The bsearchtools package exposes the binary search based
functions of the C++ standard library (std::lower_bound,
std::upper_bound) plus other convenience functions,
allowing faster lookups on sorted vectors.
It also includes DFI, a lightweight
data.frame/matrix wrapper, which automatically
creates indexes on the columns for faster lookups.
These functions are especially designed to be used in non-vectorized
operations (e.g. inside loops).
For vectorized operations the great data.table package
already fullfills basically every R programmer needs.
The package is available on CRAN : https://cran.r-project.org/package=bsearchtools
sortedVec <- c(1,3,3,5,7,12,15,42)
lb(sortedVec,3) # returns 2
ub(sortedVec,3) # returns 4sortedVec <- c(1,3,3,5,7,12,15,42)
indexesEqualTo(sortedVec,3) # returns c(2,3)
indexesInRange(sortedVec,5,15) # returns c(4,5,6,7)DF <- data.frame(Name=c('John','Jennifer','John','Emily','Peter','Anna','Emily'),
Age=c(30,50,15,27,25,35,70),
stringsAsFactors = FALSE)
# create a DFI object from a data.frame (you can also use as.DFI)
DFIobj <- DFI(DF)
# select rows with this filter :
# (Name == 'John' | Name == 'Emily') & Age >= 25 & Age <= 60
res <- DFI.subset(DFIobj, AND(OR(EQ('Name','John'),EQ('Name','Emily')),RG('Age',25,60)))
# returns :
> res
Name Age
1 John 30
4 Emily 27R: 3.2.5 64bit
OS: Window 10
CPU: i5 6600K @3.5 Ghz
RAM: 16 GB
[7000,7500] of a
random numeric vector of 1e6 elements :set.seed(123) # for reproducibility
sortedValues <- sort(sample(1:1e4,1e6,replace=TRUE))
# measure time difference doing same operation 500 times
tm1 <- system.time( for(i in 1:500) res1 <- which(sortedValues >= 7000 & sortedValues <= 7500))
tm2 <- system.time( for(i in 1:500) res2 <- indexesInRangeInteger(sortedValues,7000,7500))
> tm1
user system elapsed
10.87 2.72 13.61
> tm2
user system elapsed
0.04 0.00 0.04
1e6 rows, performing a range
selection on a numeric column :set.seed(123) # for reproducibility
DF <- data.frame(LT=sample(LETTERS,1e6,replace=TRUE),
Values=sample(1:1e4,1e6,replace=TRUE),
stringsAsFactors = FALSE)
# we want to index only 'Values' column, by default all columns are indexed
DFIobj <- DFI(DF,indexes.col.names = 'Values')
# measure time difference doing same operation 500 times
tm1 <- system.time( for(i in 1:500) res1 <- DF[DF$Values >= 4500 & DF$Values <= 5000, 'LT' ] )
tm2 <- system.time( for(i in 1:500) res2 <- DFI.subset(DFIobj,filter=RG('Values',4500,5000),colFilter='LT') )
# and if you're not interested in keeping the original row order :
tm3 <- system.time( for(i in 1:500) res3 <- DFI.subset(DFIobj,filter=RG('Values',4500,5000),colFilter='LT',
sort.indexes = FALSE) )
> tm1
user system elapsed
14.80 1.84 16.64
> tm2
user system elapsed
1.86 0.00 1.86
> tm3
user system elapsed
0.29 0.00 0.30If the original vector/data.frame is small, or the size of the filtered result is very similar to original vector/data.frame size, the performance gain of bsearchtools functions will become negligible or possibly worse than base R. So, these functions should be used when appropriate and after testing carefully both the possibilities.
GPL (>= 2)