If NULL then the in-sample one-step
prediction errors from the bsts object will be extracted and returned. Otherwise
the model will be re-fit with a separate MCMC run for each entry in ’cutpoints’.
Data up to each cutpoint will be included in the fit, and one-step prediction errors
for data after the cutpoint will be computed.

burn An integer giving the number of MCMC iterations to discard as burn-in. If burn
<= @ then no burn-in sample will be discarded.

standardize Logical. If TRUE then the prediction errors are divided by the square root of the
one-step-ahead forecast variance. If FALSE the raw errors are returned.

Details

Returns the posterior distribution of the one-step-ahead prediction errors from the bsts.object. The
errors are computing using the Kalman filter, and are of two types.

Purely in-sample errors are computed as a by-product of the Kalman filter as a result of fitting
the model. These are stored in the bsts.object assuming the save.prediction.errors option is
TRUE, which is the default (See BstsOptions). The in-sample errors are ’in-sample’ in the sense
that the parameter values used to run the Kalman filter are drawn from their posterior distribution
given complete data. Conditional on the parameters in that MCMC iteration, each ’error’ is the
difference between the observed y[t] and its expectation given data to t-1.

Purely out-of-sample errors can be computed by specifying the ’cutpoints’ argument. If cutpoints
are supplied then a separate MCMC is run using just data up to the cutpoint. The Kalman filter is
then run on the remaining data, again finding the difference between y[t] and its expectation given
data to t-1, but conditional on parameters estimated using data up to the cutpoint.

one.step.prediction.errors 71

Value

A matrix of draws of the one-step-ahead prediction errors. Rows of the matrix correspond to MCMC
draws. Columns correspond to time.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts, AddLocallLevel, AddLocallLinearTrend, AddSemilocallLinearTrend, SpikeSlabPrior,
SdPrior.

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)
ss <- AddSeasonal(ss, y, nseasons = 12)

Not run:
model <- bsts(y, state.specification = ss, niter = 500)

End(Not run)

errors <- bsts.prediction.errors(model, burn = 100)
PlotDynamicDistribution(errors$in.sample)

Compute out of sample prediction errors beyond times 80 and 120.
errors <- bsts.prediction.errors(model, cutpoints = c(80, 120))
standardized.errors <- bsts.prediction.errors(
model, cutpoints = c(80, 120), standardize = TRUE)
plot(model, "prediction.errors”, cutpoints = c(80, 120))
str(errors) ## three matrices, with 400 (= 500 - 100) rows
and length(y) columns

72 plot.bsts

plot.bsts Plotting functions for Bayesian structural time series

Description

Functions to plot the results of a model fit using bsts.

Usage
S3 method for class 'bsts'

plot(x, y = c("state”, "components”, "residuals”,
"coefficients"”, "prediction.errors”,
"forecast.distribution”,
"predictors”, "size", "dynamic", "seasonal”, "monthly",
"help"),

L)

PlotBstsCoefficients(bsts.object, burn = SuggestBurn(.1, bsts.object),
inclusion. threshold = @, number.of.variables = NULL, ...)

PlotBstsComponents(bsts.object,
burn = SuggestBurn(.1, bsts.object),

time,

same.scale = TRUE,

layout = c("square”, "horizontal”, "vertical”),

style = c("dynamic”, "boxplot"),

ylim = NULL,

components = 1:length(bsts.object$state.specification),
o)

PlotDynamicRegression(bsts.object,
burn = SuggestBurn(.1, bsts.object),
time = NULL,
same.scale = FALSE,
style = c("dynamic”, "boxplot"),

layout = c(”square"”, "horizontal”, "vertical"),
ylim = NULL,
zero.width = 2,
zero.color = "green",
)

PlotBstsState(bsts.object, burn = SuggestBurn(.1, bsts.object),
time, show.actuals = TRUE,
style = c("dynamic”, "boxplot"),
scale = c("linear”, "mean"),
ylim = NULL,
L)

plot.bsts

73

PlotBstsResiduals(bsts.object, burn = SuggestBurn(.1, bsts.object),

time, style = c("dynamic”, "boxplot”), means =
TRUE, ...)

PlotBstsPredictionErrors(bsts.object, cutpoints = NULL,

burn = SuggestBurn(.1, bsts.object),
style = c("dynamic”, "boxplot"),

xlab = "Time", ylab = , main = R

)

PlotBstsForecastDistribution(bsts.object, cutpoints = NULL,

burn = SuggestBurn(.1, bsts.object),
style = c("dynamic”, "boxplot"),

xlab = "Time",

ylab = "",

main = "",
show.actuals = TRUE,
col.actuals = "blue”,
L)

PlotBstsSize(bsts.object, burn = SuggestBurn(.1, bsts.object), style =

c("histogram”, "ts"), ...)

PlotSeasonalEffect(bsts.object, nseasons = 7, season.duration = 1,

same.scale = TRUE, ylim = NULL, get.season.name = NULL,
burn = SuggestBurn(.1, bsts.object), ...)

PlotMonthlyAnnualCycle(bsts.object, ylim = NULL, same.scale = TRUE,

Arguments

X
bsts.object
y

burn
col.actuals
components

cutpoints

get.season.name

burn = SuggestBurn(.1, bsts.object), ...)

An object of class bsts.

An object of class bsts.

A character string indicating the aspect of the model that should be plotted.
The number of MCMC iterations to discard as burn-in.

The color to use for the actual data when comparing actuals vs forecasts.

A numeric vector indicating which components to plot. Component indices
correspond to elements of the state specification that was used to build the bsts
model being plotted.

A numeric vector of integers, or NULL. For diagnostic plots of prediction errors
or forecast distributions, the model will be re-fit with a separate MCMC run for
each entry in ’cutpoints’. Data up to each cutpoint will be included in the fit,
and one-step prediction errors for data after the cutpoint will be computed.

A function that can be used to infer the title of each seasonal plot. It should take a
single POSIXt, Date, or similar object as an argument, and return a single string

74 plot.bsts

that can be used as a panel title. If get.season.name is NULL and nseasons
is specified or inferred to be one of the following values, then the following
functions will be used.

e 4: quarters
* 7: weekdays

e 12: months
inclusion. threshold

An inclusion probability that individual coefficients must exceed in order to be
displayed when what == "coefficients”. See the help file for plot.1lm.spike.

layout For controlling the layout of functions that generate mutiple plots.
main Main title for the plot.
means Logical. If TRUE then the mean of each residual is plotted as a blue dot. If false

only the distribution of the residuals is plotted.

nseasons If there is only one seasonal component in the model, this argument is ignored. If
there are multiple seasonal components then nseasons and season.duration

are used to select the desired one.
number.of .variables

If non-NULL this specifies the number of coefficients to plot, taking precedence
over inclusion. threshold. See plot.1lm.spike.

same.scale Logical. If TRUE then all the state components will be plotted with the same
scale on the vertical axis. If FALSE then each component will get its own scale
for the vertical axis.

scale The scale on which to plot the state. If the error family is "logit" or "poisson”
then the state can either be plotted on the scale of the linear predictor (e.g. trend
+ seasonal + regression) or the linear predictor can be passed through the link
function so as to plot the distribution of the conditional mean.

season.duration
If there is only one seasonal component in the model, this argument is ignored. If
there are multiple seasonal components then nseasons and season.duration
are used to select the desired one.

show.actuals Logical. If TRUE then actual values from the fitted series will be shown on the

plot.

style The desired plot style. Partial matching is allowed, so "dyn" would match "dy-
namic", for example.

time An optional vector of values to plot against. If missing, the default is to diagnose
the time scale of the original time series.

x1lab Label for the horizontal axis.

ylab Label for the vertical axis.

ylim Limits for the vertical axis. If NULL these will be inferred from the state com-

ponents and the same. scale argument. Otherwise all plots will be created with
the same ylim values.

zero.width A numerical value for the width of the reference line at zero. If NULL then the
line will be omitted.

zero.color A color for the width of the reference line at zero. If NULL then the line will be
omitted.

Additional arguments to be passed to PlotDynamicDistribution, or TimeSeriesBoxplot.

plot.bsts.mixed 75

Details

PlotBstsState, PlotBstsComponents, and PlotBstsResiduals all produce dynamic distribu-

tion plots. PlotBstsState plots the aggregate state contribution (including regression effects) to

the mean, while PlotBstsComponents plots the contribution of each state component. PlotBstsResiduals
plots the posterior distribution of the residuals given complete data (i.e. looking forward and back-

ward in time). PlotBstsPredictionErrors plots filtering errors (i.e. the one-step-ahead predic-

tion errors given data up to the previous time point). PlotBstsForecastDistribution plots the
one-step-ahead forecasts instead of the prediction errors.

PlotBstsCoefficients creates a significance plot for the predictors used in the state space regres-
sion model. It is obviously not useful for models with no regressors.

PlotBstsSize plots the distribution of the number of predictors included in the model.

PlotSeasonalEffect generates an array of plots showing how the distibution of the seasonal effect
changes, for each season, for models that include a seasonal state component.

PlotMonthlyAnnualCycle produces an array of plots much like PlotSeasonalEffect, for models
that include a MonthlyAnnualCycle state component.

Value

These functions are called for their side effect, which is to produce a plot on the current graphics
device.

PlotBstsState invisibly returns the state object being plotted.

See Also

bsts PlotDynamicDistribution plot.1lm.spike

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
plot(model, burn = 100)

plot(model, "residuals”, burn = 100)

plot(model, "components”, burn = 100)

plot(model, "forecast.distribution”, burn = 100)

plot.bsts.mixed Plotting functions for mixed frequency Bayesian structural time series

Description

Functions for plotting the output of a mixed frequency time series regression.

76

Usage

plot.bsts.mixed

S3 method for class 'bsts.mixed'

plot(x,

y = c("state"”, "components”,
"coefficients”, "predictors”, "size"),

L)

PlotBstsMixedState(bsts.mixed.object,

burn = SuggestBurn(.1, bsts.mixed.object),
time = NULL,
fine.scale = FALSE,
style = c("dynamic”, "boxplot"),
trim.left = NULL,
trim.right = NULL,
.2)

PlotBstsMixedComponents(bsts.mixed.object,

Arguments

X

burn = SuggestBurn(.1, bsts.mixed.object),
time = NULL,
same.scale = TRUE,
fine.scale = FALSE,
style = c("dynamic”, "boxplot"),
layout = c("square”, "horizontal"”, "vertical”),
ylim = NULL,
trim.left = NULL,
trim.right = NULL,
)

An object of class bsts.mixed.

bsts.mixed.object

y
burn

time

fine.scale

same.scale

style

layout

An object of class bsts.mixed.
A character string indicating the aspect of the model that should be plotted.
The number of MCMC iterations to discard as burn-in.

An optional vector of values to plot against. If missing, the default is to obtain
the time scale from the original time series.

Logical. If TRUE then the plots will be at the weekly level of granularity. If
FALSE they will be at the monthly level.

Logical. If TRUE then all the state components will be plotted with the same
scale on the vertical axis. If FALSE then each component will get its own scale
for the vertical axis.

character. If "dynamic" then a dynamic distribution plot will be shown. If "box"
then boxplots will be shown.

A character string indicating whether the plots showing components of state
should be laid out in a square, horizontally, or vertically.

plot.bsts.mixed 77

trim.left A logical indicating whether the first (presumedly partial) observation in the
aggregated state time series should be removed.

trim.right A logical indicating whether the last (presumedly partial) observation in the
aggregated state time series should be removed.

ylim Limits for the vertical axis. Optional.

Additional arguments to be passed to PlotDynamicDistribution or TimeSeriesBoxplot

Details

PlotBstsMixedState plots the aggregate state contribution (including regression effects) to the
mean, while PlotBstsComponents plots the contribution of each state component separately. PlotBstsCoefficients
creates a significance plot for the predictors used in the state space regression model.

Value

These functions are called for their side effect, which is to produce a plot on the current graphics
device.

See Also

bsts.mixed PlotDynamicDistribution plot.1lm.spike PlotBstsSize

Examples

Not run:

This example is flaky and needs to be fixed
data <- SimulateFakeMixedFrequencyData(nweeks = 104, xdim = 20)
state.specification <- AddLocallLinearTrend(list(), data$coarse.target)
weeks <- index(data$predictor)
months <- index(data$coarse.target)
which.month <- MatchWeekToMonth(weeks, months[1])
membership.fraction <- GetFractionOfDaysInInitialMonth(weeks)
contains.end <- WeekEndsMonth(weeks)

model <- bsts.mixed(target.series = data$coarse.target,
predictors = data$predictors,
membership.fraction = membership.fraction,
contains.end = contains.end,
which.coarse = which.month,
state.specification = state.specification,
niter = 500)

plot(model, "state")
plot(model, "components")

End(Not run)

78 plot.bsts.prediction

plot.bsts.prediction Plot predictions from Bayesian structural time series

Description

Plot the posterior predictive distribution from a bsts prediction object.

Usage
S3 method for class 'bsts.prediction'
plot(x,
y = NULL,
burn = 0,
plot.original = TRUE,
median.color = "blue”,

median.type = 1,

median.width = 3,
interval.quantiles = c(.025, .975),
interval.color = "green”,
interval.type = 2,

interval.width = 2,

style = c("dynamic”, "boxplot"),

ylim = NULL,
.2
Arguments
X An object of class bsts.prediction created by calling predict on a bsts
object.
y A dummy argument necessary to match the signature of the plot generic func-

tion. This argument is unused.

plot.original Logical or numeric. If TRUE then the prediction is plotted after a time series plot
of the original series. If FALSE, the prediction fills the entire plot. If numeric,
then it specifies the number of trailing observations of the original time series to
plot in addition to the predictions.

burn The number of observations you wish to discard as burn-in from the poste-
rior predictive distribution. This is in addition to the burn-in discarded using
predict.bsts.

median.color The color to use for the posterior median of the prediction.
median.type The type of line (Ity) to use for the posterior median of the prediction.

median.width The width of line (Iwd) to use for the posterior median of the prediction.
interval.quantiles
The lower and upper limits of the credible interval to be plotted.

interval.color The color to use for the upper and lower limits of the 95% credible interval for
the prediction.

plot.bsts.predictors 79

interval.type The type of line (Ity) to use for the upper and lower limits of the 95% credible
inerval for of the prediction.

interval.width The width of line (Iwd) to use for the upper and lower limits of the 95% credible
inerval for of the prediction.

style Either "dynamic", for dynamic distribution plots, or "boxplot", for box plots.
Partial matching is allowed, so "dyn" or "box" would work, for example.

ylim Limits on the vertical axis.

Extra arguments to be passed to PlotDynamicDistribution and lines.

Details

Plots the posterior predictive distribution described by x using a dynamic distribution plot generated
by PlotDynamicDistribution. Overlays the posterior median and 95% prediction limits for the
predictive distribution.

Value

Returns NULL.

See Also

bsts PlotDynamicDistribution plot.1lm.spike

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)
plot(pred)

plot.bsts.predictors Plot the most likely predictors

Description

Creates a time series plot showing the most likely predictors of a time series used to fit a bsts
object.

80

Usage

plot.bsts.predictors

PlotBstsPredictors(bsts.object,

Arguments

bsts.object

burn

inclusion.threshold
Plot predictors with marginal inclusion probabilities above this threshold.

ylim
flip.signs

show. legend

grayscale

short.names

See Also

burn = SuggestBurn(.1, bsts.object),
inclusion.threshold = .1,

ylim = NULL,

flip.signs = TRUE,

show.legend = TRUE,

grayscale = TRUE,

short.names = TRUE,

.2

An object of class bsts.

The number of observations you wish to discard as burn-in.

Scale for the vertical axis.

If true then a predictor with a negative sign will be flipped before being plotted,
to better align visually with the target series.

Should a legend be shown indicating which predictors are plotted?

Logical. If TRUE then lines for different predictors grow progressively lighter as
their inclusion probability decreases. If FALSE then lines are drawn in black.

Logical. If TRUE then a common prefix or suffix shared by all the variables will
be discarded.

Extra arguments to be passed to plot.

bsts PlotDynamicDistribution plot.1lm.spike

Examples

data(AirPassengers)

y <- log(AirPassengers)

lag.y <- c(NA, head(y, -1))

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

Call bsts with na.action = na.omit to omit the leading NA in lag.y
model <- bsts(y ~ lag.y, state.specification = ss, niter = 500,

na.action = na.omit)

plot(model, "predictors")

plot.holiday

plot.holiday Plot Holiday Effects

Description

Plot the estimated effect of the given holiday.

Usage
PlotHoliday(holiday, model, show.raw.data = TRUE, ylim = NULL, ...)
Arguments
holiday An object of class Holiday.
model A model fit by bsts containing either a RegressionHolidayStateModel or

HierarchicalRegressionHolidayStateModel that includes holiday.

show.raw.data Logical indicating if the raw data corresponding to holiday should be super-
imposed on the plot. The 'raw data’ are the actual values of the target series,
minus the value of the target series the day before the holiday began, which is a
(somewhat poor) proxy for remaining state elements. The raw data can appear
artificially noisy if there are other strong state effects such as a day-of-week

effect for holidays that don’t always occur on the same day of the week.

ylim Limits on the vertical axis of the plots.

Extra arguments passed to boxplot.

Value

Returns invisible{NULL}.

See Also
bsts AddRandomWalkHoliday

Examples

trend <- cumsum(rnorm(730, @, .1))

dates <- seq.Date(from = as.Date("2014-01-01"), length = length(trend),

by = "day")
y <- zoo(trend + rnorm(length(trend), @, .2), dates)

AddHolidayEffect <- function(y, dates, effect) {
Adds a holiday effect to simulated data.
Args:
y: A zoo time series, with Dates for indices.
dates: The dates of the holidays.

effect: A vector of holiday effects of odd length.

The central effect is

#i# the main holiday, with a symmetric influence window on either side.

82 plot.mbsts

Returns:
y, with the holiday effects added.
time <- dates - (length(effect) - 1) / 2
for (i in 1:length(effect)) {
y[time] <- y[time] + effect[i]
time <- time + 1
}
return(y)
}

Define some holidays.

memorial.day <- NamedHoliday("MemorialDay")

memorial.day.effect <- c(.3, 3, .5)

memorial.day.dates <- as.Date(c("2014-05-26", "2015-05-25"))

y <- AddHolidayEffect(y, memorial.day.dates, memorial.day.effect)

presidents.day <- NamedHoliday("PresidentsDay")

presidents.day.effect <- c(.5, 2, .25)

presidents.day.dates <- as.Date(c("2014-02-17", "2015-02-16"))

y <- AddHolidayEffect(y, presidents.day.dates, presidents.day.effect)

labor.day <- NamedHoliday("LaborDay")

labor.day.effect <- c(1, 2, 1)

labor.day.dates <- as.Date(c("”2014-09-01", "2015-09-07"))

y <- AddHolidayEffect(y, labor.day.dates, labor.day.effect)

The holidays can be in any order.
holiday.list <- list(memorial.day, labor.day, presidents.day)
number.of.holidays <- length(holiday.list)

In a real example you'd want more than 100 MCMC iterations.
niter <- 100

ss <- AddLocallLevel(list(), y)

ss <- AddRegressionHoliday(ss, y, holiday.list = holiday.list)
model <- bsts(y, state.specification = ss, niter = niter)

PlotHoliday(memorial.day, model)

plot.mbsts Plotting Functions for Multivariate Bayesian Structural Time Series

Description

Functions to plot the results of a model fit using mbsts.

Usage

S3 method for class 'mbsts'
plot(x, y = c("means”, "help”), ...)

plot.mbsts.prediction 83

PlotMbstsSeriesMeans(mbsts.object,
series.id = NULL,
same.scale = TRUE,
burn = SuggestBurn(.1, mbsts.object),
time,
show.actuals = TRUE,
ylim = NULL,

gap = 0,
cex.actuals = 0.2,

.2

Arguments

X An object of class mbsts.

y A character string indicating the aspect of the model that should be plotted.
mbsts.object An object of class mbsts.

series.id Indicates which series should be plotted. An integer, logical, or character vector.

same.scale Logical. If TRUE then all the series or state components will be plotted with the
same scale on the vertical axis. If FALSE then each plot will get its own scale for
the vertical axis.

burn The number of MCMC iterations to discard as burn-in.

time An optional vector of values to plot against. If missing, the default is to diagnose
the time scale of the original time series.

show.actuals Logical. If TRUE then actual values from the fitted series will be shown on the
plot.

ylim Limits for the vertical axis. If NULL these will be inferred from the state com-
ponents and the same. scale argument. Otherwise all plots will be created with
the same ylim values.

gap The number of lines to leave between plots. This need not be an integer.
cex.actuals Scale factor to use for plotting the raw data.

Additional arguments passed to PlotDynamicDistribution.

See Also

plot.bsts

plot.mbsts.prediction Plot Multivariate Bsts Predictions

Description

Plot the posterior predictive distribution from an mbsts prediction object.

84

Usage
S3 method for class 'mbsts.prediction'
plot(x,
y = NULL,
burn = 0,
plot.original = TRUE,
median.color = "blue”,

median.type = 1,

median.width = 3,
interval.quantiles = c(.025, .975),
interval.color = "green”,
interval.type = 2,

interval.width = 2,

style = c("dynamic”, "boxplot"),
ylim = NULL,

series.id = NULL,

same.scale = TRUE,

plot.mbsts.prediction

An object of class bsts.prediction created by calling predict on a bsts

gap = 0,
.
Arguments
X
object.
y

plot.original

burn

median.color
median. type

median.width

A dummy argument necessary to match the signature of the plot generic func-

tion. This argument is unused.

Logical or numeric. If TRUE then the prediction is plotted after a time series plot

of the original series. If FALSE, the prediction fills the entire plot. If numeric,
then it specifies the number of trailing observations of the original time series to

plot in addition to the predictions.

The number of observations you wish to discard as burn-in from the poste-
rior predictive distribution. This is in addition to the burn-in discarded using

predict.bsts.

interval.quantiles
The lower and upper limits of the credible interval to be plotted.

The color to use for the posterior median of the prediction.
The type of line (Ity) to use for the posterior median of the prediction.

The width of line (Iwd) to use for the posterior median of the prediction.

interval.color The color to use for the upper and lower limits of the 95% credible interval for

interval. type

the prediction.

inerval for of the prediction.

The type of line (Ity) to use for the upper and lower limits of the 95% credible

interval.width The width of line (Iwd) to use for the upper and lower limits of the 95% credible

inerval for of the prediction.

predict.bsts
style
ylim

series.id

same.scale

gap

Details

85

Either "dynamic", for dynamic distribution plots, or "boxplot", for box plots.
Partial matching is allowed, so "dyn" or "box" would work, for example.

Limits on the vertical axis.

A factor, string, or integer used to indicate which of the multivariate series to
plot. If NULL then predictions for all series will be plotted. If there are many
series this can make the plot unreadable.

Logical. If TRUE then all predictions are plotted with the same scale, and limits
are drawn on the Y axis. If FALSE then each prediction is drawn to fill its plot
region, and no tick marks are drawn on the y axis. If ylim is specified then it is
used for all plots, and same.scale is ignored.

The amount of space to leave between plots, measured in lines of text.

Extra arguments to be passed to PlotDynamicDistribution and lines.

Plots the posterior predictive distribution described by x using a dynamic distribution plot generated
by PlotDynamicDistribution. Overlays the posterior median and 95% prediction limits for the
predictive distribution.

Value

Returns NULL.

predict.bsts

Prediction for Bayesian Structural Time Series

Description

Generate draws from the posterior predictive distribution of a bsts object.

Usage
S3 method for class 'bsts'
predict(object,
horizon = 1,
newdata = NULL,
timestamps = NULL,
burn = SuggestBurn(.1, object),

na.action = na.exclude,

olddata
olddata.timestamps

= NULL,

NULL,

trials.or.exposure = 1,
quantiles = c(.025, .975),
seed = NULL,

)

86

Arguments

object

horizon

newdata

timestamps

burn

na.action
olddata

predict.bsts

An object of class bsts created by a call to the function bsts.

An integer specifying the number of periods into the future you wish to predict.
If object contains a regression component then the forecast horizon is nrow(X),
and this argument is not used.

a vector, matrix, or data frame containing the predictor variables to use in mak-
ing the prediction. This is only required if object contains a regression compo-
nent. If a data frame, it must include variables with the same names as the
data used to fit object. The first observation in newdata is assumed to be
one time unit after the end of the last observation used in fitting object, and
the subsequent observations are sequential time points. If the regression part
of object contains only a single predictor then newdata can be a vector. If
newdata is passed as a matrix it is the caller’s responsibility to ensure that it con-
tains the correct number of columns and that the columns correspond to those in
object$coefficients.

A vector of time stamps (of the same type as the timestamps used to fit object),
with one per row of newdata (or element of newdata, if newdata is a vector).
The time stamps give the time points as which each prediction is desired. They
must be interpretable as integer (0 or larger) time steps following the last time
stamp in object. If NULL, then the requested predictions are interpreted as being
at 1, 2, 3, ... steps following the training data.

An integer describing the number of MCMC iterations in object to be discarded
as burn-in. If burn <= @ then no burn-in period will be discarded.

A function determining what should be done with missing values in newdata.

This is an optional component allowing predictions to be made conditional on
data other than the data used to fit the model. If omitted, then it is assumed
that forecasts are to be made relative to the final observation in the training data.
If olddata is supplied then it will be filtered to get the distribution of the next
state before a prediction is made, and it is assumed that the first entry in newdata
comes immediately after the last entry in olddata.

The value for olddata depends on whether or not object contains a regression
component.

* If aregression component is present, then olddatais a data. frame includ-
ing variables with the same names as the data used to fit object, including
the response .

* If no regression component is present, then olddata is a vector containing
historical values of a time series.

olddata.timestamps

A set of timestamps corresponding to the observations supplied in olddata. If
olddata is NULL then this argument is not used. If olddata is supplied and
this is NULL then trivial timestamps (1, 2, ...) will be assumed. Otherwise this
argument behaves like the timestamps argument to the bsts function.

trials.or.exposure

For logit or Poisson models, the number of binomial trials (or the exposure time)
to assume at each time point in the forecast period. This can either be a scalar

predict.bsts 87

(if the number of trials is to be the same for each time period), or it can be a
vector with length equal to horizon (if the model contains no regression term)
or nrow(newdata) if the model contains a regression term.

quantiles A numeric vector of length 2 giving the lower and upper quantiles to use for the
forecast interval estimate.

seed An integer to use as the C++ random seed. If NULL then the C++ seed will be set
using the clock.

This is a dummy argument included to match the signature of the generic predict
function. It is not used.

Details

Samples from the posterior distribution of a Bayesian structural time series model. This function
can be used either with or without contemporaneous predictor variables (in a time series regression).

If predictor variables are present, the regression coefficients are fixed (as opposed to time varying,
though time varying coefficients might be added as state component). The predictors and response
in the formula are contemporaneous, so if you want lags and differences you need to put them in
the predictor matrix yourself.

If no predictor variables are used, then the model is an ordinary state space time series model.

Value

Returns an object of class bsts.prediction, which is a list with the following components.

mean A vector giving the posterior mean of the prediction.

interval A two (column/row?) matrix giving the upper and lower bounds of the 95 per-
cent credible interval for the prediction.

distribution A matrix of draws from the posterior predictive distribution. Each row in the
matrix is one MCMC draw. Columns represent time.

Author(s)

Steven L. Scott

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. AddLocallLevel. AddLocalLinearTrend. AddSemilocalLinearTrend.

88

Examples

The number of MCMC draws in the following examples is artificially low.

Making predictions when there is no regression component.
data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 250)

pred <- predict(model, horizon = 12, burn = 100)

plot(pred)

An example using the olddata argument.

full.pred <- pred

training <- window(y, end = c(1959, 12))

model <- bsts(training, state.specification = ss, niter = 250)
Predict the next 12 months.

pred <- predict(model, horizon = 12)

Compare the predictions to the actual data.

plot(pred)

lines(as.numeric(y, col = "red", 1ty = 2, 1lwd = 2))

Predict the 12 months of 1961 based on the posterior distribution
of the model fit to data through 1959, but with state filtered
through 1960.

updated.pred <- predict(model, horizon = 12, olddata = y)

par(mfrow = c(1, 2))

plot(full.pred, ylim = c(4, 7))

plot(updated.pred, ylim = c(4, 7))

Examples including a regression component.
#H#

data(iclaims)

training <- initial.claims[1:402,]

holdout1 <- initial.claims[403:450,]
holdout2 <- initial.claims[451:456, 1]

Not run:

This example puts the total run time over 5 seconds, which is a CRAN
violation.

ss <- AddLocallLinearTrend(list(), training$iclaimsNSA)

ss <- AddSeasonal(ss, training$iclaimsNSA, nseasons = 52)

In real life you'd want more iterations...

model <- bsts(iclaimsNSA ~ ., state.specification = ss, data =
training, niter = 100)

Predict the holdout set given the training set.
This is really fast, because we can use saved state from the MCMC

predict.bsts

predict.mbsts 89

algorithm.
pred.full <- predict(model, newdata = rbind(holdoutl, holdout2))

Predict holdout 2, given training and holdout1.
This is much slower because we need to re-filter the 'olddata' before
simulating the predictions.
pred.update <- predict(model, newdata = holdout2,
olddata = rbind(training, holdoutl))

End(Not run)

predict.mbsts Prediction for Multivariate Bayesian Structural Time Series

Description

Generate draws from the posterior predictive distribution of an mbsts object.

Usage
S3 method for class 'mbsts'
predict(object,
horizon = 1,
newdata = NULL,
timestamps = NULL,

burn = SuggestBurn(.1, object),
na.action = na.exclude,
quantiles = c(.025, .975),

seed = NULL,
»)
Arguments

object An object of class mbsts.

horizon An integer specifying the number of periods into the future you wish to pre-
dict. If object contains a regression component then the forecast horizon is
nrow(newdata) and this argument is not used.

newdata A vector, matrix, or data frame containing the predictor variables to use in mak-

ing the prediction. This is only required if object contains a regression compo-
nent. If a data frame, it must include variables with the same names as the data
used to fit object. The first observation in newdata is assumed to be one time
unit after the end of the last data used in fitting object, and the subsequent ob-
servations are sequential time points. If the regression part of object contains
only a single predictor then newdata can be a vector. If newdata is passed as a
matrix it is the caller’s responsibility to ensure that it contains the correct number
of columns and that the columns correspond to those in object$coefficients.

90

timestamps

burn

na.action

quantiles

seed

Details

quarter

A vector of time stamps (of the same type as the timestamps used to fit object),
with one per row of newdata (or element of newdata, if newdata is a vector).
The time stamps give the time points as which each prediction is desired. They
must be interpretable as integer (0 or larger) time steps following the last time
stamp in object. If NULL, then the requested predictions are interpreted as being
at 1, 2, 3, ... steps following the training data.

An integer describing the number of MCMC iterations in object to be discarded
as burn-in. If burn <= 0 then no burn-in period will be discarded.

A function determining what should be done with missing values in newdata.

A numeric vector of length 2 giving the lower and upper quantiles to use for the
forecast interval estimate.

An integer to use as the C++ random seed. If NULL then the C++ seed will be set
using the clock.

Not used. Present to match the signature of the default predict method.

The prediction is based off of samples taken from the posterior distribution of a multivariate Bayesian
structural time series model.

As an added convenience, means and interval estimates are produced from the posterior predictive

distribution.

Value

Returns an object of class mbsts.prediction, which is a list.

Author(s)

Steven L. Scott

See Also

mbsts. predict.bsts plot.mbsts.prediction

quarter

Find the quarter in which a date occurs

Description

Returns the quarter and year in which a date occurs.

Usage

Quarter(date)

regression.holiday 91

Arguments

date A vector convertible to POSIX1t. A Date or character is fine.

Value
A numeric vector identifying the quarter that each element of date corresponds to, expressed as a
number of years since 1900. Thus Q1-2000 is 100.00, and Q3-2007 is 107.50.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

Quarter(c("2008-02-29", "2008-04-29"))
[1] 108.00 108.25

regression.holiday Regression Based Holiday Models

Description

Add a regression-based holiday model to the state specification.

Usage

AddRegressionHoliday(
state.specification = NULL,

Y,

holiday.list,
time® = NULL,
prior = NULL,

sdy = sd(as.numeric(y), na.rm = TRUE))

AddHierarchicalRegressionHoliday/(
state.specification = NULL,
Yy,
holiday.list,
coefficient.mean.prior = NULL,
coefficient.variance.prior = NULL,
timed = NULL,
sdy = sd(as.numeric(y), na.rm = TRUE))

92

Arguments

regression.holiday

state.specification

holiday.list

prior

A list of state components that you wish to add to. If omitted, an empty list will
be assumed.

A list of objects of type Holiday. The width of the influence window should be
the same number of days for all the holidays in this list. If the data contains many
instances of holidays with different window widths, then multiple instances Hi-
erarchicalRegressionHolidayModel can be used as long as all holidays in the
same state component model have the same sized window width.

The time series to be modeled, as a numeric vector convertible to xts. This state
model assumes y contains daily data.

An object of class NormalPrior describing the expected variation among daily
holiday effects.

coefficient.mean.prior

An object of type MvnPrior giving the hyperprior for the average effect of a
holiday in each day of the influence window.

coefficient.variance.prior

time@

sdy

Details

An object of type InverseWishartPrior describing the prior belief about the
variation in holiday effects from one holiday to the next.

An object convertible to Date containing the date of the initial observation in
the training data. If omitted and y is a zoo or xts object, then time® will be
obtained from the index of y[1].

The standard deviation of the series to be modeled. This will be ignored if y is
provided, or if all the required prior distributions are supplied directly.

The model assumes that

Yt = Ba) + €

The regression state model assumes vector of regression coefficients 3 contains elements Sg ~

N(0,0).

The HierarchicalRegressionHolidayModel assumes [is composed of holiday-specific sub-vectors
Br ~ N(by, V'), where each 3, contains coefficients describing the days in the influence window
of holiday h. The hierarchical version of the model treats by and V' as parameters to be learned,
with prior distributions

and

by ~ N(b,Q)

V ~ IW (v, S)

where IW represents the inverse Wishart distribution.

Value

Returns a list with the elements necessary to specify a local linear trend state model.

regression.holiday 93

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. RandomWalkHolidayStateModel. SdPrior NormalPrior

Examples

trend <- cumsum(rnorm(730, @, .1))
dates <- seq.Date(from = as.Date("2014-01-01"), length = length(trend), by = "day")
y <- zoo(trend + rnorm(length(trend), @, .2), dates)

AddHolidayEffect <- function(y, dates, effect) {
Adds a holiday effect to simulated data.
Args:
y: A zoo time series, with Dates for indices.
dates: The dates of the holidays.
effect: A vector of holiday effects of odd length. The central effect is
#i# the main holiday, with a symmetric influence window on either side.
Returns:
y, with the holiday effects added.
time <- dates - (length(effect) - 1) / 2
for (i in 1:length(effect)) {
y[time] <- y[time] + effect[i]
time <- time + 1
3
return(y)
3

Define some holidays.

memorial.day <- NamedHoliday("MemorialDay")

memorial.day.effect <- c(.3, 3, .5)

memorial.day.dates <- as.Date(c("2014-05-26", "2015-05-25"))

y <- AddHolidayEffect(y, memorial.day.dates, memorial.day.effect)

presidents.day <- NamedHoliday("PresidentsDay")

presidents.day.effect <- c(.5, 2, .25)

presidents.day.dates <- as.Date(c("2014-02-17", "2015-02-16"))

y <- AddHolidayEffect(y, presidents.day.dates, presidents.day.effect)

labor.day <- NamedHoliday("LaborDay")
labor.day.effect <- c(1, 2, 1)
labor.day.dates <- as.Date(c("2014-09-01", "2015-09-07"))

94

regularize.timestamps

y <- AddHolidayEffect(y, labor.day.dates, labor.day.effect)

The holidays can be in any order.
holiday.list <- list(memorial.day, labor.day, presidents.day)

In a real example you'd want more than 100 MCMC iterations.
niter <- 100

Fit the model

ss <- AddLocallevel(list(), y)

ss <- AddRegressionHoliday(ss, y, holiday.list = holiday.list)
model <- bsts(y, state.specification = ss, niter = niter)

Plot all model state components.
plot(model, "comp”)

Plot the specific holiday state component.
plot(ss[[2]1]1, model)

Try again with some shrinkage. With only 3 holidays there won't be much
shrinkage.
ss2 <- AddLocallLevel(list(), y)

Plot the specific holiday state component.
ss2 <- AddHierarchicalRegressionHoliday(ss2, y, holiday.list = holiday.list)
model2 <- bsts(y, state.specification = ss2, niter = niter)

plot(model2, "comp")
plot(ss2[[2]]1, model2)

regularize.timestamps Produce a Regular Series of Time Stamps

Description

Given an set of timestamps that might contain duplicates and gaps, produce a set of timestamps that
has no duplicates and no gaps.

Usage

RegularizeTimestamps(timestamps)

Default S3 method:
RegularizeTimestamps(timestamps)

S3 method for class 'numeric'
RegularizeTimestamps(timestamps)

S3 method for class 'Date’

residuals.bsts 95

RegularizeTimestamps(timestamps)

S3 method for class 'POSIXt'
RegularizeTimestamps(timestamps)

Arguments

timestamps A set of (possibly irregular or non-unique) timestamps. This could be a set of
integers (like 1, 2, , 3...), a set of numeric like (1945, 1945.083, 1945.167, ...)
indicating years and fractions of years, a Date object, or a POSIXt object.

If the argument is NULL a NULL will be returned.

Value

A set of regularly spaced timestamps of the same class as the argument (which might be NULL).

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

first <- as.POSIXct("2015-04-19 08:00:04")

monthly <- seq(from = first, length.out = 24, by = "month")
skip.one <- monthly[-8]

has.duplicates <- monthly

has.duplicates[2] <- has.duplicates[3]

regl <- RegularizeTimestamps(skip.one)
all.equal(regl, monthly) ## TRUE

reg2 <- RegularizeTimestamps(has.duplicates)
all.equal(reg2, monthly) ## TRUE

residuals.bsts Residuals from a bsts Object

Description

Residuals (or posterior distribution of residuals) from a bsts object.

Usage

S3 method for class 'bsts'
residuals(object,
burn = SuggestBurn(.1, object),
mean.only = FALSE,

>

96 rsxfs

Arguments
object An object of class bsts created by the function of the same name.
burn The number of MCMC iterations to discard as burn-in.
mean.only Logical. If TRUE then the mean residual for each time period is returned. If
FALSE then the full posterior distribution is returned.
Not used. This argument is here to comply with the signature of the generic
residuals function.
Value

If mean.only is TRUE then this function returns a vector of residuals with the same "time stamp" as
the original series. If mean.only is FALSE then the posterior distribution of the residuals is returned
instead, as a matrix of draws. Each row of the matrix is an MCMC draw, and each column is a time
point. The colnames of the returned matrix will be the timestamps of the original series, as text.

See Also

bsts, plot.bsts.

rsxfs Retail sales, excluding food services

Description

A monthly time series of retail sales in the US, excluding food services. In millions of dollars.
Seasonally adjusted.

Usage

data(rsxfs)

Format

700 time series

Source

FRED. See http://research.stlouisfed.org/fred2/series/RSXFS

Examples

data(rsxfs)
plot(rsxfs)

shark 97

shark Shark Attacks in Florida.

Description

An annual time series of shark attacks and fatalities in Florida.

Usage
data(shark)

Format

700 time series

Source

From Jeffrey Simonoff "Analysis of Categorical Data". http://people.stern.nyu.edu/jsimonof/AnalCatData/Data/Comma_sep:

Examples

data(shark)
head(shark)

shorten Shorten long names

Description

Removes common prefixes and suffixes from character vectors.

Usage
Shorten(words)
Arguments
words A character vector to be shortened.
Value

The argument words is returned, after common prefixes and suffixes have been removed. If all
arguments are identical then no shortening is done.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

98 simulate.fake.mixed.frequency.data

See Also
bsts.mixed.
Examples
Shorten(c("/usr/common/foo.tex", "/usr/common/barbarian.tex"))
returns c("foo", "barbarian")

Shorten(c("hello”, "hellobye"))
returns c("", "bye")

Shorten(c("hello”, "hello"))
returns c("hello”, "hello")

Shorten(c("”, "x", "xx"))

nn nyn n

returns c("", "x", "xx")

Shorten("abcde")
returns "abcde”

simulate.fake.mixed. frequency.data
Simulate fake mixed frequency data

Description

Simulate a fake data set that can be used to test mixed frequency code.

Usage

SimulateFakeMixedFrequencyData(nweeks,
xdim,
number.nonzero = xdim,
start.date = as.Date("2009-01-03"),
sigma.obs = 1.0,

sigma.slope = .5,
sigma.level = .5,
beta.sd = 10)
Arguments
nweeks The number of weeks of data to simulate.
xdim The dimension of the predictor variables to be simulated.

number.nonzero The number nonzero coefficients. Must be less than or equal to xdim.
start.date The date of the first simulated week.

sigma.obs The residual standard deviation for the fine time scale model.

simulate.fake.mixed.frequency.data 99

sigma.slope The standard deviation of the slope component of the local linear trend model
for the fine time scale data.
sigma.level The standard deviation of the level component fo the local linear trend model
for the fine time scale data.
beta.sd The standard deviation of the regression coefficients to be simulated.
Details

The simulation begins by simulating a local linear trend model for nweeks to get the trend compo-
nent.

Next a nweeks by xdim matrix of predictor variables is simulated as IID normal(0, 1) deviates, and
a xdim-vector of regression coefficients is simulated as IID normal(0, beta. sd). The product of the
predictor matrix and regression coefficients is added to the output of the local linear trend model to
get fine.target.

Finally, fine.target is aggregated to the month level to get coarse. target.

Value

Returns a list with the following components

coarse.target A zoo time series containing the monthly values to be modeled.
fine.target A zoo time series containing the weekly observations that aggregate to coarse. target.

predictors A zoo matrix corresponding to fine.target containing the set of predictors
variables to use in bsts.mixed prediction.

true.beta The vector of "true" regression coefficients used to simulate fine. target.
true.sigma.obs The residual standard deviation that was used to simulate fine. target.
true.sigma.slope
The value of sigma.slope used to simulate fine. target.
true.sigma.level
The value of sigma.level use to simulate fine.target.
true.trend The combined contribution of the simulated latent state on fine.target, in-
cluding regression effects.

true.state A matrix containin the fine-scale state of the model being simulated. Columns
represent time (weeks). Rows correspond to regression (a constant 1), the local
linear trend level, the local linear trend slope, the values of fine. target, and
the weekly partial aggregates of coarse. target.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References
Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

100

See Also

spike.slab.ar.prior

bsts.mixed, AddLocalLinearTrend,

Examples

fake.data <- SimulateFakeMixedFrequencyData(nweeks = 100, xdim = 10)
plot(fake.data$coarse.target)

spike.slab.ar.prior Spike and Slab Priors for AR Processes

Description

Returns a spike and slab prior for the parameters of an AR(p) process.

Usage
SpikeSlabArPrior(
lags,
prior.inclusion.probabilities =
GeometricSequence(lags, initial.value = .8, discount.factor = .8),
prior.mean = rep(@, lags),
prior.sd =
GeometricSequence(lags, initial.value = .5, discount.factor = .8),
sdy,
prior.df =1,
expected.r2 = .5,
sigma.upper.limit = Inf,
truncate = TRUE)
Arguments
lags A positive integer giving the maximum number of lags to consider.

prior.inclusion.probabilities

prior.mean

prior.sd

sdy
expected.r2

prior.df

A vector of length lags giving the prior probability that the corresponding AR
coefficient is nonzero.

A vector of length lags giving the prior mean of the AR coefficients. This
should almost surely stay set at zero.

A vector of length lags giving the prior standard deviations of the AR coeffi-
cients, which are modeled as a-priori independent of one another.

The sample standard deviation of the series being modeled.
The expected fraction of variation in the response explained by this AR proces.

A positive number indicating the number of observations (time points) worth of
weight to assign to the guess at expected.r2.

state.sizes 101

sigma.upper.limit
A positive number less than infinity truncates the support of the prior distribution
to regions where the residual standard deviation is less than the specified limit.
Any other value indicates support over the entire positive real line.

truncate If TRUE then the support of the distribution is truncated to the region where
the AR coefficients imply a stationary process. If FALSE the coefficients are
unconstrained.
Value

A list of class SpikeSlabArPrior containing the information needed for the underlying C++ code
to instantiate this prior.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

state.sizes Compute state dimensions

Description
Returns a vector containing the size of each state component (i.e. the state dimension) in the state
vector.

Usage

StateSizes(state.specification)

Arguments

state.specification
A list containing state specification components, such as would be passed to

bsts.
Value

A numeric vector giving the dimension of each state component.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

Examples

y <= rnorm(1000)

state.specification <- AddLocallLinearTrend(list(), y)
state.specification <- AddSeasonal(state.specification, y, 7)
StateSizes(state.specification)

102 SuggestBurn

StateSpecification Add a state component to a Bayesian structural time series model

Description

Add a state component to the state.specification argument in a bsts model.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

References

Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University
Press.

Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University
Press.

See Also

bsts. SdPrior NormalPrior AriCoefficientPrior

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 500)
pred <- predict(model, horizon = 12, burn = 100)
plot(pred)

SuggestBurn Suggested burn-in size

Description

Suggest the size of an MCMC burn in sample as a proportion of the total run.

Usage

SuggestBurn(proportion, bsts.object)

Arguments

proportion The proportion of the MCMC run to discard as burn in.
bsts.object An object of class bsts.

summary.bsts 103

Value

An integer number of iterations to discard.

See Also

bsts

summary.bsts Summarize a Bayesian structural time series object

Description

Print a summary of a bsts object.

Usage
S3 method for class 'bsts'
summary(object, burn = SuggestBurn(.1, object), ...)
Arguments

object An object of class bsts created by the function of the same name.
burn The number of MCMC iterations to discard as burn-in.

Additional arguments passed to summary.1lm.spike if object has a regression
component.

Value

Returns a list with the following elements.

residual.sd The posterior mean of the residual standard deviation parameter.

prediction.sd The standard deviation of the one-step-ahead prediction errors for the training
data.

rsquare Proportion by which the residual variance is less than the variance of the original
observations.

relative.gof Harvey’s goodness of fit statistic. Let v denote the one step ahead prediction
errors, n denote the length of the series, and y denote the original series. The
goodness of fit statistic is

1- ZH:VE/Z”(A% — Ap)*.
=1 1=2

This statistic is analogous to R? in a regression model, but the reduction in sum
of squared errors is relative to a random walk with a constant drift,

Y1 = Ye + B+ €,

which Harvey (1989, equation 5.5.14) argues is a more relevant baseline than a
simple mean. Unlike a traditional R-square statistic, this can be negative.

104 to.posixt

size Distribution of the number of nonzero coefficients appearing in the model

coefficients If object contains a regression component then the output contains matrix with
rows corresponding to coefficients, and columns corresponding to:
* The posterior probability the variable is included.
* The posterior probability that the variable is positive.
* The conditional expectation of the coefficient, given inclusion.
* The conditional standard deviation of the coefficient, given inclusion.

References

Harvey’s goodness of fit statistic is from Harvey (1989) Forecasting, structural time series models,
and the Kalman filter. Page 268.

See Also

bsts, plot.bsts, summary.1lm.spike

Examples

data(AirPassengers)

y <- log(AirPassengers)

ss <- AddLocallLinearTrend(list(), y)

ss <- AddSeasonal(ss, y, nseasons = 12)

model <- bsts(y, state.specification = ss, niter = 100)

summary(model, burn = 20)
to.posixt Convert to POSIXt
Description

Convert an object of class Date to class POSIXct without getting bogged down in timezone calcu-
lation.
Usage
DateToPOSIX(timestamps)
YearMonToPOSIX(timestamps)
Arguments

timestamps An object of class yearmon or Date to be converted to POSIXct.

turkish 105

Details

Calling as.POSIXct on another date/time object (e.g. Date) applies a timezone correction to the
object. This can shift the time marker by a few hours, which can have the effect of shifting the day
by one unit. If the day was the first or last in a month or year, then the month or year will be off by
one as well.

Coercing the object to the character representation of a Date prevents this adjustment from being
applied, and leaves the POSIXt return value with the intended day, month, and year.

Author(s)

Steven L. Scott <steve. the.bayesian@gmail . com>

turkish Turkish Electricity Usage

Description

A daily time series of electricity usaage in Turkey.

Usage

data(turkish)

Format

700 time series

Source

https://robjhyndman.com/data/turkey_elec.csv

See Also

bsts

Examples

data(turkish)
plot(turkish)

106 week.ends

week.ends Check to see if a week contains the end of a month or quarter

Description

Returns a logical vector indicating whether the given week contains the end of a month or quarter.

Usage

WeekEndsMonth(week.ending)
WeekEndsQuarter (week.ending)

Arguments

week.ending A vector of class Date. Each entry contains the date of the last day in a week.

Value

A logical vector indicating whether the given week contains the end of a month or a quarter.

Author(s)

Steven L. Scott <steve.the.bayesian@gmail.com>

See Also

bsts.mixed.

Examples

week.ending <- as.Date(c("2011-10-01",

"2011-10-08",

"2011-12-03",

"2011-12-31"))
WeekEndsMonth(week.ending) == c(TRUE, FALSE, TRUE, TRUE)
WeekEndsQuarter (week.ending) == c(TRUE, FALSE, FALSE, TRUE)

weekday.names 107

weekday.names Days of the Week

Description

A character vector listing the names the days of the week.

Usage

weekday . names

See Also

month.name

wide.to.long Convert Between Wide and Long Format

Description

Convert a multivariate time series between wide and long formats. In "wide" format there is one row
per time point, with series organzied by columns. In "long" format there is one row per observation,
with variables indicating the series and time point to which an observation belongs.

Usage

WideToLong(response, na.rm = TRUE)
LongToWide(response, series.id, timestamps)

Arguments
response For WideTolLong this is a matrix, with rows representing time and columns rep-
resenting variables. This can be a zoo matrix with timestamps as an index.
For LongToWide, response is a vector.
na.rm If TRUE then missing values will be omitted from the returned data frame (their
absence denoting missingness). Otherwise, missing values will be included as
NA’s.
series.id A factor (or variable coercible to factor) of the same length as response, indi-
cating the series to which each observation belongs.
timestamps A variable of the same length as response, indicating the time period to which
each observation belongs.
Value

LongToWide returns a zoo matrix with the time series in wide format. WideTolLong returns a 3-

column data frame with columns "time", "series", and "values".

108 wide.to.long

Author(s)

Steven L. Scott <steve. the.bayesian@gmail.com>

Examples

data(gdp)
gdp.wide <- LongToWide(gdpGDP, gdpCountry, gdp$Time)
gdp.long <- WideTolLong(gdp.wide)

Index

x character auto.ar, 30
shorten, 97 bsts, 31

* chron dirm, 43
aggregate.time.series, 27 dirm-model-optoins, 46
aggregate.weeks.to.months, 28 HarveyCumulator, 53
bsts.options.Rd, 37 max.window.width, 60
compare.bsts.models, 38 mbsts, 61
date.range, 40 mixed. frequency, 65
estimate.time.scale, 47 one.step.prediction.errors, 70
extend. time, 48 predict.bsts, 85
format.timestamps, 49 regression.holiday, 91
get.fraction, 51 simulate.fake.mixed.frequency.data
last.day.in.month, 57 98
match.week.to.month, 59 StateSpecification, 102
month.distance, 68 to.posixt, 104

+ package

quarter, 90
regularize.timestamps, 94
state.sizes, 101

bsts-package, 3
* regression

week.ends, 106 béts’31
dirm, 43
* datasets . .
dirm-model-optoins, 46
gdp, 50
HarveyCumulator, 53
goog, 52

max.window.width, 60
mbsts, 61
mixed.frequency, 65

iclaims, 56
new.home.sales, 69

rsxfs, 96 one.step.prediction.errors, 70
shark, 97 .
Kish. 105 predict.bsts, 85
turkish, simulate.fake.mixed.frequency.data
+x models 03
add.ar, 4

StateSpecification, 102

add.dynamic.regression, 5 to.posixt, 104

add.local.level, 9

add.local.linear.trend, 10 acf, 42
add.random.walk.holiday, 14 AcfDist (diagnostic-plots), 42
add.seasonal, 16 add.ar, 4
add.semilocal.linear.trend, 18 add.dynamic.regression, 5
add.shared.local.level, 20 add.local.level, 9
add.static.intercept, 22 add.local.linear.trend, 10
add.student.local.linear.trend, 23 add.monthly.annual.cycle, 12
add.trig, 25 add.random.walk.holiday, 14

109

110

add.seasonal, 16
add.semilocal.linear.trend, 18
add.shared.local.level, 20
add.static.intercept, 22
add.student.local.linear.trend, 23
add.trig, 25
AddAr, 30
AddAr (add.ar), 4
AddAutoAr (auto.ar), 30
AddDynamicRegression, 34, 45, 63
AddDynamicRegression
(add.dynamic.regression), 5
AddGeneralizedlLocallLinearTrend
(add.semilocal.linear.trend),
18
AddHierarchicalRegressionHoliday, 55
56, 60
AddHierarchicalRegressionHoliday
(regression.holiday), 91
AddLocallevel, 34, 45,61, 63,67,71,87
AddLocallLevel (add.local.level), 9
AddLocallLinearTrend, 33, 34, 43,45, 63, 67,
71,87, 100
AddLocallLinearTrend
(add.local.linear.trend), 10
AddMonthlyAnnualCycle
(add.monthly.annual.cycle), 12
AddRandomWalkHoliday, 55, 56, 60, 81
AddRandomWalkHoliday
(add.random.walk.holiday), 14
AddRegressionHoliday, 55, 56, 60
AddRegressionHoliday
(regression.holiday), 91
AddSeasonal, 12, 33, 34, 43, 45, 61, 63
AddSeasonal (add.seasonal), 16
AddSemilocallLinearTrend, 34, 45, 63, 67,
71,87
AddSemilocallinearTrend
(add.semilocal.linear.trend),
18
AddSharedLocallLevel, 61
AddSharedLocallLevel
(add.shared.local.level), 20
AddStaticIntercept
(add.static.intercept), 22
AddStudentLocallLinearTrend

(add.student.local.linear.trend),

23

INDEX

AddTrig (add.trig), 25
aggregate.time.series, 27
aggregate.weeks. to.months, 28
AggregateTimeSeries, 29
AggregateTimeSeries
(aggregate.time.series), 27
AggregateWeeksToMonths
(aggregate.weeks.to.months), 28
Ar1CoefficientPrior, 19, 102
as.data.frame, 6, 33, 44, 62
as.POSIXct, 105
auto.ar, 30

boxplot, 42, 81

bsts, 3, 5,8, 10, 12,15, 17,20-22, 24,27, 31,
31, 33, 34, 39, 4345, 57,62, 63, 67,
70-73,75, 78-81, 84-87, 93, 96,
101-105

bsts-package, 3

bsts.mixed, 48, 52, 53, 59, 76, 77, 98—100,
106

bsts.mixed (mixed. frequency), 65

bsts.options.Rd, 37

bsts.prediction, 78, 84

bsts.prediction (predict.bsts), 85

bsts.prediction.errors, 39

bsts.prediction.errors
(one.step.prediction.errors),
70

BstsOptions, 33, 70

BstsOptions (bsts.options.Rd), 37

compare.bsts.models, 38
CompareBstsModels
(compare.bsts.models), 38
ConditionalZellnerPrior, 21
contr.treatment, 33, 44, 62

Date, 13, 14, 29,40, 41, 44,47-49, 51, 57, 59,
68, 73,91, 92, 95, 104, 106
date.range, 40
DateRange (date.range), 40
DateRangeHoliday (holiday), 54
DateToPOSIX (to.posixt), 104
DayPlot (descriptive-plots), 41
descriptive-plots, 41
diagnostic-plots, 42
dirm, 43, 44
dirm-model-optoins, 46

INDEX

DirmModelOptions, 44

DirmModelOptions (dirm-model-optoins),
46

DoubleModel, 23, 24

DynamicRegressionArOptions
(add.dynamic.regression), 5

111

install.packages, 3
InverseWishartPrior, 92
IsRegular (format.timestamps), 49

last.day.in.month, 57
LastDayInMonth (last.day.in.month), 57

DynamicRegressionHierarchicalRandomWalkOptionlsastWeekdayInMonthHoliday (holiday), 54

(add.dynamic.regression), 5
DynamicRegressionOptions, 6
DynamicRegressionOptions

(add.dynamic.regression), 5
DynamicRegressionRandomWalkOptions

(add.dynamic.regression), 5

estimate.time.scale, 47

EstimateTimeScale
(estimate.time.scale), 47

extend. time, 48

ExtendTime (extend.time), 48

FixedDateHoliday (holiday), 54
format.timestamps, 49

GammaPrior, 6, 7

gdp, 50

geometric.sequence, 50

GeometricSequence (geometric.sequence),
50

get.fraction, 51

GetFractionOfDaysInInitialMonth
(get.fraction), 51

GetFractionOfDaysInInitialQuarter
(get.fraction), 51

GOOG (goog), 52

goog, 52

HarveyCumulator, 53

HasDuplicateTimestamps
(format.timestamps), 49

HierarchicalRegressionHolidayStateModel,
15,81

HierarchicalRegressionHolidayStateModel
(regression.holiday), 91

Holiday, 14, 40, 60, 81, 92

Holiday (holiday), 54

holiday, 54

iclaims, 56
initial.claims (iclaims), 56

lines, 41,79, 85
1m, 33,43, 44, 62
LongToWide (wide.to.long), 107

MATCH, 59

match, 58

MATCH.NumericTimestamps, 58

match.week.to.month, 59

MatchWeekToMonth (match.week.to.month),
59

max.window.width, 60

MaxWindowWidth (max.window.width), 60

mbsts, 61, 63, 82, 83, 89, 90

mbsts.prediction (predict.mbsts), 89

mixed. frequency, 65

model.matrix.default, 33, 44, 62

month.distance, 68

month.name, /107

MonthDistance (month.distance), 68

MonthlyAnnualCycle, 75

MonthlyAnnualCycle
(add.monthly.annual.cycle), 12

MonthPlot (descriptive-plots), 41

monthplot, 41/

months, 41, 74

MvnPrior, 21, 27, 92

named.holidays, 69

NamedHoliday (holiday), 54

new. home.sales, 69

NoDuplicates (format.timestamps), 49

NoGaps (format.timestamps), 49

NormalPrior, 8, 10-13, 15, 17, 19-22, 24, 25,
92, 93,102

NthWeekdayInMonthHoliday (holiday), 54

one.step.prediction.errors, 70

plot, 41,78, 80, 84
plot.bsts, 32,72, 83, 96, 104
plot.bsts.mixed, 75
plot.bsts.prediction, 78

112

plot.bsts.predictors, 79
plot.holiday, 81
plot.1lm.spike, 74, 75,77, 79, 80
plot.mbsts, 82
plot.mbsts.prediction, 83, 90
PlotBstsCoefficients, 75, 77
PlotBstsCoefficients (plot.bsts), 72
PlotBstsComponents, 75, 77
PlotBstsComponents (plot.bsts), 72
PlotBstsForecastDistribution, 75
PlotBstsForecastDistribution
(plot.bsts), 72
PlotBstsMixedComponents
(plot.bsts.mixed), 75
PlotBstsMixedState, 77

PlotBstsMixedState (plot.bsts.mixed), 75

PlotBstsPredictionErrors, 75

PlotBstsPredictionErrors (plot.bsts), 72

PlotBstsPredictors
(plot.bsts.predictors), 79
PlotBstsResiduals, 75
PlotBstsResiduals (plot.bsts), 72
PlotBstsSize, 75, 77
PlotBstsSize (plot.bsts), 72
PlotBstsState, 75
PlotBstsState (plot.bsts), 72
PlotDynamicDistribution, 42, 74, 75, 77,
79, 80, 83, 85
PlotDynamicRegression (plot.bsts), 72
PlotHoliday (plot.holiday), 81
PlotMbstsSeriesMeans (plot.mbsts), 82
PlotMonthlyAnnualCycle, 75
PlotMonthlyAnnualCycle (plot.bsts), 72
PlotSeasonalEffect, 75
PlotSeasonalEffect (plot.bsts), 72
POSIX1t, 91
POSIXt, 13,40, 41,44,49, 73, 95
predict, 87
predict.bsts, 78, 84, 85, 90
predict.mbsts, 89

gqdist (diagnostic-plots), 42
gqline, 42

qgnorm, 42

Quarter (quarter), 90
quarter, 90

quarters, 41, 74

rainbow, 39

INDEX

RandomWalkHolidayStateModel, 93

RandomWalkHolidayStateModel
(add.random.walk.holiday), 14

regression.holiday, 91

RegressionHolidayStateModel, 15, 81

RegressionHolidayStateModel
(regression.holiday), 91

regularize.timestamps, 94

RegularizeTimestamps
(regularize.timestamps), 94

residuals.bsts, 95

retail.sales (rsxfs), 96

RSXFS (rsxfs), 96

rsxfs, 96

SdPrior, 5,7, 8, 10-14, 17, 19-25, 27, 31, 33,
34,45,63,67,71,93, 102

shark, 97

Shorten (shorten), 97

shorten, 97

simulate.fake.mixed. frequency.data, 98

SimulateFakeMixedFrequencyData

(simulate.fake.mixed.frequency.data),

98
spike.slab.ar.prior, 100
SpikeSlabArPrior, 30
SpikeSlabArPrior (spike.slab.ar.prior),
100
SpikeSlabPrior, 33, 34, 44, 45, 62, 63, 66,
67,71
state.sizes, 101
state.specification, 33,43
state.specification
(StateSpecification), 102
StateSizes (state.sizes), 101
StateSpecification, 102
SuggestBurn, 102
summary.bsts, 103
summary.1lm.spike, 103, 104

TimeSeriesBoxplot, 74, 77
to.posixt, 104

ts, 32,41

turkish, 105

week . ends, 106
weekday . names, 107
weekdays, 41, 74

WeekEndsMonth (week.ends), 106

INDEX 113

WeekEndsQuarter (week.ends), 106
wide.to.long, 107
WideToLong (wide.to.long), 107

xts, 14, 32, 92

yearmon, 41, 104
YearMonToPOSIX (to.posixt), 104
YearPlot (descriptive-plots), 41

zoo, 13, 14, 29, 32, 33,41, 66, 92, 99, 107

	bsts-package
	add.ar
	add.dynamic.regression
	add.local.level
	add.local.linear.trend
	add.monthly.annual.cycle
	add.random.walk.holiday
	add.seasonal
	add.semilocal.linear.trend
	add.shared.local.level
	add.static.intercept
	add.student.local.linear.trend
	add.trig
	aggregate.time.series
	aggregate.weeks.to.months
	auto.ar
	bsts
	bsts.options.Rd
	compare.bsts.models
	date.range
	descriptive-plots
	diagnostic-plots
	dirm
	dirm-model-optoins
	estimate.time.scale
	extend.time
	format.timestamps
	gdp
	geometric.sequence
	get.fraction
	goog
	HarveyCumulator
	holiday
	iclaims
	last.day.in.month
	MATCH.NumericTimestamps
	match.week.to.month
	max.window.width
	mbsts
	mixed.frequency
	month.distance
	named.holidays
	new.home.sales
	one.step.prediction.errors
	plot.bsts
	plot.bsts.mixed
	plot.bsts.prediction
	plot.bsts.predictors
	plot.holiday
	plot.mbsts
	plot.mbsts.prediction
	predict.bsts
	predict.mbsts
	quarter
	regression.holiday
	regularize.timestamps
	residuals.bsts
	rsxfs
	shark
	shorten
	simulate.fake.mixed.frequency.data
	spike.slab.ar.prior
	state.sizes
	StateSpecification
	SuggestBurn
	summary.bsts
	to.posixt
	turkish
	week.ends
	weekday.names
	wide.to.long
	Index

