Package ‘brms.mmrm’

October 2, 2024
Title Bayesian MMRMs using 'brms'

Version 1.1.1

Description The mixed model for repeated measures (MMRM) is a popular
model for longitudinal clinical trial data with continuous endpoints,
and 'brms' is a powerful and versatile package for fitting Bayesian
regression models. The 'brms.mmrm' R package leverages 'brms' to run
MMRMs, and it supports a simplified interfaced to reduce difficulty
and align with the best practices of the life sciences. References:
Biirkner (2017) <doi:10.18637/jss.v080.101>, Mallinckrodt (2008)
<doi:10.1177/009286150804200402>.

License MIT + file LICENSE

URL https://openpharma.github.io/brms.mmrm/,
https://github.com/openpharma/brms.mmrm

BugReports https://github.com/openpharma/brms.mmrm/issues
Depends R (>=4.0.0)

Imports brms (>=2.19.0), dplyr, ggplot2, ggridges, MASS, posterior,
purrr, rlang, stats, tibble, tidyr, tidyselect, trialr, utils,
700

Suggests BH, emmeans (>= 1.8.7), fst, gt, gtsummary, knitr (>= 1.30),
markdown (>= 1.1), mmrm, parallel, Rcpp, RcppEigen,
RceppParallel, rmarkdown (>= 2.4), rstan, StanHeaders, testthat
(>=3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

1

https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1177/009286150804200402
https://openpharma.github.io/brms.mmrm/
https://github.com/openpharma/brms.mmrm
https://github.com/openpharma/brms.mmrm/issues
https://orcid.org/0000-0003-1878-3253

2 Contents
Kevin Kunzmann [aut] (<https://orcid.org/0000-0002-1140-7143>),
Yoni Sidi [aut],
Christian Stock [aut] (<https://orcid.org/0000-0002-3493-3234>),
Eli Lilly and Company [cph, fnd],
Boehringer Ingelheim Pharma GmbH & Co. KG [cph, fnd]
Maintainer William Michael Landau <will.landau.oss@gmail.com>
Repository CRAN
Date/Publication 2024-10-02 20:10:01 UTC
Contents
brms.mmrm-package e 3
brm_archetype_average cells. L o 3
brm_archetype_average_effects oL 7
brm_archetype_cells L 12
brm_archetype_effects L 16
brm_archetype_successive_cells L L 20
brm_archetype_successive_effects 25
brm_data e 29
brm_data_change 33
brm_data_chronologize L 34
brm_formula e 36
brm_formula_sigma 42
brm_marginal_data 44
brm_marginal_draws oL 46
brm_marginal_draws_average e 48
brm_marginal_grid 50
brm_marginal_probabilities oL 51
brm_marginal_summaries oL e e e e e e 53
brm_model e 54
brm_plot_compare 57
brm_plot_draws e e e 59
brm_prior_archetype 60
brm_prior_label 62
brm_prior_simple e 64
brm_prior_template L. e 66
brm_recenter NUISANCEt e e e e e e e e e 67
brm_simulate_categorical 68
brm_simulate_continuous e e e e e e e e 70
brm_simulate_outline e e 71
brm_simulate_prior e 72
brm_simulate_simple 74
brm_transform_marginalo 75
Index 78

https://orcid.org/0000-0002-1140-7143
https://orcid.org/0000-0002-3493-3234

brms.mmrm-package 3

brms.mmrm-package brms.mmrm: Bayesian MMRMs using brms

Description

The mixed model for repeated measures (MMRM) is a popular model for longitudinal clinical trial
data with continuous endpoints, and brms a is powerful and versatile package for fitting Bayesian
regression models. The brms.mmrm R package leverages brms to run MMRMSs, and it supports a
simplified interfaced to reduce difficulty and align with the best practices of the life sciences.

References

* Biirkner, P.-C. (2017), "brms: An R package for Bayesian multilevel models using Stan,"
Journal of Statistical Software, 80, 1-28. https://doi.org/10.18637/jss.v080.i01.

* Holzhauer, B., and Weber, S. (2024), "Bayesian mixed effects model for repeated measures,"
in Applied Modeling in Drug Development, Novartis AG. https://opensource.nibr.com/
bamdd/src/@2h_mmrm.html.

e Mallinckrodt, C. H., Lane, P. W., Schnell, D., and others (2008), "Recommendations for the
primary analysis of continuous endpoints in longitudinal clinical trials," Therapeutic Innova-
tion and Regulatory Science, 42, 303-319. https://doi.org/10.1177/009286150804200402.

* Mallinckrodt, C. H., and Lipkovich, I. (2017), Analyzing longitudinal clinical trial data: A
practical guide, CRC Press, Taylor & Francis Group.

brm_archetype_average_cells
Cell-means-like time-averaged archetype

Description

Create a cell-means-like informative prior archetype with a special fixed effect to represent the
average across time.

Usage
brm_archetype_average_cells(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup”)),

baseline_time = !is.null(attr(data, "brm_baseline")),

covariates = TRUE,

https://opensource.nibr.com/bamdd/src/02h_mmrm.html
https://opensource.nibr.com/bamdd/src/02h_mmrm.html

4 brm_archetype_average_cells

prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
intercept Logical of length 1. TRUE (default) to include an intercept, FALSE to omit.
baseline Logical of length 1. TRUE to include an additive effect for baseline response,

FALSE to omit. Default is TRUE if brm_data() previously declared a baseline

variable in the dataset. Ignored for informative prior archetypes. For informative

prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately

centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time

Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

prefix_interest
Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.

prefix_nuisance
Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

brm_archetype_average_cells 5

Details

This archetype has a special fixed effect for each treatment group to represent the mean response
averaged across all the time points.

To illustrate, suppose the dataset has two treatment groups A and B, time points 1, 2, and 3, and no
other covariates.

Let mu_gt be the marginal mean of the response at group g time t given data and hyperparameters.
The model has fixed effect parameters beta_1, beta_2, ..., beta_6 which express the marginal
means mu_gt as follows:

"mu_Al = 3 * beta_1 - beta_2 - beta_3"
“mu_A2 = beta_2"

“mu_A3 = beta_3"
"mu_B1 = 3 * beta_4 - beta_5 - beta_6"
“mu_B2 = beta_5"

“mu_B3 = beta_6"

For group A, beta_1 is the average response in group A averaged across time points. You can con-
firm this yourself by expressing the average across time (mu_A1 + mu_A2 + mu_A3) / 3 in terms of
the beta_* parameters and confirming that the expression simplifies down to just beta_1. beta_2
represents the mean response in group A at time 2, and beta_3 represents the mean response in
group A at time 3. beta_4, beta_5, and beta_6 are analogous for group B.

Value

A special classed tibble with data tailored to the cell-means-like time-averaged archetype. The
dataset is augmented with extra columns with the "archetype_" prefix, as well as special attributes
to tell downstream functions like brm_formula() what to do with the object.

Prior labeling for brm_archetype_average_cells()

Within each treatment group, the initial time point represents the average, and each successive time
point represents the response within that actual time. To illustrate, consider the example in the
Details section. In the labeling scheme for brm_archetype_average_cells(), you can label the
prior on beta_1 using brm_prior_label(code = "normal(1.2, 5)", group = "A", time ="1").
Similarly, you cal label the prior on beta_5 with brm_prior_label(code = "normal(1.3, 7)",
group = "B", time = "2"). To confirm that you set the prior correctly, compare the brms prior with
the output of summary (your_archetype). See the examples for details.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

6 brm_archetype_average_cells

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other informative prior archetypes: brm_archetype_average_effects(), brm_archetype_cells(),
brm_archetype_effects(), brm_archetype_successive_cells(), brm_archetype_successive_effects()

Examples

set.seed(0L)

data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout
rate_lapse =

) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>

:@’
4

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent"”)
)
dplyr::select(
data,
group,
time,
patient,

starts_with("biomarker"),
starts_with("status")

)

archetype <- brm_archetype_average_cells(data)
archetype

summary (archetype)

formula <- brm_formula(archetype)

formula

prior <- brm_prior_label(

brm_archetype_average_effects 7

code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"
R
brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3") |>
brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4") |>
brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3") |>
brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
brm_prior_archetype(archetype)
prior
class(prior)
if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains = 1,
iter = 100,
refresh = @
)
)
)
)
suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(
data = archetype,
formula = formula,
model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data = summaries_data)

}

brm_archetype_average_effects
Treatment effect time-averaged archetype

Description

Create a treatment effect informative prior archetype with a special fixed effect to represent the
average across time.

8 brm_archetype_average_effects

Usage
brm_archetype_average_effects(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup”)),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
intercept Logical of length 1. TRUE (default) to include an intercept, FALSE to omit.
baseline Logical of length 1. TRUE to include an additive effect for baseline response,

FALSE to omit. Default is TRUE if brm_data() previously declared a baseline
variable in the dataset. Ignored for informative prior archetypes. For informative
prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

brm_archetype_average_effects 9

prefix_interest
Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.

prefix_nuisance
Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

Details

This archetype has a special fixed effect for each treatment group to represent the mean response
averaged across all the time points, and treatment effects are explicitly parameterized.

To illustrate, suppose the dataset has two treatment groups A (placebo/reference group) and B
(active/non-reference group), time points 1, 2, and 3, and no other covariates. Let mu_gt be the
marginal mean of the response at group g time t given data and hyperparameters. The model has
fixed effect parameters beta_1, beta_2, ..., beta_6 which express the marginal means mu_gt as
follows:

“mu_Al = 3 % beta_1 - beta_2 - beta_3"
“mu_A2 = beta_2"
“mu_A3 = beta_3"

“mu_B1 = 3 x beta_1 - beta_2 - beta_3 + 3 x beta_4 - beta_5 - beta_6"
“mu_B2 = beta_2 + beta_5"
“mu_B3 beta_3 + beta_6"

For group A, beta_1 is the average response in group A averaged across time points. You can con-
firm this yourself by expressing the average across time (mu_A1 + mu_A2 + mu_A3) / 3 in terms of
the beta_* parameters and confirming that the expression simplifies down to just beta_1. beta_2
represents the mean response in group A at time 2, and beta_3 represents the mean response in
group A at time 3. beta_4 is the treatment effect of group B relative to group A, averaged across
time points. beta_5 is the treatment effect of B vs A at time 2, and beta_6 is analogous for time 3.

Value

A special classed tibble with data tailored to the treatment effect time-averaged archetype. The
dataset is augmented with extra columns with the "archetype_" prefix, as well as special attributes
to tell downstream functions like brm_formula() what to do with the object.

Prior labeling for brm_archetype_average_effects()

Within each treatment group, the initial time point represents the average, and each successive
time point represents the response within that actual time. To illustrate, consider the example in the
Details section. In the labeling scheme for brm_archetype_average_effects(), you can label the
prior on beta_1 using brm_prior_label(code = "normal (1.2, 5)", group = "A", time ="1").
Similarly, you cal label the prior on beta_5 with brm_prior_label(code = "normal(1.3, 7)",

10 brm_archetype_average_effects

group = "B", time = "2"). To confirm that you set the prior correctly, compare the brms prior with
the output of summary (your_archetype). See the examples for details.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other informative prior archetypes: brm_archetype_average_cells(), brm_archetype_cells(),

brm_archetype_effects(), brm_archetype_successive_cells(), brm_archetype_successive_effects()

Examples

set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = @
) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent")
)
dplyr::select(

brm_archetype_average_effects

data,
group,
time,
patient,
starts_with("biomarker"”),
starts_with("status")
)
archetype <- brm_archetype_average_effects(data)
archetype

summary (archetype)
formula <- brm_formula(archetype)
formula

prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"

) 1>
brm_prior_label("normal(1,
brm_prior_label("normal(1,
brm_prior_label("normal(2,
brm_prior_label("normal(2,

w N AW
w N AW

)"?
)",
)"Y
)"?

group = "group_1", time = "time_3")
group = "group_1", time = "time_4")
group = "group_2", time = "time_2")
group = "group_2", time = "time_3")

brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4")

brm_prior_archetype(archetype)
prior
class(prior)
if (identical(Sys.getenv("BRM_EXAMPLES"”, unset =
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,

chains =1,
iter = 100,
refresh = @

)
)

)
)
suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(

data = archetype,

formula = formula,

model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data =

3

"y rtrue”)) {

summaries_data)

|>
|>
|>
|>
|>

11

12 brm_archetype_cells

brm_archetype_cells Cell means archetype

Description

Create an informative prior archetype for cell means.

Usage
brm_archetype_cells(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup”)),

baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
clda = FALSE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
intercept TRUE to make one of the parameters an intercept, FALSE otherwise. If TRUE,
then the interpretation of the parameters in the "Details" section will change,
and you are responsible for manually calling summary () on the archetype and
interpreting the parameters according to the output. In addition, you are respon-
sible for setting an appropriate prior on the intercept. In normal usage, brms
looks for a model parameter called "Intercept” and uses the data to set the
prior to help the MCMC runs smoothly. If intercept = TRUE for informative
prior archetypes, the intercept will be called something else, and brms cannot
auto-generate a sensible default prior.
baseline Logical of length 1. TRUE to include an additive effect for baseline response,

FALSE to omit. Default is TRUE if brm_data() previously declared a baseline

variable in the dataset. Ignored for informative prior archetypes. For informative

prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately

centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

brm_archetype_cells 13

baseline_subgroup_time

Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

clda TRUE to opt into constrained longitudinal data analysis (cLDA), FALSE other-
wise. To use cLDA, reference_time must have been non-NULL in the call to
brm_data() used to construct the data.
Some archetypes cannot support cLDA (e.g. brm_archetype_average_cells()
and brm_archetype_average_effects()).
In cLDA, the fixed effects parameterization is restricted such that all treatment
groups are pooled at baseline. (If you supplied a subgroup variable in brm_data(),
then this constraint is applied separately within each subgroup variable.) cLDA
may result in more precise estimates when the time variable has a baseline level

and the baseline outcomes are recorded before randomization in a clinical trial.
prefix_interest

Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.
prefix_nuisance

Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

Details
In this archetype, each fixed effect is a cell mean: the group mean for a given value of treatment
group and discrete time (and subgroup level, if applicable).

Value

A special classed tibble with data tailored to the successive differences archetype. The dataset is
augmented with extra columns with the "archetype_" prefix, as well as special attributes to tell

14 brm_archetype_cells
downstream functions like brm_formula() what to do with the object.

Prior labeling for brm_archetype_cells()

Within each treatment group, each model parameter is a cell mean, and the labeling scheme in
brm_prior_label() and brm_prior_archetype() translate easily. For example, brm_prior_label (code
="normal(1.2, 5)", group = "B", time = "VISIT2") declares a normal(1.2, 5) prior on the

cell mean of treatment group B at discrete time point VISIT2. To confirm that you set the prior cor-

rectly, compare the brms prior with the output of summary(your_archetype). See the examples

for details.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior (). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other informative prior archetypes: brm_archetype_average_cells(), brm_archetype_average_effects(),
brm_archetype_effects(), brm_archetype_successive_cells(), brm_archetype_successive_effects()

Examples

set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout

= Q’
rate_lapse = 0

brm_archetype_cells

) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent")
)
dplyr: :select(
data,
group,
time,
patient,

starts_with("biomarker"”),
starts_with("status"”)

)

archetype <- brm_archetype_cells(data)
archetype

summary (archetype)

formula <- brm_formula(archetype)
formula

prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"

) 1>
brm_prior_label("normal(1,
brm_prior_label("normal(1,
brm_prior_label("normal(2, group = "group_2",
brm_prior_label("normal(2, group = "group_2",
brm_prior_label("normal(2, 4.4)", group = "group_2",
brm_prior_archetype(archetype)

prior

class(prior)

if (identical(Sys.getenv("BRM_EXAMPLES"”, unset = ""),

tmp <- utils::capture.output(
suppressMessages(

suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains = 1,
iter = 100,
refresh = @
)
)

)", group = "group_1",
)", group = "group_1",
)",
)",

w N AW
w N AW

)
)
suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(
data = archetype,

time "time_3")
time "time_4")
time "time_2")
time "time_3")
time "time_4")
"true"”)) {

|>
|>
|>
|>
|>

15

16 brm_archetype_effects

formula = formula,
model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data = summaries_data)

}

brm_archetype_effects Treatment effect archetype

Description

Create an informative prior archetype for a simple treatment effect parameterization.

Usage
brm_archetype_effects(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline"”)),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_time = !is.null(attr(data, "brm_baseline")),

covariates = TRUE,

clda = FALSE,

prefix_interest = "x_",

prefix_nuisance = "nuisance_"

Arguments

data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().

intercept TRUE to make one of the parameters an intercept, FALSE otherwise. If TRUE,
then the interpretation of the parameters in the "Details" section will change,
and you are responsible for manually calling summary () on the archetype and
interpreting the parameters according to the output. In addition, you are respon-
sible for setting an appropriate prior on the intercept. In normal usage, brms
looks for a model parameter called "Intercept” and uses the data to set the
prior to help the MCMC runs smoothly. If intercept = TRUE for informative
prior archetypes, the intercept will be called something else, and brms cannot
auto-generate a sensible default prior.

brm_archetype_effects 17

baseline Logical of length 1. TRUE to include an additive effect for baseline response,
FALSE to omit. Default is TRUE if brm_data() previously declared a baseline
variable in the dataset. Ignored for informative prior archetypes. For informative
prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

clda TRUE to opt into constrained longitudinal data analysis (cLDA), FALSE other-
wise. To use cLDA, reference_time must have been non-NULL in the call to
brm_data() used to construct the data.
Some archetypes cannot support cLDA (e.g. brm_archetype_average_cells()
and brm_archetype_average_effects()).
In cLDA, the fixed effects parameterization is restricted such that all treatment
groups are pooled at baseline. (If you supplied a subgroup variable in brm_data(),
then this constraint is applied separately within each subgroup variable.) cLDA
may result in more precise estimates when the time variable has a baseline level
and the baseline outcomes are recorded before randomization in a clinical trial.

prefix_interest
Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.

prefix_nuisance
Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

18 brm_archetype_effects

Details

In this archetype, each fixed effect is either a placebo response or a treatment effect.

To illustrate, suppose the dataset has two treatment groups A and B, time points 1, 2, and 3, and no
other covariates. Assume group A is the reference group (e.g. placebo). Let mu_gt be the marginal
mean of the response at group g time t given data and hyperparameters. The model has fixed effect
parameters beta_1, beta_2, ..., beta_6 which express the marginal means mu_gt as follows:

“mu_A1 beta_1"
“mu_A2 beta_2"
“mu_A3 = beta_3"

“mu_B1 = beta_1 + beta_4"
“mu_B2 = beta_2 + beta_5"
“mu_B3 = beta_3 + beta_6"

Above, beta_2 is the group mean of treatment group A at time 2, and beta_5 is the treatment effect
of B relative to A at time 2.

Value

A special classed tibble with data tailored to the successive differences archetype. The dataset is
augmented with extra columns with the "archetype_" prefix, as well as special attributes to tell
downstream functions like brm_formula() what to do with the object.

Prior labeling for brm_archetype_effects()

In the reference group (e.g. placebo) each fixed effect is a cell mean at a time point. In each non-

reference group, each fixed effect is the treatment effect relative to the reference (at a time point).

The labeling scheme in brm_prior_label() and brm_prior_archetype() translate straightfor-

wardly. For example, brm_prior_label(code = "normal(1.2, 5)", group = "A", time = "2")

declares a normal(1.2, 5) on beta_2 (cell mean of the reference group at time 2). Similarly,

brm_prior_label(code = "normal(1.3, 6)", group ="B", time ="2") declaresanormal(1.3,
6) prior on the treatment effect of group B relative to group A at discrete time point 2. To confirm that

you set the prior correctly, compare the brms prior with the output of summary (your_archetype).

See the examples for details.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

brm_archetype_effects 19

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other informative prior archetypes: brm_archetype_average_cells(), brm_archetype_average_effects(),
brm_archetype_cells(), brm_archetype_successive_cells(), brm_archetype_successive_effects()

Examples

set.seed(QL)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent”)
)
dplyr::select(
data,
group,
time,
patient,

starts_with("biomarker"),
starts_with("status")

)

archetype <- brm_archetype_effects(data)
archetype

summary (archetype)

formula <- brm_formula(archetype)
formula

prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"

) 1>

20

brm_prior_label("normal(1, 3.3)", group = "group_1",
brm_prior_label("normal(1, 4.4)", group = "group_1",
brm_prior_label("normal(2, 2.2)", group = "group_2",
brm_prior_label("normal(2, 3.3)", group = "group_2",
brm_prior_label("normal(2, 4.4)", group = "group_2",
brm_prior_archetype(archetype)

prior

class(prior)

if (identical(Sys.getenv("BRM_EXAMPLES"”, unset = ""),

tmp <- utils::capture.output(
suppressMessages(

suppressWarnings(

model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains =1,
iter = 100,
refresh = @
)
)
)
)
suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(

data = archetype,
formula = formula,
model = model

)

summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)

brm_plot_compare(model = summaries_model, data =

}

time
time
time
time
time

"true

brm_archetype_successive_cells

= "time_3") |>
= "time_4") |>
= "time_2") |>
= "time_3") |>
= "time_4") |>
"N A

summaries_data)

brm_archetype_successive_cells

Cell-means-like successive differences archetype

Description

Create an informative prior archetype where the fixed effects are successive differences between

adjacent time points.

Usage
brm_archetype_successive_cells(
data,
intercept = FALSE,
baseline =

lis.null(attr(data, "brm_baseline")),

brm_archetype_successive_cells 21

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup”)),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
clda = FALSE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
intercept TRUE to make one of the parameters an intercept, FALSE otherwise. If TRUE,
then the interpretation of the parameters in the "Details" section will change,
and you are responsible for manually calling summary () on the archetype and
interpreting the parameters according to the output. In addition, you are respon-
sible for setting an appropriate prior on the intercept. In normal usage, brms
looks for a model parameter called "Intercept” and uses the data to set the
prior to help the MCMC runs smoothly. If intercept = TRUE for informative
prior archetypes, the intercept will be called something else, and brms cannot
auto-generate a sensible default prior.
baseline Logical of length 1. TRUE to include an additive effect for baseline response,

FALSE to omit. Default is TRUE if brm_data() previously declared a baseline
variable in the dataset. Ignored for informative prior archetypes. For informative
prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative

22 brm_archetype_successive_cells

prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

clda TRUE to opt into constrained longitudinal data analysis (cLDA), FALSE other-
wise. To use cLDA, reference_time must have been non-NULL in the call to
brm_data() used to construct the data.

Some archetypes cannot support cLDA (e.g. brm_archetype_average_cells()
and brm_archetype_average_effects()).

In cLDA, the fixed effects parameterization is restricted such that all treatment
groups are pooled at baseline. (If you supplied a subgroup variable in brm_data(),
then this constraint is applied separately within each subgroup variable.) cLDA
may result in more precise estimates when the time variable has a baseline level
and the baseline outcomes are recorded before randomization in a clinical trial.

prefix_interest
Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.

prefix_nuisance
Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

Details

In this archetype, each fixed effect is either an intercept on the first time point or the difference
between two adjacent time points, and each treatment group has its own set of fixed effects inde-
pendent of the other treatment groups.

To illustrate, suppose the dataset has two treatment groups A and B, time points 1, 2, and 3, and
no other covariates. Let mu_gt be the marginal mean of the response at group g time t given data
and hyperparameters. The model has fixed effect parameters beta_1, beta_2, ..., beta_6 which
express the marginal means mu_gt as follows:

“mu_Al = beta_1"
“mu_A2 = beta_1l + beta_2"
“mu_A3 = beta_1 + beta_2 + beta_3"

“mu_B1 = beta_4"
“mu_B2 = beta_4 + beta_5"
“mu_B3 = beta_4 + beta_5 + beta_6"

For group A, beta_1 is the time 1 intercept, beta_2 represents time 2 minus time 1, and beta_3
represents time 3 minus time 2. beta_4, beta_5, and beta_6 behave analogously for group B.

brm_archetype_successive_cells 23

Value

A special classed tibble with data tailored to the successive differences archetype. The dataset is
augmented with extra columns with the "archetype_" prefix, as well as special attributes to tell
downstream functions like brm_formula() what to do with the object.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

Prior labeling for brm_archetype_successive_cells()

Within each treatment group, each intercept is labeled by the earliest time point, and each successive
difference term gets the successive time point as the label. To illustrate, consider the example in
the Details section. In the labeling scheme for brm_archetype_successive_cells(), you can la-
bel the prior on beta_1 using brm_prior_label(code = "normal(1.2, 5)", group = "A", time
="1"). Similarly, you cal label the prior on beta_5 with brm_prior_label(code = "normal(1.3,
7)", group = "B", time = "2"). To confirm that you set the prior correctly, compare the brms prior
with the output of summary (your_archetype). See the examples for details.

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other informative prior archetypes: brm_archetype_average_cells(), brm_archetype_average_effects(),
brm_archetype_cells(), brm_archetype_effects(), brm_archetype_successive_effects()

24 brm_archetype_successive_cells

Examples

set.seed(QL)

data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout =
rate_lapse = 0

) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>

07

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent”)
)
dplyr::select(
data,
group,
time,
patient,

starts_with("biomarker"”),
starts_with("status")

)

archetype <- brm_archetype_successive_cells(data)
archetype

summary (archetype)

formula <- brm_formula(archetype)

formula

prior <- brm_prior_label(
code = "normal(1, 2.2)",
group = "group_1",
time = "time_2"

) 1>
brm_prior_label("normal(1,
brm_prior_label("normal(1,

group = "group_1", time = "time_3") |>
group = "group_1", time = "time_4") |>
brm_prior_label("normal(2, group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, group = "group_2", time = "time_3") [|>
brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
brm_prior_archetype(archetype)
prior
class(prior)
if (identical(Sys.getenv("BRM_EXAMPLES"”, unset = ""), "true")) {
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = archetype,
formula = formula,
prior = prior,
chains = 1,
iter = 100,

w N B w
w N AW

"
)",
n
) »
"
) ’
"
)",

brm_archetype_successive_effects 25

refresh = @
)
)
)
)

suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(
data = archetype,
formula = formula,
model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)
brm_plot_compare(model = summaries_model, data = summaries_data)

}

brm_archetype_successive_effects
Treatment-effect-like successive differences archetype

Description

Create an informative prior archetype where the fixed effects are successive differences between
adjacent time points and terms in non-reference groups are treatment effects.

Usage
brm_archetype_successive_effects(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup”)),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_time = !is.null(attr(data, "brm_baseline")),

covariates = TRUE,

clda = FALSE,

prefix_interest "x_",

prefix_nuisance = "nuisance_

n

Arguments

data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells()

intercept Logical of length 1. TRUE (default) to include an intercept, FALSE to omit.

brm_archetype_successive_effects

baseline Logical of length 1. TRUE to include an additive effect for baseline response,
FALSE to omit. Default is TRUE if brm_data() previously declared a baseline
variable in the dataset. Ignored for informative prior archetypes. For informative
prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order
to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

clda TRUE to opt into constrained longitudinal data analysis (cLDA), FALSE other-
wise. To use cLDA, reference_time must have been non-NULL in the call to
brm_data() used to construct the data.
Some archetypes cannot support cLDA (e.g. brm_archetype_average_cells()
and brm_archetype_average_effects()).
In cLDA, the fixed effects parameterization is restricted such that all treatment
groups are pooled at baseline. (If you supplied a subgroup variable in brm_data(),
then this constraint is applied separately within each subgroup variable.) cLDA
may result in more precise estimates when the time variable has a baseline level
and the baseline outcomes are recorded before randomization in a clinical trial.

prefix_interest
Character string to prepend to the new columns of generated fixed effects of
interest (relating to group, subgroup, and/or time). In rare cases, you may need
to set a non-default prefix to prevent name conflicts with existing columns in the
data, or rename the columns in your data. prefix_interest must not be the
same value as prefix_nuisance.

prefix_nuisance
Same as prefix_interest, but relating to generated fixed effects NOT of in-
terest (not relating to group, subgroup, or time). Must not be the same value as
prefix_interest.

brm_archetype_successive_effects 27

Details

Within the reference treatment group (e.g. placebo), each fixed effect is either an intercept on the
first time point or the difference between two adjacent time points. In each non-reference treatment
group, each model parameter is defined as an effect relative to the reference group.

To illustrate, suppose the dataset has two treatment groups A and B, time points 1, 2, and 3, and
no other covariates. Say group A is the reference group (e.g. placebo). Let mu_gt be the marginal
mean of the response at group g time t given data and hyperparameters. The model has fixed effect
parameters beta_1, beta_2, ..., beta_6 which express the marginal means mu_gt as follows:

“mu_Al = beta_1"
“mu_A2 = beta_1 + beta_2"
“mu_A3 = beta_1 + beta_2 + beta_3"

“mu_B1 = beta_1 + beta_4"
“mu_B2 = beta_1 + beta_2 + beta_4 + beta_5"
“mu_B3 = beta_1 + beta_2 + beta_3 + beta_4 + beta_5 + beta_6"

For group A, beta_1 is the time 1 intercept, beta_2 represents time 2 minus time 1, and beta_3
represents time 3 minus time 2. beta_4 is the treatment effect of group B relative to group A at
time 1. beta_5 is the treatment effect of the difference between times 2 and 1, relative to treatment
group A. Similarly, beta_6 is the treatment effect of the difference between times 3 and 2, relative
to treatment group A.

Value

A special classed tibble with data tailored to the successive differences archetype. The dataset is
augmented with extra columns with the "archetype_" prefix, as well as special attributes to tell
downstream functions like brm_formula() what to do with the object.

Prior labeling for brm_archetype_successive_effects()

Within each treatment group, each intercept is labeled by the earliest time point, and each successive
difference term gets the successive time point as the label. To illustrate, consider the example in the
Details section. In the labeling scheme for brm_archetype_successive_effects(), you can la-
bel the prior on beta_1 using brm_prior_label(code = "normal(1.2, 5)", group = "A", time
="1"). Similarly, you cal label the prior on beta_5 with brm_prior_label(code = "normal(1.3,
7)", group ="B", time = "2"). To confirm that you set the prior correctly, compare the brms prior
with the output of summary (your_archetype). See the examples for details.

Nuisance variables

In the presence of covariate adjustment, functions like brm_archetype_successive_cells() con-
vert nuisance factors into binary dummy variables, then center all those dummy variables and any
continuous nuisance variables at their means in the data. This ensures that the main model coeffi-
cients of interest are not implicitly conditional on a subset of the data. In other words, preprocessing
nuisance variables this way preserves the interpretations of the fixed effects of interest, and it en-
sures informative priors can be specified correctly.

28 brm_archetype_successive_effects

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also
Other informative prior archetypes: brm_archetype_average_cells(), brm_archetype_average_effects(),
brm_archetype_cells(), brm_archetype_effects(), brm_archetype_successive_cells()

Examples

set.seed(0L)
data <- brm_simulate_outline(

n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0

) 1>

dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent"”)
)
dplyr::select(
data,
group,
time,
patient,

starts_with("biomarker"),
starts_with("status")

)

archetype <- brm_archetype_successive_effects(data)
archetype

summary (archetype)

formula <- brm_formula(archetype)

formula

prior <- brm_prior_label(

brm_data

code = "normal(1, 2.2)",
group = "group_1",

time = "time_2"

) 1>
brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3")
brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4")
brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2")
brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3")
brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4")
brm_prior_archetype(archetype)

prior

class(prior)

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {

tmp <- utils::capture.output(
suppressMessages(

suppressWarnings(

model <- brm_model(
data = archetype,
formula = formula,
prior = prior,

chains = 1,
iter = 100,
refresh = @

)
)

)
)
suppressWarnings(print(model))
brms: :prior_summary(model)
draws <- brm_marginal_draws(

data = archetype,

formula = formula,

model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(data)

brm_plot_compare(model = summaries_model, data = summaries_data)

}

|>
|>
|>
|>
|>

29

brm_data

Create and preprocess an MMRM dataset.

Description

Create a dataset to analyze with an MMRM.

Usage

brm_data(
data,

30

outcome,
baseline
group,
subgroup
time,
patient,

covariates
missing = NULL,
reference_group,
reference_subgroup = NULL,
reference_time = NULL,

role = NULL,

brm_data

NULL,

NULL,

character(oL),

level_baseline = NULL,
level_control = NULL

Arguments

data

outcome

baseline

group

subgroup

time

Data frame or tibble with longitudinal data.

Character of length 1, name of the continuous outcome variable. Example pos-
sibilities from clinical trial datasets include "CHG"” and "AVAL". The outcome
column in the data should be a numeric vector.

Character of length 1, name of the baseline response variable (for example,
"BASE" in many clinical trial datasets). Only relevant if the response variable
is change from baseline. Supply NULL to ignore or omit.

Character of length 1, name of the treatment group variable. Example possi-
bilities from clinical trial datasets include "TRT@1P", "TREATMENT", "TRT", and
"GROUP". The group column in the data should be a character vector or un-
ordered factor.

Character of length 1, optional name of the a discrete subgroup variable. Set
to NULL to omit the subgroup (default). If present, the subgroup column in the
data should be a character vector or unordered factor.

Character of length 1, name of the discrete time variable. Example possibilities
from clinical trial datasets include "AVISIT" and "VISIT"”. For most analyses,
please ensure the time column in the data is an ordered factor. You can easily
turn the time variable into an ordered factor using brm_data_chronologize(),
either before or immediately after brm_data() (but before any brm_archetype_x* ()
functions). This ensures the time points sort in chronological order, which en-
sures the correctness of informative prior archetypes and autoregressive / mov-
ing average correlation structures.

Ordinarily, ordered factors automatically use polynomial contrasts from contr.poly().
This is undesirable for MMRMs, so if the time variable is an ordered factor,

then brm_data() manually sets contrasts(datal[time]]) to a set of treat-

ment contrasts using contr.treatment(). If you prefer different contrasts,
please manually set contrasts(datal[time]]) to something else after calling
brm_data().

brm_data 31

patient Character of length 1, name of the patient ID variable. Example possibilities
from clinical trial datasets include "USUBJID", "SUBJID", "PATIENT", "PATIENTID",
"SUBJECT", "SUBJIDID", "SBJID", "STYSID1A", "SBJIN", and "ID". The patient
column in the data should be a factor or character vector.

covariates Character vector of names of other covariates. All these covariates are assumed
to be non-time-varying. For time-varying covariates, please manually expand
the data to the full grid of patients and time points before you call brm_data().
See the "Preprocessing" section for details.

missing Character of length 1, name of an optional variable in a simulated dataset to
indicate which outcome values should be missing. Set to NULL to omit.

reference_group
Atomic value of length 1, Level of the group column to indicate the control
group. Example possibilities from clinical trial datasets include "Placebo”,
"PLACEBO", "PBO", "PLB", "CONTROL", "CTRL", "REFERENCE", and "REF". reference_group
only applies to the post-processing that happens in functions like brm_marginal_draws()
downstream of the model. It does not control the fixed effect mapping in the
model matrix that brms derives from the formula from brm_formula().

reference_subgroup
Atomic value of length 1, level of the subgroup column to use as a reference
for pairwise differences in when computing marginal means downstream of the
model. It does not control the fixed effect mapping in the model matrix that
brms derives from the formula from brm_formula().

reference_time Atomic value of length 1 or NULL, level of the time column to indicate the base-
line time point. Leave as NULL if there is no baseline or baseline is not included
indatal[time]].

If reference_time is not NULL, then brm_marginal_draws() will calculate
change from baseline, and it will calculate treatment differences as differences
between change-from-baseline values. If reference_time is not NULL, then
brm_marginal_draws() will not calculate change from baseline, and it will
calculate treatment differences as differences between response values.

Note: reference_time only applies to the post-processing that happens in func-
tions like brm_marginal_draws () downstream of the model. It does not control
the fixed effect mapping in the model matrix that brms derives from the formula
from brm_formula().

role Deprecated as unnecessary on 2024-07-11 (version 1.0.1.9007). Use reference_time
to supply a baseline time point value if it exists.

level_baseline Deprecated on 2024-01-11 (version 0.2.0.9002). Use reference_time instead.

level_control Deprecated on 2024-01-11 (version 0.2.0.9002). Use reference_group in-
stead.

Value

A classed tibble with attributes which denote features of the data such as the treatment group and
discrete time variables.

32 brm_data

Preprocessing

The preprocessing steps in brm_data() are as follows:

 Perform basic assertions to make sure the data and other arguments are properly formatted.
* Convert the group and time columns to character vectors.

* Sanitize the levels of the group and time columns using make . names(unique = FALSE, allow
= TRUE) to ensure agreement between the data and the output of brms.

* For each implicitly missing outcome observation, add explicit row with the outcome variable
equal to NA_real_. Missing values in the predictors are implicitly filled using zoo: :na. locf ()
on within each patient, which is not valid for time-varying covariates. If any covariates are
time-varying, please manually perform this step before calling brm_data().

* Arrange the rows of the data by group, then patient, then discrete time.

* Select only the columns of the data relevant to an MMRM analysis.

Separation string

Post-processing in brm_marginal_draws () names each of the group-by-time marginal means with
the delimiting character string from Sys.getenv("BRM_SEP", unset = "|"). Neither the column
names nor element names of the group and time variables can contain this string. To set a custom
string yourself, use Sys.setenv(BRM_SEP = "YOUR_CUSTOM_STRING").

See Also

Other data: brm_data_change (), brm_data_chronologize()

Examples

set.seed(0)
data <- brm_simulate_simple()$data

colnames(data) <- paste@("col_", colnames(data))
data
brm_data(

data = data,

outcome = "col_response”,

group = "col_group”,

time = "col_time",

patient = "col_patient”,

reference_group = "group_1",

reference_time = "time_1"

brm_data_change 33

brm_data_change Convert to change from baseline.

Description

Convert a dataset from raw response to change from baseline.

Usage
brm_data_change(data, name_change = "change"”, name_baseline = "baseline")
Arguments
data A classed tibble (e.g. from brm_data()) with raw response as the outcome
variable and no baseline time point stored in the attributes.
name_change Character of length 1, name of the new outcome column for change from base-

line.

name_baseline Character of length 1, name of the new column for the original baseline re-
sponse.

Value

A classed tibble with change from baseline as the outcome variable and the internal attributes
modified accordingly. A special baseline column is also created, and the original raw response
column is removed. The new baseline column is comprised of the elements of the response variable
corresponding to the reference_time argument of brm_data().

If there is a column to denote missing values for simulation purposes, e.g. the "missing” column
generated by brm_simulate_outline(), then missing baseline values are propagated accordingly
such that change from baseline will be missing if either the post-baseline response is missing or the
baseline response is missing.

See Also

Other data: brm_data(), brm_data_chronologize()

Examples

set.seed(0)
data <- brm_data(
data = dplyr::rename(brm_simulate_simple()$data, y_values = response),
outcome = "y_values”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"

34 brm_data_chronologize

data

attr(data, "brm_outcome")

attr(data, "brm_baseline"”)

attr(data, "brm_reference_time")

changed <- brm_data_change(data = data, name_change = "delta")
changed

attr(changed, "brm_outcome")

attr(changed, "brm_baseline"”)

attr(data, "brm_reference_time")

brm_data_chronologize Chronologize a dataset

Description

Convert the discrete time variable into an ordered factor.

Usage
brm_data_chronologize(
data,
order = NULL,

levels = NULL,
time = attr(data, "brm_time")

Arguments

data Data frame or tibble with longitudinal data.

order Optional character string with the name of a variable in the data for ordering the
time variable. Either order or levels must be supplied, but not both together.
If order is supplied, the levels of data[[order]] must have a 1:1 correspon-
dence with those of data[[time]], and sort(unique(datal[order]])) must
reflect the desired order of the levels of data[[time]]. For example, suppose
you have a CDISC dataset with categorical time variable AVISIT and integer
variable AVISITN. Then, brm_data_chronologize(time = "AVISIT", order
= "AVISITN") will turn AVISIT into an ordered factor with levels that respect
the ordering in AVISITN.

levels Optional character vector of levels of data[[time]] in chronological order.
Used to turn datal[[time]] into an ordered factor. Either order or levels
must be supplied, but not both together.

time Character string with the name of the discrete time variable in the data. This
is the variable that brm_data_chronologize() turns into an ordered factor. It
needs to be specified explicitly if and only if the data argument was not pro-
duced by a call to brm_data().

brm_data_chronologize 35

Details

Most MMRMs should use an ordered factor for the time column in the data. This way, individ-
ual time points are treated as distinct factor levels for the purposes of fixed effect parameterizations
(see the "Contrasts" section), and the explicit ordering ensures that informative prior archetypes and
ARMA-like correlation structures are expressed correctly. Without the ordering, problems can arise
when character vectors are sorted: e.g. if AVISIT has levels "VISIT1", "VISIT2", ..., "VISIT10",

then brms will mistake the the order of scheduled study visits to be "VISIT1", "VISIT10", "VISIT2", ...

which is not chronological.

You can easily turn the time variable into an ordered factor using brm_data_chronologize().
Either supply an explicit character vector of chronologically-ordered factor levels in the levels
argument, or supply the name of a time-ordered variable in the order argument.

brm_data_chronologize() can be called either before or just after brm_data(), but in the former
case, the discrete time variable needs to be specified explicitly in time argument. And in the latter,
brm_data_chronologize () must be called before any of the informative prior archetype functions
such as brm_archetype_successive_cells().

Value

A data frame with the time column as an ordered factor.

Contrasts

Ordinarily, ordered factors automatically use polynomial contrasts from contr.poly(). This is
undesirable for MMRMs, so if the time variable is an ordered factor, then brm_data() manually
sets contrasts(datal[time]]) to a set of treatment contrasts using contr. treatment(). If you
prefer different contrasts, please manually set contrasts(datal[time]]) to something else after
calling brm_data().

See Also

Other data: brm_data(), brm_data_change()

Examples

data <- brm_simulate_outline(n_time = 12, n_patient = 4)

data$AVISIT <- gsub(”_0", "_", data$time)

data$AVISITN <- as.integer(gsub("time_", "", data$time))

datal, c("AVISIT", "AVISITN")]

sort(unique(data$AVISIT)) # wrong order

datal <- brm_data_chronologize(data, time = "AVISIT"”, order = "AVISITN")
sort(unique(datal$AVISIT)) # correct order

levels <- paste@("time_", seq_len(12))

data2 <- brm_data_chronologize(data, time = "AVISIT", levels = levels)
sort(unique(data2$AVISIT)) # correct order

36

brm_formula

brm_formula Model formula

Description

Build a model formula for an MMRM, either for a generic brm_data() dataset or an informative
prior archetype.

Usage

brm_formula(

)

data,

model_missing_outcomes = FALSE,

check_rank = TRUE,

sigma = brms.mmrm: :brm_formula_sigma(data = data, check_rank = check_rank),
correlation = "unstructured”,

autoregressive_order = 1L,

moving_average_order = 1L,

residual_covariance_arma_estimation = FALSE,

Default S3 method:
brm_formula(

data,

model_missing_outcomes = FALSE,

check_rank = TRUE,

sigma = brms.mmrm: :brm_formula_sigma(data = data, check_rank = check_rank),

correlation = "unstructured”,

autoregressive_order = 1L,

moving_average_order = 1L,

residual_covariance_arma_estimation = FALSE,

intercept = TRUE,

baseline = !is.null(attr(data, "brm_baseline")),

baseline_subgroup = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_subgroup_time = !is.null(attr(data, "brm_baseline”)) && !is.null(attr(data,
"brm_subgroup")),

baseline_time = !is.null(attr(data, "brm_baseline")),

covariates = TRUE,

group = TRUE,

group_subgroup = !is.null(attr(data, "brm_subgroup”)),

group_subgroup_time = !is.null(attr(data, "brm_subgroup”)),

group_time = TRUE,

subgroup = !is.null(attr(data, "brm_subgroup”)),

subgroup_time = !is.null(attr(data, "brm_subgroup”)),

time = TRUE,

brm_formula 37

center = TRUE,
effect_baseline = NULL,
effect_group = NULL,
effect_time = NULL,
interaction_baseline = NULL,
interaction_group = NULL

S3 method for class 'brms_mmrm_archetype'
brm_formula(
data,
model_missing_outcomes = FALSE,
check_rank = TRUE,
sigma = brms.mmrm: :brm_formula_sigma(data = data, check_rank = check_rank),
correlation = "unstructured”,
autoregressive_order = 1L,
moving_average_order = 1L,
residual_covariance_arma_estimation = FALSE,

L

warn_ignored = TRUE

Arguments

data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
model_missing_outcomes
Logical of length 1, TRUE to impute missing outcomes during model fitting as de-
scribed in the "Imputation during model fitting" section of https://paulbuerkner.
com/brms/articles/brms_missings.html. Specifically, if the outcome vari-
able is y, then the formula will begin with y | mi() ~ ... instead of simply y ~
. ... Set to FALSE (default) to forgo this kind of imputation and discard missing
observations from the data just prior to fitting the model inside brm_model ().
See https://opensource.nibr.com/bamdd/src/@2h_mmrm.html#what-estimand-does-mmrm-addr
#nolint to understand the standard assumptions and decisions regarding MM-
RMs and missing outcomes.

check_rank TRUE to check the rank of the model matrix and throw an error if rank deficiency
is detected. FALSE to skip this check. Rank-deficient models may have non-
identifiable parameters and it is recommended to choose a full-rank mapping.

sigma A formula produced by brm_formula_sigma(). The formula is a base R for-
mula with S3 class "brms_mmrm_formula_sigma”, and it controls the parame-
terization of the residual standard deviations sigma.

correlation Character of length 1, name of the correlation structure. The correlation ma-
trix is a square T x T matrix, where T is the number of discrete time points
in the data. This matrix describes the correlations between time points in the
same patient, as modeled in the residuals. Different patients are modeled as in-
dependent. The correlation argument controls how this matrix is parameter-

https://paulbuerkner.com/brms/articles/brms_missings.html
https://paulbuerkner.com/brms/articles/brms_missings.html
https://opensource.nibr.com/bamdd/src/02h_mmrm.html#what-estimand-does-mmrm-address

38

brm_formula

ized, and the choices given by brms are listed at https://paulbuerkner.com/
brms/reference/autocor-terms.html, and the choice is ultimately encoded

in the main body of the output formula through terms like unstru() and arma(),

some of which are configurable through arguments autoregressive_order,
moving_average_order, and residual_covariance_arma_estimation of brm_formula().
Choices in brms . mmrm:

* "unstructured”: the default/recommended option, a fully parameterized
covariance matrix with a unique scalar parameter for each unique pair of
discrete time points. C.f. https://paulbuerkner.com/brms/reference/
unstr.html.

* "autoregressive_moving_average": autoregressive moving average (ARMA),
c.f. https://paulbuerkner.com/brms/reference/arma.html.

* "autoregressive": autoregressive (AR), c.f. https://paulbuerkner.
com/brms/reference/ar.html.

* "moving_average": moving average (MA), c.f. https://paulbuerkner.
com/brms/reference/ma.html.

* "compound_symmetry: compound symmetry, c.f. https://paulbuerkner.
com/brms/reference/cosy.html.

» "diagonal”: declare independent time points within patients.

autoregressive_order
Nonnegative integer, autoregressive order for the "autoregressive_moving_average”
and "autoregressive” correlation structures.
moving_average_order
Nonnegative integer, moving average order for the "autoregressive_moving_average"
and "moving_average" correlation structures.
residual_covariance_arma_estimation
TRUE or FALSE, whether to estimate ARMA effects using residual covariance
matrices. Directly supplied to the cov argument in brms for "autoregressive_moving_average”,
"autoregressive”, and "moving_average" correlation structures. C.f. https:
//paulbuerkner.com/brms/reference/arma.html.

Named arguments to specific brm_formula() methods.
intercept Logical of length 1. TRUE (default) to include an intercept, FALSE to omit.

baseline Logical of length 1. TRUE to include an additive effect for baseline response,
FALSE to omit. Default is TRUE if brm_data() previously declared a baseline
variable in the dataset. Ignored for informative prior archetypes. For informative
prior archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

baseline_subgroup
Logical of length 1.

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared baseline
and subgroup variables in the dataset. Ignored for informative prior archetypes.
For informative prior archetypes, this option should be set in functions like
brm_archetype_successive_cells() rather than in brm_formula() in order

https://paulbuerkner.com/brms/reference/autocor-terms.html
https://paulbuerkner.com/brms/reference/autocor-terms.html
https://paulbuerkner.com/brms/reference/unstr.html
https://paulbuerkner.com/brms/reference/unstr.html
https://paulbuerkner.com/brms/reference/arma.html
https://paulbuerkner.com/brms/reference/ar.html
https://paulbuerkner.com/brms/reference/ar.html
https://paulbuerkner.com/brms/reference/ma.html
https://paulbuerkner.com/brms/reference/ma.html
https://paulbuerkner.com/brms/reference/cosy.html
https://paulbuerkner.com/brms/reference/cosy.html
https://paulbuerkner.com/brms/reference/arma.html
https://paulbuerkner.com/brms/reference/arma.html

brm_formula 39

to make sure columns are appropriately centered and the underlying model ma-
trix has full rank.

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a baseline variable
in the dataset. Ignored for informative prior archetypes. For informative prior
archetypes, this option should be set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. For informative
prior archetypes, this option is set in functions like brm_archetype_successive_cells()
rather than in brm_formula() in order to make sure columns are appropriately
centered and the underlying model matrix has full rank.

group Logical of length 1. TRUE (default) to include additive effects for treatment
groups, FALSE to omit.

group_subgroup Logical of length 1. TRUE to include group-by-subgroup interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a subgroup variable in
the dataset.

group_subgroup_time
Logical of length 1. TRUE to include group-by-subgroup-by-time interaction,
FALSE to omit. Default is TRUE if brm_data() previously declared a subgroup
variable in the dataset.

group_time Logical of length 1. TRUE (default) to include group-by-time interaction, FALSE
to omit.
subgroup Logical of length 1. TRUE to include additive fixed effects for subgroup levels,

FALSE to omit. Default is TRUE if brm_data() previously declared a subgroup
variable in the dataset.

subgroup_time Logical of length 1. TRUE to include subgroup-by-time interaction, FALSE to
omit. Default is TRUE if brm_data() previously declared a subgroup variable in
the dataset.

time Logical of length 1. TRUE (default) to include a additive effect for discrete time,
FALSE to omit.

center TRUE to center the columns of the model matrix before fitting the model if
the model formula includes an intercept term controlled by brms. FALSE to
skip centering. Centering usually leads to more computationally efficient sam-
pling in the presence of an intercept, but it changes the interpretation of the
intercept parameter if included in the model (as explained in the help file of
brms: :brmsformula()). Informative prior archetypes always use center =
FALSE and use an intercept not controlled by brms.mmrm to ensure the intercept
parameter is interpretable and compatible with user-defined priors.

effect_baseline
Deprecated on 2024-01-16 (version 0.0.2.9002). Use baseline instead.

effect_group Deprecated on 2024-01-16 (version 0.0.2.9002). Use group instead.
effect_time Deprecated on 2024-01-16 (version 0.0.2.9002). Use time instead.

40 brm_formula

interaction_baseline

Deprecated on 2024-01-16 (version 0.0.2.9002). Use baseline_time instead.
interaction_group

Deprecated on 2024-01-16 (version 0.0.2.9002). Use group_time instead.

warn_ignored Set to TRUE to throw a warning if ignored arguments are specified, FALSE other-
wise.

Value

An object of class "brmsformula” returned from brms::brmsformula(). It contains the fixed
effect mapping, correlation structure, and residual variance structure.

brm_data() formulas

For a brm_data() dataset, brm_formula() builds an R formula for an MMRM based on the details
in the data and your choice of mapping. Customize your mapping by toggling on or off the various
TRUE/FALSE arguments of brm_formula(), such as intercept, baseline, and group_time. All
plausible additive effects, two-way interactions, and three-way interactions can be specified. The
following interactions are not supported:

* Any interactions with the concomitant covariates you specified in the covariates argument
of brm_data().

* Any interactions which include baseline response and treatment group together. Rationale:
in a randomized controlled experiment, baseline and treatment group assignment should be
uncorrelated.

Formulas for informative prior archetypes

Functions like brm_archetype_successive_cells() tailor datasets to informative prior archetypes.

For these specialized tailored datasets, brm_formula() works differently. It still applies the vari-

ance and correlation structure of your choosing, and it still lets you choose whether to adjust for
nuisance covariates, but it no longer lets you toggle on/off individual terms in the model, such

as intercept, baseline, or group. Instead, to ensure the correct interpretation of the parameters,
brm_formula() uses the x_* and nuisance_x columns generated by brm_archetype_successive_cells(
prefix_interest ="x_", prefix_nuisance = "nuisance_").

Parameterization

For a formula on a brm_data() dataset, the formula is not the only factor that determines the fixed
effect mapping. The ordering of the categorical variables in the data, as well as the contrast option
in R, affect the construction of the model matrix. To see the model matrix that will ultimately be
used in brm_model (), run brms: :make_standata() and examine the X element of the returned list.
See the examples below for a demonstration.

See Also

Other models: brm_formula_sigma(), brm_model ()

brm_formula

Examples

set.seed(0)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time”,
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
brm_formula(data)
brm_formula(data = data, intercept = FALSE, baseline = FALSE)
formula <- brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = FALSE
)
formula
Standard deviations of residuals are distributional parameters that can
regress on variables in the data.
homogeneous <- brm_formula_sigma(data, time = FALSE)
by_group <- brm_formula_sigma(data, group = TRUE, intercept = TRUE)
homogeneous
by_group
brm_formula(data, sigma = homogeneous)
brm_formula(data, sigma = by_group)
Optional: set the contrast option, which determines the model matrix.
options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
See the fixed effect mapping you get from the data:
head(brms: :make_standata(formula = formula, data = data)$Xx)
Specify a different contrast method to use an alternative
mapping when fitting the model with brm_model():
options(
contrasts = c(unordered = "contr.treatment”, ordered = "contr.poly")
)
different model matrix than before:
head(brms: :make_standata(formula = formula, data = data)$Xx)
Formula on an informative prior archetype:
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
E
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = "biomarker3”,

42 brm_formula_sigma

levels = c("present”, "absent")
)
archetype <- brm_archetype_successive_cells(data)
formula <- brm_formula(data = archetype)
formula

brm_formula_sigma Formula for standard deviation parameters

Description

Parameterize standard deviations using a formula for the sigma argument of brm_formula().

Usage

brm_formula_sigma(
data,
check_rank = TRUE,
intercept = FALSE,
baseline = FALSE,
baseline_subgroup = FALSE,
baseline_subgroup_time = FALSE,
baseline_time = FALSE,
covariates = FALSE,
group = FALSE,
group_subgroup = FALSE,
group_subgroup_time = FALSE,
group_time = FALSE,
subgroup = FALSE,
subgroup_time = FALSE,

time = TRUE
)
Arguments

data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().

check_rank TRUE to check the rank of the model matrix for sigma and throw an error if rank
deficiency is detected. FALSE to skip this check. Rank-deficiency may cause
sigma to be non-identifiable, may prevent the MCMC from converging.

intercept Logical of length 1. TRUE (default) to include an intercept, FALSE to omit.

baseline Logical of length 1. TRUE to include an additive effect for baseline response,

FALSE to omit. If TRUE, then effect size will be omitted from the output of
brm_marginal_draws().

baseline_subgroup
Logical of length 1.

brm_formula_sigma 43

baseline_subgroup_time
Logical of length 1. TRUE to include baseline-by-subgroup-by-time interaction,
FALSE to omit. If TRUE, then effect size will be omitted from the output of
brm_marginal_draws().

baseline_time Logical of length 1. TRUE to include baseline-by-time interaction, FALSE to omit.
If TRUE, then effect size will be omitted from the output of brm_marginal_draws().

covariates Logical of length 1. TRUE (default) to include any additive covariates declared
with the covariates argument of brm_data(), FALSE to omit. If TRUE, then
effect size will be omitted from the output of brm_marginal_draws().

group Logical of length 1. TRUE (default) to include additive effects for treatment
groups, FALSE to omit.

group_subgroup Logical of length 1. TRUE to include group-by-subgroup interaction, FALSE to
omit.

group_subgroup_time
Logical of length 1. TRUE to include group-by-subgroup-by-time interaction,
FALSE to omit.

group_time Logical of length 1.

subgroup Logical of length 1. TRUE to include additive fixed effects for subgroup levels,
FALSE to omit.

subgroup_time Logical of length 1. TRUE to include subgroup-by-time interaction, FALSE to
omit.

time Logical of length 1.

Details

In brms, the standard deviations of the residuals are modeled through a parameter vector called
sigma. brms.mmrm always treats sigma as a distributional parameter (https://paulbuerkner.
com/brms/articles/brms_distreg.html). brm_formula_sigma() lets you control the parame-
terization of sigma. The output of brm_formula_sigma() serves as input to the sigma argument
of brm_formula().

The default sigma formula is sigma ~ @ + time, where time is the discrete time variable in the
data. This is the usual heterogeneous variance structure which declares one standard deviation pa-
rameter for each time point in the data. Alternatively, you could write brm_formula_sigma(data,
intercept = TRUE, time = FALSE). This will produce sigma ~ 1, which yields a single scalar vari-
ance (a structure termed "homogeneous variance").

With arguments like baseline and covariates, you can specify extremely complicated variance
structures. However, if baseline or covariates are used, then the output of brm_marginal_draws()
omit effect size due to the statistical challenges of calculating marginal means of draws of sigma
for this uncommon scenario.

Value

A base R formula with S3 class "brms_mmrm_formula_sigma”. This formula controls the pa-
rameterization of sigma, the linear-scale brms distributional parameters which represent standard
deviations.

https://paulbuerkner.com/brms/articles/brms_distreg.html
https://paulbuerkner.com/brms/articles/brms_distreg.html

44 brm_marginal_data

See Also

Other models: brm_formula(), brm_model ()

Examples

set.seed(0)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
homogeneous <- brm_formula_sigma(data, time = FALSE, intercept = TRUE)
by_group <- brm_formula_sigma(data, group = TRUE, intercept = TRUE)
homogeneous
by_group
brm_formula(data, sigma = homogeneous)
brm_formula(data, sigma = by_group)

brm_marginal_data Marginal summaries of the data.

Description

Marginal summaries of the data.

Usage
brm_marginal_data(
data,
level = 0.95,
use_subgroup = !is.null(attr(data, "brm_subgroup”))
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
level Numeric of length 1 from O to 1, level of the confidence intervals.

use_subgroup Logical of length 1, whether to summarize the data by each subgroup level.

brm_marginal_data 45

Value

A tibble with one row per summary statistic and the following columns:

* group: treatment group.

* subgroup: subgroup level. Only included if the subgroup argument of brm_marginal_data()
is TRUE.

* time: discrete time point.
* statistic: type of summary statistic.

* value: numeric value of the estimate.
The statistic column has the following possible values:

* mean: observed mean response after removing missing values.
* median: observed median response after removing missing values.
* sd: observed standard deviation of the response after removing missing values.

* lower: lower bound of a normal equal-tailed confidence interval with confidence level deter-
mined by the level argument.

* upper: upper bound of a normal equal-tailed confidence interval with confidence level deter-
mined by the level argument.

* n_observe: number of non-missing values in the response.

* n_total: number of total records in the data for the given group/time combination, including
both observed and missing values.

See Also

Other marginals: brm_marginal_draws(), brm_marginal_draws_average(), brm_marginal_grid(),
brm_marginal_probabilities(), brm_marginal_summaries()

Examples

set.seed(0L)

data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time”,
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"

)

brm_marginal_data(data = data)

46

brm_marginal_draws

brm_marginal_draws MCMC draws from the marginal posterior of an MMRM

Description

Get marginal posterior draws from a fitted MMRM.

Usage
brm_marginal_draws(
model,
data = model$brms.mmrm_data,
formula = model$brms.mmrm_formula,
transform = brms.mmrm: :brm_transform_marginal(data = data, formula = formula,
average_within_subgroup = average_within_subgroup),
effect_size = attr(formula, "brm_allow_effect_size"),
average_within_subgroup = NULL,
use_subgroup = NULL,
control = NULL,
baseline = NULL
)
Arguments
model A fitted model object from brm_model ().
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
formula An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().
Should include the full mapping of the model, including fixed effects, resid-
ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.
transform Matrix with one row per marginal mean and one column per model parame-

effect_size

average_wit

ter. brm_marginal_draws() uses this matrix to map posterior draws of model
parameters to posterior draws of marginal means using matrix multiplication.
Please use brm_transform_marginal() to compute this matrix and then mod-
ify only if necessary. See the methods vignettes for details on this matrix, as
well as how brms.mmrm computes marginal means more generally.

Logical, TRUE to derive posterior samples of effect size (treatment effect divided
by residual standard deviation). FALSE to omit. brms.mmrm does not support ef-
fect size when baseline or covariates are included in the brm_formula_sigma()
formula. If effect_size is TRUE in this case, then brm_marginal_draws()
will automatically omit effect size and throw an informative warning.
hin_subgroup
TRUE, FALSE, or NULL to control whether nuisance parameters are averaged within
subgroup levels in brm_transform_marginal (). Ignored if the transform ar-
gument is manually supplied by the user. See the help page of brm_transform_marginal()
for details on the average_within_subgroup argument.

brm_marginal_draws 47

use_subgroup Deprecated. No longer used. brm_marginal_draws() no longer marginalizes
over the subgroup declared in brm_data(). To marginalize over the subgroup,
declare that variable in covariates instead.

control Deprecated. Set the control group level in brm_data().
baseline Deprecated. Set the control group level in brm_data().
Value

A named list of tibbles of MCMC draws of the marginal posterior distribution of each treatment
group and time point. These marginals are also subgroup-specific if brm_formula() included fixed
effects that use the subgroup variable originally declared in brm_data(). In each tibble, there
is 1 row per posterior sample and one column for each type of marginal distribution (i.e. each
combination of treatment group and discrete time point. The specific tibbles in the returned list
are described below:

* response: on the scale of the response variable.

» difference_time: change from baseline: the response at a particular time minus the response
at baseline (reference_time). Only returned if the reference_time argument of brm_data()
was not NULL (i.e. if a baseline value for the time variable was identified).

» difference_group: treatment effect: These samples depend on the values of reference_group
and reference_time which were originally declared in brm_data(). reference_group is
the control group, and reference_time is baseline. If baseline was originally given (via
reference_time in brm_data()), then difference_time is the change-from-baseline value
of each active group minus that of the control group. Otherwise, if baseline is omitted (i.e.
reference_time = NULL (default) in brm_data()), then difference_time is the raw re-
sponse at each active group minus that of the control group.

» difference_subgroup: subgroup differences: the difference_group at each subgroup level
minus the difference_group at the subgroup reference level (reference_subgroup). Only
reported if a subgroup analysis was specified through the appropriate arguments to brm_data()
and brm_formula().

» effect: effect size, defined as the treatment difference divided by the residual standard devia-
tion. Omitted if the effect_size argument is FALSE or if the brm_formula_sigma() includes
baseline or covariates.

* sigma: posterior draws of linear-scale marginal standard deviations of residuals. Omitted if
the effect_size argument is FALSE or if the brm_formula_sigma() includes baseline or
covariates.

Baseline

The returned values from brm_marginal_draws() depend on whether a baseline time point was de-
clared through the reference_time argument of brm_data(). If reference_time was not NULL,
then brm_marginal_draws() will calculate change from baseline, and it will calculate treatment
differences as differences between change-from-baseline values. If reference_time was not NULL,
then brm_marginal_draws() will not calculate change from baseline, and it will calculate treat-
ment differences as differences between response values.

48 brm_marginal_draws_average

Separation string

Post-processing in brm_marginal_draws () names each of the group-by-time marginal means with
the delimiting character string from Sys.getenv("BRM_SEP", unset = "|"). Neither the column
names nor element names of the group and time variables can contain this string. To set a custom
string yourself, use Sys.setenv(BRM_SEP = "YOUR_CUSTOM_STRING").

See Also

Other marginals: brm_marginal_data(), brm_marginal_draws_average(), brm_marginal_grid(),
brm_marginal_probabilities(), brm_marginal_summaries()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES"”, unset = ""), "true")) {
set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time”,
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE

)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,
formula = formula,
chains =1,
iter = 100,
refresh = @
)
)
)
)
brm_marginal_draws(data = data, formula = formula, model = model)
3

brm_marginal_draws_average
Average marginal MCMC draws across time points.

brm_marginal_draws_average 49

Description

Simple un-weighted arithmetic mean of marginal MCMC draws across time points.

Usage
brm_marginal_draws_average(draws, data, times = NULL, label = "average")
Arguments
draws List of posterior draws from brm_marginal_draws().
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
times Character vector of discrete time point levels over which to average the MCMC
samples within treatment group levels. Set to NULL to average across all time
points. Levels are automatically sanitized with make.names(unique = FALSE,
allow_ = TRUE) to ensure agreement with brms variable names in downstream
computations.
label Character of length 1, time point label for the averages. Automatically san-
itized with make.names(unique = FALSE, allow_ = TRUE). Must not conflict
with any existing time point labels in the data after the label and time points are
sanitized.
Value

A named list of tibbles of MCMC draws of the marginal posterior distribution of each treatment
group and time point (or group-by-subgroup-by-time, if applicable). See brm_marginal_draws()
for the full details of the return value. The only difference is that brm_marginal_draws_average()
returns a single pseudo-time-point to represent the average across multiple real time points.

Separation string

Post-processing in brm_marginal_draws () names each of the group-by-time marginal means with
the delimiting character string from Sys.getenv("BRM_SEP", unset = "|"). Neither the column
names nor element names of the group and time variables can contain this string. To set a custom
string yourself, use Sys.setenv(BRM_SEP = "YOUR_CUSTOM_STRING").

See Also

Other marginals: brm_marginal_data(), brm_marginal_draws(), brm_marginal_grid(), brm_marginal_probabilitie
brm_marginal_summaries()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_data(

data = brm_simulate_simple()$data,

outcome = "response”,

group = "group”,

50

time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,
formula = formula,
chains = 1,
iter = 100,
refresh = @
)
)
)
)
draws <- brm_marginal_draws(data
brm_marginal_draws_average(draws
brm_marginal_draws_average(
draws = draws,

data = data,
times = c("time_1", "time_2"),
label = "mean”

)

3

brm_marginal_grid

data, formula = formula, model = model)

draws, data = data)

brm_marginal_grid

Marginal names grid.

Description

Describe the column names of the data frames output by brm_marginal_draws().

Usage

brm_marginal_grid(data, formula)

Arguments

data A classed data frame from brm_data(), or an informative prior archetype from

a function like brm_archetype_successive_cells().

brm_marginal_probabilities 51

formula An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().
Should include the full mapping of the model, including fixed effects, resid-
ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.

Details

Useful for creating custom posterior summaries from the draws.

Value

A data frame with a name column with the names of columns of data frames in brm_marginal_draws(),
along with metadata to describe which groups, subgroups, and time points those columns corre-
spond to.

See Also

Other marginals: brm_marginal_data(), brm_marginal_draws(), brm_marginal_draws_average(),
brm_marginal_probabilities(), brm_marginal_summaries()

Examples

data <- brm_simulate_outline()
brm_marginal_grid(data, brm_formula(data))
data <- brm_simulate_outline(n_subgroup = 2L)
brm_marginal_grid(data, brm_formula(data))

brm_marginal_probabilities
Marginal probabilities on the treatment effect for an MMRM.

Description

Marginal probabilities on the treatment effect for an MMRM.

Usage
brm_marginal_probabilities(draws, direction = "greater”, threshold = @)
Arguments
draws Posterior draws of the marginal posterior obtained from brm_marginal_draws().
direction Character vector of the same length as threshold. "greater” to compute the

marginal posterior probability that the treatment effect is greater than the thresh-
old, "less"” to compute the marginal posterior probability that the treatment
effect is less than the threshold. Each element direction[i] corresponds to
threshold[i] for all i from 1 to length(direction).

threshold Numeric vector of the same length as direction, treatment effect threshold for
computing posterior probabilities. Each element direction[i] corresponds to
threshold[i] for all i from 1 to length(direction).

52 brm_marginal_probabilities

Value

A tibble of probabilities of the form Prob(treatment effect > threshold | data) and/or
Prob(treatment effect < threshold | data). It has one row per probability and the following
columns: * group: treatment group. * subgroup: subgroup level, if applicable. * time: discrete
time point, * direction: direction of the comparison in the marginal probability: "greater” for
>, "less" for < * threshold: treatment effect threshold in the probability statement. * value:
numeric value of the estimate of the probability.

See Also

Other marginals: brm_marginal_data(),brm_marginal_draws(), brm_marginal_draws_average(),
brm_marginal_grid(), brm_marginal_summaries()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,
formula = formula,
chains = 1,
iter = 100,
refresh = @
)
)
)
)
draws <- brm_marginal_draws(data = data, formula = formula, model = model)
brm_marginal_probabilities(draws, direction = "greater”, threshold = 0)

}

brm_marginal_summaries 53

brm_marginal_summaries
Summary statistics of the marginal posterior of an MMRM.

Description

Summary statistics of the marginal posterior of an MMRM.

Usage

brm_marginal_summaries(draws, level = 0.95)

Arguments
draws Posterior draws of the marginal posterior obtained from brm_marginal_draws().
level Numeric of length 1 between 0 and 1, credible level for the credible intervals.
Value

A tibble with one row per summary statistic and the following columns:

* marginal: type of marginal distribution. If outcome was "response” in brm_marginal_draws(),
then possible values include "response” for the response on the raw scale, "change” for
change from baseline, and "difference” for treatment difference in terms of change from
baseline. If outcome was "change”, then possible values include "response” for the re-
sponse one the change from baseline scale and "difference” for treatment difference.

e statistic: type of summary statistic. "lower"” and "upper” are bounds of an equal-tailed
quantile-based credible interval.

* group: treatment group.

* subgroup: subgroup level, if applicable.
* time: discrete time point.

* value: numeric value of the estimate.

» mcse: Monte Carlo standard error of the estimate. The statistic column has the following
possible values:

* mean: posterior mean.
* median: posterior median.
* sd: posterior standard deviation of the mean.

* lower: lower bound of an equal-tailed credible interval of the mean, with credible level deter-
mined by the level argument.

* upper: upper bound of an equal-tailed credible interval with credible level determined by the
level argument.

54 brm_model

See Also

Other marginals: brm_marginal_data(), brm_marginal_draws(), brm_marginal_draws_average(),
brm_marginal_grid(), brm_marginal_probabilities()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time”,
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,
formula = formula,
chains = 1,
iter = 100,
refresh = @
)
)
)
)
draws <- brm_marginal_draws(data = data, formula = formula, model = model)
suppressWarnings(brm_marginal_summaries(draws))

}

brm_model Fit an MMRM.

Description

Fit an MMRM model using brms.

brm_model 55

Usage
brm_model (
data,
formula,
prior = NULL,
family = brms::brmsfamily(family = "gaussian”),
imputed = NULL
)
Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells(). Unless you supplied
model_missing_outcomes = TRUE in brm_formula(), brm_model () automati-
cally rows with missing outcomes just prior to fitting the model with brms: :brm().
The brms.mmrm_data attribute in the output object is always the version of the
data prior to removing these rows. See the data element of the returned brms
object for the final data actually supplied to the model.
If you supply a non-NULL value for the imputed argument, then the data argu-
ment is ignored and the MMRM is fit successively to each dataset in imputed
using brms: :brm_multiple(). Posterior draws are combined automatically for
downstream post-processing unless you set combine = FALSE in brm_model ().
formula An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().
Should include the full mapping of the model, including fixed effects, resid-
ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.
Arguments to brms: :brm() orbrms: :brm_multiple() other than data, formula,
prior, and family.
prior Either NULL for default priors or a "brmsprior” object from brms: :prior().
family A brms family object generated by brms: :brmsfamily (). Must fit a continuous
outcome variable and have the identity link.
imputed Either NULL (default), list of datasets generated with multiple imputation, or a

"mids" object from the mice package. The rbmi package may offer a more ap-
propriate method for imputation for MMRMs than mice. It is your responsibility
to choose an imputation method appropriate for the data and model.

If not NULL, then the MMRM is fit successively to each dataset in imputed
using brms: :brm_multiple(). Posterior draws are combined automatically for
downstream post-processing unless you set combine = FALSE in brm_model (),
so everything at the level of brm_marginal_draws() will be exactly the same
as a non-imputation workflow.

Even if you supply imputed, please also supply the original non-imputed dataset
in the data argument to help with downstream post-processing.

56 brm_model

Value

A fitted model object from brms, with new list elements brms.mmrm_data and brms.mmrm_formula
to capture the data and formula supplied to brm_model (). See the explanation of the data argument
for how the data is handled and how it relates to the data returned in the brms.mmrm_data attribute.

Parameterization

For a formula on a brm_data() dataset, the formula is not the only factor that determines the fixed
effect mapping. The ordering of the categorical variables in the data, as well as the contrast option
in R, affect the construction of the model matrix. To see the model matrix that will ultimately be
used in brm_model (), run brms: :make_standata() and examine the X element of the returned list.
See the examples below for a demonstration.

See Also

Other models: brm_formula(), brm_formula_sigma()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE

)
Optional: set the contrast option, which determines the model matrix.
options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))

See the fixed effect mapping you get from the data:
head(brms: :make_standata(formula = formula, data = data)$x)
Specify a different contrast method to use an alternative
mapping when fitting the model with brm_model():
options(

contrasts = c(unordered = "contr.treatment”, ordered = "contr.poly")
)
different model matrix than before:
head(brms: :make_standata(formula = formula, data = data)$X)
tmp <- utils::capture.output(

suppressMessages(

suppressWarnings(
model <- brm_model(
data = data,

brm_plot_compare 57

formula = formula,

chains = 1,
iter = 100,
refresh = @
)
)

)
)
The output is a brms model fit object with added list
elements "brms.mmrm_data” and "brms.mmrm_formula” to track the dataset
and formula used to fit the model.
model$brms.mmrm_data
model$brms.mmrm_formula
Otherwise, the fitted model object acts exactly like a brms fitted model.
suppressWarnings(print(model))
brms: :prior_summary(model)

}

brm_plot_compare Visually compare the marginals of multiple models and/or datasets.

Description

Visually compare the marginals of multiple models and/or datasets.

Usage

brm_plot_compare(

L

marginal = "response”,
compare = "source",
axis = "time",
facet = c("group”, "subgroup”)
)
Arguments
Named tibbles of marginals posterior summaries from brm_marginal_summaries()
and/or brm_marginal_data().
marginal Character of length 1, which kind of marginal to visualize. Must be a value in the
marginal column of the supplied tibblesin the ... argument. Only applies to
MCMC output, the data is always on the scale of the response variable.
compare Character of length 1 identifying the variable to display using back-to-back in-

terval plots of different colors. This is the primary comparison of interest. Must

be one of "source” (the source of the marginal summaries, e.g. a model or

dataset), "time" or "group” (in the non-subgroup case). Can also be "subgroup”
if all the marginal summaries are subgroup-specific. The value must not be in

axis or facet.

58 brm_plot_compare

axis Character of length 1 identifying the quantity to put on the horizontal axis. Must
be be one of "source” (the source of the marginal summaries, e.g. a model or
dataset), "time"”, or "group” (in the non-subgroup case). If the marginals are
subgroup-specific, then axis can also be "subgroup”. The value must not be in
compare or facet.

facet Character vector of length 1 or 2 with quantities to generate facets. Each ele-
ment must be "source” (the source of the marginal summaries, e.g. a model or
dataset), "time", "group”, or "subgroup”, and c(axis, facet) must all have
unique elements. "subgroup” is automatically removed if not all the marginal
summaries have a subgroup column. If facet has length 1, then faceting is
wrapped. If facet has length 2, then faceting is in a grid, and the first element

is horizontal facet.

Details

By default, brm_plot_compare() compares multiple models and/or datasets side-by-side. The
compare argument selects the primary comparison of interest, and arguments axis and facet con-
trol the arrangement of various other components of the plot. The subgroup variable is automatically
included if and only if all the supplied marginal summaries have a subgroup column.

Value

A ggplot object.

See Also

Other visualization: brm_plot_draws()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,

brm_plot_draws 59

formula = formula,

chains = 1,

iter = 100,

refresh = @
)

)

)
)
draws <- brm_marginal_draws(data = data, formula = formula, model = model)
suppressWarnings(summaries_draws <- brm_marginal_summaries(draws))
summaries_data <- brm_marginal_data(data)
brm_plot_compare(

modell = summaries_draws,

model2 = summaries_draws,

data = summaries_data
)
brm_plot_compare(

modell = summaries_draws,

model2 = summaries_draws,

marginal = "difference”
)
3
brm_plot_draws Visualize posterior draws of marginals.
Description

Visualize posterior draws of marginals.

Usage
brm_plot_draws(draws, axis = "time", facet = c("group”, "subgroup”))
Arguments
draws A data frame of draws from an element of the output list of brm_marginal_summaries().
axis Character of length 1 identifying the quantity to put on the horizontal axis. Must
be be one of "time"” or "group” if the marginal summaries are not subgroup-
specific. If the marginals are subgroup-specific, then axis must be one of
"time", "group”, or "subgroup”.
facet Character vector of length 1 or 2 with quantities to generate facets. Each element

must be "time"”, "group”, or "subgroup”, and c(axis, facet) must all have
unique elements. "subgroup” is automatically removed if the marginals have
no subgroup. If facet has length 1, then faceting is wrapped. If facet has
length 2, then faceting is in a grid, and the first element is horizontal facet.

60

Value

A ggplot object.

See Also

Other visualization: brm_plot_compare()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""),

set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
model <- brm_model(
data = data,
formula = formula,
chains = 1,
iter = 100,
refresh = @
)
)
)
)
draws <- brm_marginal_draws(data = data, formula
brm_plot_draws(draws = draws$difference_time)

3

"true")) {

brm_prior_archetype

formula, model = model)

brm_prior_archetype

Informative priors for fixed effects in archetypes

Description

Create a brms prior for fixed effects in an archetype.

brm_prior_archetype 61

Usage

brm_prior_archetype(label, archetype)

Arguments
label A data frame with one row per model parameter in the archetype and columns to
indicate the mapping between priors and labels. Generate using brm_prior_label()
or manually. See the examples and the informative prior archetypes vignette for
details.
archetype An informative prior archetype generated by a function like brm_archetype_successive_cells().
Value

A brms prior object that you can supply to the prior argument of brm_model ().

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other priors: brm_prior_label(), brm_prior_simple(), brm_prior_template()

Examples

set.seed(0L)

data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0

) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),

levels = c("present”, "absent"”)

62

)

archetype <- brm_

brm_prior_label

archetype_successive_cells(data)

dplyr::distinct(data, group, time)

prior <- NULL |>

brm_prior_label("normal(1, 1)", group = "group_1", time = "time_1") |>
brm_prior_label("normal(1, 2)", group = "group_1", time = "time_2") |>
brm_prior_label("normal(1, 3)", group = "group_1", time = "time_3") [|>
brm_prior_label(”"normal(2, 1)", group = "group_2", time = "time_1") |>
brm_prior_label("normal(2, 2)", group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, 3)", group = "group_2", time = "time_3") |>

brm_prior_archetype(archetype = archetype)

prior
class(prior)

brm_prior_label

Label a prior with levels in the data.

Description

Label an informative prior for a parameter using a collection of levels in the data.

Usage

brm_prior_label(label = NULL, code, group, subgroup = NULL, time)

Arguments

label

code

group

subgroup

time

A tibble with the prior labeling scheme so far, with one row per model pa-
rameter and columns for the Stan code, treatment group, subgroup, and discrete
time point of each parameter.

Character of length 1, Stan code for the prior. Could be a string like "normal (1,
2.2)". The full set of priors is given in the Stan Function Reference at https://
mc-stan.org/docs/functions-reference/ in the "Unbounded Continuous
Distributions" section. See the documentation brms: :set_prior() for more
details.

Value of length 1, level of the treatment group column in the data to label the
prior. The treatment group column is the one you identified with the group
argument of brm_data().

Value of length 1, level of the subgroup column in the data to label the prior.
The subgroup column is the one you identified with the subgroup argument of
brm_data(), if applicable. Not every dataset has a subgroup variable. If yours
does not, please either ignore this argument or set it to NULL.

Value of length 1, level of the discrete time column in the data to label the prior.
The discrete time column is the one you identified with the time argument of
brm_data().

https://mc-stan.org/docs/functions-reference/
https://mc-stan.org/docs/functions-reference/

brm_prior_label 63

Value

A tibble with one row per model parameter and columns for the Stan code, treatment group,
subgroup, and discrete time point of each parameter. You can supply this tibble to the label
argument of brm_prior_archetype().

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior (). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other priors: brm_prior_archetype(), brm_prior_simple(), brm_prior_template()

Examples

set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,
rate_dropout
rate_lapse =
) 1>
dplyr::mutate(response = rnorm(n = dplyr::n())) [|>
brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent”)
)
archetype <- brm_archetype_successive_cells(data)
dplyr::distinct(data, group, time)
label <- NULL |>
brm_prior_label("normal(1, 1)", group = "group_1", time = "time_1")
brm_prior_label("normal(1, 2)", group = "group_1", time = "time_2") |>
brm_prior_label(”"normal(1, 3)", group = "group_1", time = "time_3") |>
brm_prior_label("normal(2, 1)", group = "group_2", time = "time_1") |>
)
)

:@7
0

|>

brm_prior_label("normal(2, 2)", group = "group_2", time = "time_2") |>
brm_prior_label("normal(2, 3)", group = "group_2", time = "time_3
label

64

brm_prior_simple

brm_prior_simple

Simple prior for a brms MMRM

Description

Generate a simple prior for a brms MMRM.

Usage

brm_prior_simple(

data,
formula,

intercept = "student_t(3, @, 2.5)",
coefficients = "student_t(3, @, 2.5)",
sigma = "student_t(3, 0, 2.5)",

unstructured

= "k,

nn

autoregressive ,

nn

moving_average = ,
compound_symmetry = ,

correlation =

Arguments

data

formula

intercept

coefficients

sigma

unstructured

autoregressive

nn

NULL

A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().

An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().
Should include the full mapping of the model, including fixed effects, resid-

ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.

Character of length 1, Stan code for the prior to set on the intercept parameter.

Character of length 1, Stan code for the prior to set independently on each of the
non-intercept model coefficients.

Character of length 1, Stan code for the prior to set independently on each of the
log-scale standard deviation parameters. Should be a symmetric prior in most
situations.

Character of length 1, Stan code for an unstructured correlation prior. Supply the
empty string "" to set a flat prior (default). Applies to the "cortime parameter
class in brms priors. Used for formulas created with brm_formula(correlation
="unstructured"”). LKJ is recommended. See also brms: :unstr().

Character of length 1, Stan code for a prior on autoregressive correlation pa-
rameters. Supply the empty string "" to set a flat prior (default). Applies

to the "ar parameter class in brms priors. Used for formulas created with
brm_formula(correlation = "autoregressive") and brm_formula(correlation
= "autoregressive_moving_average"). See alsobrms::ar() andbrms: :arma().

brm_prior_simple 65

moving_average Character of length 1, Stan code for a prior on moving average correlation pa-
rameters. Supply the empty string "" to set a flat prior (default). Applies
to the "ma parameter class in brms priors. Used for formulas created with
brm_formula(correlation = "moving_average") and brm_formula(correlation
= "autoregressive_moving_average"). See alsobrms: :ma() and brms: :arma().
compound_symmetry
Character of length 1, Stan code for a prior on compound symmetry correlation
parameters. Supply the empty string "" to set a flat prior (default). Applies
to the "cosy parameter class in brms priors. Used for formulas created with
brm_formula(correlation = "compound_symmetry"”). See also brms: :cosy().

correlation Deprecated on 2024-04-22 (version 0.1.0.9004). Please use arguments like "unstructured”,
and/or "autoregressive” to supply correlation-specific priors.

Details

In brm_prior_simple(), you can separately choose priors for the intercept, model coefficients,
log-scale standard deviations, and pairwise correlations between time points within patients. How-
ever, each class of parameters is set as a whole. In other words, brm_prior_simple() cannot assign
different priors to different fixed effect parameters.

Value

A classed data frame with the brms prior.

See Also

Other priors: brm_prior_archetype(), brm_prior_label(), brm_prior_template()

Examples

set.seed(0L)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age", "biomarker"))
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE,
check_rank = FALSE
)
brm_prior_simple(
data = data,
formula = formula,
intercept = "student_t(3, @, 2.5)",
coefficients = "normal(0, 10)",
sigma = "student_t(2, 0, 4)",
unstructured = "1kj(2.5)"

66 brm_prior_template

brm_prior_template Label template for informative prior archetypes

Description

Template for the 1abel argument of brm_prior_archetype().

Usage

brm_prior_template(archetype)

Arguments

archetype An informative prior archetype generated by a function like brm_archetype_successive_cells().

Details

The label argument of brm_prior_archetype() is a tibble which maps Stan code for univariate
priors to fixed effect parameters in the model. Usually this tibble is built gradually using multiple
calls to brm_prior_label(), but occasionally it is more convenient to begin with a full template
and manually write Stan code in the code column. brm_prior_template() creates this template.

Value

A tibble with one row per fixed effect parameter and columns to map Stan code to each parameter.
After manually writing Stan code in the code column of the template, you can supply the result to
the label argument of brm_prior_archetype() to build a brms prior for your model.

Prior labeling

Informative prior archetypes use a labeling scheme to assign priors to fixed effects. How it works:

1. First, assign the prior of each parameter a collection
of labels from the data. This can be done manually or with
successive calls to [brm_prior_label()].

2. Supply the labeling scheme to [brm_prior_archetype()].
[brm_prior_archetype()] uses attributes of the archetype
to map labeled priors to their rightful parameters in the model.

For informative prior archetypes, this process is much more convenient and robust than manually
calling brms: :set_prior(). However, it requires an understanding of how the labels of the priors
map to parameters in the model. This mapping varies from archetype to archetype, and it is docu-
mented in the help pages of archetype-specific functions such as brm_archetype_successive_cells().

See Also

Other priors: brm_prior_archetype(), brm_prior_label(), brm_prior_simple()

brm_recenter_nuisance 67

Examples

set.seed(QL)

data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,

rate_dropout = 0,
rate_lapse = 0
ES
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>
brm_simulate_categorical(
names = c("status1”, "status2"),
levels = c("present”, "absent")
)

archetype <- brm_archetype_successive_cells(data)
label <- brm_prior_template(archetype)
label$code <- c(
"normal(1, 1)",
"normal(1, 2)",
"normal(1, 3)",
"normal(2, 1)",
"normal(2, 2)",
"normal(2, 3)"
)
brm_prior_archetype(label = label, archetype = archetype)

brm_recenter_nuisance Recenter nuisance variables

Description

Change the center of a nuisance variable of an informative prior archetype.

Usage

brm_recenter_nuisance(data, nuisance, center)

Arguments
data An informative prior archetype data frame output from brm_archetype_cells()
or similar.
nuisance Character of length 1, name of the nuisance column in the data to shift the center.
center Numeric of length 1, value of the center to shift the column in nuisance. The

affected column in the returned archetype data frame will look as if it were
centered by this value to begin with.

68 brm_simulate_categorical

Details

By "centering vector y at scalar x", we mean taking the difference z=y - x. If x is the mean,
then mean(z) is 0. Informative prior archetypes center nuisance variables at their means so the
parameters can be interpreted correctly for setting informative priors. This is appropriate most of
the time, but sometimes it is better to center a column at a pre-specified scientifically meaningful
fixed number. If you want a nuisance column to be centered at a fixed value other than its mean, use
brm_recenter_nuisance() to shift the center. This function can handle any nuisance variable

Value

An informative prior archetype data frame with one of the variables re-centered.

Examples

set.seed(0L)
data <- brm_simulate_outline(

n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0

) 1>

dplyr::mutate(response = rnorm(n = dplyr::n())) |>

brm_data_change() |>

brm_simulate_continuous(names = c("biomarker1”, "biomarker2")) |>

brm_simulate_categorical(

names = c("status1”, "status2"),
levels = c("present”, "absent")

)
archetype <- brm_archetype_cells(data)
mean(archetype$nuisance_biomarker1) # after original centering
center <- mean(data$biomarker?)
center # original center, before the centering from brm_archetype_cells()
attr(archetype$nuisance_biomarker1, "brm_center”) # original center
max (abs((datasbiomarker1 - center) - archetype$nuisance_biomarker1))
Re-center nuisance_biomarker1 at 0.75.
archetype <- brm_recenter_nuisance(

data = archetype,

nuisance = "nuisance_biomarker1”,

center = 0.75
)
attr(archetype$nuisance_biomarker1, "brm_center") # new center
mean(archetype$nuisance_biomarker1) # no longer equal to the center
nuisance_biomarker1 is now as though we centered it at 0.75.
max(abs((datasbiomarker1 - 0.75) - archetype$nuisance_biomarker1))

brm_simulate_categorical
Append simulated categorical covariates

brm_simulate_categorical 69

Description

Simulate and append non-time-varying categorical covariates to an existing brm_data() dataset.

Usage

brm_simulate_categorical(data, names, levels, probabilities = NULL)

Arguments
data Classed tibble as from brm_data() or brm_simulate_outline().
names Character vector with the names of the new covariates to simulate and append.
Names must all be unique and must not already be column names of data.
levels Character vector of unique levels of the simulated categorical covariates.

probabilities Either NULL or a numeric vector of length length(levels) with levels between
0 and 1 where all elements sum to 1. If NULL, then all levels are equally likely to
be drawn. If not NULL, then probabilities is a vector of sampling probabilities
corresponding to each respective level of levels.

Details

Each covariate is a new column of the dataset with one independent random categorical draw for
each patient, using a fixed set of levels (via base: : sample() with replace = TRUE). All covariates
simulated this way are independent of everything else in the data, including other covariates (to the
extent that the random number generators in R work as intended).

Value

A classed tibble, like from brm_data() or brm_simulate_outline(), but with new categorical
covariate columns and with the names of the new covariates appended to the brm_covariates
attribute. Each new categorical covariate column is a character vector, not the factor type in base R.

See Also
Other simulation: brm_simulate_continuous(), brm_simulate_outline(), brm_simulate_prior(),
brm_simulate_simple()

Examples

data <- brm_simulate_outline()
brm_simulate_categorical(

data = data,
names = c("site”, "region"),
levels = c("areal”, "area2")
)
brm_simulate_categorical(
data = data,
names = c("site"”, "region"),
levels = c("areal”, "area2"),

probabilities = c(0.1, 0.9)
)

70 brm_simulate_continuous

brm_simulate_continuous
Append simulated continuous covariates

Description

Simulate and append non-time-varying continuous covariates to an existing brm_data() dataset.

Usage

brm_simulate_continuous(data, names, mean = @, sd = 1)

Arguments
data Classed tibble as from brm_data() or brm_simulate_outline().
names Character vector with the names of the new covariates to simulate and append.
Names must all be unique and must not already be column names of data.
mean Numeric of length 1, mean of the normal distribution for simulating each co-
variate.
sd Positive numeric of length 1, standard deviation of the normal distribution for
simulating each covariate.
Details

Each covariate is a new column of the dataset with one independent random univariate normal draw
for each patient. All covariates simulated this way are independent of everything else in the data,
including other covariates (to the extent that the random number generators in R work as intended).

Value

A classed tibble, like from brm_data() or brm_simulate_outline(), but with new numeric
covariate columns and with the names of the new covariates appended to the brm_covariates
attribute.

See Also

Other simulation: brm_simulate_categorical (), brm_simulate_outline(),brm_simulate_prior(),
brm_simulate_simple()

Examples

data <- brm_simulate_outline()
brm_simulate_continuous(

data = data,

names = c("age", "biomarker")
)

brm_simulate_continuous(

brm_simulate_outline

71

data = data,
names = c("biomarker1”, "biomarker2"),
mean = 1000,
sd = 100
)

brm_simulate_outline

Start a simulated dataset

Description

Begin creating a simulated dataset.

Usage

brm_simulate_outline(

n_group = 2L,

n_subgroup = NULL,

n_patient =
n_time = 4L,
rate_dropout
rate_lapse =

Arguments

n_group

n_subgroup

n_patient

n_time

rate_dropout

rate_lapse

=0
0.05

100L,

.,

Positive integer of length 1, number of treatment groups.

Positive integer of length 1, number of subgroup levels. Set to NULL to omit the
subgroup entirely.

Positive integer of length 1. If n_subgroup is NULL, then n_patient is the
number of patients per treatment group. Otherwise, n_patient is the number
of patients per treatment group per subgroup. In both cases, the total num-
ber of patients in the whole simulated dataset is usually much greater than the
n_patients argument of brm_simulate_outline().

Positive integer of length 1, number of discrete time points (e.g. scheduled study
visits) per patient.

Numeric of length 1 between O and 1, post-baseline dropout rate. A dropout
is an intercurrent event when data collection for a patient stops permanently,
causing the outcomes for that patient to be missing during and after the dropout
occurred. The first time point is assumed to be baseline, so dropout is there.
Dropouts are equally likely to occur at each of the post-baseline time points.

Numeric of length 1, expected proportion of post-baseline outcomes that are
missing. Missing outcomes of this type are independent and uniformly dis-
tributed across the data.

72 brm_simulate_prior

Value

A classed data frame from brm_data(). The data frame has one row per patient per time point and
the following columns:

* group: integer index of the treatment group.
* patient: integer index of the patient.

* time: integer index of the discrete time point.

See Also

Other simulation: brm_simulate_categorical (), brm_simulate_continuous(), brm_simulate_prior(),
brm_simulate_simple()

Examples

brm_simulate_outline()

brm_simulate_prior Prior predictive draws.

Description

Simulate the outcome variable from the prior predictive distribution of an MMRM using brms.

Usage

brm_simulate_prior(
data,
formula,
prior = brms.mmrm::brm_prior_simple(data = data, formula = formula),

)
Arguments

data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().

formula An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().
Should include the full mapping of the model, including fixed effects, resid-
ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.

prior A valid brms prior object with proper priors for parameters b (model coeffi-

cients), b_sigma (log residual standard deviations for each time point), and
cortime (residual correlations among time points within patients). See the
brm_prior_simple() function for an example.

Named arguments to specific brm_formula() methods.

brm_simulate_prior 73

Details

brm_simulate_prior() calls brms: :brm() with sample_prior = "only", which sets the default
intercept prior using the outcome variable and requires at least some elements of the outcome vari-
able to be non-missing in advance. So to provide feasible and consistent output, brm_simulate_prior()
temporarily sets the outcome variable to all zeros before invoking brms: :brm().

Value
A list with the following elements:

» data: a classed tibble with the outcome variable simulated as a draw from the prior pre-
dictive distribution (the final row of outcome in the output). If you simulated a missingness
pattern with brm_simulate_outline(), then that missingness pattern is applied so that the
appropriate values of the outcome variable are set to NA.

* model: the brms model fit object.
e model_matrix: the model matrix of the fixed effects, obtained from brms: : make_standata().

* outcome: a numeric matrix with one column per row of data and one row per saved prior
predictive draw.

* parameters: a tibble of saved parameter draws from the prior predictive distribution.

See Also

Other simulation: brm_simulate_categorical (), brm_simulate_continuous(), brm_simulate_outline(),
brm_simulate_simple()

Examples

if (identical(Sys.getenv("BRM_EXAMPLES"”, unset = ""), "true")) {
set.seed(QL)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age"”, "biomarker"))
data$response <- rnorm(nrow(data))
formula <- brm_formula(

data = data,

baseline = FALSE,

baseline_time = FALSE
)
tmp <- utils::capture.output(

suppressMessages(

suppressWarnings(
out <- brm_simulate_prior(
data = data,
formula = formula
)
)

)
)
out$data
3

74 brm_simulate_simple

brm_simulate_simple Simple MMRM simulation.

Description

Simple function to simulate a dataset from a simple specialized MMRM.

Usage

brm_simulate_simple(
n_group = 2L,
n_patient = 100L,
n_time = 4L,
hyper_beta = 1,
hyper_tau = 0.1,
hyper_lambda = 1

)
Arguments

n_group Positive integer of length 1, number of treatment groups.

n_patient Positive integer of length 1, number of patients per treatment group.

n_time Positive integer of length 1, number of discrete time points (e.g. scheduled study
visits) per patient.

hyper_beta Positive numeric of length 1, hyperparameter. Prior standard deviation of the
fixed effect parameters beta.

hyper_tau Positive numeric of length 1, hyperparameter. Prior standard deviation parame-

ter of the residual log standard deviation parameters tau

hyper_lambda Positive numeric of length 1, hyperparameter. Prior shape parameter of the LKJ
correlation matrix of the residuals among discrete time points.

Details

Refer to the methods vignette for a full model specification. The brm_simulate_simple () function
simulates a dataset from a simple pre-defined MMRM. It assumes a cell means structure for fixed
effects, which means there is one fixed effect scalar parameter (element of vector beta) for each
unique combination of levels of treatment group and discrete time point. The elements of beta
have independent univariate normal priors with mean O and standard deviation hyper_beta. The
residual log standard deviation parameters (elements of vector tau) have normal priors with mean
0 and standard deviation hyper_tau. The residual correlation matrix parameter 1ambda has an LKJ
correlation prior with shape parameter hyper_lambda.

brm_transform_marginal 75

Value

A list of three objects:

» data: A tidy dataset with one row per patient per discrete time point and columns for the
outcome and ID variables.

* model_matrix: A matrix with one row per row of data and columns that represent levels of
the covariates.

* parameters: A named list of parameter draws sampled from the prior:

— beta: numeric vector of fixed effects.
— tau: numeric vector of residual log standard parameters for each time point.

— sigma: numeric vector of residual standard parameters for each time point. sigma is
equal to exp(tau).

— lambda: correlation matrix of the residuals among the time points within each patient.

— covariance: covariance matrix of the residuals among the time points within each pa-
tient. covariance is equal to diag(sigma) %*% lambda %*% diag(sigma).

See Also

Other simulation: brm_simulate_categorical(), brm_simulate_continuous(), brm_simulate_outline(),
brm_simulate_prior()

Examples

set.seed(0L)
simulation <- brm_simulate_simple()
simulation$data

brm_transform_marginal
Marginal mean transformation

Description

Transformation from model parameters to marginal means.

Usage

brm_transform_marginal(
data,
formula,
average_within_subgroup = NULL,
prefix = "b_"

76 brm_transform_marginal

Arguments
data A classed data frame from brm_data(), or an informative prior archetype from
a function like brm_archetype_successive_cells().
formula An object of class "brmsformula” from brm_formula() orbrms: :brmsformula().

Should include the full mapping of the model, including fixed effects, resid-
ual correlation, and heterogeneity in the discrete-time-specific residual variance
components.

average_within_subgroup
TRUE to average concomitant covariates proportionally within subgroup levels,
FALSE to average these covariates across the whole dataset. If average_within_subgroup
is NULL (default), and if the model has a subgroup and nuisance variables, then
brm_transform_marginal () prints and informative message (once per session)
and sets average_within_subgroup to FALSE. If you see this message, please
read https://openpharma.github.io/brms.mmrm/articles/inference.html,
decide whether to set average_within_subgroup to TRUE or FALSE in brm_transform_marginal(),
and then manually supply the output of brm_transform_marginal() to the
transform argument of brm_marginal_draws().
To create marginal means, brms.mmrm conditions the nuisance covariates on
their averages across the whole dataset (average_within_subgroup = FALSE
or NULL in brm_transform_marginal()). This may be reasonable in some
cases, and it mitigates the kind of hidden confounding between the subgroup
and other variables which may otherwise cause Simpson’s paradox. However,
for subgroup-specific marginal means, it may not be realistic to condition on
a single point estimate for all levels of the reference grid (for example, if the
subgroup is female vs male, but all marginal means condition on a single over-
all observed pregnancy rate of 5%). In these situations, it may be appropri-
ate to instead condition on subgroup-specific averages of nuisance variables
(average_within_subgroup = TRUE in brm_transform_marginal()). But if
you do this, it is your responsibility to investigate and understand the hidden
interactions and confounding in your dataset. For more information, please visit
https://openpharma.github.io/brms.mmrm/articles/inference.html and
https://cran.r-project.org/package=emmeans/vignettes/interactions.
html.

prefix Character of length 1, prefix to add to the model matrix ("X") from brms: : make_standata()
in order to reconstruct the brms model parameter names. This argument should
only be modified for testing purposes.

Details

The matrix from brm_transform_marginal() is passed to the transform_marginal argument
of brm_marginal_draws(), and it transforms posterior draws of model parameters to posterior
draws of marginal means. You may customize the output of brm_transform_marginal() before
passing it to brm_marginal_draws (). However, please do not modify the dimensions, row names,
or column names.

Value

A matrix to transform model parameters (columns) into marginal means (rows).

https://openpharma.github.io/brms.mmrm/articles/inference.html
https://openpharma.github.io/brms.mmrm/articles/inference.html
https://cran.r-project.org/package=emmeans/vignettes/interactions.html
https://cran.r-project.org/package=emmeans/vignettes/interactions.html

brm_transform_marginal

Examples

set.seed(0L)
data <- brm_data(
data = brm_simulate_simple()$data,
outcome = "response”,
group = "group”,
time = "time",
patient = "patient”,
reference_group = "group_1",
reference_time = "time_1"
)
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
transform <- brm_transform_marginal(data = data, formula = formula)
equations <- summary(transform)
print(equations)
summary (transform, message = FALSE)
class(transform)
print(transform)

Index

* archetype utilities
brm_recenter_nuisance, 67

+ data
brm_data, 29
brm_data_change, 33
brm_data_chronologize, 34

* help
brms.mmrm-package, 3

* informative prior archetypes
brm_archetype_average_cells, 3
brm_archetype_average_effects, 7
brm_archetype_cells, 12
brm_archetype_effects, 16
brm_archetype_successive_cells, 20
brm_archetype_successive_effects

25

* marginals
brm_marginal_data, 44
brm_marginal_draws, 46
brm_marginal_draws_average, 48
brm_marginal_grid, 50
brm_marginal_probabilities, 51
brm_marginal_summaries, 53

+ models
brm_formula, 36
brm_formula_sigma, 42
brm_model, 54

* priors
brm_prior_archetype, 60
brm_prior_label, 62
brm_prior_simple, 64
brm_prior_template, 66

+ simulation
brm_simulate_categorical, 68
brm_simulate_continuous, 70
brm_simulate_outline, 71
brm_simulate_prior, 72
brm_simulate_simple, 74

* transformations

78

brm_transform_marginal, 75
* visualization

brm_plot_compare, 57

brm_plot_draws, 59

brm_archetype_average_cells, 3, 10, 14,
19,23,28
brm_archetype_average_cells(), 5, 13, 17,
22,26
brm_archetype_average_effects, 6, 7, 14,
19, 23,28
brm_archetype_average_effects(), 9, 13,
17,22, 26
brm_archetype_cells, 6, 10, 12, 19, 23, 28
brm_archetype_cells(), 14, 67
brm_archetype_effects, 6, 10, 14, 16, 23, 28
brm_archetype_effects(), I8
brm_archetype_successive_cells, 6, 10,
14, 19, 20, 28
brm_archetype_successive_cells(), 4-06,
8, 10, 12-14, 16-19, 21-23, 25-28,
35, 3740, 42, 44, 46, 49, 50, 55, 61,
63, 64,606,72,76
brm_archetype_successive_effects, 6, 10,
14, 19, 23, 25
brm_archetype_successive_effects(), 27
brm_data, 29, 33, 35
brm_data(), 4,8, 12, 13, 16, 17, 21, 22, 25,
26, 3040, 4244, 46, 47, 49, 50, 55,
56, 62, 64, 69, 70,72, 76
brm_data_change, 32, 33, 35
brm_data_chronologize, 32, 33, 34
brm_data_chronologize(), 30, 34, 35
brm_formula, 36, 44, 56
brm_formula(),4, 5,8, 9, 12-14, 17, 18,
21-23, 26, 27, 38—40, 42, 43, 46, 47,
51,55,64,72,76
brm_formula_sigma, 40, 42, 56
brm_formula_sigma(), 37, 43, 46, 47
brm_marginal_data, 44, 48, 49, 51, 52, 54

INDEX

brm_marginal_data(), 45, 57
brm_marginal_draws, 45, 46, 49, 51, 52, 54
brm_marginal_draws(), 31, 32, 42, 43,
46-51, 53, 55, 76
brm_marginal_draws_average, 45, 48, 48,
51, 52, 54
brm_marginal_draws_average(), 49
brm_marginal_grid, 45, 48, 49, 50, 52, 54
brm_marginal_probabilities, 45, 48, 49,
51,51, 54
brm_marginal_summaries, 45, 48, 49, 51, 52,
53
brm_marginal_summaries(), 57, 59
brm_model, 40, 44, 54
brm_model (), 37, 40, 46, 55, 56, 61
brm_plot_compare, 57, 60
brm_plot_compare(), 58
brm_plot_draws, 58, 59
brm_prior_archetype, 60, 63, 65, 66
brm_prior_archetype(), 14, 18, 63, 66
brm_prior_label, 61, 62, 65, 66
brm_prior_label(), 14, 18, 61, 66
brm_prior_simple, 61, 63, 64, 66
brm_prior_simple(), 65, 72
brm_prior_template, 61, 63, 65, 66
brm_prior_template(), 66
brm_recenter_nuisance, 67
brm_recenter_nuisance(), 68
brm_simulate_categorical, 68, 70, 72, 73
75
brm_simulate_continuous, 69, 70, 72, 73,
75
brm_simulate_outline, 69, 70,71, 73,75
brm_simulate_outline(), 69-71, 73
brm_simulate_prior, 69, 70, 72,72, 75
brm_simulate_simple, 69, 70, 72, 73,74
brm_simulate_simple(), 74
brm_transform_marginal, 75
brm_transform_marginal (), 46, 76
brms.mmrm-package, 3
brms::ar(), 64
brms::arma(), 64, 65
brms::brm(), 55
brms::brm_multiple(), 55
brms: :brmsfamily (), 55
brms::cosy(), 65
brms::ma(), 65
brms: :make_standata(), 40, 56, 76

brms::set_prior(), 6, 10, 14, 19, 23, 28,
61-63, 66
brms: :unstr(), 64

contr.poly(), 30, 35
contr.treatment(), 30, 35

z0o::na.locf(), 32

79

	brms.mmrm-package
	brm_archetype_average_cells
	brm_archetype_average_effects
	brm_archetype_cells
	brm_archetype_effects
	brm_archetype_successive_cells
	brm_archetype_successive_effects
	brm_data
	brm_data_change
	brm_data_chronologize
	brm_formula
	brm_formula_sigma
	brm_marginal_data
	brm_marginal_draws
	brm_marginal_draws_average
	brm_marginal_grid
	brm_marginal_probabilities
	brm_marginal_summaries
	brm_model
	brm_plot_compare
	brm_plot_draws
	brm_prior_archetype
	brm_prior_label
	brm_prior_simple
	brm_prior_template
	brm_recenter_nuisance
	brm_simulate_categorical
	brm_simulate_continuous
	brm_simulate_outline
	brm_simulate_prior
	brm_simulate_simple
	brm_transform_marginal
	Index

